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Abstract—Invasive species are a major cause of ecological damage and commercial losses. A current problem spreading in North
America and Europe is the vinegar fly Drosophila suzukii. Unlike other Drosophila, it infests non-rotting and healthy fruits and is therefore
of concern to fruit growers, such as vintners. Consequently, large amounts of data about the occurrence of D. suzukii have been collected
in recent years. However, there is a lack of interactive methods to investigate this data. We employ ensemble-based classification to
predict areas susceptible to the occurrence of D. suzukii and bring them into a spatio-temporal context using maps and glyph-based
visualizations. Following the information-seeking mantra, we provide a visual analysis system Drosophigator for spatio-temporal event
predictions, enabling the investigation of the spread dynamics of invasive species. We demonstrate the usefulness of our approach in
three use cases and an evaluation with more than 30 domain experts.
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1 INTRODUCTION

Non-native plants, fungus or animal species that out-compete
native species often cause severe economic and ecological damage
to our planet. With increasing globalization through trade and travel
routes, humankind has created opportunities for invasive species to
establish themselves in new regions all over the earth.

An exemplary invasive insect currently spreading around
Europe and North America is the Asian vinegar fly Drosophila
suzukii or spotted wing Drosophila (D. suzukii). In 2008, first
occurrences were reported in California, Spain, and Italy rapidly
followed by other regions and countries [1], [2]. In contrast to
other Drosophila species, D. suzukii infests even non-rotting and
healthy fruits. It has a wide range of possible host plants that
have thin-skinned fruits, like cherries, berries or grapes. An adult
female fly can lay 1-10 eggs per fruit and 200-400 eggs within
its lifespan of 8-25 days. Depending on temperature and other
external factors, these eggs become adult flies within 11-24 days.
Thus, 13-15 generation cycles are possible during one year. As a
result of the spread of D. suzukii, the USA, for example, noted an
annual loss of $500 million [3] in fruit production within a few
years. Agroscop, the Swiss center of excellence for agricultural
research, has also published data on crop losses from 2014 [4]
showing that in some Swiss cantons, 80-100% of cherries were
unmarketable. Consequently, industry and science are tirelessly
searching for novel ways to keep the spread of D. suzukii under
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control through a better understanding of their spread behavior.
Institutes such as the European and Mediterranean Plant Protection
Organization1 or the State Viticulture Institute (WBI) in Freiburg
run global databases with weekly to monthly reports about present
threats and new findings. Focused on the data gathering aspect these
systems are, however, often analytically limited to providing simple
D. suzukii distribution maps. To this end, various approaches have
been proposed to explore the recorded data. Wiman et al. [5], e.g.,
make use of the fact that insects are ectotherms, which means that
their body temperature equals the ambient temperature. Therefore,
low temperatures are a key cause of insect overwinter mortality.
The authors tried to estimate D. suzukii populations in different life
stages, based on average daily temperatures of some specific fruit
production sites combined with trap catches and fruit infestation
counts. With their temperature model they found some confirmation
of population trends with trap data, and to a limited extent with
fruit infestation data. Building on top of this work, other proposed
approaches try to optimize temporal and spatial dislocation of
control measures by conducting studies on D. suzukii’s plasticity
of cold tolerance and its overwinter behavior [6], [7]. Spatial
and temporal dislocation is caused by mainly measuring in high
ripening seasons and at orcharding sites. Focusing on temperature
alone neglects the environmental aspects under which the fly could
best procreate, or survive even in colder seasons. Other approaches
focus on several integrated pest management (IPM) strategies
instead. An extensive review of current methods, as well as a
categorization, is given by Haye et al. [8]. They introduce strategies
that focus on chemical, cultural [9], [10] or biological control [11],
[12].

The multitude of approaches shows that analyzing the spread
of invasive species is a complex problem. There are many different
external influences, which affect the spread of D. suzukii, such

1. EPPO - https://gd.eppo.int
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as surrounding areas, time, temperature, food supply and many
more. This is aggravated by the fact, that these influences have to
be considered in a temporal and geospatial context. This illustrates
the need of researchers for analyzing large amounts of complex
empirical evidence interactively, to gain insights.

In this paper we present our application Drosophigator
(Drosophila Investigator). We follow a visual analytics approach
for interactive exploration of large amounts of heterogeneous data
sources, including trap counts of D. suzukii, surrounding high-detail
land use data, and related metadata. To help researchers investigate
the spread dynamics of invasive species, we proceed as follows:
Firstly, we interviewed experts to assess their needs, which we then
translated into requirements for our presented system. Furthermore,
they assisted us in the selection of suitable data sources, which
we used to train an ensemble of classifiers to predict time and
place of possible occurrences by D. suzukii. These events, the
occurrences of D. suzukii, are cumulatively visualized with a glyph-
based visualization and brought into a spatio-temporal context by
placing them on a map. By allowing zoom and filter capabilities,
as well as details on demand, our application enables domain
experts to understand the spread dynamics of invasive species. We
demonstrate the usefulness of Drosophigator in three use cases.
Additionally, we collected feedback regarding our application from
37 domain experts. Finally, we discuss our application and highlight
potential future work.

2 RELATED WORK

In this section, we first provide an overview of related work for the
analysis and prediction of the spread dynamics of invasive species
with a focus on D. suzukii. Subsequently, we discuss related work
in the visualization of spatial, temporal and spatio-temporal event
predictions.

2.1 Predicting the Spread Dynamics of D. Suzukii
Various reviews of methods for the prediction of the geographic
expansion of D. suzukii have been introduced. Cini et al. [1] argue
that while modeling spread dynamics seems to be an important
first step in understanding the population dynamics of D. suzukii,
the consideration of host plant effects, such as host plant species
phenology and density, has to be a research priority for future work.
In another work, Asplen et al. [3] provide in-depth information
about D. suzukii and propose a general research agenda for future
pest management.

As a crucial starting point, they consider the monitoring of D.
suzukii to collect and identify the data which are necessary for the
prediction of the spread dynamics of invasive species. Consequently,
several projects focus on the monitoring of invasive species such as
VitiMeteo [13] or Drosomon [14]. As pointed out by Asplen et al.,
further research is now needed to develop various pest management
tools and to facilitate the transfer of the generated knowledge to
users. Information visualization has shown to be effective in this
regard, since it is the communication of abstract data through the
use of interactive visual interfaces [15].

2.2 Visualization of Spatial, Temporal and Spatio-
Temporal Data
When analyzing the spread dynamics of invasive species, adequate
visualization techniques are required to incorporate the spatio-
temporal aspects of the available data. To this end, Andrienko et

al. provide an overview [16] about existing exploratory techniques
related to spatio-temporal data and the corresponding tasks. Spatial
event distributions as well as predictions are often visualized with
the help of a map [17], [18], heat maps [19], [20], [21] or choropleth
maps [22], [23]. Glyph-based visualization for geographical topic
comparison have been introduced as another way of analyzing
contextual spatial data [24]. Their use has been demonstrated by
analyzing Twitter and news stream data to detect and visualize
important discussion topics on a map, illustrating topic distributions
for different countries.

The visualization of temporal data is still a common discipline
in the information visualization community. The state-of-the-art
evolves around traditional visualization techniques such as line
graphs. For periodical temporal data (e.g., hourly, daily or monthly
readings), circular visualizations have increased in popularity over
the last decade, as Fuchs et al. [25] showed, that the radial
encodings of time are more effective when a user has to pick
particular temporal locations. This includes, for example, dense-
pixel displays [26] or spiral visualization techniques [27], [28].

Multiple coordinate views have often been proposed [29] to
visualize both geographic as well as temporal data. However,
combining both aspects into a single visualization is more desirable,
since this reduces the cognitive effort for the user [30]. One
approach that combines the advantages of circular visualizations
for periodic temporal data, forming a single visualization, are
RingMaps [31].

2.3 Positioning of our work
Research on invasive species which conquer new environments is
characterized by the fact that distribution processes are unknown
and data is sparse. We account for this key characteristic in
our analysis method and include the visualization of derived
uncertainty and statistical importance measures. We propose a
single visualization of the spatial and temporal dimensions of
predictions of the spread of D. suzukii, using maps and circular
glyph-based visualization. Additionally, we extend this approach
by allowing multiple event types, including the uncertainty of
the prediction in the visualization. Our work is novel in that we
combine our glyph visualization with state-of-the-art information
visualization and interaction techniques to enable experts to
seamlessly analyze micro- and macroecological factors regarding
the spread dynamics of invasive species, with the example of D.
suzukii.

3 DATA DESCRIPTION

We performed several expert interviews with the State Viticulture
Institute (WBI) in Freiburg, Germany, in order to gain a better
understanding of the influences and factors about the spread of D.
suzukii as well as to identify current challenges faced by domain
experts. The WBI offers, through their web service VitiMeteo,
forecast models for different fungi species, monitoring data for
various pests, as well as weather data related to viticulture in the
federal state of Baden-Württemberg. In our interviews we found
that although a lot of data about D. suzukii is being collected by
the WBI, they lack adequate methods to analyze and interpret the
increasing amounts of data as well as visualization techniques to
communicate and present related findings.

In the data provided by VitiMeteo are, among other things,
observations of the spread of D. suzukii. This data consists of trap
findings of D. suzukii as well as percentage information about



2332-7790 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2018.2877352, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA , VOL. XX, NO. XX, XXXX XXXX 3

Fig. 1: Vineyards (highlighted in red) in Baden-Württemberg, as
well as measurements stations by the WBI (highlighted in yellow).
Highlighted is the Kaiserstuhl, one of the biggest wine regions in
Baden-Württemberg.

how many berries were infested in a sample taken at the station.
Additionally, there is percentage information about how many eggs
were found in a sample. This percentage can be over 100 % if there
are more egg findings than berries in a sample. These observations
are collected from 867 stations non-uniformly spread over Baden-
Württemberg as shown in Figure 1. Some of them only report
observations for one day, others report multiple observations over
a time period of up to 1641 days. The observations are rather
sparse and irregularly sampled, which makes the use of standard
time series analysis techniques challenging, if not impossible.
Consequently, Drosophigator should enable researchers of the
WBI to interactively analyze this complex data source.

The Julius-Kühn-Institute [32] (JKI) suggests that the number
of trap findings are increasing in late summer and stay high
until winter. Pelton et al. [33] found that areas surrounded by
woodland exhibit an earlier infestation. Additionally, as highlighted
in the related work, Asplen et al. [3] recommend considering
host plan effects, such as host plant density. As a result, the
focus of our application is the analysis of the spread dynamics,
exemplified by D. suzukii, by taking temporal distribution as well as
environmental factors into account. In order to test the hypotheses
of the JKI and Pelton et al., we gathered the relevant data from
different resources. The time of year is already present in our
observation data provided by the WBI. To gather the height of
every measuring station, we make use of the ASTER Global
Digital Elevation Map [34] which was released by the Ministry of
Economy, Trade, and Industry (METI) of Japan and the United
States National Aeronautics and Space Administration (NASA).
Information on land use and land cover for the state of Baden-
Württemberg was derived from the ATKIS [35] and ALKIS [36]
datasets created by the State Agency for Spatial Information and
Rural Development Baden-Württemberg. This includes high-detail
statewide land use information. It consists of main groups, such as
forests or industry, but also subgroups, such as coniferous forest
or treatment plans. Overall there are 84 different combinations of
groups and subgroups.

In interviews with experts, we found out that the climate is
also a relevant factor, which should be considered in the analysis
of the spread dynamics of D. Suzukii. Based on these findings,
we have extended the data set to include meteorological data. The
meteorological data was provided by the German Meteorological

Office and provides information on various features such as hours
of sunshine, cloud cover, wind strength and direction, as well as
temperature and precipitation at over 300 stations. However, many
of these features have severe data gaps, so for subsequent analysis,
only the precipitation and temperature features are used, resulting
in 7 additional features for our feature vector.

4 ENSEMBLE-BASED CLASSIFICATION OF
INFESTED AREAS

To identify regions, in our case vineyards in Baden-Württemberg,
which are potentially endangered by D. suzukii, we use machine
learning to train a model using the data provided by the WBI in
combination with the data collected from ATKIS and ASTER. This
allows us to learn which combination of features make areas, at
certain points in time, susceptible to the occurrence of D. suzukii.
By applying the trained model on other areas we can find new
potentially endangered areas.

4.1 Data Preparation

To training our model we need to determine which areas are
severely affected by D. suzukii and which are not. As mentioned
in Section 3, we have three types of observations (trap findings,
berry infestation and egg findings) which all indicate whether
D. suzukii occurs in a specific area. All of these observations
serve as indicators that an area is susceptible to the occurrence
of D. suzukii, thus allowing us to combine them into a single
measurement by first normalizing them to the range [0,1] and
afterwards summing them up into a single feature, subsequently
referred to as observations. To cope with irregular samplings of
measurements, we averaged the number of observations per station
per month. The resulting distribution is right-skewed, with most
values being 0, meaning that for most stations we observe no
occurrence of D. suzukii in a month. To still be able to differentiate
between stations with a high occurrence of D. suzukii and stations
with only low or no occurrence, we decided to set the 70 %
percentile as an experimental threshold to classify our stations. This
threshold may be changed later, requiring a retraining of our model,
but otherwise not affecting the later steps of the classification
and the usage of our application. In total we have a training set
consisting of 7224 instances. Using the 70 % percentile of the
average observations per month to partition our data into low
occurrence (negative) and high occurrence (positive) areas gives us
a data set with 1650 positive and 5574 negative instances.

We enriched these instances, by adding information about the
environmental surroundings of each station. First, we added the
height information, which we extracted from ASTER. Second, we
added the surrounding land use information. Since a local spread is
possible by D. suzukii itself, we extracted the land use information
in a 5 km radius around each station. In addition, we have included
seven weather features, for which we have extracted the data of
the nearest weather station. Finally, we have an 91 dimensional
feature vector for each instance, consisting of the station height,
the surrounding land use, and the meteorological data.

Using this partitioning we end up with a rather imbalanced data
set with over three times as many negative examples as positive
ones. This can cause problems since many machine learning
algorithms depend on the assumption that the given training data
set is balanced [37]. Although machine learning techniques exist
which can deal with imbalanced data sets, such as the Robust
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Decision Trees of Liu et al. [37], we want to employ ensemble-
based classification, which is a combination of different classifiers.
This allows us to improve the classification performance [38]
and to model the uncertainty of our classification, which aids
people in making more informed decisions [39]. This requires the
creation of a balanced data set, which we can achieve by either
using undersampling of the majority class or oversampling of the
minority class. Undersampling can be achieved through stratified
sampling using the occurrence class as strata. However, this would
remove instances from our already small data set. To avoid this,
we employ oversampling of the minority class using the Synthetic
Minority Over-sampling Technique (SMOTE) [40]. SMOTE picks
pairs of nearest neighbors in the minority class and creates artificial
instances by randomly placing a point on the line between the
nearest neighbors until the data is balanced. Thus, allowing us to
employ default machine learning algorithms.

4.2 Ensemble-based Classifier Training

For training the classifiers we use the state-of-the-art data mining
systems KNIME [41] and WEKA [42]. We use a selection of well-
known machine learning techniques such as Decision Tree, Random
Forest, Multilayer Perceptron, k-nearest neighbor classifiers, etc.
This selection was determined in an experimental evaluation of
available classifiers in KNIME and WEKA, and might be extended
later. In order to support our decision to employ ensemble-based
classification to improve the classification performance, we first
need a baseline measurement. We performed a 10-fold cross
validation of each of the classifiers mentioned in the previous
paragraph and found that the Random Forest classifier achieved the
best performance, with a mean Cohen’s κ score of 0.659. The other
classifiers achieved Cohen’s κ scores between 0.188 and 0.659,
as shown in Table 1, which are according to Altman [43] poor to
good agreement between the prediction and actual class. To test if
ensemble-based classification could achieve better results, we used
stacking [44]. Here a logistic regression model is trained which
uses the prediction of the previously trained classifiers as inputs
to make the final prediction, as suggested by Ho et al. [45]. Using
this approach we achieved a Cohen’s κ score of 0.701, which is
better than all the individual classifiers that were tested in this
evaluation. Additionally, we are now able to model the uncertainty
of our prediction, which according to Skeels [39] is important for
decision-making.

Classifier Cohen’s κ

Ensemble-based Classification 0.701
Random Forest 0.659

Decision Tree 0.569
1-NN Classifier 0.559

K* 0.534
2-NN Classifier 0.439
4-NN Classifier 0.436

Multilayer Perceptron 0.422
3-NN Classifier 0.419
5-NN Classifier 0.396

LibSVM 0.368
Kernel Logistic Regression 0.362

Bayesian network 0.34
Naive Bayes 0.188

TABLE 1: The ensemble-based classification achieved the best
results, in accordance with the study by Rokach [38]

4.3 Feature Importance
As shown in the last section, ensemble-based classification, either
with stacking or with the random forest classifier, achieved
the best results in our evaluation. Additionally, ensemble-based
classification has the added benefit of allowing us to model the
uncertainty of our prediction. These benefits, however, come with
the drawback of lacking interpretability. For individual predictions,
it is no longer possible to determine which combination of features
is responsible for the obtained result. However, it is possible
to determine the global influence of individual features. While
this still does not allow us to explain individual predictions, it
allows us to highlight the most important features. Thus, even with
high-dimensional data, we can quickly guide users to the most
important features so that they can make an informed decision
when comparing predictions for multiple areas.

To calculate the importance of each feature, we measure its
impact on the evaluation result. We iteratively choose one feature
f ∈ F of the existing features and shuffle its values randomly, while
leaving the remaining features F \{ f} untouched. This removes
any relationship between the selected feature and the output class.
Then we perform a 10-fold cross-validation, as described in the
last section, to measure how the shuffling of a feature affects the
performance of the classifier. If the influence of the feature is large,
the classification result should deteriorate considerably, but if the
influence of a feature is small, the classification result should remain
the same. Therefore, we define the importance of a feature f as
1−Cohen’s κ , where Cohen’s κ is the performance of the classifier
on the data set with shuffled variable f . Table 2 shows the calculated
importance, normalized to a scale of [0− 1] for a selection of
features. A similar approach to measure variable importance was
presented by Breiman [46], which calculated the increase in the
misclassification rate of random forests when permutating a random
variable. Precipitation is the most important feature, followed by
altitude, minimum temperature, as well as the land use features
closed building areas, hedges and shurbs, meadow orchards and
farmland. The least important features include fairgrounds, traffic,
as well as rest areas.

Feature Normalized Importance

Monthly Precipitation 1
Altitude 0.805

Max. Daily Precipitation 0.766
Closed Building Areas 0.747

Hedges and Shrubs 0.695
Meadow Orchard 0.676

Min. Daily Temperature 0.676
Farmland 0.642

... ...
Traffic 0.101

Fairground 0.0

TABLE 2: The calculated importance (1−Cohen’s κ) for individual
features. Precipitation was is considered to be the most important
feature. This is followed by minimum temperature, altitude and the
surrounding agriculture, hedges and shrubs, and closed building
areas.

5 DROSOPHIGATOR: VISUAL ANALYSIS OF
SPATIO-TEMPORAL EVENT PREDICTIONS

Just providing users with the raw results of our prediction is not
sufficient as we generate over 20.000 predictions for all months and
vineyards in Baden-Württemberg for the year 2016. Furthermore,
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Fig. 2: An overview of the Drosophigator application for the visual analysis of spatio-temporal event predictions. Our application is
divided up into two parts. An interactive map, including our glyph visualization of the spatio-temporal event predictions and three data
visualizations, allowing the investigation of the aggregated environmental and meteorological features and temporal occurrences of D.
suzukii.

the raw results do not provide spatial context. Thus, it is not
interpretable which makes it hard for experts to integrate their
domain knowledge into the analysis process. Hence, we need
visualization to help experts to identify spatial and temporal patterns
more easily. To achieve this, we follow the visual information
seeking mantra of Ben Shneiderman: “Overview first, zoom and
filter, details on demand” [47].

To improve our understanding of the needs of domain experts,
we performed additional informal expert interviews with members
of the Julius-Kühn Institute for Plant Protection in Fruit Crops and
Viticulture 2. We presented a first prototype of our application to
five experts in the field of biology, with a focus on invasive species,
one of whom with more than 30 years of work experience and asked
them for feedback and further requirements to analyze the spread
dynamics of D. suzukii. We use the requirements gathered in this
interview in the design process of our application Drosophigator
to tailor its capabilities to the needs of the users. The following list
is a summarization of the collected requirements:

V Visualization Requirements

V1 What does the geographical context look like? It is
essential for experts to get information about the
geographic context of a prediction. This context
information enables them to incorporate their ex-
pertise. For example, they know the dominant type
of wine in certain regions and how susceptible it is
to infestation by D. suzukii. Thus, allowing them
to better interpret and validate the results of the
prediction.

2. https://www.julius-kuehn.de/en/plant-protection-in-fruit-crops-and-
viticulture/

V2 When does the infestation happen? The temporal
occurrence of D. suzukii is very interesting for
domain experts. Visualizing this information helps
to identify interesting or unusual patterns and is
necessary when investigating certain hypotheses,
such as the effect of the surrounding environment
on the temporal occurrence of D. suzukii.

V3 How to inspect individuals and aggregates? For
experts both the visualization of the prediction
for individual vineyards and aggregated regions
are interesting. This enables them to investigate
micro-ecological differences such as environmental
characteristics of an individual vineyard, but also
macro-ecological effects, such as the dominant type
of wine in a certain region, since different types are
affected differently by D. suzukii.

V4 How certain is the prediction? The visualization
of prediction uncertainty is of high relevance for
biologists. Knowing how certain the prediction
algorithm is for specific regions allows them to
either investigate or filter out regions with a high
uncertainty.

I Interaction Requirements

I1 How can I see details-on-demand? The experts
stressed the importance of getting details-on-
demand. When analyzing the occurrence of D.
suzukii, for instance for a single vineyard, they
need to get further information such as the exact
location and outline of the vineyard, the surrounding
environment, and the infestation.



2332-7790 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2018.2877352, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA , VOL. XX, NO. XX, XXXX XXXX 6

Time Segment

Visualization 
Areas

Ratio 
Indicator

0%

100%

(a) Each time-segment can be divided into multiple
visualization areas, which correspond to the number
of possible events. The more interesting events
to observe are placed on the outside, to be more
easily visible. The ratio indicator is used to illustrate
which event is most likely to occur.

Time 
Segments

Information 
Panel

(b) Time-segments are ordered clockwise.
They can represent different time units,
from hours, days, months or years. Each
time-segment can be used to visualize
the event prediction for the specified time
frame.

(c) Example Glyph Visualization
showing the ratio of vineyards
with a high occurrence of D.
suzukii and vineyards with a low
occurrence, as well the uncertainty
of the prediction for one year.

Fig. 3: Visual explanation and example of the designed glyph showing the prediction results for each month of a certain area, (a) Sketch
of a single time-segment, (b) the resulting glyph-based temporal event prediction visualization and (c) a real glyph example.

I2 How can I compare regions? The experts want
to be able to compare multiple regions to find
out differences between the independent variables,
such as environmental features and the dependent
variable, i.e., the prediction of D. suzukii.

To satisfy requirement V1, we build a geographic information
system, using a map as the basis for interaction and spatio-temporal
analysis. We consider the familiarity of domain experts with this
kind of visualization as an additional benefit. We visualize our
predictions on the corresponding position on the map so that users
are immediately aware of the geographic context. Additionally,
combining our geographic visualization with a visualization of the
temporal predictions into a single visualization is more effective,
since this requires less cognitive effort for the users, than mentally
linking multiple views [30].

With respect to requirement V1 and to satisfy requirement V2,
we enrich our map visualization with a temporal visualization of
the occurrence of D. suzukii. Existing related systems such as
BirdVis [48] offer heat map overview visualizations. However, as
we want to investigate the distribution of a species over time, we
designed a map overlay consisting of several glyphs. This partially
preserves the geographic context while the glyphs can be used
to encode additional contextual information. Extensive work on
glyphs has been done in the past which we used as guidelines to
design the final glyph proposed in this paper. This includes, e.g.,
the work by Fuchs et al. [25] and Borgo et al. [49]. The goal of
our glyph is to visualize whether a certain region is endangered
or not. Consequently, we visually encode the classification results
of a specific month represented by its time segment. The basic
design of a time segment is depicted in Figure 3 (a). Therefore, we
make use of the interior of the respective time segment to represent
the classification results of the ensemble-classifiers applied in
Section 4. For each month we have a distribution of safe and
endangered vineyards, according to the classification. Since the
number of vineyards stays the same over all months for each glyph,
we fill the area of the time segments according to the ratio of
the binary outcome (endangered, not endangered). This technique
results in a radial glyph similar to a stacked bar chart showing
fractions of the whole. We use the colors red (endangered) and blue
(not endangered), as derived from the warm-cold color scale [50]
to distinguish the outcome.

As we, additionally, are aware of the probability of each
outcome (endangered or not), we can use this to represent the
(un-)certainty from V4 and to, e.g., find out where to place
additional measurement stations. The average probability of a
given outcome is encoded using the respective half of the warm-
cold color scale, such that a high probability/certainty results in
a stronger color tone while a low probability, on the other hand,
is represented by a weaker color tone. An intense red color, for
instance, means that there is a very high probability of endangered
vineyards within the respective month (time segment) and area
(glyph location). We have included a legend, as shown in Figure 2
or Figure 6, which provides the user with more information about
the used colors and the temporal layout of the time segments.
Additionally this technique enables the user to spot potentially
new measurement areas, by detecting areas with a high uncertainty
value. An overview of the realized glyph representing all vineyards
in Baden-Württemberg can be seen in Figure 3c. It can be observed
that there is a general trend as the number of endangered vineyards
(red) is increasing rapidly in late summer and stays high until
early winter. This observation corroborates the hypothesis that
D. suzukii may only survive in a relatively stable environment
regarding temperature such that it dries out in the summer and
freezes in winter months.

The resulting glyphs are positioned on their on top of the
respective vineyards in the map visualization. However, to fulfill
requirement V3, we need to provide an aggregate visualization for
whole wine regions. Hence, we use clustering to group vineyards,
depending on the zoom level. The farther we zoom out, the more
vineyards are clustered together. In order to give the users an
indicator for the number of grouped vineyard in each glyph,
we scale the radius of the glyph on the one hand, and on the
other hand give exact information about the number of vineyard
areas in the information panel of the glyph. For the dynamic
aggregation based on the zoom-level, we use the markercluster
library [51], which has a greedy hierarchical clustering algorithm
and allows real-time joining and splitting of clusters, even with
up to 50.000 points. This approach is scalable to very large
problems. PruneCluster 3 is an alternative library which uses a more
performant clustering algorithm, which can scale this approach
up to a million points. This allows for a seamless investigation

3. https://github.com/SINTEF-9012/PruneCluster
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Fig. 4: Overview of our glyph-based visualization. For each cell, the
predictions and their uncertainties are averaged per time-segment
and visualized in our glyph. We provide zoom-and-filter capabilities
by allowing the user to zoom in and out of the map.

of differently sized regions, depending on the desired analysis
use-case, as shown in the example in Figure 4. On the left side,
all vineyards in Baden-Württemberg are clustered into five groups,
with up to 900 vineyards in a single group. The convex-hull of
all vineyards contained by a cluster is highlighted in blue in the
background. On the right side of Figure 4, a more fine-grained
clustering with five to twenty vineyards per group can be seen.

Fig. 5: Overview of our details-on-demand visualizations: We
provide the user with details on the structure and environment of the
vineyards by highlighting the outline of the vineyard in a satellite
image. We show the absolute area of the surrounding land use in
a bar chart visualization. Additionally, we provide a view with
the relative percentage distribution of the environmental features
compared to other vineyards in the viewport and visualization of
infestation information and uncertainty of our prediction.

During our expert interview, the experts stressed their need
for details-on-demand visualizations, when investigating vineyards,
such as the outline of the vineyard and the surrounding land use.

To accordingly satisfy requirement I1, we added semantically
meaningful tooltips for individual glyphs, as well as three data
visualizations, a parallel coordinates plot (PCP) of the environ-
mental features, a box plot inspired visualization of the climate
data, and a line graph (LG) of the infestation and uncertainty. An
overview of these visualizations is shown in Figure 2. By default,
only 10 dimensions are visualized in the PCP, since a visualization

of all 84 land use features would lead to overplotting. We make a
preliminary selection of the most important land use features, with
the help of the feature importance, which we calculated in section
4.3. However, the user can add or remove features manually. To
assist the user in the selection, he can inspect the importance of
each feature before it is added to or removed from the PCP. In
our tooltip, we highlight the vineyard in a satellite image, which
enables the domain experts to more closely investigate the outline
and the surrounding land use. Additionally, we provide a bar chart
of the most prominent environmental features in the surrounding
area in absolute values.

In the PCP we also provide information about the land use using
relative measurements. The axis of the PCP provide information
about the percentage distribution of the environmental features of
a region or vineyard, meaning that summing the values of one
line over all axis results in 100 % land use. Each axis is scaled to
the minimum and maximum value of a particular environmental
feature of all vineyards in the current viewport. This prevents that
the scale of features with a low percentage of the overall land use
are dominated by larger areas. Furthermore, this enables experts
to compare the environmental features of the vineyards currently
in the viewport as requested in requirement I2. An example for
the comparison of four wine regions regarding their environmental
features is shown in Figure 7. Additionally, we provide brushing
and linking capabilities between all visualizations. By hovering
over a glyph visualization or by selecting multiple glyphs, their
respective environmental features, as well as infestation and
uncertainty measures, are highlighted in the PCP and LG. Vice-
versa hovering over a line in the PCP or LG highlights this instance
in our other visualizations. PCP and LG also support brushing,
allowing the user to filter out instances. This enables experts to
focus on desired vineyards, for instance, vineyards with a high
infestation in April and May or vineyards with few industrial sites
in their vicinity.

6 USE CASES

In this section, we highlight how visualization can help domain
experts to gain insights about the spread dynamics of D. suzukii.
For this purpose, we demonstrate how experts can use the
interactive map in combination with our glyph-based visualization
and the linked data visualizations to investigate complex micro-
and macro-ecological factors and influences on the spread of
D. suzukii. Therefore, we investigated three recently proposed
assumptions about the time of infestation [32] and the influences
of environmental [33] and meteorological factors [52]. These use
cases will serve as examples of how domain experts without special
knowledge of data analysis can use Visual Analytics applications
to examine large and complex amounts of data.

The JKI states as a general rule, that the number of findings
increases with decreasing temperatures in late summer and stays
high until November or later if there are no cold snaps [32]. To
investigate this hypothesis we create an overview of all available
predictions. For this we employ our semantic zoom to dynamically
aggregate all vineyards in Baden-Württemberg into a single
glyph. The resulting glyph-visualization is shown in Figure 6.
In the visualization, we can easily recognize that the number of
infestations is marginal in the first half of the year. However, there
is a strong increase in the predicted number of infestations and
diminishing uncertainty starting in August until December. Using
our weather chart, we can identify, that starting in December, the
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average daily temperature is dropping below 3°C. This observation
is consistent with the hypothesis of the JKI, which states that the
mortality rate of D. suzukii increases strongly below a temperature
of 3°C.

Fig. 6: Overview glyph-visualization of all vineyards in Baden-
Württemberg. The development over the time-segments shows
that the severity of infestation and the certainty of our prediction
increases in late summer and stays high until the end of the year.
This corroborates the hypothesis of the JKI [32].

A recent two-year field study of Pelton et al. [33] suggests,
that high amounts of surrounding woodland are correlated with an
earlier infestation of D. suzukii. By using a finer resolution, we
can identify four neighboring vineyards near the city of Heilbronn,
which show strong differences in the earliness of the infestation by
D. suzukii, as shown in Figure 7. The two bottom-left vineyards
(highlighted in green colors) shows an earlier infestation than the
two top-right vineyards (highlighted in red colors). To identify
differences in the land use of these vineyards, we employ our
parallel coordinates plot. We can see that the bottom-left vineyards,
which exhibit an earlier infestation, have a larger amount of
hardwood in the surrounding area and have a lower altitude
than the two top-right vineyards. This may be an indication that
in the bottom two areas D. suzukii has more potential natural
refuges, while in the top two areas it is more exposed. This
finding coincides with the hypothesis of Pelton et al. However,
the parallel coordinates plot also gives an indication about the
feature importance. Hardwood only has a normalized importance
of 0.41, which might be an indicator that this is not the main feature
responsible for the difference in the earliness of infestation and
that further investigations should be carried out.

In their study on the impact of meteorological factors, Santos
et al. [52] identified that one of the most influential factors was the
annual precipitation. In order to examine whether this finding also
applies to the vineyards in Baden-Württemberg, we take a closer
look at the major wine-growing regions, highlighted in Figure 8.
We can identify that all wine-growing regions show a medium to
large infestation by D. suzukii during late summer, except for the
Bodensee region in the bottom right. Using our box plot inspired
visualization to investigate the meteorological features, we see
that are no major deviations in the temperature. However, in 2016,
especially in July and August, the Bodensee region experienced
much higher precipitation compared to the other regions. This is in

accordance with the results of Santos et al., which say that too little
or too much precipitation reduces the infestation of D. suzukii.

Fig. 7: Comparison of four neighboring vineyards. The bottom-left
vineyards (highlighted in green colors) exhibit an earlier infestation
by D. suzukii that the top-right vineyards (highlighted in red colors).
The parallel coordinates plot shows that the vineyards in the lower
cells have more surrounding deciduous forest (Laubholz), as well
as, a lower altitude, than those in the upper cells. This finding
strongly supports the hypothesis of Pelton et al. [33], that forests
can act as a natural habitat for D. suzukii, thus enabling an earlier
infestation.

Fig. 8: Comparison of the major wine-growing regions in Baden-
Württemberg. The Bodensee region (red) in the bottom right shows
a lower infestation by D. suzukii, compared to the other regions.
This could be due to the significantly higher precipitation in July
and August, which is in line with the results of Santos et al. [52].
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In these three use-cases, we have demonstrated the capabilities
of our tool. Following the information-seeking mantra of Shneider-
mann using our glyph-based visualization of the ensemble-based
predictions, as well as the uncertainty of the prediction, allows us
to make observations supporting hypotheses of researchers about
the spread dynamics of D. suzukii.

7 EXPERT FEEDBACK

To gather feedback from domain experts about our system,
regarding the design decisions made and potential improvement
ideas, we presented our system at the 6th workshop of the working
group “D. Suzukii” [53] on the 5th and 6th of December in Bad
Kreuznach, Germany.

The goal of this workshop was the mutual exchange of
knowledge between researchers and practitioners. Over 80 biolo-
gists, researchers, agri- and horticulturists from various countries
participated in the workshop. The focus of our talk was our
application Drosophigator. We first gave the experts a brief
introduction to the area of Visual Analytics and pointed out how
this approach can support them in analyzing the spread dynamics
of D. suzukii. Afterwards we presented our system in detail and
explained the individual components to them. For example, how
to interpret the glyph or how to work with PCP in combination
with brushing and linking to perform different analysis tasks. In
addition, we presented the possibilities of the system on the basis
of various use cases. After the presentation of the application, a
questionnaire was handed out to the workshop participants, in
which they could evaluate the different aspects of our application
and give us additional information about their background. The
participants had time for the remaining one and a half days of
the workshop to fill in the questionnaires, examine our system
in detail and ask us additional questions. We used the results of
this questionnaire to evaluate our system and design decisions. A
limitation of our evaluation approach is that it does not capture
the actual practice of working with the tool, but instead provides
a first impression of whether this type of system can support the
expert in their use cases, since the experts only had a limited time
for interaction with the system and also no comparison with other
systems. In addition, in order to better capture the first impression
of the experts, they were able to provide us with open feedback.

7.1 Questionnaire Design
The questionnaire was designed to capture feedback about the
visualization and interaction design and the analysis capabilities of
our system, as well as personal information about the participants
of the workshop. For the personal information, we asked users to
specify their gender, occupation, as well as working experience
in years. Additionally, we asked about their computer expertise
(Expert to Novice) and frequency of computer usage (daily to
never), which could be answered on a 5-point Likert scale [54].

For the system feedback, we asked the users about the various
components of our system. Participants could answer via a 5-point
Likert scale (Strongly Agree to Strongly Disagree). The questions
were formulated in German. The following list provides close
translations:

V1 Temporal data is arranged comprehensibly in the glyph.
V2 The glyphs helps me to understand the occurrence of D.

suzukii.
V3 The visualization on a map helps me to interpret the results.

I1 The interactions in the presented system are comprehensi-
ble.

I2 The offered interaction possibilities are sufficient.
A1 I find it important to have overview visualizations (map of

Baden-Württemberg) as well as detail visualizations (single
vineyards).

A2 I can infer causes for the occurrence of D. Suzukii from
the various visualizations.

A3 The presented approach can be applied on other invasive
species.

A4 The presented approach can help me with my work.

7.2 Participants

The questionnaire was filled out by 37 participants (16 male,
20 female, one abstention). 8 participants work in the field of
agriculture and 4 in the field of horticulture, there were 12 biologists
and 10 researchers or research associates and 3 with other or
undisclosed jobs. The mean working experience in years of the
participants was 12.64 years, with a standard deviation of 11.70
and a range of [1,40]. Accordingly, we consider the feedback of the
participants as highly valuable for the evaluation of our approach.

7.3 Findings
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Fig. 9: Evaluation of the computer skills and computer usage habits
of all participants (n=37). The participants rated these questions on
a scale from 1 (expert, daily) to 5 (novice, never).

The results of our evaluation are very promising. As shown in
Figure 9, most of the participants (60 %) stated to be intermediate
or novice computer users. This is in stark contrast to the computer
usage habits of the participants, where 90 % stated to use the
computer daily. This distribution makes the need for intuitive and
interactive systems, which support the user, clear.

The evaluation of the system feedback of all participants is
shown in Figure 10. Very noticeable are the results for question A1.
Over 80 % of the participants state that they find it important to
have both overview, as well as detail visualization, confirming our
design decision to follow the visual information-seeking mantra of
Shneiderman. The feedback with respect to our visualization design
(V1, V2, V3) is also positive. Nearly two-thirds of the participants
stated that temporal data is arranged comprehensibly in the glyph
and that the glyph helps them to understand the occurrence of D.
suzukii. Additionally, 62 % agree with our decision to combine
the abstract visualization of the temporal data with a map, since it
helps them to interpret the results of our classification by providing
necessary context information such as location.
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Fig. 10: Evaluation of system feedback of all participants (n=37). Shown are the responses of the participants on questions regarding
the visualization design (V1, V2, V3), the interaction design (I1, I2) and the analysis capabilities (A1, A2, A3, A4) of our system
Drosophigator in a diverging stacked bar chart visualization [55].

The feedback regarding the interaction design (I1, I2) is
confirming our design, too. While most of the participants agree
that the interaction design is comprehensible, many are undecided
whether the interaction possibilities are already sufficient. In our
opinion, experts would highly value even more ways to interact
with the system, allowing them to change the time-granularity
or adjust the classification by providing additional information.
This trend is also reflected in the feedback with respect to the
analysis capabilities of our system (A1, A2, A3, A4). Most of the
participants agree that our visualizations are comprehensible, that
the decision to follow the visual information-seeking mantra is
justified and that this approach can be applied on other invasive
species.

Besides the questionnaire, the experts also had the opportunity
to give open feedback. It turned out that this kind of system is not
suitable for every user and every use case. For example, one of the
experts said: “Okay for an overview in an area, but not suitable
for the practical work in the orchards”. For other experts, however,
it is exactly the kind of tool they have wished for, for example:
“Important tool for assessing the increasing influence of parasitoids
in the future”. This feedback suggests that our system is a step in
the right direction, although it is not suitable for all experts and
their use cases. However, some of the experts see the potential
benefits of this tool and also an extension to other types of data.

8 DISCUSSION AND FUTURE WORK

The results of our evaluation make it clear that there is a strong
need for intuitive and interactive systems, which support the experts
in their daily analysis tasks. The experts are, for the most part, very
supportive of Drosphigator. Our glyph design was comprehensible,
helped them to understand the temporal occurrence of D. suzukii
and integrating it in a map helped them to interpret the results.
Additionally, allowing for a seamless clustering of vineyards into
larger regions is deemed important, as it allows the analysis of
micro- and macroecological factors. However, experts are still
divided in their opinion, whether the application can support

them in their work. This is reflected in their opinion about the
possibility to infer causes for the occurrence of D. suzukii from
our application.

We plan to improve our system in the future, for example, by
integrating a more sophisticated classification algorithm, which
considers not only land use and meteorological data, but also
different host plant species than just wine. Additionally, we will
improve our interaction capabilities and enable experts to integrate
their domain knowledge in a Visual Analytics loop, supporting
them to better infer causes for the occurrence of D. suzukii.

The ongoing developments of data platforms such as Drosomon,
which offer an increasing amount of measurements, with more
details and a higher temporal resolution, allow the extension of our
approach to support adjustable time-granularities. This enables the
analysis of short time periods (days) to investigate acute infestations
or long time periods (years) allowing analysis of the effectiveness
of taken countermeasures. Additionally, we plan to reduce the
occlusion introduced through our glyph by investigating advanced
alternative visualization techniques.

For additional future work, we aim to investigate the applica-
bility of our system for spatio-temporal event analysis of other
(invasive) species. One particular use case will be the Global
Initiative for Honey Bee Health (GIHH) launched by the CSIRO
in 2015 [56] aiming to collect scientific evidence of honey bee
population decline through global collaboration. Towards this end,
microsensors are attached to the bees to record their activity
from which predictors of health are inferred. A visual analytics
framework [57] is being developed that facilitates interactive
analysis of the microsensing data and aids in finding correlates with
environmental factors that may impact on bee health. The system
we are presenting here is considered a valuable means of visually
investigating the health predictors and their related uncertainties on
a global scale.
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9 CONCLUSION

In this paper, we presented our application Drosophigator which
enables researchers in the field of viticulture and biology to
investigate the spread dynamics of invasive species. Using data
provided by the WBI, we trained an ensemble of classifiers to
identify places and times which are susceptible to infestation
by D. suzukii. Using our glyph-based visualization, we allow a
visual analysis of these spatio-temporal event predictions. We
demonstrated the capabilities of our approach in two use-cases,
where we show how our tool can be used to investigate hypothesis
about the spread of D. suzukii. Additionally, we provide an
evaluation of our application by nearly 40 domain experts, which
shows the effectiveness of our proposed glyph-based visualization
and the visual-interactive system.
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