
G-Rap: Interactive text synthesis using
recurrent neural network suggestions

Udo Schlegel, Eren Cakmak, Juri Buchmüller and Daniel A. Keim

University of Konstanz - Data Analysis and Visualization Group
Konstanz, Germany

Abstract. Finding the best neural network configuration for a given goal
can be challenging, especially when it is not possible to assess the output
quality of a network automatically. We present G-Rap, an interactive
interface based on Visual Analytics principles for comparing outputs of
multiple RNNs for the same training data. G-Rap enables an iterative
result generation process that allows a user to evaluate the outputs with
contextual statistics.

1 Introduction

There are two common problems when working with neural networks: First,
finding a fitting network architecture for a certain task which is often even for
experts an iterative try-and-error process. Further, evaluating the quality of
generated results with a semantic component is challenging, e.g. in images or
text data. While some quality measures, for example, sharpness in images [7] or
orthography in textual output [6], can be computed, it is hard to automatically
judge how realistic an image is or if a text is semantically correct.

Therefore, an expert has to evaluate and find suitable neural network archi-
tectures for certain tasks. To aid experts in this practice, a set of requirements
can be derived: A user should be able to compare and select the best result
from multiple networks. Through an iterative process, the user should be able
to concatenate and generate results progressively. By doing so, the user should
learn about the overall performance of the examined networks.

Led by these principles, we developed G-Rap, an interactive, visual interface
to improve the design process of recurrent neural networks (RNN) with Long-
Short-Term-Memory [4] layers by allowing experts to iteratively choose the
best results from different RNN architectures. G-Rap is built after Visual
Analytics [5] principles and offers a feedback loop to use the expert’s decisions to
improve the results. Contextual quality measures assist the user in the decision
process. Logging the user’s decisions reveals long-term statistics of RNN selection
preferences, which constitutes a quality indicator for RNNs.

In the remainder of this work, we discuss related approaches concerning the
interactive text synthesis without and with neural networks. Subsequently, we
explain the G-Rap concept in detail at the example of text synthesis for rap lyrics.
Finally, in a discussion of our approach, we will highlight possible application
fields and illustrate future work.

Konstanzer Online-Publikations-System (KOPS) 
URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-2-xeqgxbhdkp799



2 Related Work

The issue of computational poetry generation is a part of computational creativity,
natural language processing, and artificial intelligence. Various systems and
techniques were developed in recent years for poetry([10],[6]). DopeLearning [8]
generates rap lyrics by combining existing lines from rap songs. The user is able
to create rap songs by inserting a set of words and let the system suggest new
lines. Co-PoeTryMe [11] is an interactive poetry generation tool that allows the
user to insert lines and modify generated lines to create poetry with a certain
surprise factor. The LyriSys [16] system supports the generation and modification
of poetry by suggesting new lines using a provided topic or verse.

Recently, neural networks and their success in natural language processing
have made them an alternative to the general template oriented style of poetry
generation. Zhang and Lapata [19] demonstrated that RNNs can produce with
a set of keywords Chinese poetry. Wang et al. [14] use a sequence-to-sequence
model [1] with user provided keywords to generate Chinese poetry. Further, Wang
et al. [15] proposed a planning-based RNN. The system constructs an outline
of the poem based on keywords and generates the poem with the previously
generated outline. Ghazvininejad et al. [2] proposed the Hafez system which
generates a poem with a particular topic using RNNs. The system uses keywords
to find rhyming words which are used to produce the poem line by line. Potash
et al. [13] introduce a system to generate RAP lyrics for artists by using the
artist’s lyrics as a training ground and try to mirror the style of that artist with
their generated lyrics.

Most of these systems using RNNs do not involve the human in the generation
process. For instance, Yan et al. [17] introduced i, Poet, an iterative refinement
process to generate Chinese poems based on Yan et al. [18] and Zhang and
Lapata [19] with human interaction. A proposed updated Hafez [3] interactively
generates poems using user provided topics.

Most systems evaluate poetry by using scores or human evaluation. For
example, the evaluation bilingual evaluation understudy (BLEU) [12] or the rhyme
density [8]. Calculated scores cannot judge creativity or semantic correctness.
Human evaluation surveys criteria such as grammaticality, meaningfulness and
poeticness [9], but depend heavily on the literary knowledge of experts.

To our best knowledge, nearly all named systems are restricted to certain
input parameters such as keywords or topics. Some systems view the problem
from an information retrieval perspective finding and combining the most fitting
lines or just mirroring poetic styles. Further, Chinese poetry has a strict structure
and methods to estimate a score for the generated poetry.

Our work focuses on the comparison of general RNN networks for text
synthesis. G-Rap offers methods to explore and evaluate multiple RNNs for
text synthesis: By supporting the user in finding the best possible RNN and
combining outputs from multiple RNNs for certain tasks, G-Rap enables a simple
and more productive way of synthesizing poetic text.



3 Concept & Application

Fig. 1: The G-Rap workflow. After providing input, the user reviews and selects
a result from the generated outputs and iterates the process as necessary. In
future work, we intend to feedback the user-chosen results into an active learning
process.

Having argued for the need of a human expert to operate the system and
evaluate the results, we chose to develop G-Rap according to Visual Analytics
principles [5]. Since our approach can be vaguely considered a ”manual ensemble
learning”, the VA process helps us to integrate the machine learning side with
the advantages of human cognition in a field where the results cannot be judged
fully automatically.

Fig. 1 shows our conceptual approach to the issue: First, the user provides an
input or the system generates a random input which is processed by all networks.
Afterwards, the results of all networks are presented. Additionally, basic quality
measures are presented for each result that the expert can use to contextualize
the results. The chosen quality measures should assist the user in the selection
process by providing meaningful additional information. For text input, such
measures could be linguistic features that can be derived automatically. Also,
statistics derived from previous selections help the user to identify, which network
performs better for a given input.

3.1 The G-Rap System

Rules like basic vocabulary or grammar checking can help to distinguish meaning-
ful text from incomprehensible gibberish. Yet, since language is ambiguous and
interpretable, such rules can only hint at the usefulness of a text. In particular,
lyrics can hardly be evaluated by automatic text evaluation frameworks. Lyrics,
especially rap lyrics, tend to contain colloquial expressions to establish a flow and
rhyme scheme throughout a song. Moreover, street slang consists of terms and
phrases with ambiguous meaning. Thus, automatic evaluation using standard
dictionaries can be misleading.

With G-Rap, we leverage the ability of human experts to evaluate grammati-
cality, meaningfulness, and poeticness [9] and to contextualize slang expressions,
helping him to identify RNN architectures that perform better than others for
specific text synthesis tasks. This is supported by providing interactive feedback
options to select the best performing RNN.

The models used are RNN architectures using LSTM layers, generally used to



A B

C

D E

Fig. 2: G-Rap Interface (A) Sketchpad for the overall generated lyrics, (B)
control panel for all RNNs, (C) selection statistics, (D) sketchpad for produced
rap lyrics by a RNN with a ranking score, (E) control panel for a specific RNN.

model sequential data, without attention extension. LSTM layers enable storing
information through a larger period of states and allow the network to use the
previous states of a sequence to predict a possible future state.

G-rap was used to evaluate exemplary multiple RNN architectures which have
one to five layers with a constant and also varying number of neurons per layers.
Fig. 2 (E) shows, which configurations and training epochs were chosen. These
exemplary architectures consist of two one-layer networks with 100 and 1000
neurons, a three-layer network with 600 neurons per layer, a four-layer network
with 400 neurons per layer a five-layer network with 200 neurons per layer, and
a network with 4 layers and 256, 128, 128, 256 neurons. They are trained on a
Tesla P100 for 75 epochs.



To support the user in the selection process, we provide basic quality mea-
surements as a score and a ranking for the generated line. In the application
case, this is a combination of a rule-based style and grammar checker, which
emits a score for the ranking process.

The G-Rap workflow begins with the generation of random lines for each RNN
or with a custom user provided input for all RNNs or a particular RNN. This
can be done with the overall sketchpad (Fig. 2A) using the control panel for all
RNNs (Fig. 2B). Further, each RNN has also a smaller sketchpad (Fig. 2D) and
control panel with an architecture description of the RNN (Fig. 2E). The score
for each produced line is included in the sketchpad via a progress bar(Fig. 2D).
After the generation and custom modification of lines, the user is able to copy the
best result to the overall sketchpad. By iteratively generating and using different
results the user is able to create novel lyrics. The selection statistic(Fig. 2C)
presents the number of selected lines from each RNN. These statistics help to
evaluate the global performance of each RNN, in other words: how often it was
selected as best output by the user.

3.2 Examples using G-Rap

To demonstrate the practicality of G-Rap, we collected around 120.000 rap songs
from 955 English speaking artists, who combine various styles, techniques, and
vocabulary in different sub-genres like R&B and Trap. The following lyrics are
examples we generated and concatenated with G-Rap from different RNNs.

For the love of money dollar bills
We just getting started dont panic
When I wake up in the morning
I can see the sun come up

I can see the stars in the sky
I can see the sun shine and she stayed
in my eyes
She said she want to see me shine

4 Future Work

We presented G-Rap, an interactive approach to iterative text synthesis with
recurrent neural networks. Contributions include the capability to determine
the best suitable RNN for certain tasks even if the output cannot be judged
automatically. Further, by comparing the results of arbitrary RNNs with the
same input, G-Rap enables users to progressively build the desired output in
a productive workflow. Basic quality measures and network selection statistics
provide context for the result selection.

While we have shown examples for the applicability of our approach using
rap music lyrics, we envision the concept of G-Rap to be adapted to further
application scenarios. Suitable use cases could be outputs where a) quality cannot
be evaluated automatically and b), the generation process is repetitive. Examples
comprise text syntheses such as poetry generation and object detection and
localization in images.

We intend to build on this initial publication in several ways: First, while
only conceptually mentioned so far in Fig. 1, implementing the feedback loop for



selected results back into the RNN training cycle via active learning could help
to improve complex outputs, e.g. images. Second, since the number of network
outputs a user can efficiently observe for one iteration is limited, we aim to assist
the user by filtering the number of displayed network results. Finally, a better
control over the amount and selection of training epochs could help to detect
overfitting issues transparently in the workflow.

References

[1] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to
align and translate. arXiv preprint arXiv:1409.0473, 2014.

[2] M. Ghazvininejad, X. Shi, Y. Choi, and K. Knight. Generating topical poetry. In EMNLP,
2016.

[3] M. Ghazvininejad, X. Shi, J. Priyadarshi, and K. Knight. Hafez: an interactive poetry
generation system. Proceedings of ACL 2017, System Demonstrations, 2017.

[4] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Comput., 9(8), 1997.

[5] D. A. Keim, J. Kohlhammer, G. Ellis, and F. Mansmann. Mastering The Information
Age - Solving Problems with Visual Analytics. Eurographics, 2010.

[6] C. Lamb, D. G. Brown, and C. L. Clarke. A taxonomy of generative poetry techniques.
Journal of Mathematics and the Arts, 11(3), 2017.

[7] Q. Ma, L. Zhang, and B. Wang. New strategy for image and video quality assessment. 19,
2010.

[8] E. Malmi, P. Takala, H. Toivonen, T. Raiko, and A. Gionis. Dopelearning: A computational
approach to rap lyrics generation. arXiv preprint arXiv:1505.04771, 2015.

[9] R. Manurung, G. Ritchie, and H. Thompson. Using genetic algorithms to create meaningful
poetic text. Journal of Experimental & Theoretical Artificial Intelligence, 24(1), 2012.

[10] H. G. Oliveira, R. Hervás, A. Dı́az, and P. Gervás. Multilingual extension and evaluation
of a poetry generator. Natural Language Engineering, 2017.

[11] H. G. Oliveira, T. Mendes, and A. Boavida. Co-poetryme: a co-creative interface for the
composition of poetry. In Proceedings of the 10th International Conference on Natural
Language Generation, 2017.

[12] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for automatic evaluation
of machine translation. In Proceedings of the 40th annual meeting on association for
computational linguistics. Association for Computational Linguistics, 2002.

[13] P. Potash, A. Romanov, and A. Rumshisky. Ghostwriter: Using an lstm for automatic
rap lyric generation, 2015.

[14] Q. Wang, T. Luo, and D. Wang. Can machine generate traditional chinese poetry? a
feigenbaum test. In Advances in Brain Inspired Cognitive Systems: 8th International
Conference, BICS 2016. Springer, 2016.

[15] Z. Wang, W. He, H. Wu, H. Wu, W. Li, H. Wang, and E. Chen. Chinese poetry generation
with planning based neural network. 2016.

[16] K. Watanabe, Y. Matsubayashi, K. Inui, T. Nakano, S. Fukayama, and M. Goto. Lyrisys:
An interactive support system for writing lyrics based on topic transition. In Proceedings
of the 22nd International Conference on Intelligent User Interfaces. ACM, 2017.

[17] R. Yan. i, poet: Automatic poetry composition through recurrent neural networks with
iterative polishing schema. 2016.

[18] R. Yan, H. Jiang, M. Lapata, S.-D. Lin, X. Lv, and X. Li. i, poet: Automatic chinese
poetry composition through a generative summarization framework under constrained
optimization. 2013.

[19] X. Zhang and M. Lapata. Chinese poetry generation with recurrent neural networks. In
EMNLP, 2014.




