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ABSTRACT

Members of communities often share topics of interest. However,
usually not all members are interested in all topics, and participation
in topics changes over time. Prediction models based on temporal
hypergraphs that—in contrast to state-of-the-art models—exploit
group structures in the communication network can be used to an-
ticipate changes of interests. In practice, there is a need to assess
these models in detail. While loss functions used in the training
process can provide initial cues on the model’s global quality, local
quality can be investigated with visual analytics. In this paper, we
present a visual analytics framework for the assessment of temporal
hypergraph prediction models. We introduce its core components: a
sliding window approach to prediction and an interactive visualiza-
tion for partially fuzzy temporal hypergraphs.

Index Terms: Human-centered computing—Visualization—Visu-
alization application domains—Visual analytics; Human-centered
computing—Visualization—Visualization techniques—Graph draw-
ings

1 INTRODUCTION

The assessment, diagnosis, and refinement of prediction models are
common tasks in visual analytics [12]. Trust building and account-
ability are additional relevant factors for practitioners [10], especially
as domain experts often have neither the time nor interest in fully
understanding the inner structure of particular prediction models.In
order to allow domain experts to put predictions into context, social
network analysis is shifting from purely structural analysis towards
the analysis of content by using semantic concepts [14]. Exemplar
applications include deciphering associations between images and
text [11] and content classification [19]. Another use case is the
prediction of topics of interest of internet forum users. Predicting
future interests not only needs to take current interests into account,
but also the structure of the communication network such as the
interests of related users. With hypergraph prediction models, we
exploit this structure. Using our visual analytics workflow domain
experts can assess models and calibrate trust during application. As
a running example we use a dataset of the right-wing Stormfront
internet forum. In this paper, we contribute a visual analytics frame-
work for the assessment of temporal hypergraph prediction models,
and an interactive visualization featuring a glyph that represents
sliding window predictions next to training and holdout data for the
local assessment of model quality.

Predicting future links or uncovering hidden relations between
users in social networks has been researched in multimedia infor-
mation retrieval for a long time [13, 21]. Recent works in geomet-
ric deep learning [4, 6, 7] introduced advanced methods for rep-
resentation learning, which captures structural information within
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Figure 1: Our visual analytics framework integrates temporal hyper-
graph predictions by joining multiple (n−w) sliding windows of size w
in arrow glyphs in the matrix view (See Sect. 3). The top row shows
the main data flow, while the bottom row depicts the domain expert’s
workflow with the visual analytics system (red arrows). Petrol colored
arrows between rows show how data is mapped to the visual interface.

non-Euclidean domains, especially graphs. Hypergraph-based ap-
proaches are prominent for their ability to represent, capture, and
transfer information between users or communities within (often
implicit) social networks [2, 3].

Complementarily, visual analytics provides a general framework
for the interactive analysis of data [8]. The framework we present
in this paper implements the close interaction of human analysts
and computers via visualization as outlined by Sacha et al. [20].
Multiple surveys summarize visualizations of sets and hypergraphs,
for instance, as Euler diagrams, node-link diagrams, or matrices [1,
5, 15, 18, 24]. Transitions in temporal hypergraph visualization have
been investigated by Mizuno et al. [16]. Most recently, Xie et
al. [25] presented an application of visual analytics on the training
of hypergraph models. In this work, we focus on the application.

For the task of assessing topic predictions, we identified three
requirements: a) Group structures in the communication network
should be taken into account or revealed, b) Prediction quality needs
to be assessed locally for gaining actionable insights, and in our
specific case c) Analysis is focused on a single user. We address
these demands by integrating a temporal hypergraph model with a
visual analytics workflow, as sketched in Fig. 1. Our visual inter-
face focuses on a single user in his context and combines detailed
information on predictions, training, and holdout data.

2 TEMPORAL HYPERGRAPH PREDICTION

In our framework, we formulate the prediction of future interests of
internet forum users as a (hyper)edge prediction task on a tempo-
ral hypergraph. Our prediction model is based on recent advances
in geometric matrix completion by using graph convolution net-
works [3, 17]. Following the work of Arya, Rudinac, and Wor-
ring [2], we construct a hypergraph representing each user as a node
and each topic as separate hyperedge, such that users who adhere
to a common topic of interest are enclosed within one hyperedge.
Consequently, with the evolution of users’ topics of interest, nodes
contained within the hyperedges change over time. For each user,
the goal is to capture changes in his interests by exploiting both
his past and current interests as well as the evolution of interests
of most related users in the neighborhood within the hypergraph.
Such a problem can well be coined as a matrix completion task



over the incidence matrix of a hypergraph, where rows and columns
correspond to nodes and edges respectively [2].

In our running example, we use data extracted from the Storm-
front internet forum of the period 2005–2014. For extracting users’
topics of interest and data pre-processing, we join the setups of
Rudinac, Gornishka, and Worring [19] and Arya, Rudinac, and
Worring [2]. Further, we use a sliding window approach [22] for
assessing the model (see also Fig. 1). In our case, each window starts
at a time t ∈ {1, . . . ,n−w} and is w years wide for the in-sample
data/training set. The forecasting horizon spans the consecutive
year, which is available as a holdout sample/test set for the period
{w+1, . . . ,n}. We estimate instances of the model on each window
and evaluate their performance using AUC (Area Under Curve) of
the ROC (Receiver Operating Characteristic) on respective holdout
samples. In Fig. 2, the first window ranges from 2005 to 2012. The
corresponding holdout sample is the year 2013. Likewise, the second
in-sample includes the years 2006 to 2013, thus the holdout sample
is the year 2014. For both samples, we get an AUC score of .76 and
.78 respectively. Additionally, we use the in-sample from 2007 to
2014 to predict the future 2015 for which no data is available.

The sliding window approach offers several advantages for the
analyst. To begin with, compared to cross-validation it allows the use
of all data of each time step for training. This is particularly relevant
as the number of posts per user is highly diverse. Sampling for
cross-validation would further taper off available data on those users
who posted infrequently in the first place. Secondly, predicting the
future assumes that there are no structural changes in the meantime.
With the sliding windows, we can expect to increase the chances of
detecting potential structural changes in the time period spanned by
the holdout samples. Imagine a model instance trained on a window
that contains in-sample data before a structural change and holdout
data (partially) after the change. This model can be expected to
perform worse than instances predicting on windows for which there
does not occur any structural change (as assumed). Finally, model
assessment can be performed locally for each hyperedge membership
since multiple pairs of predictions and holdout values are available.
Additionally, the sequence of predictions can show some variability
of the prediction estimates. Thus, the sliding window approach
caters to the demand for local assessment that we identified above.

3 VISUAL ANALYTICS FRAMEWORK

In general, the framework follows Keim et al.’s visual analytics
mantra [9]. Data analysis and predictions (see top of Fig. 1) are
prepared before the analyst starts her workflow by selecting a user.
Then, topics and other users related to the focused user are displayed.
By performing filter, brush, and details-on-demand operations, the
analyst can inspect predictions in their global and local contexts.
Exploiting her domain knowledge, the analyst is able to compare
predictions across users (i.e., nodes), topics (i.e., hyperedges), and
time. Thus, she can iteratively reassess local model quality, and
revalue predictions made on the focused user’s topics of interest.

In Fig. 2, we provide an overview on our visual interface. On
the left hand side, the matrix view shows the temporal evolution of
topic interests and predictions as arrow glyphs. The focused user
is always displayed in the top row like Creator777 in this example.
Other users are filtered and ordered according to the similarity of
their topic interests to the focused user (e.g., by the number of shared
topics). Columns show topics ordered by the focused user’s partici-
pation and future predictions; here, the topic Segregation Academy
is highlighted. On the right hand side, the scatterplot view depicts
all users. Points are laid out via dimensionality reduction of the
training data, for instance, by t-SNE [23]. The highlighted topic is
represented by coloring all nodes that are part of the topic’s hyper-
edge. Both views focus on the inputs and outputs of the prediction
models in order to reduce complexity for the domain expert, who is
not primarily interested in the model’s inner workings.

The central components of our visual interface are the
arrow glyphs. They show the temporal progression (left to
right) of the training/holdout data on the upper and lower ends
interleaved with the sliding window predictions in the middle of
the arrow head. Fig. 2 includes a detailed legend. By design, the
glyph does not only allow inspection of the training data and the
prediction of interest, but also of predictions made by the model
instances trained on previous sliding windows. For example, the icon
in this paragraph shows actual participation in a topic (black), and
predictions decreasing over time as shades of gray. The analyst can
compare predictions of models trained on past windows to holdout
data and thereby gain insights into how well the structure of the
prediction model fits the particular local area of application. As a
result, the glyphs allow a more detailed assessment. For instance, if
a structurally identical model did not provide accurate predictions
for the particular user in question in the past, the analyst may not
trust the current model’s prediction for the future.

Interacting with the visual interface enables the analyst to explore
data and predictions in a directed fashion. The analyst first selects
a user of interest. Then, this user and other users with sufficient
overlap in topics of interest are shown in the matrix view. Further,
topic predictions can be filtered. For example, very low predic-
tions can be clipped in order to reduce the amount of visual noise.
Additionally, glyphs can be filtered by user, topic, time, value of
predictions, and similarity of encoded data and predictions. Both,
the matrix view and the global scatter plot view are linked in order
to allow the comparison of the highlighted subgroups with the whole
population of users. For instance, filtering by a topic highlights all
users that participate in this topic across both views, as shown in
Fig. 2. Tooltips provide details on demand.

In sum, our framework offers advantages compared to previous
approaches. First, group structures are taken into account in pre-
dictions and reflected in visualizations. Second, local assessment is
possible as we refrain from aggregating users/nodes, topics/edges,
and time. Finally, implementation of the visual analytics mantra and
focus on a single user/node of interest make our approach scaleable.

4 DISCUSSION AND CONCLUSION

While our framework facilitates the assessment of hypergraph predic-
tion models, there are several potential directions for improvement.
To begin with, more interaction with the visualization, like drill
down to the text level, will enable domain experts to better evaluate
the context of predictions. Adding more model diagnostics and
options for iterative refinement could include the model developer in
the visual analytics loop, which in turn might facilitate the coopera-
tion between the model developer and domain experts. Meanwhile,
scalability of the visualizations and model training pose limitations
to updating the model interactively. The currently implemented
Analyze first approach can be improved by modeling gradual interest
or propagating uncertainty from topic extraction to predictions, and
visualizations. Independently, the arrow glyph can be extended to
enable the comparison of predictions of two different models.

To conclude, we point out that our visual analytics framework
for the assessment of temporal hypergraph prediction models offers
domain experts an interactive approach to tasks such as the analysis
of online forum communications. The strong focus on a selected
user in the visual interface and the exploitation of the network struc-
ture by using a hypergraph prediction model enable the assessment
of predictions in their local context. Finally, the integration of slid-
ing window predictions in the arrow glyphs captures the temporal
component of the predictions.
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Figure 2: Overview on the visual interface. At the top there is the main filter panel (blue background) including controls to select the user to focus
on, and sliders to set cutoff values for filtering the elements displayed in the matrix view. Below there is the matrix view on the left hand side
including the glyph legend (light blue background). The arrow shape eases understanding by explicating time direction, and by separating glyphs.
Placing predictions in the middle increases the visual saliency of misses. On the right hand side, the scatterplot view offers an overview on all
users (gray background). Topic Segregation academy is highlighted, hence only the arrow glyphs for this topic are shown in the matrix, and users
that are part of this hyperedge are colored in both views. Bars in the backgound of topic labels depict how popular each topic is. The solid dots in
the scatter plot represent those users that are currently shown in the matrix view. On demand additional details are displayed as tooltips.
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