
Abstract

In this paper, we describe a framework for an object-ori-
ented modeling of meta information and its use for the in-
tegration of heterogeneous databases with the goal of their
interoperation. The meta information consists of all types
of information necessary to access and interoperate the
participating databases. As part of the meta information,
we model the common properties and differences of the
various data models and concrete systems. Additionally, we
also include information to semantically enhance the sche-
mas of the participating databases providing the basis for
a (semi-)automatic schema transformation. We describe
the semantic enrichment of a relational schema using addi-
tional information deduced from its underlying entity-rela-
tionship design schema. The enhanced relational schemas
may be automatically transformed into corresponding
schemas in the common data model which in our case is the
object-oriented model. Queries using the created object-
oriented schema may be automatically translated into
equivalent SQL queries for the original relational schema.

Keywords: interoperability of database systems, federated
databases, multidatabase systems, schema en-
richment, schema transformation, translation
of operations, object-oriented database query
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1. Introduction
The interoperation of heterogeneous database systems is

necessary to provide convenient access to data distributed
across different, already existing database systems. For
many applications, interoperation based on logical data in-
tegration rather than physical data exchange is desirable.
The need for a partial logical integration of databases is
widely recognized but many difficulties arise when realiz-
ing it [KS 91] [BHP 92]. On the one hand the heteroge-
neous database schemas have to be transformed into the
global common data model, and on the other hand the que-
ries expressed in the global common data manipulation lan-
guage have to be decomposed and translated into the local
query languages. It is desirable that both processes, schema
transformation as well as query translation, are highly auto-
mated. However, it is generally impossible to achieve a ful-

ly automated schema transformation since semantic infor-
mation on the participating databases is missing. In many
cases, it may be possible to deduce this information e.g.
from existing entity-relationship design schemas, but in the
other cases it must be user provided. In the process of query
translation, user interaction is not feasible because query
translation has to be done each time, a query is processed by
the system. The possibility for queries to be automatically
translated into the query languages of the participating da-
tabases is an important requirement for any global common
query language. Another important requirement is the ex-
pressiveness of the global common query language since it
should provide the possibility to express all queries which
may be expressed in any of the participating databases. The
global common query language itself depends on the com-
mon data model which must provide adequate concepts to
model the semantic information for all databases participat-
ing in the federation. Only semantic data models [HK 88]
such as the functional model [Shi 81] [LR 82], the extended
entity-relationship model [TYF 86] [DA 87] [NA 87] and
the object-oriented model [Kim 90] [KDN 90] [CT 91]
[CS 91] are candidates providing the needed data modeling
capabilities.

In our approach, we use the object-oriented data model as
common data model because of its semantic richness and
availability. Research prototypes and commercially avail-
able object-oriented database systems have been built over
the last decade and are ready to be used now. We prefer the
object-oriented model over the functional data model be-
cause, to our opinion, the object-oriented model is closer to
the users view of the real world modeled in the database. We
also believe that the object-oriented data model is better
suited as common data model than the entity-relationship
model because in the object-oriented model only one con-
cept (objects) is used as opposed to the two concepts (enti-
ties and relationships) of the entity-relationship model. Us-
ing two concepts may cause problems in the process of
schema integration and schema transformation because the
same real world object may be modeled as entity in one
schema but as a relationship in another schema. In the ob-
ject-oriented data model, everything is modeled as an object
and therefore, it is easier to integrate different schemas. An
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example for a project using the object-oriented model as
common data model is the Pegasus project [Ahm 91] at the
Hewlett-Packard Research Laboratory in Palo Alto. In Pe-
gasus, for each relation automatically a class with member
variables for all attributes of the relation is created which
may be accessed like any other class in the object-oriented
database. Although using the semantically rich object-ori-
ented data model, the created structure of the schema re-
mains flat as in the relational model.

In order to (semi-)automatically create more structured
classes from relational schemas, in our approach, we use
‘meta information’ for semantic schema enrichment. In to-
day’s database systems, the so-called meta information is
usually kept in some type of data dictionary. It is easy to
store the meta information in the data dictionary as long as
one is dealing with a system using a single data model. In a
multidatabase environment, however, the meta information
is structured differently in the various databases to be inte-
grated. To adequately model meta information, we use an
object-oriented class hierarchy for storing information on
the participating databases. The meta information includes
information necessary for an interoperation of the partici-
pating databases. It further provides a basis for a semantic
enrichment of the schema information available in the par-
ticipating databases. The additional semantic information is
essential to support an automatic schema transformation
from the original data model to the integrating common data
model.

As already mentioned, it is important not only to support
the enrichment of schema information and the automatic
transformation of schemas, but also to support the automat-
ic translation of data manipulation operations. This is im-
portant since the transformation of schemas has to be done
only once, but the translation of operations has to be done
each time a query is processed by the system. To query the

multidatabase system, we use a declarative query language
called Structured Object Query Language (SOQL) allowing
partial integration of heterogeneous databases and automat-
ic translation of operations into the (possibly also high-lev-
el) query language of the participating databases. SOQL is
similar to other object-oriented database query languages
like OQL [ASL 89], XSQL [Koj 91] or HOSQL [Ahm 91]
the latter being used in Pegasus.

Figure 1 shows the schema architecture of our system. It
consists of five levels: the local schema (LS), the enriched
local schema (ES), the enriched local schema in the global
data model (ES-GDM), the integrated schema (IS) and the
user level. The first level of our architecture is the local
schema (LS) which is the exported part of the schema of a
component database expressed in the local data model.
Usually, the LS will be a view (subset) of the component da-
tabase, but it may also be the complete schema without any
modification. The LS may then be enriched with additional
semantic information which may be user provided or de-
duced from an entity-relationship design schema. The result
of this process is the enriched local schema (ES). The ES
may then be (semi-)automatically translated into the global
data model resulting in an enriched local schema in the glo-
bal data model (ES-GDM). Several ES-GDM may be com-
posed into an integrated schema (IS). The IS may be direct-
ly used by some users (system integration level) whereas
others might prefer to access and integrate the ES-GDM on
their own (user integration level), in which case the five lev-
el architecture shrinks to four levels. It further means that
we support a tight coupling of the component databases but
also allow the user to dynamically create new integrated
schemas and to directly access the component databases,
thereby also supporting a limited type of loose coupling. ES
and ES-GDM are stored as part of the object-oriented (glo-
bal) meta information already mentioned. The IS may also
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be part of the global meta information but usually they are
stored locally (local meta information) because different
applications and/or users may need different IS. Queries in
SOQL using the IS are decomposed into SOQL-subqueries
on the ES-GDM. Each of the subqueries is then translated
into a query for the original schema (LS) in the correspond-
ing data model. In the translation process, the additional se-
mantic information stored as part of the global meta infor-
mation is needed because the subqueries are directly
translated from the ES-GDM to the LS. All subqueries are
executed by the local database systems with the order of ex-
ecution being defined by the multidatabase system. The
(partial) results are transformed back into the global data
model and assembled into the final result.

In the literature, several schema architectures have been
proposed [Dev 82] [Lit 82] [Bla 87] [Tem 87] [RC 89].
Most of them are similar to the five level schema architec-
ture described in [SL 90]. Our approach differs from this ar-
chitecture mainly in two respects. First, in our architecture
we do not need the export schema level because we consider
the local schema (LS) as the exported subset of the compo-
nent schema that is available to the multidatabase system.
Second, we use a semantic schema enrichment for achiev-
ing a good integration. We, therefore, introduce an addition-
al level with the enriched local schema (ES) which may be
translated almost automatically into the global data model.

The rest of the paper is organized as follows: Section 2 in-
troduces the object-oriented modeling of meta-information.
This is the basis for access and interoperation of the partici-
pating databases and for the semantic enrichment of their
schemas. Section 3 elaborates on the (semi-)automatic
transformation of relational schemas into object-oriented
ones using meta information deduced from the underlying
entity-relationship schema. In section 4, we show that the
user has full SQL-like access to the underlying relational
databases using SOQL queries which may be automatically
translated into equivalent SQL queries. Section 5 summa-

rizes our approach and points out some problems related to
an automatic translation of data manipulation operations in
a multidatabase environment.

2. Modeling the Databases Participating in
the Multidatabase

To adequately model meta information, we use an object-
oriented class hierarchy for the participating databases,
which we presented in our paper [KKM 92]. This section
gives a brief overview and some additional details of the ob-
ject-oriented system described there. The object-oriented
system uniformly manages the following tasks of a multida-
tabase system:

• It models all databases participating in the multidata-
base. Instances of the meta model are objects describ-
ing databases, their data models and system properties.
The meta model and its instances represent the knowl-
edge base of the multidatabase management system.

• It allows to define and work with the integrated and/or
enriched local schema in the global data model consist-
ing of class definitions. Each class definition has corre-
sponding instances in the meta model which it refers to
by an object reference called ‘transformed_from’. In-
stances of these classes are “real data” which either can
be found in the object-oriented system or in the partici-
pating component systems.

The knowledge base part, i.e. the meta model which will
be presented in the rest of this section, serves for

• integrating (parts of) the data dictionaries of the partic-
ipating databases (including the data dictionary of the
multidatabase system itself),

• enriching the schemas of the participating databases,
• maintaining transformation and access information,
• dynamically changing parameters of a database during

the time the database participates in a federation,
• integrating new database systems and data models not

yet known to the system.
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2.1 The Class Hierarchy for Modeling the
Participating Databases

The mentioned class hierarchy implements on the class
level a model for arbitrary data dictionaries, so to speak, a
data dictionary for data dictionaries. At the instance level, it
contains the contents of the data dictionaries of the partici-
pating databases with additional information necessary for
managing the multidatabase system. In other words, at the
instance level it contains the enriched schema (ES) of the lo-
cal data model (see Figure 1).

The information on common properties of these databas-
es as well as differences between them is represented by
class attributes and functions or member variables and
methods as they would be called in object-oriented database
systems based on C++. The class hierarchy is presented in
Figure 2, where boxes depict class definitions including
member variables leading to other class definitions not
shown in this figure. In the hierarchy, the class ‘Database’
has subclasses ‘Relational DB’, ‘Network DB’, ‘Hierarchi-
cal DB’, ‘Object-oriented DB’ and ‘Files’ for simple file
systems, each of them representing a specific data model.
These classes further branch into subclasses according to
the concrete (commercial) systems available. The proper-
ties common to all classes of the hierarchy are modeled in
the class ‘Database’, the properties common to all databases
of one of the supported data models are described in the five
subclasses and properties common to concrete (commer-
cial) databases are handled in the corresponding classes.
Additionally, we include the class ‘ERModel’ in our model,
since many databases have been designed using an entity-
relationship-diagram. The knowledge of both, the entity-re-
lationship-diagram and the concrete database schema allow
a higher degree of automation of the schema transformation
process, as will be pointed out in the next section.

For each database type the meta model also contains
classes which model the building elements of this type. In
the relational case classes such as ‘Table’, ‘Attribute’ pro-
vide the frame to store all necessary information on the re-
spective database. Figure 3 shows some important classes
in detail and gives an impression how meta-information is
represented in our system. An outcome of this model is that
information is treated in a unique way where it is possible.
For example, consider results obtained from queries to dif-
ferent concrete systems using the same data model. Let us
assume that we pose a query involving several relational
systems such as Oracle, Sybase, Ingres and others. The re-
sult of such a query is not limited to a single of the partici-
pating concrete systems (i.e. Oracle or Ingres). Our system,
however, should be able to operate on such result tables as
well. Using the subclass mechanism is a good approach
since the class ‘Table’ inherits all properties specific to the
corresponding data model (i.e. the relational model) but has
no information related to a concrete database system.

2.2 Semantic Enrichment of Local Data
Dictionaries

We extend the meta information to also include informa-
tion necessary for an interoperation of the participating da-
tabases. Since our goal is to achieve an interoperation based
on logical data integration rather than physical data ex-
change, we provide a basis for a semantic enrichment of the
schema information available in the participating databas-
es. This additional semantic information is essential to sup-
port an automatic schema transformation from the original
data model to the integrating common data model. Addi-
tional classes, special member variables and subtyping are
used to enhance the semantic information available in the
data model or concrete system. An example for enhancing
the relational model (see Figure 3) with information on ta-
bles implementing m:n, 1:n or 1:1 relationships are:

• the member variables

- ‘connecting_tables’ defined in class ‘Relational DB’,
leading to all tables establishing relationships be-
tween tables representing entities,

- ‘connecting_attributes’, ‘fct_relationships’ defined
in class ‘Relational DB’, leading to information,
which tables can be joined using which attributes,

- ‘connected_tables’ defined in class ‘ConTable’,
leading to all tables which are connected by the re-
spective instance of ‘ConTable’,

• the subtype hierarchy ‘SimpleConTable’ isa ‘ConT-
able’ isa ‘Table’, explicitly distinguishing two classes
of relationship tables and entity tables. Instances of the
class ‘SimpleConTable’ indicate tables which should
not be transformed into separate classes but may be re-
placed by member variables which directly reference
the related class,

• the additional classes ‘FctRelationship’, ‘TableRela-
tionship’, providing details for joining two tables,
where instances of ‘FctRelationship’ denote 1:n rela-
tionships.

This semantic information on relationships between ta-
bles and on corresponding attributes is not modeled explic-
itly in the relational model. However, it is necessary for an
adequate schema transformation as well as for querying the
database based on the transformed schema with enriched in-
formation. The additional semantic information is neces-
sary to automate schema translation and integration of the
database schemas using different data models and database
systems. The (semi-)automatic schema translation process
from the relational to the object-oriented model will be de-
scribed in the next section. Vice versa, to translate opera-
tions on the transformed schema we also need this informa-
tion to correctly transform back object references into
operations of the local databases. Furthermore, it enables
the interoperation of the databases and supports the access
of several databases using one query interface.



Class Database with
name: String;
description: Text;
db_size: Integer; # in MByte
owner: Owner_Spec;
location: Network_Address;
access_rights: Access_Spec;
degree_of_autonomy: Autonomy_Spec;

end;

Class Relational DB isa Database with
tables: Set(Table);
views: Set(View);
connecting_tables: Set(ConTable);
connecting_attributes: Set(TableRelationship);
fct_relationships: Set(FctRelationship)

end;

. . .

Class Table with
name: String;
description: Text;
attributes: Set(Attribute);
key: Set(Attribute);
number_of_records: Integer;

constraints:
this.key⊆ this.attributes;

end;

Class Attribute with
name: String;
domain: Domain;
description: Text;
defined_in: Table;

end;

Class TableRelationship with
tab1, tab2: Table;
joinattr1: List(Attribute);
joinattr2: List(Attribute);

constraints:
this.joinattr1.count = this joinattr2.count;

this.joinattr1.domain = this joinattr2.domain;
this.joinattr1.listtoSet⊆ this.tab1.attributes;
this.joinattr2.listtoSet⊆ this.tab2.attributes;

end;

Class FctRelationship isa TableRelationship with
constraints:

tab1 renamed_to from_tab;
tab2 renamed_to to_tab;
∀ tuple t1 ∈ this.from_tab∃1 tuple t2 ∈ this.to_tab: t1  t2 ;

end;

Class ConTable isa Table with
connected_tables: Set(Table);
connecting_attributes: Set(TableRelationship);

end;

Class SimpleConTable isa ConTable with
constraints:

this.connected_tables.count = 2;
this.attributes= this.connecting_attributes.join-

attr1.unnesting; (*all attributes are join attributes*)
end;

Class ERModel with
name: String;
description: Text;
specification_for: Database;
entities: Set(Entity);
relationships: Set(Relationship);

end;

Class Relationship with
name: String;
description: Text;
connected_entities: Set(Entity);
attributes: Set(ERAttribute);

end;

Class Entity with
attributes: Set(ERAttribute);

end;

. . .

Figure 3: Object-Oriented Modeling of the Multidatabase

3. Enrichment and Transformation of
Relational Schemas

In this section, we investigate how the schema of a rela-
tional database can be transformed into class definitions in
an object-oriented model. Usually, a good object-oriented
schema contains more semantics than the relational schema
for the same application domain. If an automatic transfor-
mation process is aimed to produce adequate, well-struc-
tured object-oriented class definitions, more input than the
pure relational schema is needed. The modeling of the nec-
essary additional semantics is one of the goals of the meta
information representation introduced in section 2. The
meta information model does not only allow to specify arbi-

trary databases, tables and their attributes as instances. Ad-
ditionally, it also allows to specify whether they represent
entities or relationships and furthermore the type of rela-
tionship by using the member variables ‘connecting_tables’
and ‘connecting_attributes’ defined within the model.

For illustrating the schema enrichment and transforma-
tion process, we will use the following example. Consider a
relational databaseFlight DB containing information on
passengers, departures, planes, planetypes and their rela-
tionships.

Flight DB:
Passenger (pid: Integer; name: String; address: String)
Departure (did: Integer; start: date; flight: Integer;

airline_id: Integer; plane_id: Integer)



Pass_Dept (did: Integer; pid: Integer)
Plane (serial_nr: Integer; yr_built: Date;

manufacturer: String; model: Integer)
Planetype (manufacturer: String; model: Integer;

capacity: Integer; range: Integer)

For this database, an instance of the member variable
‘connecting_tables’ would classify the tablePass_Dept as
an m:n relationship joining tablesPassenger andDepar-
ture. Furthermore, an instance of the member variable ‘con-
necting_attributes’ indicates that the join has to be carried
out using thepid attributes ofPassenger andPass_Dept on
the one hand and thedid attributes ofDeparture andPass_
Dept on the other hand. This additional semantic informa-
tion is crucial for the schema transformation process in or-
der to create good object-oriented schemas by replacing
connecting attributes and connecting tables by direct object
references.

3.1 Schema Enrichment
As already indicated, the semantic enrichment of a rela-

tional schema corresponds to the instantiation of the meta
model (see section 2) with information on the relational
schema and additional semantic knowledge such as

- tables representing relationships,
- the type of the relationship (1:1, 1:n, n:m),
- attributes or groups of attributes representing foreign

keys.
This information can be obtained by querying the design-

er or administrator of the relational system. In the case of re-
lational databases, very often the domain of interest is for-
malized using an entity-relationship (ER) model or, at least,
the ER schema may be (partially) deduced from the rela-
tional schema [MM 90]. This model contains the semantic
information needed for our schema enrichment. If there is a
formalized and standardized semantic design model togeth-
er with an also standardized mapping which entity and
which relationship lead to which table, a nearly automatic
schema enrichment is possible. In the following, we formal-
ly describe the schema enrichment if a standard ER schema
[Che 76] is available. Let us first consider the three steps in
the process of translating an ER schema into a relational
schema:

1. for each entity E(X1, ... Xm, A1, ..., An) with (m+n > 1)
⇒ Relation E(X1, ... Xm, A1, ..., An) is created.

2. for each functional relationship R: E→ F with y1, ..., yf
key of F and E(A1, ..., Aq)⇒  Relation E is extended to E (A1, ..., Aq, y1, ..., yf)
and no relation for R is created.

3.for all other relationships R(E1, ..., Ep, A1, ..., Aq) with
 key of Ei⇒  Relation R ( , ..., , A1, ...,

Aq) is created.
When translating entities into relations (step 1) no seman-

tic information is lost. In the second step, however, the in-

ai1 … aini
, ,

a11 … a1n1
, , ap1 … apnp

, ,

formation that there exists a functional relationship between
E and F gets lost during the transformation process. There-
fore we add this information to our meta model by instanti-
ating the classFctRelationship with [from_tab=E; to_
tab=F; joinattr1=(y1, ..., yf); joinattr2=(y1, ..., yf)] and by
adding this instance to the member variablefct_relation-
ships of the corresponding database. We assume that we
have already instantiated E and F as instances of classTable,
y1, ..., yf as instances of classAttribute and so on. For sim-
plification, we further assume that after translating the ER
to the relational schema no attributes or tables have been
added, deleted or renamed, nor that tables have been omit-
ted or united. In the third step, even more information is lost
because the p-ary relationship between E1, ..., Ep is only
represented indirectly in the relational schema. Again, we
use our meta model to capture the additional semantics. As
before, we create instances of the classTableRelationship
with Ji = [tab1=R; tab2=Ei; joinattr1= ; joinat-
tr2= ] for i=1 ... p and add them to the member
variableconnecting_attributes of the corresponding data-
base. Furthermore, we instantiate the classConTable with
[connected_tables=Set(E1, ..., Ep); connected_attributes=-
Set(J1, ..., Jp)] and add this instance to the member variable
connecting_tables. If the relationship connects only two ta-
bles (p=2) and if it has no additional attributes (q=0) we use
the classSimpleConTable, which is a subclass ofConTable.
SimpleConTable is important for the schema transformation
process since simple connecting tables may be omitted
completely in the object-oriented schema.

In most cases, there is neither a standard ER-model nor a
standardization for the mapping between the initial ER
model and the resulting tables. Thus, user support will be
necessary to instantiate the meta model, but in any case, part
of the additional semantic information can be automatically
deduced and the user may be guided in the process of relat-
ing the ER design schema to the relational schema.

3.2 Schema Transformation
Having the additional semantic information instantiated

in the meta model, the schema transformation process may
be performed automatically. The schema transformation
uses the instantiated meta model as input and produces the
corresponding object-oriented classes and mappings. The
first step of the schema transformation is a simple transfor-
mation of all relations into classes. For a databaseDB, each
tableT ∈ DB.table

T(A1: D1; ..., An: Dn) is transformed into

Class T with
A1: D1; ..., An: Dn ;

end;

Together with the class definition, an access method with
the same name is created for each member variable. Using
this simple transformation, objects are only referenced by

ai1 … aini
, ,

ai1 … aini
, ,



value. In the object-oriented model, however, relationships
may be represented directly. Using direct object references
or set-oriented member variables, a more intuitive access is
possible.

Therefore, in the second step, we introduce new attributes
for all functional relationships. For eachFR ∈ DB.fct_rela-
tionships, the classesE andF created fromFR.from_tab and
FR.to_tab are extended:

“F” indicates that the default name of the additional mem-
ber variable is the name of the corresponding class F and for
set variables the class name is concatenated with “_set”
which is indicated by “E_set”.

In the third step of the transformation process, we consid-
er arbitrary relationships. For eachCA ∈ DB.connecting_
attributes,the classesR andEi (created from CA.tab1and
CA.tab2) are extended using a member variable directly ref-
erencing the other class. The classR(created from CA.tab1)
corresponding to the relationship table in the ER schema is
extended by a member variable directly referencing classEi
and the class Ei (created fromCA.tab2) is extended by a
member variable referencing a set of objects of class R. The
formal description of the class extensions is similar to the
second step when replacingE by R and F by Ei.

The last step of the schema transformation process is the
transformation of simple connecting tables. For each
SCT∈ DB.SimpleConTable, the classes E1 and E2 (created
fromSCT.connected_tables) are changed to have direct ref-
erences to each other instead of referencing the class R as
introduced in the last step. Formally, the classes E1 and E2
are changed as follows:

Having transformed E1 and E2, the class R is no longer
needed and can be omitted.

Class E with
A1: D1; ..., An: Dn ; to

end;

Class E with
A1: D1; ..., An: Dn ;
“F”: F;

end;

Class F with
A1: D1; ..., An: Dn ; to

end;

Class F with
A1: D1; ..., An: Dn ;
“E_set”: Set(E);

end;

Class E1 with
A1: D1; ..., An: Dn ; to
“R_set”: Set(R);

end;

Class E2 with
A1: D1; ..., An: Dn ; to
“R_set”: Set(R);

end;

Class E1 with
A1: D1; ..., An: Dn ;
“E 2_set”: Set(E2);

end;

Class E2 with
A1: D1; ..., An: Dn ;
“E 1_set”: Set(E1);

end;

Let us now consider the schema transformation for our
example database. There, we have a functional relationship
between Plane and Planetype and a simple connecting table
Pass_Dept connecting passenger and departure. If we have
the necessary semantic information instantiated in the meta
model, we can use the schema transformation algorithm to
produce the following class definitions representing an
equivalent object-oriented schema:

Our schema transformation may not provide a perfect ob-
ject-oriented schema. However, it creates a schema which
allows direct access to the objects as it is usual in an object-
oriented system. We found that SOQL queries using the cre-
ated classes are often shorter and more intuitive than the
corresponding SQL query using the original tables. Com-
plex joins are replaced by simple accesses to member vari-
ables providing more natural access paths.

At this point, let us emphasize that we only generate class
definitions in the multidatabase system, whereas the in-
stances remain in the relational database. Thus, access oper-
ations to objects of object-oriented classes with underlying
relational data bases have to be translated into accesses to
the corresponding relational tuples. An advantage of our
schema enrichment and transformation is that this transla-
tion can be done automatically which will be described
shortly in section 4. For the automatic translation of opera-
tions, a mapping is needed between created class definitions
and meta information used to create them. Our approach to
establish the mapping is to link automatically each new
class definition to its corresponding description in the meta
model using a member variable ‘transformed_from’. This
member variable is defined for every class and may be in-
stantiated only once during class creation time. It is an at-
tribute of the class definition rather than an attribute of each
instance of that class. If we want to execute methods on in-
stances of one or more classes, we can access the informa-
tion provided by the meta model by following the ‘trans-
formed_from’ links. More exactly, we can determine from
which relational table the class is transformed, in which da-
tabase we have to look for the instances and whether access-

Class Passenger with
pid: Integer;
name: String;
address: String;
departure_set: Set (Departure);

end;

Class Departure with
did: Integer;
start: date;
flight: Integer;
airline: Airline;
plane: Plane;
passenger_set: Set (Passenger);

end;

Class Plane with
serial_nr: Integer;
yr_built: Date;

model: Integer;
planetype: Planetype;

end;

Class Planetype with
manufacturer: String;
model: Integer;
capacity: Integer;
range: Integer;
plane_set: Set (Plane);

end;



es to class attributes have to be translated to joins on the re-
lational side.

4. Translation of SOQL- into SQL-Queries

In this section, we want to illustrate the translation of
SOQL-queries using the created object-oriented schema
into SQL-queries using the original relational schemas.

First, we have to introduce our multidatabase query lan-
guage SOQL. SOQL is defined for the global data model
and has been designed to query the integrated schemas or
single ES-GDMs. SOQL is similar to other declarative que-
ry languages for object-oriented database systems. As in
most other object-oriented database query languages, in
SOQL a set of basic object classes (Boolean, String, Num-
bers, Integer, Real and the generic classes Set and List) is
defined. The classes are provided by the system together
with a set of basic methods. Methods are applied to an in-
stance variable of an object using dot-notation, e.g. adding
5 to an integer object with identifier int_ob is done by ‘int_
ob.+(5)’. For a more convenient use of methods, the stan-
dard infix notation is allowed for the predefined methods of
the basic classes. Additional methods for any class may be
introduced by the user. These methods may be used like any
of the system provided methods. However, when using
these methods, there is no automatic translation to an SQL
query in the underlying relational database. The system
will issue SQL queries to access the data needed to execute
the methods in the object-oriented system. As already
shown in the example class definitions (see Figure 3), we
assume that our object definition language allows to state
many sorted first order integrity constraints. Due to space
limitations, in this paper we do not elaborate on the capabil-
ities of SOQL.

In the following, we will give two examples for queries in
SOQL. For the example queries, we use the transformed ex-
ample database as presented in section 3. A simple query se-
lecting all flight numbers with a list of the corresponding
passenger names for the airline “Lufthansa” on the 07/12/92
is expressed as follows:

Example 1:

select D.flight D.passenger_set.name
for each Departure D
where D.start = “07/12/92”and

D.airline.name = “Lufthansa”

In the relational system, even in this simple case four ta-
bles need to be joined in order to execute the query. The sec-
ond example is a query to determine the seat utilization of
all “Lufthansa” flights. The following query produces the
desired results:

Example 2:

select (D.plane.planetype.capacity - D.passenger_set.count)
for each Departure D
where D.airline.name = “Lufthansa”

In this query, we repeatedly use the dot-notation in a row.
A corresponding SQL-query is much more complicated be-
cause joins between all six tables involved in the query are
required.

SOQL queries have to be transformed into queries in the
local data model, depending on which component databases
have to be accessed. Let us recall that only schemas are inte-
grated, the instances, however, remain in the local databas-
es. Since an SOQL query may involve classes which repre-
sent data of different databases, the query must first be
decomposed into homogeneous queries. In a homogeneous
query, all parts of the query must belong to the same data-
base and member variables or methods added to a class after
its creation by the schema transformation process may not
be applied to instances of the class.

It is possible to automatically translate homogeneous
SOQL queries into queries defined in the local data model
using the semantic and transformation information provid-
ed by the meta model. To illustrate the translation process,
in the following, we will give an example. In the translation
of query Example 1, successively class variables D.passen-
ger_set and D.airline are replaced introducing the join con-
ditions join(D, nv2) and join(D, nv1). Then the relational
join expressions are created from the join conditions (add-
ing Pass_Dept in this step) and the‘group by’ clause is ap-
pended reflecting the set structure of the SOQL answer
type.
Translation of Example 1:

select D.flight nv1.name
from Departure D, Passenger nv1, Airline nv2, Pass_Dept pd
where D.airline_id = nv2.aidand D.did = pd.did

and pd.pid = nv1.pidand D.start = “07/12/92”
and nv2.name = “Lufthansa”

group by D.flight

5. Summary and Conclusions
A major problem in interoperating heterogeneous data-

bases is the necessary meta information on the databases
participating in the multidatabase. Unfortunately, such in-
formation is not readily available. Our concept of modeling
the databases as an object-oriented class hierarchy provides
a consistent and effective way to store and access all neces-
sary meta information. Part of the meta information sup-
ports a semantic enrichment of the databases allowing a
(semi-)automatic schema and query translation as well as
inter-database access. The meta information further sup-
ports a flexible specification of access rights and autonomy
degrees and may also support the query optimization pro-
cess. Finally, the meta information provides a simple but
powerful support to the user in finding the desired databas-
es. We believe that our approach to model meta information
is elegant and efficient because we use the object-oriented
concept not only to store the information necessary to ac-
cess and interoperate the heterogeneous databases, but also
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to enrich the semantic information available in their sche-
mas. For the transformation of relational schemas into ob-
ject-oriented class definitions, we use information deduced
from an ER-design schema to provide an object-oriented
class hierarchy with more semantics than the original rela-
tional schema. As described, the semantic enrichment and
instantiation of the meta model as well as the actual creation
of the classes in the object-oriented model may be per-
formed automatically. For a convenient access to the data in
the object-oriented multidatabase system, we use SOQL, a
declarative query language for objects. SOQL provides a
uniform and convenient query interface to all participating
databases which, in addition, is easily extendable. For the
purpose of interoperation, it is further important that SOQL
has more expressive power than SQL and that SOQL que-
ries which have corresponding SQL queries can automati-
cally be translated into equivalent SQL queries.

We are currently working on concepts to support a (semi-)
automatic enrichment and transformation of network and
hierarchical schemas into object-oriented class definitions
in order to integrate also these types of databases in the mul-
tidatabase. It is necessary to support not only the schema in-
tegration and management of all types of inter-database re-
lationships, but also to automatically partition and translate
SOQL queries on an integrated schema into the data manip-
ulation operations of the underlying databases. In the pro-
cess of query translation, the meta information will be cru-
cial for finding the virtual object classes and the information
necessary to access the underlying databases.
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