
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. Y, Z 2019 1

Why Visualize?
Untangling a Large Network of Arguments
Dirk Streeb, Mennatallah El-Assady, Student Member, IEEE, Daniel A. Keim,, Member, IEEE,

and Min Chen, Member, IEEE.

Design basic
network structure

Conceptual work

(A)

Collect arguments

Align network with
state-of-the-art

Manual processing

(B)

Collect relations Refine network

whyvis.dbvis.de

Machine-assisted processing

(C)

Fig. 1: The three major stages in constructing our network of arguments on why visualization works. First, (A) we come up
with the idea to look into relations between theoretic arguments, and conceptualize the basic network structure (Sections 2
& 4). Secondly, (B) we collect additional arguments from literature and iteratively align our initial ideas with current
research (Section 5). Finally, (C) we implement an interactive system for keeping track of the growing network, make it
accessible online for further research, and continue iterative refinement.

Abstract—Visualization has been deemed a useful technique by researchers and practitioners, alike, leaving a trail of arguments behind
that reason why visualization works. In addition, examples of misleading usages of visualizations in information communication have
occasionally been pointed out. Thus, to contribute to the fundamental understanding of our discipline, we require a comprehensive
collection of arguments on “why visualize?” (or “why not?”), untangling the rationale behind positive and negative viewpoints. In this
paper, we report a theoretical study to understand the underlying reasons of various arguments; their relationships (e.g., built-on, and
conflict); and their respective dependencies on tasks, users, and data. We curated an argumentative network based on a collection
of arguments from various fields, including information visualization, cognitive science, psychology, statistics, philosophy, and others.
Our work proposes several categorizations for the arguments, and makes their relations explicit. We contribute the first comprehensive
and systematic theoretical study of the arguments on visualization. Thereby, we provide a roadmap towards building a foundation for
visualization theory and empirical research as well as for practical application in the critique and design of visualizations. In addition, we
provide our argumentation network and argument collection online at https://whyvis.dbvis.de, supported by an interactive visualization.

Index Terms—Visualization, Theory, Argument Network, Cognition, Design.
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1 INTRODUCTION

V ISUALIZATION researchers and practitioners have
made attempts to explain to others why visualiza-

tion works and why it is useful. Benefits of displaying a
visualization—e.g., a scatter plot—instead of a table of nu-
meric values may seem obvious to visualization researchers.
Articulating precisely which property of the visualization
backs up the vaguely-defined benefits is more difficult. The
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wide range of positive and negative arguments, such as
visual patterns, externalization of memory, and ambiguity
of visualizations, poses a fundamental challenge to the field
of visualization. Most of us have also heard suggestions
that human-centric processes such as visualization have
many shortcomings. In the past decades there have been
repeated calls for more theoretical advances in the field of
visualization, both, by individuals [1], [2] as well as several
panels at IEEE VIS conferences [3], [4], [5], [6]. Most recently
Chen et al. advocated that “[m]aking significant theoreti-
cal advances will lead to significant advances in practical
visualization applications.” [6, p. 111] This echoes Thomas’
assertion that “without fundamental knowledge of what
makes certain representations effective, it is not possible to
efficiently construct new representations for new classes of
information or to know that the new representations will
work as designed.” [7, p. 70]

While these calls for action have been followed by many
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attempts to establish a set of principal arguments, most
are of qualitative discourses and a few are mathematical
(see Section 3 for details). Investigating aspects one by
one increased the comprehension of specific arguments for
visualization—most prominently visual patterns. However,
connections between individual arguments usually remain
implicit. There is no explication of the broad argumentation
network. Still, it is necessary to get an overview perspec-
tive. Including arguments’ relationships is key to gaining
a better understanding of why visualization works. For
instance, the opportunities that visual patterns offer can
only be explained by referring to additional arguments on
perception, accessibility of data, and interaction of the user
with the visualization (see also Figure 5 on page 9). These
relationships that are only implicit in the state-of-the art
motivated us to begin with building a network of arguments
that entails arguments’ dependencies as well as needs for
trade-off.

Further, we see a lack of research at a medium level of
abstraction. On the one hand highly abstract work looks
at information visualization from formal or mathematical
perspectives; regularly treating visualizations themselves as
black boxes. On the other hand a lot of work is particularly
focused on detailed aspects, and often backed up by psycho-
logical theories and empirical investigations. Meanwhile,
these perspectives are difficult to put into practice. While
highly abstract results need to be translated to applicable
instructions or guidelines, detailed theoretical and empirical
outcomes often lack advice for mitigating conflicts or mak-
ing trade-offs when conflicts emerge in practical application.

In our network, we connect findings that offer more
details than black-box approaches. At the same time, the
network abstracts from particular application scenarios,
which is, for example, relevant for generalizable empirical
research. As a result, the network constitutes a theoratical
roadmap allowing for diverse applications (see Sections 7
& 8). While it offers an overview on the conceptual level,
it does not entail details on how particular visualizations
work or how to exploit the potentials of visualization most
effectively. We consider the extraction of guidance on how
to design and optimize visualizations for specific demands
to be future work. Pictorially speaking, with the network
we initiate the mapping of the terrain of visualization the-
ory. Constructing common pathways and routing travelers
through the complex landscape is at least one step ahead.

In this paper, we report our theoretical investigations on
why visualization works, and present the resultant findings:

• a network of theoretic arguments on why visualization
works. We derived the network from theoretical con-
siderations based on the individual arguments’ con-
tents. The network connects arguments explicitly and
provides a roadmap that aids in structuring discourse
(Section 4).

• the detailed collection of arguments underlying the
network (see supplementary material). Specifically, we
introduce several categorization schemes—based on ar-
gumentative standpoint, focal pathway of information
flow, as well as dependency on task, user(s) and data—
which provide additional structure to the set of argu-
ments (Section 5).

• the presentation of theoretical results on an interactive
website. At https://whyvis.dbvis.de/ we feature the
argument network in an interactive visualization. We
provide relevant references, and quotes facilitate the in-
terpretation of our formulations of arguments. Both, the
network and the set of arguments, can be downloaded.

• an outlook on how the network approach and our ini-
tial findings (Section 6) open up new opportunities for
future research. Moreover, we sketch how theory can be
put into practice of critique, automatic recommendation
and design of visualizations (Sections 7 & 8).

The remainder of the paper is organized as follows:
After defining relevant concepts—like visualization and ar-
gument—in Section 2, we present a brief overview of related
work in Section 3. Then, we describe the construction of the
argument network based on various relationships among
arguments about why visualization works in Section 4. In
Section 5, we describe the set of arguments, which form the
nodes of our argument network. Right after that, we intro-
duce three categorization schemes that provide additional
theoretic structure. First, we categorize arguments along
the argumentative standpoint of expression (Section 5.1).
Secondly, we look at the focal pathways of information flow
through the visualization pipeline that arguments empha-
size (Section 5.2). Finally, we consider the dependency of
arguments on the visualization task, user(s) and the data at
hand (Section 5.3). Having concluded the theoretical parts
in Sections 4 and 5, we point out how our work can be
used in Section 6. In Section 7, we show in detail how
the network may be part in the progress of visualization
theory. Additionally, we highlight more potential applica-
tions in Section 8. For example, we sketch implications
for empirical research (Section 8.1), look at the application
of our approach to qualitative and quantitative evaluation
of visualization designs (8.2), and finally outline how the
network may help at designing visualizations and provide
theoretical foundations for design guidelines (8.3). In the
end, we sum up in Section 9.

2 TERMINOLOGY AND SCOPE

Before going into details on the argument network, we need
to explain two central definitions. These are the interpreta-
tions of the terms visulization (Section 2.1) and argument (2.2).
To complete this section we briefly discuss a parallel with an
example from biology to show the appropriateness of our
definitions within the scope of this paper (2.3).

2.1 What is Visualization?
Of the many distinct interpretations of the term “visualiza-
tion” two are potential objects to a theory of information
visualization: i) the process of visualization, often described
by the InfoVis pipeline [8], and ii) the physical object, which
is the output of the InfoVis pipeline. While these two in-
terpretations often are considered in combination, we focus
solely on the latter. We do not consider other meanings, like
mental imagery as quasi-perceptual experience [9].

We focus on visualizations as objects as we try to un-
derstand these objects better. While process-driven theo-
retic work often includes some restrictions on which vi-
sual objects are desirable, e.g., by introducing soundness
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criteria, they generally lack detail on which of the many
sound outputs are preferable, and for what reasons. Detailed
inspection of the properties of sound visualizations can
provide arguments for the preference of one visualization
over another in a given situation. Although the pipeline
view has attracted much attention and its outcomes have
reached the commercial sector, scientific attention to the
output of the pipeline has been comparably low—with the
exception of highlighting bad examples.

In this paper, we consider an inclusive definition of
visualization. A first working definition might be that any
physical—digital or analog—visual object that has been
created purposefully for some kind of analysis of data is
a visualization. Yet, this definition is too loose in the sense
that it also includes printed text, which we explicitly want to
exclude. Hence, we demand that some visual feature needs
to be meaningful beyond type of sign, and order of objects.
For example, a table is a visualization as the position of
a cell is meaningful in the sense that it assigns the cell to
a column and a row. However, in general text is not, as
line breaks are arbitrary, and lines need not be bound to
exact horizontal positions as long as the order of symbols
is well defined—consider rotated text, text along the border
of round logos, and also top-to-bottom systems as in tra-
ditional Japanese. For our purpose such loose definition is
sufficient as we do not expect to compile a set of properties
that all visualizations share. Instead, we collect a network
of arguments of which only subsets are put forward for
individual visualizations. In fact, several of the arguments
could be plausibly put forward for non-visualizations such
as printed text. Depending on the task a visualization is
intended for, only some of these arguments are relevant.

2.2 What are Arguments?
Arguments are a general and common form of expression
used across disciplines involved in the study of visualiza-
tion, for instance: The fact that X contributes to / reduces
the benefit of visualization; in context of Task T, User(s) U
and Data D. Practically, we take the conclusion, that visu-
alization works, for granted and put the premises X at the
center of our investigations.

As these arguments often lack complete context, we
group utterances of similar semantic content. While this
procedure may lead to grouping utterances that do not
match perfectly, we argue that arguments are rarely put
forward with such rigor that it would be possible to read
off all details without adding subjective interpretation. Our
(grouped) arguments preserve the essence of individual
arguments, and abstract from often vague or implicit details.
Figure 2 gives an example of how we present the arguments
in this paper. A complete list of the arguments we consid-
ered can be found in the supplementary material.

2.3 Why investigate Arguments?
As starting with the loose definition of visualization pre-
sented in Section 2.1 and the focus on arguments described
in Section 2.2 may not be self-explaining, let us argue why
it is suitable and productive by looking at a counterpart
example from biology. “Why do species survive?” may be a
question a biologist is interested in. In a sense it is similar to

VisualPatterns Visualizations show visual patterns
Visualization unveils structures. Usually very fuzzy con-
cept that describes how viewers see structures emerging
from the compilation of objects in a visualization. Often
Gestalt-psychology is used as a low level theory to
explain the perception of visual patterns. [10], [11], [12]

T U D

Abbreviation Short description
Dependencies
Task, User(s), Data

likely

maybe

unlikely

Detailed description with selected references

Fig. 2: Argument on VisualPatterns as an example for how
we present the arguments in this paper.

our question of “Why do visualizations work?”. Visualizations
are comparable to species and the overall goal of gaining
insight is analogous to survival. While we expect everyone
to agree that describing how one particular species survives
requires detailed knowledge of that species, more general
findings can be made at a conceptual level (Why?). For
example, whales, sharks and penguins survive, in part due
to the fact that they are good at swimming. Details on the
exact movements they make are not relevant for making
this argument. Similarly, bar charts and line charts are
reasonable choices when it comes to displaying the change
of a numeric dimension over time. Only if more detailed
tasks are considered—like comparing values at points in
time, or estimating trends; respectively feeding on plankton,
squid or fish—low-level properties make a difference.

Very abstract points of view on the other hand
make it difficult to distinguish between individual
species/visualizations. Stating that living species have
some kind of metabolism may be correct and surely is
relevant, but at the same time does not provide the
means to distinguish between species. Comparably, an
information-theoretic view as presented by Chen, Floridi
and Borgo [13] can easily distinguish human-centered visu-
alization from machine-centered processes, but it can hardly
distinguish between visualizations that represent equivalent
information—such as a bar chart and a line chart.

Thus, we choose a medium level of abstraction (i.e.,
arguments) for investigating why visualization works. Some
level of abstraction from Task, User(s) and Data is key to
gain generalizable theoretical results. Not abstracting too
much is key to distinguish individual visualizations. At the
same time, we are well aware that this level of abstraction
also provides drawbacks. For instance, it requires a more
complex representation and misses distinction on low-level
details. Thus, we link our level of abstraction to higher and
lower levels. In Section 5.2 we connect arguments to higher
level pathways of information flow, and in Section 5.3 we
categorize them based on their likelihood to be affected by
lower level considerations, namely Task, User(s) and Data.

3 RELATED WORK

Based on the distinctions introduced in Section 2, we in-
troduce related work grouped in four categories: highly
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abstract, low-level-focus, pipeline focus, and works with a
focus similar to ours.

Highly abstract: A substantial amount of related
work is highly abstract. For example, van Wijk [14] looks
at visualization as a black box in his process model. More
recently Vickers, Faith and Rossiter [15] conceptualized vis-
ualization from a semiotic point of view using category the-
ory. Chen, Floridi and Borgo [13] focus on the economic side
of visualizations as time saving tools. Chen and Jänicke [16]
as well as Chen and Golan [17] take an information-theoretic
perspective and abstract visualizations to information trans-
port channels. For visual analytics Sacha et al. [18] present
an abstract knowledge generation model that includes the
information visualization pipeline [8] next to an abstraction
of human interaction.

Low-level focus: Low-level research on single argu-
ments is diverse and spread across disciplines. We highlight
few examples that bring out the interdisciplinary nature of
visualization research: The fundamentals of color percep-
tion are well researched [19], [20]. The InfoVis community
focuses on effects of color scales and compositions [21],
[22], [23]. Other researchers take their intuitions to the test
and, for instance, focus on the effects of different levels of
iconicity of symbols [24], [25], [26]. Although some effects
of iconicity seem to be intuitive, often researchers were
not able to find these effects in their experiments. This
clearly shows the need for low-level experimental research
on visualization. More practically, effects of visualizations
in the context of Bayesian reasoning problems gained in-
terest in the InfoVis community in recent years [27], [28].
Traditionally, mainly psychologists and cognitive scientists
investigated this topic [29], [30], [31].

Pipeline focus: Investigating the process how to map
data to visual representations has gained repeated attention.
The information visualization pipeline by Card, Mackinlay
and Shneiderman [8] is well known. Wilkinson published
investigations on possible operations in his “The grammar
of graphics” [32], on top of which not only Wickham [33]
builds. Demiralp et al. [34] present similar theoretic ideas of
embedding structures within data in visual representations.
In contrast to this paper, the focus of these works is on
how to create sound visualizations from data, but not on
why the value of some sound visual representation varies
between different application contexts. In our network we
expect most arguments put forward from this perspective
to add detail to the Basic standpoint (see Section 5.1) as well
as the second pathway of information flow (5.2). However,
our work does not focus on this part of the visualization
process, and detailed inclusion of all such arguments would
distract from the main points discussed in this paper.

Similar focus: To the best of our knowledge recent
investigations on why visualization provides benefits can
be dated back to Anscombe [10] in the context of statistics.
Larkin and Simon [35] investigate structural diagrams. More
recently, Fekete et al. [36] discuss the value of information
visualization. Another approach has been taken by Parsons
and Sedig [37] who compiled a list of ten properties of
visual representations that, at different levels, may explain
the appropriateness of a visual representation for a given
task. Kindlmann and Scheidegger [38] add three property
requirements to be satisfied by effective data visualizations.

While these works present interesting arguments for why
visualization is useful in many applications, they largely
enumerate arguments independently, and miss to point out
the connections in the larger argumentative structure.

4 TOWARDS A NETWORK OF ARGUMENTS

Our main contribution is the argumentation network con-
structed from arguments we collected across disciplines.
As a short disclaimer, we do not consider the network
complete. We introduce it as a new way of looking at the ar-
guments from an integrated network perspective, instead of
as single entities standing for themselves (see Figure 1 (A)).
Further, we hope that the point of view presented in this
paper can serve as a common ground for discussing and
promoting theoretic approaches within—and maybe even
beyond—the information visualization community. Having
said that, we want to encourage researchers to contribute
to the network. An interactive version of the network,
including quotes from and references to those publications
presenting the arguments is available online.

4.1 Network Construction & Methodology

We collect arguments by manually extracting them from
literature. At first, we consider highly influential publica-
tions (A) such as those by Larkin and Simon [35] and Card,
Mackinlay and Shneiderman [8]. In the following we con-
tinue with papers citing these highly influential papers (B).
We then include relevant papers (C) referenced by (B) next
to the highly influential ones (A). In this manner we select
papers by following references in both directions. We also
search for additional works on specific arguments using
relevant keywords. Thereby, we focus on aspects of Design
and Cognition (see Section 5.1 and Table 1).

While we use a small set of arguments as a starting point
(see Figure 1 (A)), we soon begin to collect arguments in a
spreadsheet (Figure 1 (B)). Each publication can mention
several arguments, and each mentioning can be of one
affirmation: ++ Central positive (24 mentions), + Posi-
tive (726), +− Ambivalent (44), = Neutral (22), − Nega-
tive (28), −− Limiting negative (0), ∗ Mentioned without
valuation (25), ? Questioned (7). Though, one has to notice
that quite some negative arguments you might have heard
about specific visualizations—not visualization in general—
are the result of a lack of some positive aspects. Still, many
arguments are far from being unanimously seen positive,
for example, Animation. Therefore, it can be the case that an
argument is described negatively by some publications.

Then, we construct the network in an iterative process.
The whiteboard in Figure 1 (B) shows one temporary state of
the network. We introduce most of the relationships based
on our semantic understanding of the arguments. Only after
we established large parts of the network, we begin collect-
ing relationships in parallel to arguments (Figure 1 (C)).
Obviously, this procedure leaves us with less mentioned
relationships, 49 compared to 933 argument mentions. Tak-
ing into account that the latter publications contained about
42% (396) of the node mentions next to mentioning these
relationships, we feel rather safe in stating that the connec-
tions between arguments have not been as prominent in
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the literature in general. This aligns with our impressions
gained from reading the first set of publications, and is
also reflected in our claimed contribution to provide the
first work with a strong focus on the relationships among
arguments about why visualization works. We pursue this
two-step exploratory approach for three reasons. To begin
with, the initial open coding phase allowed us to align our
theoretical efforts with previous work. Secondly, we want to
derive the network from theoretical considerations based on
the arguments’ contents, and not as a result of a survey-like
effort. Finally, we include relations mentioned in literature
for further refinement of the network.

4.2 Argument Relations
Currently, the network is built upon six types of relations
between arguments A and B. The most important relation is
the builds on relation. This builds on relation is asymmetric
and, if all argumentation is sound, leads to an acyclic
network graph. From a logical point of view the relation is
weak in the sense that X builds on Y does neither imply that
Y is sufficient for X nor that X is necessary for Y—nor the
opposite directions. We neither make any claims about the
sufficiency or necessity of combinations of propositions for
others, e.g., X builds on Y and Z. Instead, our goal is to com-
pose the loose network in order to lay the groundwork for
future discussions. To date, we take the following relations
into account:
builds on A can be expressed in a way such that B is a

premise of A. This relation is logically weak in the sense
that it does not imply necessity nor sufficiency.

conflicts with A and B cannot be the case at the same time,
i.e., they are contrary.

is limited by B puts a limit on the benefits of A.
is more specific than A makes a more detailed point than B.
is similar to A and B make points that are close, but include

a meaningful difference.
needs to be traded off against A and B can not be the case

to full extent at once, but both can apply partially.
For example, there are people who argue that Animation

can make visualizations work. Others put forward that an
important aspect of visualizations is that they are globally
stable (i.e., GlobalStability). Clearly, a visualization cannot
be entirely stable and animated at the same time. Hence,
Animation needs to be traded-off against GlobalStability.

Conflicts and needs for trade-off do not necessarily ma-
terialize in practice as we do not expect any visualization to
have all properties mentioned as beneficial in any argument.
Distinct visualizations may have different properties. The
relevance of each single argument for the usefulness of a
particular visualization depends on the application scenario.

When inserting relationships, we refrained from adding
those implied by the transitivity of the builds on relation
in most cases (i.e., if A builds on B and B builds on C, we
do not add A builds on C). Two exceptions to this general
guideline were: i) A relationship was mentioned explicitly
in a publication, and ii) we reasoned that the direct relation
highlights a central connection. With relations other than
builds on we did not encounter such cases. In the following
section we present some details on the set of arguments we
considered when constructing the network.
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Fig. 3: Nineteen publications mentioning the most argu-
ments. Bars represent publications and are labeled with their
identifying numbers according to the list of references of
this paper. Notably, many highly diverse publications are
not from the InfoVis community.

5 ARGUMENT COLLECTION AND CLASSIFICATION

After coding arguments from an initial set of 57 publications
in a spreadsheet in the first phase, we migrated to an
online tool, which we specifically developed for the task
of constructing an argumentative network. With the help of
this tool we were additionally able to track mentioned rela-
tionships between arguments. In total, we did 112 codings
of 108 publications featuring 933 mentions of arguments and
49 mentions of relationships between arguments.

Overall, we do not claim that our sample is complete.
We did not try to provide an exhaustive survey of past
work. In fact we prioritized recent work as we expect recent
publications to pick up important arguments that have been
brought up earlier. Also, we did not undertake any effort
to gather a representative sample regarding the positive or
negative mentioning of arguments as only the single first
mentioning of an argument is of high importance for our
goal of building a network featuring as many arguments
as possible within reason. Every additional mentioning of
an argument can only contribute to the refinment of the
formulation of the argument. Our goal is to collect a diverse
set of arguments.

We agree with the views that investigating visualiza-
tion is an integrated and interdisciplinary matter [39], [40].
Therefore, we considerd publications from several scientific
domains. Figure 3 shows those publications that mentioned
a diverse set of many arguments. It is easy to see that
looking beyond the InfoVis community can broaden our
view. In our pursuit to create a network relating arguments
these diverse publications are crucial.

Having collected arguments as described above, it soon
became clear to us that we need to provide more structure.
We propose several categorizations of the arguments. First,
we introduce a scheme based on argumentative standpoints
in Section 5.1. Secondly, we offer a structuring dependent
on the focal pathways of information flow through the
InfoVis pipeline an argument focuses on in Section 5.2.
Both schemes should be considered as navigational aids
in the space of arguments. They do not provide clear cut
distinctions in all cases, and arguments regularly span mul-
tiple categories. Finally, we categorize arguments by their
dependency on Task, User(s) and Data in Section 5.3.
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TABLE 1: Overview of the standpoints. n is the number
of arguments per argumentative standpoint. Our focus on
Cognition and Design becomes obvious.

Standpoint Short description n

Teamwork Arguments about more than one viewer 8
Cognition Arguments involving a viewer with higher

cognitive abilities
31

Interplay Arguments emerging from the interplay of
viewers and visualizations (including per-
ception and interaction)

19

Design Arguments depending on design choices 32
Semiotics Arguments on meaningfulness of symbols

and space
19

Basic General mathematical and physical argu-
ments mostly independent of visualization

10

5.1 Argumentative Standpoints

Looking through the collected arguments, we figured that
they focus on several aspects of visualization. Overall we
found six argumentative standpoints: Basic, Semiotics, De-
sign, Interplay, Cognition, and Teamwork. Especially the
borderline between the Cognition and the Interplay stand-
points is fluid [1], [58], [59]. Nonetheless, the standpoints
can help organize numerous arguments. The structure be-
comes practically relevant as standpoints hint which options
for improvement of visualizations users—designers as well
as viewers—might have. Next, we describe the standpoints
in more detail (see also Table 1), provide exemplar argu-
ments, and point out how visualizations might be improved.

Basic: The most general standpoint groups mathe-
matical and physical arguments. The distinctive criterion
for this standpoint is that arguments are not focused on
visualization as such. Instead, their main focus is on general
mathematical or logical laws, or on the properties of the
physical world. Examples for such arguments are:

TopologyPreservation Visualizations preserve topology T U D

Visualizations can preserve the topological (or geometric)
relations of a two-dimensional space that would need to
be broken by a one dimensional representation. [35], [38]

StorageInvariance Visualizations are invariant to data storage
formats T U D Some storage formats of data do not represent
all features of the abstract structure faithfully. For example,
a set stored as a list implies an order that is not present in
the abstract set structure. Good visual representations do
not reproduce these misrepresentations of underlying data
storage formats. [38]

Given the generality of arguments options for improve-
ment are limited. Laws of mathematics and nature can be
considered immutable. Technological progress is the main
angle for improvement, and can lead to higher quality
media and better visualizations. A serious caveat to keep
in consideration is that logical and mathematical demands
on faithful mappings, in contrast to physical limitations,
are not self-enforcing. For example, theoretically there is no
addition operation on ordinal scales. Nonetheless, designers
are free to add ordinal values represented as numbers,
creating visualizations that are not mathematically sound.

Semiotics: Having set the logical and physical pre-
conditions, the Semiotic standpoint pools arguments that
build on how meaning is assigned to objects. The main

arguments relevant to visualization are that, both, symbols
and space are assigned meaning, others include:
FlexibleNotation Visualizations allow flexible notation T U D

Meaning of symbols and space can be changed on de-
mand, it does not need to be defined globally unique. For
example, vertical position can have a different meaning
at each axis of an parallel coordinate plot, while having no
meaning in between the axes. There even can be no explicit
definition of the meaning of space. For example, in inter-
active environments users can sort objects by positioning
them in space. With each new object they can refine or
change the meaning of positions, while never having an
explicit mapping. [41], [60], [61], [62], [63]

Homogeniety Visual entities are homogeneous T U D Visualiza-
tions map entities of different types to visual representa-
tions, which are of the same kind and thus easier to put in
relation to each other. For example, a bar chart on the speed
of light, sound in air, a plane, a horse, and the growth of
bamboo shows distinct objects like electromagnetic waves,
pressure waves, human artifacts, animals, and size change
of a plant as representations of the same kind, i.e., rectan-
gles. [53], [54]

The Semiotic standpoint, much like the Basic standpoint,
includes many unchangeable preconditions. However, there
still are some options for intervention. For example, cultural
communities such as electrical engineers can introduce new
conventions for meanings of symbols or colors.

Design: Arguments from the Design standpoint are
most interesting for visualization designers as they provide
most leverage for improvement in practical application.
Properties of visualizations themselves are of central interest
from this point of view:
Abstraction Visualizations abstract structures T U D Visualiza-

tions abstract from (irrelevant) details. [42], [64], [65], [66]
Animation Visualizations are animated T U D An animated vis-

ualization can show processes with a natural representa-
tion of time. [2], [37], [42], [67]

GlobalStability Visualizations are globally stable T U D The
overall appearance of a visualization does not change
without explicit action undertaken by a viewer. Thereby,
viewers can on the one hand stay in sync with the external
representation and on the other hand have the time to
follow their flow of thoughts. [8], [37], [47]

Design decisions provide many options for improving vis-
ualizations. However, some of the properties conflict or
need to be traded-off against each other. Considering the
last two examples, it becomes clear that Animation and
GlobalStability are contrary. One option to trade these off
would be to offer two views, one animated and one static,
side by side. The cost of this trade-off is that each view needs
to be smaller and looses detail. The major limiting factor is
the task the visualization is designed for. Designers need
to decide which properties should be part of the design in
order to effectively pursue the objective. Further, interaction
capabilities and cognitive abilities of viewers limit the free-
dom of designers.

Interplay: The Interplay standpoint combines two
aspects that are traditionally separated in the InfoVis com-
munity: on the one hand arguments on the perception of
visualizations, and on the other hand arguments dealing
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with actively changing them. The latter aspect becomes
more relevant with digital “interactive visualizations” that,
for example, allow linking and brushing. Still, most tra-
ditional printed or drawn visualizations are interactive to
some degree, too [68]. A visualization printed on paper
can be folded or annotated with a pen. We combine the
two aspects to one standpoint of Interplay as with modern
provenance tracking, which may track every move of the
eye and cause changes in the visualization, the borderline
between the two becomes more and more washed out.
Furthermore, for example, Liu, Nersessian and Stasko [58,
sec. 6] provide theoretical reasons for assessing interaction
bidirectionally. The standpoint of Interplay groups all argu-
ments that directly involve the visualization and the viewer,
who does not necessarily employ higher cognitive skills.
Examples of arguments are:

AttentionDriving Visualizations drive attention T U D A visu-
alization guides the attention of viewers to specific parts
without the need for conscious search or understand-
ing. [35], [69], [70]

PerceptualInference Perception infers abstract structures T U D

Viewers can assimilate information given in a visuali-
zation without a need for heavy conscious processing.
Perception substitutes intentional reasoning about abstract
structures. [11], [42], [64], [70], [71]

Interaction Visualizations are open for interaction T U D Vis-
ualization enables interactive manipulation. Subjects can
physically modify a visualization. This can be annotation,
folding the piece of paper the visualization is printed on,
or any kind of interaction with a digital visualization on a
computer screen. [14], [17], [49], [62], [67], [72], [73], [74]

Improving interplay most likely can come about by training
on the human side. Especially with computer-aided interac-
tive visualizations, interaction design can be improved on
the side of visualizations. While visual perception can be
specifically trained to see certain patterns, manual interac-
tion might be improved by training skills in using input
devices such as computer mice.

Cognition: The distinction between the Cognition
and Interplay standpoint is the least crisp. There also have
been arguments for the non-separability of cognition and
interaction [58]. While the Interplay standpoint, as described
above, groups arguments that directly involve the visualiza-
tion and the viewer, this standpoint collects arguments that
are mainly on the (complex) cognitive features of viewers.
Almost all arguments from the Cognition standpoint are in-
dependent of the perceptual channel being vision, audition
or some combination. Another distinctive criterion might
be that the Cognition standpoint puts a stronger focus on
arguments that involve conscious reasoning. Although this
criterion is not sufficient, as some parts of perception, and
clearly most manual interaction, is conscious. Arguments
from the Cognition standpoint include:

ExternalMemory Visualization supports external memorization
T U D Visualizations extend memory. Visualizations can
provide storage space for information viewers are not able
to or do not want to remember by themselves. [8], [13],
[35], [36]

Forgiveness Visualizations are forgiving T U D Visualizations
are not designed to be eternal, but known to be imperfect

and intended to be improved over time. [44], [61], [68], [75]
Rerepresentation Visualizations re-represent structures T U D

Consulting visualizations viewers find other representa-
tions of a problem which might make its solution more
obvious or accessible. Replacing mental models is facili-
tated by interacting with alternative external representa-
tions. [1], [25], [47], [58], [76]

IdeasByAmbiguity Ambiguity/inconsistency catalyses ideas
T U D A visualization does not provide a single complete
and unambiguous interpretation. Inconsistencies within
an interpretation or between possible interpretations can
push viewers to generate new ideas. [47], [51], [68]

Similar to the Interplay standpoint, with Cognition im-
provements may primarily come about by training. Edu-
cating viewers in analytical reasoning or practicing suitable
decision heuristics are two options.

Teamwork: Finally, the Teamwork standpoint groups
all arguments that involve more than one viewer. Like-
wise, the distinction to other standpoints is rather crisp
and arguments from this standpoint can be ignored when
designing visualizations for exclusively personal use. The
main arguments here are on presenting information to oth-
ers and organizing collective effort. Hence “Collaboration”
would have been the most suitable name for this category.
In order to have highly distinctive names—compared to
“Cognition”—we opted for “Teamwork”. Some arguments
from this standpoint are:
Referencability Visualizations are objects to reference T U D Be-

ing physical objects visualizations can be used by viewers
to reference parts of the structure explicitly. [40], [41], [47],
[61]

KnowledgeIntegration Visualizations support knowledge in-
tegration T U D Visualizations can help several viewers
to combine their knowledge and draw new conclu-
sions/insights from their combined knowledge. [61]

Improvements can be made by changing the way viewers
interact with each other and the visualization. Especially
interactive visualizations can enable—or even enforce—
interaction protocols that promote positive outcomes.

5.2 Focal Pathways of Information Flow

We also noticed that some arguments focus on the transfor-
mation of data to visual representations without mentioning
human viewers. Others focus on cognitive processes during
understanding visualizations without mentioning data. We
conjectured that different arguments might emphasize dif-
ferent pathways in a visualization workflow. This leads to
our second categorization scheme based on focal pathways.
Chen and Golan [17] reviewed many pipelines that have
been proposed to describe visualization workflows (e.g., [8],
[14], [78]). In this work, we use the pipeline by Chen and
Floridi [77] because it encompasses most commonly-seen
illustrations of pipelines as well as the seldom-seen aspect
of human-human communication. Figure 4 shows six major
pathways superimposed on that pipeline:
À Arguments focused on information transformation in

individual steps as well as their compositions. Unlike
the remaining pathways, Á–Å, it is more generic but less
specific about visualization.
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Fig. 4: Six major pathways of information flow on which
arguments may have been focused. Pathway À is an ab-
straction of single steps. The figure is adapted from Chen
and Floridi [77, fig. 1].

Á Arguments on transformations from data to visual im-
ages. This category also includes arguments about visual
mapping, a smaller section in the pathway (e.g., Card
et al.’s pipeline [8]). Many arguments from standpoint
categories Semiotic and Design fall into pathway Á.

Â Arguments focusing on the transformation of visual im-
ages to knowledge. This pathway is emphasized by most
arguments in the Cognition standpoint category.

Ã This pathway is the combination of Á and Â, focusing
on the transformation of data to knowledge via visu-
alization. Arguments in this category typically mention
something about data, visualization, and mind. The vi-
sual exploration path in the pipeline by Keim et al. [78] is
such a pathway.

Ä Arguments on the values of interaction in visualization.
The loop in the pipeline by van Wijk [14] is such a
pathway.

Å Arguments focusing on uses of visualization involving
multiple viewers, such as discriminative visualization
and collaborative visualization.

As this work revolves around arguments about visuali-
zation rather than analytical statistics or algorithms, we do
not include the data mining path from Keim et al. [78]. Nev-
ertheless, if necessary we can associate such an argument
with pathway À.

5.3 Dependencies on Task, User(s) and Data

Last but not least, we categorize arguments by their depen-
dencies on Task, User(s) and Data. Here we chose a three
point ordinal scale for each dimension, including the values
Likely, Maybe, and Unlikely as with most arguments a definite
decision is not possible. While the existence of edge cases

prevents binary yes/no decisions, the content of arguments
usually allows for getting a general impression.

Task T U D : Obviously, the task being pursued
strongly influences the demands put on visualizations. Con-
sequently, the majority of arguments (79) is likely dependent
on the task. Nonetheless, there are several aspects, such
as the preconditions set by physics and the biology of the
human visual system, that are unlikely to be dependent on
tasks (33); maybe (7).

User T U D : While the role of viewers in using vis-
ualizations is widely acknowledged, much effort is put
into automatizing large parts of the visualization process.
Categorizing arguments by user-dependency allows to sep-
arate those aspects largely independent of viewers, and to
consider these for automatic generation and testing. We clas-
sified 68 arguments as likely user-dependent, 49 unlikely,
and 2 maybe.

Data T U D : For information visualization existing
data and its structure are central driving forces to the de-
sign of visual representations. However, visualizations have
properties that are independent of existing data. In total,
we consider 63 arguments as likely data-dependent, 39 as
unlikely, and 17 maybe.

6 OBSERVATIONS AND PRELIMINARY FINDINGS

To give some examples for considerations that can be under-
taken using the argumentation network, first, have a look at
Figure 5. There, we present the argument that visualizations
show visual patterns (VisualPatterns), which is the most
prominent in our collection, next to its supporting back-
ground. The partial network is induced by the arguments
from the Interplay standpoint (see Section 5.1) and the builds
on relation. It clearly shows that VisualPatterns is based on
several arguments about perception (shown in red). More
interestingly, the argument also draws from arguments on
the accessibility of data (blue), and the possibility to interact
and learn (green). Whereas the importance of a connection
between visual patterns and data is obvious for informa-
tion visualization once stated, interaction and learning only
recently gain increasing interest.

One focus of our investigations are the arguments ut-
tered on cognitive aspects (see also “Cognition” in Sec-
tion 5.1). As expected, many arguments from this stand-
point are about thinking (purple in Fig. 6) or related to
memory (blue). Also not unexpected are arguments on
evaluating data errors and false assumptions (green). The
set of arguments building on the forgiving nature of visual-
izations (red) is larger than we expected. These arguments
include some benefits of Ambiguity as well as the possibility
to change views and engage in counterfactual reasoning.

Our second focus is on design options (see also “Design”
in Section 5.1). Figure 7 depicts the induced graph of argu-
ments based on the builds on relation and the arguments
from a Design standpoint. Many arguments are on the gen-
eral composition (green) of visualizations and composition
in the context of Task and Data (purple). Another central
part of argumentation is on Abstraction and the—often
undesired—induced Ambiguity (blue). Recently, anticipating
viewers’ perception and thinking (red) has gained interest,
especially in pursuit of counteracting against presumed [79]
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Fig. 6: Induced subgraph of the depends on relation for all arguments from the Cognition standpoint. Arguments are
grouped by the broader theme they relate to. Purple arguments are on thinking, green ones on evaluation, red arguments
build on the forgiving nature of visualizations, the blue ones deal with memory, and gray arguments are on different topics.
Arguments on which no other arguments from this standpoint build upon are shown with solid borderlines.

cognitive biases (OvercomeBiases). While many arguments
on the design of visualizations are general and independent
of viewers, this new trend of designing visualizations for
individual viewers puts high demands on designers and
their knowledge about future viewers.

As pointed out above, several pairs of arguments go in
different directions. In practice, the properties underlying
these arguments need to be traded-off. For example, the
value of Animation (orange part of Figure 7) continuouesly
raised attention. Clearly, Animation needs to be traded-off
against GlobalStability. The argument network allows us to
see both arguments in context, and to estimate some poten-
tial effects trade-offs will have by looking at the arguments
that build on either one. Other examples of relevant trade-
offs are between Discreteness and Precision, and between
Specificity and Flexibility. We expect that predicting effects of
trade-offs in a structured way can inform and guide design
decisions in the future.

With regard to dependencies on Task, User(s), and Data,
we expected dependencies to accumulate. Figure 8 provides
an overview on the dependencies of all arguments. As
expected, most general arguments from the Basic standpoint
are unlikely user-dependent.

Overall, the current state of the arguments is diverse.
There are very prominent arguments as shown in Figure 9.
Despite their prominence, arguments usually are not laid
out rigorously such that detailed aspects often remain un-
clear. With our network, we provide a basis for a more
precise investigation of arguments, and especially allow to
disentangle the dependencies between them. At the same
time, there are quite some arguments which are only ex-
pressed rarely. For example, Stapleton, Jamnik, and Shimo-
jima [80] are the only ones in our sample who point out that
parts of visualizations can be meaningful for themselves
(i.e., MeaningfulParts). Kindlmann and Scheidegger [38]
argue that visualization works as it does not repeat mis-
representations accepted in data storage formats (i.e., Stor-

ageInvariance). In addition, Patterson [70] highlights that
the visual context influences how individual objects are
perceived (i.e., ContextPerception). These aspects—like also
most relationships—appear to be sparsely researched.

Nonetheless, the network can help progress theoretical
research already in its current state. We provide an initial
attempt in the following section. More obviously, the gaps
we can point out in the network open questions and chal-
lenges for future research. In Section 8 we discuss research
opportunities.

7 PROGRESSING THEORETICAL RESEARCH

Given a large collection of arguments, many positive and
some negative, one cannot help wonder i) if these arguments
can be summed up by one or a few more fundamental
arguments, and ii) if the conflicts and contradictions can
also be explained by these fundamental arguments. In the
visualization literature, there are several candidates for such
a theoretic investigation, including the data-ink ratio [53],
the three algebraic principles [38], and the cost-benefit
metric [17]. None of these theoretic propositions has been
proved using mathematical means. Like many theoretical
propositions in history, the most straightforward way to test
them is trying to falsify them by finding counter-examples.

The arguments about “why visualize?” and “why not”
represent some wisdoms extracted from positive and nega-
tive experience in practice. We can thus assume that each
argument is correct at least in some specific conditions.
If a theoretic proposition can provide the argument with
a fundamental rationale, this is a small contribution to
showing its qualities. If the theoretic proposition fails to do
so, the argument can serve as a significant counter-example,
suggesting that the proposition is likely to be incomplete
or subject to unspecified conditions. The large collection of
arguments discussed in the previous sections thus offers
a valuable opportunity to test theoretic propositions in
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visualization through falsification. In this section, we first
briefly discuss the data-ink ratio [53] and the three algebraic
principles [38]. We then focus on the cost-benefit metric [17].

Tufte proposed that visual designs can be optimized
by improving the ratio between the amount of data being
depicted and the amount of ink used [53]. This theoretic
proposition can explain a number of arguments such as
MultipleMeanings, MinimalLabeling, Compactness, and Spa-
tialConstraints, but has difficulties in supporting many ar-
guments that are User-dependent or Task-dependent and
focus on pathways Â or Ã in Figure 4. If this theoretic
proposition was complete, it would suggest that the better
data-ink ratio the better a visualization enables viewers’
cognitive capabilities. One can find counter-examples where
redundant ink reduces cognitive load.

For example, PartialRedundance includes both positive
and negative views on redundancy. Rheingans and Lan-
dreth first detected the benefits of redundancy in visual-
ization using an empirical study [81]. Chen and Jänicke
later explain such benefits using the information-theoretic
concept of error detection and correction [16]. Arguments
VisualPatterns, EnableComplexStructures, and Rerepresen-
tation center around the merit that visualizations reveal
structures in data. Many structures are depicted explicitly,
such as connections and spatial partitions. In practice visual
representations are often not economic in using inks. For
example, typically a connection line in graph or tree visu-
alizations uses a fair amount of ink for 1 bit of information.
This leads to the mixed argument of LimitedAbstraction.

Kindlmann and Scheidegger proposed three algebraic
principles to ensure good visualization designs, namely rep-
resentation invariance, unambiguous data depiction, and visual-

data correspondence [38]. The theoretic proposition suggests
that a visualization process is useful if it follows the
three principles, and it is corroborated by several argu-
ments such as StorageInvariance, GlobalStability, and Pre-
scribeDiscourse. However, this proposition inadvertently
supports negative arguments such as InformationLoss since
many visual representations used in practice would feature
down-sampling from higher-resolution data (e.g., overview
visualization) and projection from higher-dimensional space
(e.g., volume visualization) making ambiguity inevitable.

Meanwhile, with Misleading many examples of decep-
tive visualizations [82] do follow the three principles. Hence,
some arguments for or against visualization cannot be ex-
plained by whether or not the visual designs follow the
three principles. In general, data-ink ratio [53] and the three
algebraic principles [38] are meaningful abstractions, espe-
cially of arguments less sensitive to variations of Users and
Tasks. However, both are incomplete as counter-examples
can be identified by following some arguments that are
Task-dependent (e.g., InformationLoss) or User-dependent
(e.g., Misleading).

Chen and Golan proposed an information-theoretic met-
ric for analyzing the cost-benefit ratio of visualization pro-
cesses [17]. It considers a visualization process as a sequence
of transformations, P1, P2, . . . , Pi, . . . , Pn, where Pi may be
running an algorithm for visual-mapping, viewing a visuali-
zation image, performing an interaction, and so on. Iterative
processes are accommodated through sequentialization. The
metric consists of three measures:

Alphabet Compression measures the entropy reduction
(∈ R, in bits) of a transformation by comparing the input al-
phabet with the output alphabet. Most transformations in
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Fig. 9: Arguments mentioned in at least ten publications, colored by standpoint (see Section 5.1). While we focused the
sample of publications on the Design and Cognition standpoints (as described in Section 5), arguments like VisualPatterns,
Interaction, MeaningfulSpace, or AidCommunication are still prominent. They may be central arguments for visualization.
For instance, in our network we can see the central position of VisualPatterns within the Interplay standpoint (see Figure 5).

a visualization process, such as filtering, visual mapping,
projecting, selecting, navigating, decision-making, etc., re-
sult in positive measurements of Alphabet Compression.

Potential Distortion measures the potential distortion (∈
R≥0, in bits) if one attempts to reconstruct the input
alphabet based on the output alphabet. A viewer’s soft
knowledge is implicitly featured here as the viewer can
exploit extra knowledge to infer the input alphabet. Poten-
tial distortion is mostly positive.

Cost measures the cost (∈ R>0) for the transformation and
reconstruction. Ideally, it is measured in an energy unit,
but may be approximated by time or monetary cost.

The trade-off among the three measures is expressed as:

Benefit
Cost

=
Alphabet Compression− Potential Distortion

Cost
(1)

For its detailed mathematical definition, we refer you to
Chen and Golan [17]. The metric can be applied to in-
dividual transformations, a series of transformations, and
the whole process. It suggests that visualization is useful
whenever it offers more cost-benefit than viewing data
directly or applying statistical algorithmic analysis, and that
a visual design is better than another if the former offers a
better cost-benefit ratio than the latter. The metric gives rise
to several assertions concerning visualization processes:

• Losing information (i.e., alphabet compression) is a
ubiquitous phenomenon in data intelligence processes,
and has a positive impact on Benefit. Hence, losing
information (e.g., InformationLoss) should not lead to
a conclusion “not to visualize”.

• A viewer’s soft knowledge can be used to reduce the
potential distortion. For example, when a time series
is displayed in conjunction with a y-axis shifted away
from the zero base, it may cause less potential distortion
to an expert than a novice. So argument Misleading is
User-dependent and Task-dependent. For some viewers
and with some tasks, a so-called “vislie” may not lead
to distortion.

• Visualization tasks are implicitly encoded in the output
alphabets of some transformations, usually towards the
end of the sequence P1, P2, . . . , Pn−1, Pn. For example,
if Pn is a transformation from observation to decision,
the output alphabet consists of a set of possible choices.
The task of Pn is typically to choose from a decision
alphabet, i.e., making a decision.

• Modifying a transformation Pi may change its alphabet
compression, potential distortion and cost, and may
also change the three measures in subsequent transfor-
mations Pi+1 . . . , Pn. Hence, optimizing a visualization
process must be done holistically.

In general, the metric in Equation 1 exhibits a trade-
off among three measures. This suggests that ambivalent
arguments are likely derived from cost-beneficial trade-offs
and negative arguments from less successful trade-offs. The
need to consider the three measures holistically in optimiz-
ing a visualization aligns with the complexity in designing
visual representations and visualization systems.

Broadly, the positive impact of alphabet compression can
explain many positive arguments related to abstraction,
highlighting and interaction, and can counter the negative
arguments related to information loss. The role of knowl-
edge in reducing potential distortion can explain the condi-
tional dependence on Users or Tasks of many arguments
since different users may have, and different tasks may
require, different levels of knowledge. It also supports many
positive arguments in comparison with analytical statistics
and algorithms, since these usually offer more alphabet
compression but much less help to the reconstruction of
input alphabets. The need to consider cost as part of the
metric supports many positive arguments related to time
saving, external memorization, and the utilization of cogni-
tive capabilities such as visual search, pattern recognition,
and knowledge acquisition and deployment. In the follow-
ing subsections, we discuss several arguments in detail.
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7.1 Arguments about Representation and Meanings

Arguments Homogeniety and StorageInvariance state that
the same visual representation can be used for different
data objects or the same data in different formats, while
FlexibleNotation, DifferentMappings, and the failure of Con-
sistentNotation point out that the same data object can be
depicted using different visualizations. In addition, when
considering the meanings conveyed by visualizations, Mul-
tipleMeanings, IdeasByAmbiguity, and Ambiguity assert that
visual representations can carry multiple meanings, in some
cases independently and in other cases ambiguously.

Information-theoretically, we can consider visual map-
pings from data to visualizations as transformations from
data alphabets to visualization alphabets, and the semantic
mapping from visualization objects to meaning as transfor-
mations from visualization alphabets to alphabets of seman-
tic meanings. Let us denote the two types of transformations
as PD2V and PV2M respectively. Transformation from differ-
ent data objects to the same visual representation suggests
the presence of many-to-one mapping in PD2V, which is a
form of alphabet compression in Equation 1. The alphabet
compression in PD2V is one of the causes of the ambiguity
in PV2M, i.e., the potential distortion.

Some may suggest that mapping different data objects
to the same visual representation is an improper way to
conduct visualization. In fact, this is ubiquitous in visuali-
zation. For example, given data objects, 1.99, 2.00, and 2.01,
the chance of them being mapped to the same visual repre-
sentation is very high. When a visualization process works,
alphabet compression in PD2V results in more beneficial
consequences, as for example suggested by MultipleMean-
ings, than causing adverse problems such as ambiguous
meaning (Ambiguity).

We can juxtapose PD2V and PV2M with the transforma-
tion from objects and events to some entities of languages
(e.g., words, phrases, and sentences), and from languages to
meanings. In the context of languages, the role of human
knowledge is absolutely critical in delivering the many-
to-one mappings in the first transformation and untangle
the one-to-many mappings in the second transformation.
It is not difficult to extrapolate from languages back to
visualization to realize the critical role of viewers in visu-
alization. With some a priori knowledge about the data and
the knowledge of visual representations, a better trade-off
between alphabet compression and potential distortion can
be achieved than in situations without such knowledge.

Some arguments agree with the major role of human
knowledge in visualization. MeaningfulSpace suggests that
visualizations convey information with empty space. Sim-
ilarly, speech can convey information via intonation, and
even silence. Without context and spoken parts of the con-
versation, silence would hardly be understandable. Natu-
ralMeaning expostulates that visual representations convey
meaning “naturally” using metaphors of real world objects.
In comparison to languages, which are costly to learn, this
naturalness makes knowledge of visualization easier to ac-
quire and more readily available. Without such knowledge,
the trade-off between alphabet compression and potential
distortion in Equation 1 will unlikely favor visualization.

7.2 Arguments about Information Loss and Distortion

Undeniably, visualizations—intentionally or unintention-
ally—may cause information loss and distortion as sug-
gested by negative arguments, such as InformationLoss and
Misleading. Even many positive arguments imply that vis-
ualizations may not work, if some information is lost or
distorted, e.g., losing topological information in TopologyP-
reservation, failing to follow mathematical laws in Logic-
Mathematic, using inconsistent notations in ConsistentNo-
tation, and failing to maintain global stability in Global-
Stability. The central assumption of these arguments is that
information is useful. So, it should not be lost or distorted.

There are numerous definitions of “information”
(e.g., [83]). Although “useful information” is a commonly-
used phrase, the definition of usefulness depends on view-
ers, tasks, and contexts. In information theory definitions
of information [84] mostly are semantically neutral. Some
have a slightly negative implication. For example, one well-
known definition of information is Shannon entropy [85].
It measures the average uncertainty of an alphabet, hinting
less may be better in many situations. Another definition
of information is Kullback-Leibler Divergence [86], which
measures the difference between two alphabets, hinting that
the difference may be bad when measuring distortion and
may be good when measuring learning.

Equation 1 uses these information-theoretic measures to
define two different types of information. It defines alphabet
compression as the reduction of Shannon entropy after
a transformation, hinting losing information in terms of
uncertainty may be beneficial. It defines potential distortion
as the difference between the original input alphabet and the
reconstructed alphabet, hinting the original information in
the input alphabet is beneficial. Thus, benefit is expressed by
subtracting potential distortion from alphabet compression,
which is the trade-off between reducing one measure of
information and maintaining another.

Recall our discussion about languages in Section 7.1.
In comparison to the alphabet of all possible real world
objects and events, the alphabet of language entities is much
smaller. So, the transformation from objects and events
to language entities exhibits a huge amount of alphabet
compression. Potential distortion is thus inevitable from
time to time depending on the complexity of objects and
events, the purposes of describing them, and the people who
speak (write) and listen (read). It would be insane to suggest
that spoken or written words must capture every piece of
information about an object or an event. Although it might
not be helpful, losing some topological information about
an object or an event, failing to follow mathematical laws,
and having a bit of inconsistency would usually be tolerated
by the listeners and readers. Even distortion is allowed in
languages. For example, irony and sarcasm are forms of
distortion; successful deployment depends on listeners.

This trade-off between alphabet compression and poten-
tial distortion can explain why it is not difficult to find visu-
alizations that break the preconditions of TopologyPreserva-
tion, LogicMathematic, ConsistentNotation, and GlobalSta-
bility but still are very useful. Often visualizations regarded
as “vislies” by Misleading are widely used in practice. For
example, most finance sites (e.g., Yahoo Finance) display
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time series of stocks and exchange rates without following
the guideline of showing the zero baseline [53], [82]. Likely,
most of their users have adequate financial knowledge
to alleviate the potential distortion due to the misleading
visualizations. Most metro maps distort the geographical
locations of stations (i.e., geometry) in order to enable better
presentation of topological connections. Most city maps
show the accurate location of train stations without their
topological connections in order to reduce cluttering.

Nevertheless, arguments TopologyPreservation, Logic-
Mathematic, ConsistentNotation, and GlobalStability express
desirable properties of visualizations in many applications,
where omitting such preconditions may lead to distortions
with grave consequences. Here the third element of Equa-
tion 1 comes into play. Visualizations need to balance the
benefits and the costs of displaying different aspects of data,
and the costs of not displaying them.

7.3 Arguments about Patterns and Structures
Many arguments articulate that a major reason for using
visualizations is that they reveal patterns and structures.
Some attribute this capability to visual representations (e.g.,
Rerepresentation, Abstraction, VisualPatterns, EnableCom-
plexStructures), while others attribute it to human cognitive
capabilities (e.g., PerceptualInference, EnhancedStructures,
ContextPerception). The two groups of arguments focus on
different transformations, PD2V and PV2M, in Section 7.1.

In fact, these arguments are mostly made against sce-
narios of viewing data without visualization. For the first
group of arguments, there are obvious merits over viewing
data when PD2V can correctly extract patterns and struc-
tures and explicitly depict (e.g., connection lines between
dots) or highlight them (e.g., showing clusters of dots in
different colors). The second group of arguments focuses on
phenomena where patterns and structures are unknown to
the first transformation PD2V and it is the viewers’ cognitive
capabilities that enable the identification of patterns and
structures in the second transformation PV2M.

Although we are yet to have a full understanding about
such cognitive capabilities, it is generally believed that this
is due to a combination of human capabilities such as
visual search, selective attention, Gestalt-grouping, heuris-
tics, memory, knowledge, reasoning, hypothesizing, and so
on [87]. In the literature, there also is evidence suggesting
shortcomings of these capabilities, such as inattentional
blindness, illusion, biases, forgetting, and so on [88], [89].

This leads to the question, what if visualization is com-
pared against automated techniques for spotting patterns
and structures using techniques such as classification, clus-
tering, association analysis, principle component analysis,
dimensionality reduction, neural networks, decision trees,
etc. Would such comparison lead to arguments against using
visualizations, or for automated techniques to tell us what
to see? Hence, with the shortcomings of human cognitive
capabilities and the improvement of machine intelligence,
the arguments at the beginning of this subsection could
potentially be used as counter-arguments.

The cost-benefit metric [17] can be applied to machine-
centric as well as human-centric transformations in any data
intelligence workflow. One major shortcoming of a machine-
centric process is the potential distortion during the reverse

mapping from an output alphabet to an input alphabet.
As discussed earlier, humans’ knowledge can alleviate the
potential distortion by taking into account some additional
variables that are not in the data and using additional
heuristics to reason about the data. Recently Tam et al. [90]
reported two observational studies, each of which compared
a fully-automated workflow with a visual analytics work-
flow. In both cases they found that the visual analytics pro-
cesses achieved better results. They quantitatively estimated
the amount of knowledge of human analysts that can be
useful to the visual analytics workflow, and found that there
was more information in the knowledge than in the data
used in these two case studies. Both, the data space and
the knowledge space are measured using Shannon entropy.
The use of human knowledge in the reverse mapping from
visualization to data was confirmed in a recent empirical
study by Kijmongkolchai, Abdul-Rahman and Chen [91].

While automated processes can achieve higher rates of
alphabet compression and lower running cost, they will cer-
tainly be less competitive in alleviating potential distortion.
When human analysts are in a workflow, P1, P2, . . . , Pn,
using visualizations to observe different processes, visual-
izations facilitate external memorization and provide the
workflow as well as the human minds with provenance of
transformations within the workflow, as suggested by Ex-
ternalMemory and Provenance. The externalized knowledge
further helps in reducing potential distortion.

Stasko [92] made a related argument that visualization
helps the confidence of analysts (i.e., Confidence). Imagine a
machine-centric workflow P1, P2, . . . , Pn. Further, imagine
a human-centric secondary workflow C1, C2, . . . , Cn run-
ning parallel to P1, P2, . . . , Pn. Let us define confidence as
an alphabet with five levels [1, 2, 3, 4, 5] from very doubtful
to very confident. Assume that the analyst initially does not
know which value of the 5-scale should be, so the confi-
dence alphabet has the maximum entropy (about 2.3 bits)
for each Pi. At every stage Ci, the analyst observes some
visualizations related to Pi, pondering confidence. If the
analyst is certain about a particular confidence value (e.g.,
2) due to some errors of Pi, the entropy of the confidence
alphabet becomes 0 bits. At the end of the process, this
secondary workflow can achieve alphabet compression of
up to 2.3n bits. Hence, using visualization to determine if
one is confident or not about a machine-centric workflow
brings about benefit.

Summary: Due to space limitations, we can only
discuss a small number of arguments here. We considered
all arguments in our collection. For most arguments, we find
that individually each typically focuses on one of the three
information-theoretic measures. When we consider several
related or conflicting arguments together, the notion of some
trade-off reveals itself. In general, the cost-benefit metric
presents an abstract argument about the trade-off among
three information-theoretic measures. In the literature, the
optimization of this trade-off is often phrased as an argu-
ment that visualization facilitates effective and efficient cog-
nitive processes in performing tasks involving data [13], [55]
(i.e., TaskEfficiency). Here, the word “effective” captures
the sense of high alphabet compression and low potential
distortion, “efficient” captures the sense of high alphabet
compression (for subsequent processes) and low cost.
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8 RESEARCH OPPORTUNITIES AND APPLICATIONS

Having presented an example of how to use the network
in visualization theory, in this section we present more
potential applications of our network approach to empiric
visualization research (Section 8.1) as well as the practice of
qualitative and quantitative evaluation (8.2), and the design
of visualizations (8.3).

8.1 Implications for Empirical Research
The theoretical discourse in the previous section uses the
network for putting an existing theory to the test. In empir-
ical research the network may reveal potential hypotheses
about aspects that have not been investigated empirically in
a rigorous manner, thus pointing out new research oppor-
tunities. For example, empirical research on ActiveLearning
and FlexibleUsage of visualizations is limited. Especially
when it comes to HeuristicInteraction there remain plenty
research opportunities. For example, what heuristics do vis-
ualization experts, domain experts, and novices apply? How
effective are these? And, why do they differ in efficiency?
Given the network we further expect that some visual-
izations are usable without knowledge about their rules
of construction (IrrespectiveOfConstruction). In which cases
this theoretical assertion holds needs to be investigated.

Secondly, the network aids in formulating hypotheses as
it untangles arguments, and hence properties of visualiza-
tions. As an example, please reconsider the VisualPatterns
argument in Figure 5. The subgraph clearly depicts factors
argued to be the foundation of visual patterns, namely
AttentionDriving, PerceptualInference, Precision, and Implic-
itLearning. While aspects of visual patterns, in general,
have been investigated extensively, future research may look
more closely at (implicit) learning.

Furthermore, the current state of the network is far
from being complete. Likely there are missing connections,
and relationships lacking empirical support. Relationships
including at least one argument from the Cognition stand-
point are good starting points for potentially interesting
research questions. For instance, how ambiguity in a rep-
resentation or different representations of the same problem
can help in solving problems (i.e., IdeasByAmbiguity, and
Rerepresentation) is only partially understood, and not in
the focus of the InfoVis community today. Clarifying the
relation between not only these arguments, but also their
prerequisites is a next step towards better understanding.
Establishing the network structure in this area will con-
nect arguments expressed as early as by Feynman [93],
and Larkin and Simon [35], with those by Krish [47], and
Tversky [51]. Additionally, new arguments focused on these
particular aspects may be added.

Another way to use the network is to research dis-
agreements. These can be conflicts between arguments en-
coded in the network, or different affirmations of single
arguments and relationships. For example, Animation is
discussed broadly with diverging affirmations. Categorizing
empirical research on the topic by connecting the findings of
experiments with related arguments in the network can ex-
plicate differences between experiments and help integrate
findings. Subsequently, the provided structure facilitates re-
tracing lines of thought, and uncovering needs for targeted

replication. Last but not least, the references embodied in
the network provide a source of relevant publications.

Taken together, the network can provide empiric re-
searchers with a model at a useful level of abstraction. It of-
fers enough detail to relate individual effects, and sufficient
abstraction to embed them in a bigger picture. Resulting
research designs allow for generalizable empiric research
that may lead to widely applicable insights.

8.2 Qualitative and Quantitative Evaluation
Next to inspiring novel empiric investigations, the network
may also be used in the critique of existing visualizations.
As a practical example we consider the network graph on
the whiteboard used during the construction of our network
(see Figure 1 (B)) and the interactive adjacency matrix view
in the online tool we developed (Figure 1 (C)) used for
later refinement. The network helps us to define demands
as a set of arguments. For the case of constructing an
argument network such set could consist of the need to
repeatedly interrupt and resume working on the network
(AidResuming), and setting the expectation that the current
network is only an intermediate result (Forgiveness).

In order to engage in a solid critique, we must ensure
that we do not miss related or otherwise relevant aspects.
For example, in the network we find that AidResuming
builds on GlobalStability. The whiteboard diagram is an ex-
ample of a visualization that is very stable. Any change is a
result of a viewer’s active engagement as long as some very
basic preconditions are met. For instance, there is no wind
blowing away sticky notes. The matrix view, on the other
hand, is not necessarily stable from a global perspective
when adding a new relationship. As arguments are sorted
such that all builds on relationships lay in the lower triangle
the sorting is automatically updated once a new relationship
is added. Arguments with sort order undetermined by the
builds on relation may flip when a new order is calculated.
Such flips undermine the demand for GlobalStability.

One has to note though that our network is not intended
to entail all relevant aspects to be considered when deciding
which of the two to use. Being theory-driven and focused on
the properties of visualization objects, for example, it does
not include the effort needed to implement visualizations.
In our case, you can clean a whiteboard, and pick some
sticky notes and pens in a minute, but you may need days
or weeks to implement an interactive visualization. Apply-
ing the network to critique visualizations should be done
mindfully and non-mechanically. Knowing demands and
considering criteria external to the argument network is key
to making high-quality choices. Nonetheless, the network
can add structure to a large part of the evaluation process.

Another research opportunity is the collection and de-
velopment of quantitative evaluation techniques / quality
measures. There are several measures available, many more
than we can feature here [94]. To give only one prominent
example, Tufte’s data-ink ratio [53] can be used to measure
Discreteness. Nonetheless, there are arguments for which
to the best of our knowledge no measures exist. One such
example is measuring how well two or more views are
integrated with each other (IntegrationOfViews).

The network may be used to bridge the gap between
visualization theory, quantitative measures and to date often
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implicit or vague demands. At the same time the network
offers lines of thought why a single quality measure, such as
Tufte’s data-ink ratio, often is not enough to capture visual-
ization quality. In practice, providing automated assistance
by proposing suitable visualizations is limited by the quality
of this measure-to-demand link.

8.3 Design of Visualizations

Finally, the network may also be applied in the design
of novel visualizations. As with traditional visualization
design, the first step is to specify initial demands. To date
designers continue with finding a design that meets these
initial demands. Using the network introduces an interme-
diate step. Before entering the design phase, further implicit
demands can be inferred from the network. Picking up
the VisualPatterns example again (see Figure 5), one can
infer that VisualPatterns builds on driving viewer’s attention
to relevant parts (AttentionDriving), but also enabling the
viewer to learn how to interact with a visualization effec-
tively (ImplicitLearning). Quite obviously, learning can only
happen efficiently if the attention driving effect is not too
strong. Otherwise, viewers need to put constant effort in
overriding exaggerated distracting forces. Driving attention
to visual patterns is a good start for visual analysis of data.
However, once analysts proceed beyond spotting a pattern
to investigating its origin, reliability and context, they must
be able to free themselves from being permanently attracted
to the pattern. Applying the network in the design of novel
visualizations leads to a richer picture of requirements, even
before the first prototype has been sketched.

Besides being directly applied in the design of visu-
alizations, the network can be used to underpin design
guidelines with theory. In line with its application in em-
piric research (Section 8.1) the network provides a theo-
retic structure, which matches the level of abstraction of
many guidelines. One common example is to avoid visual
decorations unrelated to the data / chartjunk [53]. Why to
avoid decorations might be founded on several theoretic
arguments. First, decorations change the visual context and
hence perception (ContextPerception). Secondly, decorations
likely drive attention (AttentionDriving) away from the rele-
vant visual patterns. Thirdly, decorations may add Ambigu-
ity in cases calling for clarity. A detailed investigation could
continue from here, but exceeds the scope of this paper.

9 CONCLUSION

In this work, we curate a network of arguments based on
a sizeable collection of mostly positive and some negative
arguments as to “why visualization works”. With the net-
work we offer a first roadmap of theoretical arguments on
the aspects underlying benefits provided by visualization.
We categorize these arguments based on several schemes,
allowing the examination of arguments in groups. The
categorizations aid in navigating within the network and
offer connections to coarser and more detailed levels of
abstraction. Perhaps most interestingly, we observe a num-
ber of needs for trade-off among arguments, and present
numerous opportunities for future research and practical
application. Finally, we make the network and the collection

of arguments available online as an open dataset about
visualization research, resulting from manual coding of 108
publications.

Our work suggests a new scope in developing a the-
oretical foundation of visualization [6]. Arguments about
“why visualization works” are usually related to “how
does visualization work”, and “how to make visualizations
work”, especially at a more detailed level regarding indi-
vidual visual representations and visualization systems. It
will require a huge effort to examine conflicts and needs for
trade-offs as well as to bridge between the abstract concepts
discussed in this work and concrete mechanisms. Without
doubt, these efforts will lead to profound impact on practice.
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