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Abstract

In case of a crime or terrorist attack, nowadays much video
footage is available from surveillance and mobile cameras
recorded by witnesses. While immediate results can be cru-
cial for the prevention of further incidents, the investigation of
such events is typically very costly due to the human resources
and time that are needed to process the mass data for an inves-
tigation. In this paper, we present an approach that creates a
4D reconstruction from mass data, which is a spatio-temporal
reconstruction computed from all available images and video
footage. The resulting 4D reconstruction gives investigators
an intuitive overview of all camera locations and their view-
ing directions. It provides investigators the ability to view the
original video or image footage at any specific point in time.
Combined with an innovative 4D interface, our resulting 4D
reconstruction enables investigators to view a crime scene in a
way that is similar to watching a video where one can freely
navigate in space and time. Furthermore, our approach aug-
ments the scene with automatic detections and their trajectories
and enrich the crime scene with annotations serving as clues.

1 Introduction

Crime scene investigation often remains a lengthy and costly
process due to the nature of the massive amount of available
data from different sources such as surveillance cameras and
mobile footage. However, at the moment, it lacks useful tools
for crime scene investigators to efficiently and effectively ex-
plore and analyze the mass data, so that it quickly exceeds their
capacities sitting in front of video walls to examine through the
footage. The main objective of this paper is therefore to create
a system that allows for the analysis of a massive number of
image and video data with the aid of emerging algorithmic ap-
proaches from the field of computer vision combined with in-
telligent interaction concepts, in order to display all these data
in an intuitive and coherent visual 3D representation.

Towards this goal, a number of challenges must be ad-
dressed first, including:

• spatio-temporal referencing of massive image and video
data captured in and around the crime scene;

• reconstruction of 3D static and dynamic scene parts;

• intuitive representation of the reconstruction results;

• explorative visual analysis;

• convenient user interactions.

In the first stage of the workflow, we conduct spatial refer-
encing of all input data using content-based analysis of the im-
age, and video frames. The 3D reconstruction produces a static
scene that is further processed. An optional semi-automated
geo-registration of the 3D model onto the world atlas can then
be carried out. Finally, we reconstruct the dynamic scene parts
such as humans and map them into the static scene using the
existing geometric information to facilitate temporal referenc-
ing of the data.

The subsequent visual analytics module combines the static
and dynamic reconstructed scene parts and automatic detec-
tions and visualizes them in a single user interface. Users
can spatially (3D) and temporarily navigate the scene, allow-
ing them to inspect the scene from any angle and time where
footage is available. This more intuitive way of navigating
through many different videos recorded by various cameras in
a scene spares the investigator much time viewing the video
footage manually. Automatic detections support the investi-
gator to find meaningful aspects in space and time. However,
automatic detections sometimes miss important events. There-
fore, we do not only rely on detections but augment them into
the reconstructed scene such that the user can always inspect
the original video footage.

2 Related Work

This section focusses on known solutions on 4D dynamic
(crime) scene reconstruction and visualization.

2.1 Dynamic Scene Reconstruction

Dynamic objects not only are difficult to reconstruct using off-
the-shelf Simultaneous Localization and Mapping (SLAM) or
Structure from Motion (SfM) algorithms, but also impede re-
construction quality for static scenes. Zhong et al. [19] present
a joint Detect-SLAM framework that simultaneously addresses
the reconstruction and detection problem for dynamic objects,
which improves in both cases the reconstruction quality and
detection rate under unusual viewpoints and occlusion by first



segmenting the scene. Similar to this method, Bullinger et
al. [3] employ segmentation techniques in conjunction with the
optical flow to obtain object-specific motion cues and corre-
sponding points. Then, SfM and triangulation can be applied
to enable 3D reconstruction and tracking for static and dynamic
scene parts, respectively. However, this approach presumes the
use of stereo cameras, which are not always available.

Another relevant research direction is the direct recovery
of 3D dynamic scenes, which is more challenging and de-
mands more elaborate routines to mitigate the negative influ-
ences in dynamic scenarios. Ji et al. [10] focus on the recon-
struction of a single dynamic foreground subject and addresses
video synchronization by exploiting locally rigid patches with-
out the need for segmentation. On the contrary, Mustafa et
al. [13, 12] propose to improve on an initial sparse reconstruc-
tion using classic reconstruction techniques with a joint opti-
mization framework. They take data, contrast, smoothness, as
well as temporal terms into account to constrain the solution
space to get a clean depth recovery for synchronized and unsyn-
chronized input videos. However, the algorithms focus on few
large moving foreground objects in the scene, which is diffi-
cult to adapt to real-world scenarios, where wide areas of many
small dynamic objects, such as persons and cars, are present.

2.2 Crime Scene Reconstruction and Visualization in 4D

3D laser scans have seen increased prevalence in crime scene
investigations across the globe thanks to the visual context and
accuracy compared to 2D pictures, as well as the continuous
lowering of device costs [14]. 3D photogrammetric sensing
techniques, such as SfM, offer more advantages by the easiness
of capturing 2D images, and ubiquity of mobile phone cameras
nowadays. Despite the recent strides achieved in the machine
learning and computer vision societies, real-world applications
of 3D/4D crime scene investigation systems are rare.

Baier and Rando utilize SfM to improve mass grave doc-
umentation in archaeological investigations [1]. Urbanová et
al. [18] and Michienzi et al. [11] test commercial 3D recon-
struction solutions for the recovery of 3D human body surfaces
in forensic pathology and injury documentation. All studies
demonstrate higher flexibility and lower time cost compared
to 3D laser scanners with comparable accuracy in most of the
cases. This provides new perspectives for high-precision static
3D reconstruction.

In a current and ongoing project [5], SfM is adopted to tem-
porally and spatially align vast live footage from cameras and
smartphones by eyewitnesses during London’s Grenfell Tower
fire in 2017 that took 72 lives. After motion tracking of the
fire and stabilization of the videos, the image frames are pro-
jected onto the wire-frame model of Grenfell Tower, such that
the catastrophe can be unfolded and explored in 4D.

Bostanci showcases a more proper setup, in which the au-
thor developed an interactive investigation tool for 3D recon-
struction of crime scenes [2]. An off-the-shelf SfM algorithm
Bundler [17] with standard workflows for sparse 3D structures
and CMVS [6] for dense reconstruction are leveraged. Manual
registration is needed to initialize the merging of point clouds

from different clusters. Furthermore, interactive measurement
operations for distance calculation is also included. As opposed
to the presented tool in this paper, the software in [2] offers
minimal and basic functionalities, lacking the capability for re-
constructing dynamic objects, geo-registration and progressive
expansion of reconstructions in an automated fashion.

Finally, we refer the reader to [4] for a comprehensive re-
view of image-based modalities for forensic investigations.

3 Crime Scene Reconstruction

Our crime scene reconstruction approach is divided into four
stages. The first stage is the pre-processing stage, which is done
primarily to save computational cost for large data sets. During
this stage, videos are sampled into one multiple image files de-
pending on whether the content originates from static or mov-
ing cameras. Binary masks are computed for every frame to
differentiate between dynamic scene parts like persons or cars
and the static scene which improves the reconstruction quality.
In the second stage, a static 3D scene reconstruction is com-
puted based on an SfM approach. This results in poses with
six degrees of freedom (6DOF) for ideally all cameras, encod-
ing the cameras position and viewing direction. Furthermore, a
dense point cloud and a surface mesh are computed, which are
useful to provide investigators context for the scene in which
an incident has happened. In the third stage, we perform a geo-
registration of the scene using satellite imagery, recovering the
absolute scale, and enable distance measurements in meters. At
this stage, it is also possible to manually set the 6DOF camera
pose of images that were not automatically reconstructed, since
an automatic registration of some images may have failed that
are heavily occluded by dynamic objects in crowded scenar-
ios. Finally, in the last stage, a dynamic scene reconstruction
is performed. Depth maps are estimated for all video frame
from moving or static cameras and are embedded into the static
scene. This gives investigators an impression of a temporal 3D
reconstruction, also known as 4D reconstruction, that can be
played like a video where the user can additionally freely nav-
igate in space and time. The resulting 4D scene reconstruction
can then be analyzed with the crime scene visualization tool
that is described in Section 4.

3.1 Pre-processing

A significant problem when reconstructing a 4D scene from
video footage is the long wait time due to the processing of
mass data. All video footage is manually annotated in the first

Figure 1. The binary mask to separate static and dynamic scene
parts based on Mask R-CNN.



stage to reduce the wait time in our approach. The user can
provide information on whether footage originates from a static
surveillance camera or a mobile device. This labeling is use-
ful to save computational cost by excluding frames that are not
necessary. For example, not every single camera frame from
a static camera has to be processed when estimating its 6DOF
pose and also not every single frame adds new information to
the reconstruction of the static scene. Furthermore as shown in
Figure 1, binary masks are automatically computed using Mask
R-CNN [9] for all frames, which allows the pixel-wise differ-
entiation between dynamic and static scene parts to perform the
static scene reconstruction only on the static image regions.

3.2 Static Scene Reconstruction

The reconstruction of the static 3D scene is based on a pop-
ular state-of-the-art SfM approach [15, 16], which allows the
full automatic computation of large scale 3D scene reconstruc-
tions from arbitrary image collection with overlapping views
by matching SIFT features between all camera views. We ad-
ditionally make use of binary masks to prevent matching SIFT
descriptors of potentially dynamic scene parts, like persons, to
prevent inconsistencies in the reconstruction. The result is a
set of 6DOF camera poses in a common coordinate space and
intrinsic camera parameters. Based on these camera poses, a
dense point cloud and a surface mesh are computed to represent
the static scene. Figure 2 demonstrates the result of an example
reconstruction containing three surveillance camera views and
footage from two mobile cameras. The reconstruction is not
complete (see white holes), which is because the videos used
for reconstruction did not completely cover the scene. How-
ever, this can be addressed by adding more image or video data
to the reconstruction pipeline.

Figure 2. The result of the SfM-based static scene reconstruc-
tion. Surveillance cameras are shown as large fields of views.
The blue smaller field of views represents camera poses from
images of a video that has been taken after a crime scene in-
cident and re red field of view depict camera poses of footage
that has been recorded by a witness during an event.

3.3 Geo-registration

SfM algorithms typically do not recover an absolute scale in
meters, meaning that distances cannot be directly measured
from a plain 3D reconstruction if no further metadata is pro-
vided, like GPS locations in EXIF metadata. A problem here
is that video data typically does not provide EXIF metadata
and GPS tagged images may suffer from limited positional ac-
curacy. However, to address the scale problem, we provide a
tool that allows to manually geo-register a scene reconstruction
from 3D-3D correspondences between 3D points of the recon-
struction and 3D points on a world map that consists of satellite
imagery with an elevation map. A set of four 3D-3D correspon-
dences is sufficient; however, providing more correspondences
allows for a more robust registration, as a RANSAC-based reg-
istration algorithm with an outlier detection can be used. An
advantage is that by selecting just a few correspondences from
a few image views, automatically all cameras locations and ob-
ject points are represented in a global UTM or GPS coordi-
nates. The geo-registration as well solves the arbitrary orienta-
tion of the reconstruction as it aligns the reconstruction to the
map. Furthermore, after a successful geo-registration, informa-
tion about the ground plane and gravity vector is available. This
can be used as metadata for the reconstruction of the dynamic
scene parts like persons that are moving through the scene.

3.4 Dynamic Scene Reconstruction

The reconstruction of the dynamic scene parts is crucial for
enabling 4D exploration of a crime scene. The 6DOF camera
poses and intrinsic camera parameters are already recovered in
the static 3D scene reconstruction. A depth map has to be cal-
culated for each video frame to add the dynamic dimension.
Classical approaches [8] make use of a stereo camera consist-
ing of synchronized cameras or RGBD cameras and compute a
disparity map that implicitly encodes depth. However, in real-
world scenarios, there are typically no synchronized cameras
which additionally fulfill the requirement of sufficient overlaps
to allow for depth estimation. The fact that a lot of data has to
be processed makes approaches infeasible that exceed a con-

Figure 3. An embedded dynamic reconstruction in the static
3D reconstruction for a single time point t.



Figure 4. The visual exploration interface of the 4D recon-
struction, comprising three components placed at the edges of
the reconstruction view: menu-bar, mini-map, and time-line.

stant overhead by considering multiple frames for computing a
single depth map. Recently there has been intensive research
on monocular depth estimation using convolutional neural net-
works [7], allowing to estimate a depth map for a given input
image. However, the problem is that these networks are typi-
cally learned for very specific scenes targeting to replace spe-
cific stereo camera setups. Since the depth maps are very noisy,
they make the analysis rather tricky for investigators. In our
approach, we created a monocular depth estimation approach
for persons, making use of Mask R-CNN, a neural network,
that creates a per person instance segmentation as well as 2D
pose keypoint estimations. Given the camera location, the in-
trinsic camera parameters, and the ground plane equation, we
estimate each person’s location in space and map the depth val-
ues of each instance segmentation to a plane that is orthogonal
to the ground plane, while all other pixels are mapped to the
ground plane. A disadvantage of this approach is that all per-
sons are mapped as flat objects. However, an advantage is that
a flat depth map is better for investigators as the depth map
does not have any noise, while the results look nearly photo-
realistic. Figure 3 shows an example embedding such a dy-
namic monocular reconstruction into the static reconstruction.
Figure 7 shows another dynamic reconstruction in the visual
exploration interface presented in this paper.

4 Crime Scene Visualization

This section focuses on the visualization of the 4D reconstruc-
tion. The visualization is enriched with automatic object and
person detections from the original video footage. The follow-
ing details the interface and shows how it can be used to visu-
ally trace a sequence of events from an incident that is subject
to investigation. The interface is explained by presenting an ex-
emplary event that has been recorded with four cameras. Three
of the cameras are static surveillance cameras, and the last is a
mobile phone camera that was used to record the environment
after the incident took place.

Figure 5. Automatic detections from all cameras are embedded
in the 3D scene. Detections can be selected to blend in its track
over time. Additionally, an information panel is shown (top-
left) that depicts, e.g., the best-shot of an entity.

4.1 Interface

The interface for the exploration of the 4D scene consists of
four components. The main area depicts the reconstructed 3D
scene and is surrounded by three other panels that are shown in
Figure 4: a menu-bar at the top-left, a mini-map at the top-right,
and a timeline at the bottom. The menu-bar provides the func-
tionality to configure the content that is displayed in the scene.
For instance, users can choose whether the camera positions or
how automatic detections should be displayed within the scene.
The static reconstruction of the environment is created by using
a video recording from a moving device that covers the entire
scene. In this case, we used a mobile phone camera and walked
through the scene, as depicted with red camera icons showed
inside the mini-map in Figure 4.

As shown in the top-right mini-map, the scene was
recorded by three static surveillance cameras (marked by yel-
low color). By clicking on a yellow camera icon, the user can
change the viewport to the respective position and inspect the
scene from the camera’s location. Additionally, it is possible
to view the original camera footage of the respective camera.
In this way, we put all available video footage of the incident
into a common context and facilitate the identification of which
cameras monitored different area at different points in time.

Automatic detections found by machine learning algo-
rithms are provided by project partners that we embed in the
scene (see Figure 5). For each footage video, minimal bound-
ing rectangles (MBRs) are extracted for objects of interest,
such as persons, as a preprocessing step and saved using image
coordinates. Their locations are determined by using raycast-
ing and the 3D model of the scene. Paths represent MBRs of
the same person or object in successive frames. For each path,
we are provided with a best-shot that displays the tracked entity
optimally (e.g., a frontal shot of a person with high resolution).
For the display of detections in the 3D scene, we provide three
different options (see Figure 6): (i) the MBR itself; (ii) the best-
shot; (iii) the actual image of the respective frame and MBR.
Upon selection, the respective path is visualized, as shown in
Figure 5.



Figure 6. Automatic detections can be displayed as MBRs
(left), snippets from video footage (center) or the best-shot of
the entity from the entire scene (right).

Besides the display of a static 3D environment with auto-
matic detections, we enable the display of the video footage as
3D point clouds. For each camera, depth-maps are generated
(see Section 3.4). For each camera, each pixel is projected into
the scene resembling the video footage as 3D point clouds. We
use the position and orientation of the cameras (extrinsic) in
the scene and their camera intrinsics to place the pixels at the
correct scene locations based on the predefined depths of each
pixel using given depth maps.

4.2 Visual Exploration of 4D Crime Scene

The user can navigate the 4D scene spatially and temporally.
The keyboard can be used for spatial navigation. A time-slider
at the top-left, as well as a timeline at the bottom, can be used
to investigate time frames of interest (see Figure 4). Besides
selecting single times for detailed inspection, the user can play
the scene and view the progression of events. Detections from
all cameras are placed into a common context and can be fol-
lowed simultaneously. By hovering the top row of the bottom
panel (see Figure 8), previews of frames are enlarged (fish-eye
effect), allowing the user to browse the entire timeline for po-
tentially interesting segments quickly.

To provide an overview of automatically extracted detec-
tions, we created a heat-map visualization in the bottom panel.
The user can filter by detection types and visualize the distri-
bution of the selected detections over all frames. The heat-map

Figure 7. A dynamic point cloud from a mono-camera. For
each frame in the input footage, a depth map is estimated. From
the origin of the camera in the 3D scene, we project each input
frame pixel into the scene respecting their depth information.

Figure 8. Bottom panel visualizations. The top element serves
as a frame preview. In the center, a heat-map depicts where in
the timeline many entities of the selected class (here “Person”)
were detected. At the bottom, lines indicate, for each detection
in the current frame, when it first appeared in the scene and
when it disappeared again.

visualization depicts at what time many detections occurred.
In particular, for large video sequences, this can be useful to
detect areas of interest quickly. For instance, in a video of 10
hours, sequences with suitcases can be identified in seconds.

Below, lifelines illustrate at what point of time an entity en-
ters and leaves the scene (Figure 8, bottom). This visualization
can be used to jump to the entry or exit point of an object of in-
terest. For instance, when the user recognizes a suitcase stand-
ing on the floor at a specific time-frame in the video, the point
in time when it was placed, there can be identified quickly.

Additionally, the user can create custom annotations, po-
sition them in the 3D scene, and animate them to change their
positions over time (see Figure 9). Manual annotations are use-
ful for embedding details from witness reports in the given ev-
idence context. Testimonies can be confirmed or rejected by
checking if the given circumstances are even possible (e.g., “if
person X walked at time Z from A to B - was it possible for
him to see person Y?”).

We experiment with virtual reality environments (VREs) to
provide an immersive experience to the investigator. The user
enters the 4D scene with a head-mounted display and can walk
naturally around in it. The 3D environment is perceived in fa-
miliar stereoscopic 3D, and real-world distances apply. Within
a VRE, the user can better estimate distances as the scene is
scaled relatively to the user by the geo-registration step.

Figure 9. Manual annotations. For instance, based on witness
reports, the movement of a suspicious person with a suitcase is
visualized within the context of automated detections.



5 Conclusions

We presented a novel 4D scene reconstruction and visualiza-
tion framework for mass video data, which is, to the best of
our knowledge, the first tool for dynamic crime scene investi-
gation. Based on recent advances in computer vision and ma-
chine learning, state-of-the-art deep-learning-based segmenta-
tion and human pose estimation approaches are leveraged to re-
construct and register dynamic objects into the geo-registered
3D static scene model. Moreover, a visualization frontend is
developed to allow for intuitive visualization of the 4D crime
scene with plenty of exploration possibilities. We support an-
alysts to interactively incorporate information from a criminal
case such as witness statements. The user can add annotations
that can describe the movement of objects or persons. Embed-
ding such a vast amount of potentially heterogeneous informa-
tion into a single environment supports the mental model of
analysts. Therefore, decision-makers can simultaneously visu-
alize all available related contextual information and are sup-
ported in making time-critical decisions. Ongoing evaluations
and liaisons with end-users reveal application areas beyond the
intended crime scene reconstruction such as live monitoring of
public areas (e.g., airports and train stations) and using recon-
structions for tactical training and analysis of police forces.
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