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Abstract
More than ever, we rely on computer systems and the availability of computer networks.
It is crucial to have a high standard of security in this modern world. Fully-automated
systems to identify threats on the Internet are not enough to provide awareness of the
actual situation of complex computer networks. Especially advanced persistent threats
stay undetected for too long. Providing interactive visual interfaces in combination with
analytical methods, help analysts and system administrators to get a better impression
of possible symptoms, suspicious behavior, and understand complex dependencies to
enhance cyber security. To achieve this goal, we implement and evaluate novel visual
analytics systems to facilitate exploration of network activity, analysis of network threats,
and correlation of heterogeneous data streams.

This thesis starts with an extensive literature review focusing on visualization systems
supporting situational assessment in cyber security and identifies various research gaps.
Afterwards, we focus on monitoring of network activity and introduce VACS, which
is a web-based visual analytics suite for cyber security. This thesis also introduces a
system for time-series analysis with integrated analytical methods to enhance visual
correlation for port activity monitoring. Because of limitations of existing approaches
to analyze temporal network data in a given hierarchical context, we also propose a
novel visualization technique, called ClockMap. To assess this scalable approach, which
is a unique combination of circular temporal glyphs and radial treemaps, we report the
results of various evaluations. In particular, we actively participate in international
challenges and successfully compete with other approaches and validate our findings
based on ground truth data.

We also address the analysis of various specific cyber security threats. This thesis,
therefore, proposes a novel visual analytics tool, called VisTracer to help network
analysts to investigate BGP prefix hijackings and routing anomalies, which pose a severe
threat to the underlying network infrastructure of the Internet. To make use of visual
analytics to understand malware behavior, we contribute a taxonomy of visualization
systems for malware analysis and reveal future research directions in this emerging
field. Gaining situational awareness on a larger scale helps to understand the modus
operandi of cyber attackers. We support this use case and integrate various alternative
visualizations into VACS to facilitate attack attribution on multi-dimensional clusters.
Furthermore, a field experiment with security experts is conducted to evaluate the novel
combination of threat intelligence algorithms with interactive visual exploration.

The literature review shows that most of the visual analytics techniques in cyber
security do not explicitly focus on dynamic real-time characteristics. However, concerning
situational awareness, such capabilities are crucial. To emphasize the importance
and foster more research in this direction, we propose a novel and scalable analysis
infrastructure, integrated to VACS, for heterogeneous data streams. We specifically
introduce, NStreamAware, which is a stream analysis system based on Apache Spark,
and contribute a novel visualization technique, called NVisAware, to present aggregated
data slices using various embedded visualization widgets to reduce the cognitive load of
analysts. Moreover, visual feature selection techniques are applied to provide meaningful
summaries of those slices. Eventually, we successfully evaluate the system using a network
security case study and assess the general applicability in the context of situational
awareness through active participation in an international competition.
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German Abstract
—Zusammenfassung—

Mehr denn je sind wir heutzutage auf Computersysteme und die Verfügbarkeit von
Computernetzwerken angewiesen. Deshalb sind hohe Sicherheitsstandards in unserer
modernen Welt unabdingbar. Vollautomatische Systeme reichen allerdings nicht aus, um
eine umfassende Einschätzung der aktuellen Bedrohungslage im Internet darzustellen
und das Situationsbewusstsein für komplexe Computersysteme zu fördern. Insbesondere
fortgeschrittene, andauernde Bedrohungen bleiben oftmals lange Zeit unentdeckt. Die
Kombination von automatischen Analysemethoden und interaktiver visueller Benutzero-
berflächen können dahingegen helfen, damit Analysten und Systemadministratoren einen
besseren Blick für mögliche Auffälligkeiten erhalten und komplexe Zusammenhänge erfas-
sen, um die IT-Sicherheit zu verbessern. Um dieses Ziel zu erreichen, implementieren und
evaluieren wir im Rahmen dieser Arbeit innovative Visual Analytics Systeme, die dazu
beitragen die Exploration von Netzwerkaktivität, Analyse von Netzwerkbedrohungen,
und die Korrelation von heterogenen Datenströmen zu ermöglichen.

Diese Dissertation beginnt mit einer umfassenden Literaturrecherche und identi-
fiziert verschiedene Forschungslücken. Anschließend legen wir den Schwerpunkt auf
das Monitoring von Netzwerkaktivität und stellen VACS vor, welches eine webbasierte
Visual Analystics Suite für IT-Sicherheit ist. Des Weiteren stellt die vorliegende Arbeit
ein visuelles System mit integrierten analytischen Methoden zur Analyse von Zeitreihen
vor, um die visuelle Korrelation im Rahmen des Monitorings von Port-Aktivität zu
verbessern. Aufgrund Einschränkungen vorhandener Ansätze zeitliche Netzwerkdaten
im jeweiligen hierarchischen Kontext zu analysieren, führen wir eine neuartige Visualisie-
rungstechnik, ClockMap, ein. Um diesen skalierbaren Ansatz zu beurteilen, der auf einer
Kombination von zirkulären Glyphen und radialen Treemaps basiert, beschreiben wir die
Ergebnisse mehrerer Experimente. Im Besonderen nutzen wir die vorgestellte Technik,
um diese durch aktive Teilnahme an internationalen Wettkämpfen zu vergleichen und
die gewonnen Erkenntnisse zu verifizieren.

Im weiteren Verlauf dieser Arbeit betrachten wir weitere visuelle Methoden, um
die Analyse verschiedener konkreter Bedrohungen der IT-Sicherheit zu unterstützen.
Wir stellen das Visual Analytics Tool VisTracer vor, um Netzwerkanalysten zu helfen,
sogenannte BGP-Prefix-Hijackings und Anomalien des Routings zu untersuchen, da
diese eine folgenschwere Bedrohung für die grundlegende Netzwerkinfrastruktur dar-
stellen. Um die Analyse von Schadsoftware zu verbessern, stellen wir eine Taxonomie
für Visualisierungssysteme zur Malware-Analyse vor und zeigen weitere Forschungs-
perspektiven auf. Des Weiteren ist auch die Analyse auf globaler Ebene wichtig, um
typische Vorgehensweisen von Angreifern zu ergründen. Um solche Anwendungen zu
unterstützen, binden wir verschiedene Visualisierungen in VACS ein, um dadurch mehr-
dimensionale Cluster zu explorieren und die Zuordnung von Angriffen zu ermöglichen.
Zudem führen wir mit IT-Sicherheitsexperten ein Feldversuch durch, um diese neuartige
Kombination von Threat-Intelligence-Algorithmen und interaktiver visueller Exploration
zu evaluieren.

Die Literaturrecherche zeigt, dass die meisten Visual Analytics Methoden im Be-
reich der IT-Sicherheit die besonderen Charakteristika von dynamischen Echtzeitdaten
nicht berücksichtigen. Zur Verbesserung des Situationsbewusstseins sind diese allerdings
entscheidend. Um dies zu verdeutlichen und hierbei einen Forschungsbeitrag zu leisten,
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stellen wir ein neuartiges und skalierbares Analysesystem für heterogene Datenströme
vor. Hierzu entwickeln wir NStreamAware, ein System basierend auf Apache Spark, und
beschreiben eine Visualisierungstechnik mit dem Namen NVisAware, um aggregierte
Teilstücke des Datenstroms mithilfe verschiedener Visualisierungs-Widgets darzustellen,
um die kognitive Belastung der Analysten zu verringern. Des Weiteren setzen wir ver-
schiedene Methoden der visuellen Featureauswahl ein, um sinnvolle Zusammenfassungen
der Teilstücke zu berechnen. Im Anschluss evaluieren wir auch dieses System mithilfe
realistischer Fallstudien und demonstrieren die generische Anwendbarkeit durch die
aktive Teilnahme an einem internationalen Wettkampf.
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There is no reason for any individual
to have a computer in his home.

— Ken Olsen, DEC (1977)
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Introduction

Contents
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Research Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Today’s world heavily depends on mobile devices, embedded systems, computers,
servers, networks, and the Internet. Recent developments and news reports show,

that such systems are constantly under attack. Not only, less secured end users, but also
highly secure computer networks like federal agencies have been successfully infiltrated
in the past [33, p. 26].

Common cyber security threats often involve advanced persistent threats (APT),
distributed denial-of-service (DDoS) attacks, cross-platform malware (CPM), metamor-
phic and polymorphic malware, phishing, BGP hijacks, cyber espionage, data breaches,
vulnerabilities, malicious web sites, social media scam, credit card fraud, identity theft,
and more. “If there is one thing that can be said about the threat landscape, and
Internet security as a whole, it is that the only constant is change” [231] as stated
in Symantec’s 2015 Internet Security Threat Report [231]. The wide variety and the
increase of sophisticated, ever-changing, attacks highlight the importance of research in
the area of cyber security. One important objective is also to teach users, because in
recent years most of the successful attacks to highly secured networks often started with
social engineering and a weak link, which is often a user opening a seemingly legitimate
e-mail attachment.

A major incident of such advanced persistent threat (APT) became public in May
2015, in which the internal computer network of the German parliament (Bundestag),
called Parlakom, was successfully compromised by unknown attackers. And as common
for such attacks, it started with a simple, but carefully crafted, spear phishing: An e-mail
which looked like a legitimate letter from un.org [117] was sent to specific members
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2 Chapter 1 ● Introduction

of parliament with links to a malicious website. After visiting the website, malicious
code was installed, which further infiltrated the computer network. In this case, the
attackers could stay undetected for months and most likely could exfiltrate sensitive
data. Eventually, officials decided to take down the computer network to investigate
the incident and deploy more measures and systems to strengthen the network security.

While there are automated detection systems to block known malware samples, using
anti-virus appliances, it is hard to detect samples, which are specifically built to target
a particular user or organization. Having said that, it becomes obvious that there will
always be a way for criminals to find an attack vector to get into a computer network.
Therefore, it is impossible to prevent every (targeted) attack automatically. But we
still need technology and ways, so that successful attackers cannot stay undetected for
too long. Therefore, this thesis contributes various techniques to help analysts to detect
and discover symptoms or anomalies in a timely manner and better understand the
overall modus operandi of attack campaigns.

1.1 Background
There are many security-related policies, best practices, and regulations available to
provide guidelines for secure computer systems and how to get certified according to
such standards. Müller [174] provides an extensive overview about the most important
standards including the IT baseline protection (IT-Grundschutz) as defined by the
German Federal Office for Information Security, which is compliant to the ISO/IEC
27000 series of information security standards. Detailed standards (e.g., PCI DSS) are
proposed by the payment card industry to ensure secure processing of credit card data on
computer systems. While some of the work discussed in this thesis could be more precisely
described as work in the field of operational “computer network security”, the overall
scope of this thesis is broader, because it includes an extensive review and work in the
area of (forensic) malware analysis and strategic threat analysis, so the usage of the term
“cyber security” is more appropriate. The International Telecommunication Union (ITU)
also suggests various recommendations for cyber security, and defines cyber security in
ITU-T X.1205 [128] quite general as “the collection of tools, policies, security concepts,
security safeguards, guidelines, risk management approaches, actions, training, best
practices, assurance and technologies that can be used to protect the cyber environment
and organization and user’s assets” [128]. Eventually, cyber security “strives to ensure
the attainment and maintenance of the security properties of the organization and
user’s assets against relevant security risks in the cyber environment” [128]. However,
because of the complexity of current and future attacks, we need to keep the human
analyst in the loop to also enhance situational awareness (SA) for decision makers.
We strongly believe, that visual analytics is an approach specifically helpful in this
domain, because it “is the science of analytical reasoning facilitated by interactive visual
interfaces” [247] and combines the strengths of automated processing power of modern
computer systems with expert knowledge and intuition of human analysts. Thomas et al.
[247] also state that the “analysis of overwhelming amounts of disparate, conflicting,
and dynamic information is central to identifying and preventing emerging threats, (...)
and responding in the event of an attack or other disaster”. The human is inevitable,
because of the “rapidly changing situations to both detect the expected and discover the
unexpected” [247]. Also in the context of cyber security, the human is quite good in
judging unexpected events, and it has been shown that visualization helps the analyst
to acquire a higher number and even more accurate insights [100].
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Not only identifying attacks, but also providing a better understanding of the current
network situation is crucial for cyber security. Attacks might result in anomalies and
side-effects which can be identified through outages of specific services leading to obvious
changes in network traffic. Therefore, it is not only important to identify specific attacks
and be aware of current alerts of intrusion detection systems, but also have awareness
of the current operational network situation. Furthermore, such incidents need to be
analyzed within their context, otherwise they are hard to interpret. This is the reason
why fully automated systems, might not be appropriate for complex attacks, because
such situations can only be interpreted within the context. The advantage of visual
techniques is, that the analyst, for example, is able to quickly explore such anomalies
with respect to the behavior of other hosts in the sub network. Therefore, we believe
that the usage of visual analytics provides a promising direction to gain situational
awareness to eventually enhance cyber security.

1.2 Research Goal

Because of the high relevance of research in cyber security and the observed limitations
of fully-automated intrusion detection systems to discover unexpected, unknown, and
complex anomalies, the following research goal was defined to better include humans’
capabilities:

Propose, implement, and evaluate interactive visualization systems to
enhance situational awareness in cyber security through the scalable ex-
ploration of network activity, the analysis of network threats, and visual
analytics support for the analysis of heterogeneous data streams by combin-
ing automated methods with scalable and interactive visualizations.

1.3 Thesis Structure

To best address the general question on how to enhance situational awareness using
visual analytics, this thesis is structured as follows as seen in Figure 1.1. Chapter 2
briefly defines situational awareness and discusses general aspects about cyber security
with respect to visual analytics and presents state of the art in the field of visualizations
to enhance situational awareness. In Chapter 3, we focus on the analysis of network
activity that is often related to temporal network data. We present various techniques
to visually analyze such time-series data in the context of situational awareness and
introduce a novel visualization for hierarchical time-series data, which can also be
applied to other domains. Chapter 4 focuses more on networks threats and show how
visual analytics can be used to visually explore actual network threats. Specifically, we
focus on a visual analytics system to analyze routing anomalies with respect to BGP
hijacking events. Furthermore, we present a taxonomy for visualization systems for
malware analysis and address an open research gap using alternative visualizations
to analyze the general threat landscape for attack attribution. Chapter 5 introduces
a scalable system, which applies visual analytics to heterogeneous data streams for
situational awareness. Because evaluating complex security applications is challenging,
we actively participate and compete in various international competitions as promising
evaluation strategy for security applications and report on these results within the
respective chapters. Chapter 6 concludes with a summary and suggests various future
research perspectives.
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6 - Conclusions and Future Research Directions

Visual Analytics for Situational Awareness in Cyber Security

1 - Introduction

2 - Visual Analytics for Situational Awareness

3 - Visual Analytics
for Network Activity

4 - Visual Analytics
for Network Threats

5 - Visual Analytics
for Network Streams

▲Figure 1.1 — Overview of thesis structure. After the introduction, Chapter 2
presents an extensive literature review in the field of visual analytics for cyber security
with a focus on situational awareness. Chapter 3 focuses on visual analysis of network
activity, while Chapter 4 focuses on network threats explicitly. Chapter 5 tackles the
real-time challenge for situational awareness on heterogeneous data streams. Chapter 6
concludes the thesis and summarizes the contributions.

For better readability and to reflect the fact that many of the ideas were discussed
and published together with other researchers, I decided to use mostly “we” instead
of “I”. In the beginning of the various sections, I include footnotes to clearly highlight
the individual contributions of the various authors.

1.4 Publications

To share the results of this thesis with the community in a timely manner, so other
researchers are able to built upon this work, most parts of this thesis have been
previously published in well known venues over the past years, which is common
practice for computer science doctoral theses. Therefore, this thesis is based on the
following publications.

Surveys

• E. Biersack, Q. Jacquemart, F. Fischer, J. Fuchs, O. Thonnard, G. Theodoridis,
D. Tzovaras, and P.-A. Vervier. Visual Analytics for BGP Monitoring and Prefix
Hijacking Identification. IEEE Network, 26(6):33–39, 2012. ISSN 0890-8044.
doi:10.1109/MNET.2012.6375891 [25].
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• M. Wagner, F. Fischer, R. Luh, A. Haberson, A. Rind, D. A. Keim, and
W. Aigner. A Survey of Visualization Systems for Malware Analysis. In
R. Borgo, F. Ganovelli, and I. Viola, editors, Eurographics Conference on Visual-
ization (EuroVis) - STARs, Italy (Cagliari), 2015. The Eurographics Association.
doi:10.2312/eurovisstar.20151114 [261].

Applications / Design Studies

• F. Fischer, J. Fuchs, and F. Mansmann. ClockMap: Enhancing Circular Treemaps
with Temporal Glyphs for Time-Series Data. In M. Meyer and T. Weinkauf,
editors, Proceedings of the Eurographics Conference on Visualization (EuroVis -
Short Papers), pages 97–101, Vienna, Austria, 2012. The Eurographics Association.
ISBN 978-3-905673-91-3. doi:10.2312/PE/EuroVisShort/EuroVisShort2012/097-
101 [82].

• F. Fischer, J. Fuchs, P.-A. Vervier, F. Mansmann, and O. Thonnard. VisTracer:
A Visual Analytics Tool to Investigate Routing Anomalies in Traceroutes. In
Proceedings of the Ninth International Symposium on Visualization for Cyber
Security, VizSec ’12, pages 80–87, New York, NY, USA, 2012. ACM. ISBN
978-1-4503-1413-8. doi:10.1145/2379690.2379701 [84].

• F. Fischer, J. Fuchs, F. Mansmann, and D. A. Keim. Visual Analytics zur Firewall-
Konfiguration und Analyse von Netzwerkverkehr (in German). In B. f. S. i. d.
Informationstechnik, editor, Informationssicherheit stärken - Vertrauen in die
Zukunft schaffen: Tagungsband zum 13. Deutschen IT-Sicherheitskongress (in
German), pages 273–283. SecuMedia Verlag, 2013 [86].

• F. Stoffel, F. Fischer, and D. A. Keim. Finding Anomalies in Time-Series
using Visual Correlation for Interactive Root Cause Analysis. In Proceed-
ings of the Tenth Workshop on Visualization for Cyber Security, VizSec ’13,
pages 65–72, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2173-0.
doi:10.1145/2517957.2517966 [226].

• F. Fischer and D. A. Keim. NStreamAware: Real-Time Visual Analytics for
Data Streams to Enhance Situational Awareness. In Proceedings of the Eleventh
Workshop on Visualization for Cyber Security, VizSec ’14, pages 65–72, New York,
NY, USA, 2014. ACM. ISBN 978-1-4503-2826-5. doi:10.1145/2671491.2671495 [79].

• F. Fischer, J. Fuchs, F. Mansmann, and D. A. Keim. BANKSAFE: Visual Analytics
for Big Data in Large-Scale Computer Networks. Information Visualization, 14
(1):51–61, 2015. ISSN 1473-8716, 1473-8724. doi:10.1177/1473871613488572 [90].

• D. Jäckle, F. Fischer, T. Schreck, and D. A. Keim. Temporal MDS Plots for Analy-
sis of Multivariate Data. IEEE Transactions on Visualization and Computer Graph-
ics, 22(1):141–150, 2016. ISSN 1077-2626. doi:10.1109/TVCG.2015.2467553 [133].

Evaluations

• J. Fuchs, F. Fischer, F. Mansmann, E. Bertini, and P. Isenberg. Evaluation of
Alternative Glyph Designs for Time Series Data in a Small Multiple Setting. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
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CHI ’13, pages 3237–3246, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-
1899-0. doi:10.1145/2470654.2466443 [95].

• F. Fischer, J. Davey, J. Fuchs, O. Thonnard, J. Kohlhammer, and D. A. Keim.
A Visual Analytics Field Experiment to Evaluate Alternative Visualizations for
Cyber Security Applications. In M. Pohl and J. Roberts, editors, Proc. EuroVA
International Workshop on Visual Analytics. The Eurographics Association, 2014.
ISBN 978-3-905674-68-2. doi:10.2312/eurova.20141144 [88].

Challenge Submissions

Additionally, we successfully participated in various challenges to evaluate our approaches
with realistic scenarios and compete with international teams around the world. In the
following a list of only those submissions, which directly contribute to this thesis.

• VAST Challenge 2012 [52] – We participated in Mini-Challenge 1 (MC1) and
Mini-Challenge 2 (MC2) and won an award for an “outstanding comprehensive
submission” [52]:

– F. Fischer, J. Fuchs, F. Mansmann, and D. A. Keim. BANKSAFE: A Visual
Situational Awareness Tool for Large-Scale Computer Networks (VAST Chal-
lenge 2012). In 2012 IEEE Conference on Visual Analytics Science and Tech-
nology (VAST), pages 257–258, 2012. doi:10.1109/VAST.2012.6400528 [83].

• VAST Challenge 2013 [269] – We participated in particular in MC2 and
Mini-Challenge 3 (MC3) and received an honorable mention for an “Interesting
Visualization Technique” [269] for MC2 and a honorable mention for an “Intriguing
Visualization” [269] for MC3:

– F. Fischer, D. Jäckle, D. Sacha, F. Stoffel, and D. A. Keim. Adaptive User-
Aware Dashboard Design. In VAST Challenge 2013 - Honorable Mention,
2013 [87].

– F. Fischer and D. A. Keim. VACS: Visual Analytics Suite for Cyber Security
- Visual Exploration of Cyber Security Datasets. In VAST Challenge 2013 -
Honorable Mention, 2013 [78].

• VAST Challenge 2014 [270] – We participated in all mini-challenges. The
ones relevant in the scope of this thesis are MC3 and the Grand Challenge (GC)
combining all mini-challenges. For the GC, we received an honorable mention
for an “Effective Analytic Presentation” [270] and also got an award for an
“Outstanding Comprehensive Mini-Challenge 3 Submission” [270].

– F. Fischer, F. Stoffel, S. Mittelstädt, T. Schreck, and D. A. Keim. Us-
ing Visual Analytics to Support Decision Making to Solve the Kro-
nos Incident (VAST Challenge 2014). In 2014 IEEE Conference on
Visual Analytics Science and Technology (VAST), pages 301–302, 2014.
doi:10.1109/VAST.2014.7042537 [89].

– F. Fischer and F. Stoffel. NStreamAware: Real-Time Visual Analytics for
Data Streams (VAST Challenge 2014 MC3). In 2014 IEEE Conference
on Visual Analytics Science and Technology (VAST), pages 373–374, 2014.
doi:10.1109/VAST.2014.7042572 [80].
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Technical Reports

Parts of the research contributed to this thesis, was funded work done within the
VIS-SENSE1 project. Therefore, various parts of this thesis were previously made
available online as technical deliverable reports, accessible on the VIS-SENSE project
website2. In particular, I personally contributed to the following deliverable reports:

• D1.1 Analysis of Current Practices (M6)

• D3.1 Specification of the Network Analytics Algorithms (M9)

• D3.3 Attack Attribution Module (M24)

• D4.1 Visual Network Analysis Module (M24)

• D4.2 Visual Correlation Analysis Module (M24)

• D4.3 Visual Analysis System for Interactive Scalable Analysis (M24)

• D6.1 Threat Landscape Identification Scenario (M36)

• D6.2 BGP Analysis Scenario (M36)

• D6.3 VIS-SENSE Framework Evaluation (M38)

Other Publications

In addition, there are a number of related projects I was involved in during my time
as PhD student, that only indirectly contribute to the content of this thesis. More
information on this work can be found in the following publications:

• C. Rohrdantz, D. Oelke, M. Krstajic, and F. Fischer. Real-Time Visualization of
Streaming Text Data: Tasks and Challenges. In Workshop on Interactive Visual
Text Analytics for Decision-Making at the IEEE VisWeek 2011, 2011 [201].

• E. Bertini, J. Buchmüller, F. Fischer, S. Huber, T. Lindemeier, F. Maaß, F. Mans-
mann, T. Ramm, M. Regenscheit, C. Rohrdantz, C. Scheible, T. Schreck, S. Sellien,
F. Stoffel, M. Tautzenberger, M. Zieker, and D. A. Keim. Visual Analytics of
Terrorist Activities Related to Epidemics. In Proc. IEEE Conference on Visual
Analytics Science and Technology (VAST Challenge 2011 - Grand Challenge
Award), 2011. doi:10.1109/VAST.2011.6102498 [23].

• F. Mansmann, M. Krstajic, F. Fischer, and E. Bertini. StreamSqueeze: A Dynamic
Stream Visualization for Monitoring of Event Data. In Proceedings of Conference
on Visualization and Data Analysis (VDA ’12), volume 8294, pages 829404–829404–
12, 2012. doi:10.1117/12.912372 [169].

• F. Mansmann, F. Fischer, and D. A. Keim. Dynamic Visual Analytics – Facing the
Real-Time Challenge. In J. Dill, R. Earnshaw, D. Kasik, J. Vince, and P. C. Wong,
editors, Expanding the Frontiers of Visual Analytics and Visualization, pages
69–80. Springer London, 2012. ISBN 978-1-4471-2803-8 978-1-4471-2804-5 [167].

1 VIS-SENSE was a funded project from the European Commission’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement no. 257495, “Visual Analytic Representation of Large Datasets
for Enhancing Network Security”.

2 www.vis-sense.eu

http://www.vis-sense.eu/
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• M. Behrisch, J. Davey, F. Fischer, O. Thonnard, T. Schreck, D. Keim, and
J. Kohlhammer. Visual Analysis of Sets of Heterogeneous Matrices Using
Projection-Based Distance Functions and Semantic Zoom. Computer Graph-
ics Forum, 33(3):411–420, 2014. ISSN 1467-8659. doi:10.1111/cgf.12397 [20].

• J. Fuchs, P. Isenberg, A. Bezerianos, F. Fischer, and E. Bertini. The Influence
of Contour on Similarity Perception of Star Glyphs. IEEE Transactions on
Visualization and Computer Graphics, 20(12):2251–2260, 2014. ISSN 1077-2626.
doi:10.1109/TVCG.2014.2346426 [96].

• J. Fuchs, R. Rädle, D. Sacha, F. Fischer, and A. Stoffel. Collaborative Data
Analysis with Smart Tangible Devices. In Proceedings of Conference on Visualiza-
tion and Data Analysis (VDA ’14), volume 9017, pages 90170C–90170C–15, 2014.
doi:10.1117/12.2040011 [97].

• F. Stoffel and F. Fischer. Using a Knowledge Graph Data Structure to An-
alyze Text Documents (VAST Challenge 2014 MC1). In 2014 IEEE Confer-
ence on Visual Analytics Science and Technology (VAST), pages 331–332, 2014.
doi:10.1109/VAST.2014.7042551 [225].

• M. El Assady, W. Jentner, M. Stein, F. Fischer, T. Schreck, and D. A. Keim.
Predictive Visual Analytics – Approaches for Movie Ratings and Discussion of
Open Research Challenges. In Proceedings of the IEEE VIS 2014 Workshop
Visualization for Predictive Analytics, 2014 [64].

• D. Streeb, U. Schlegel, J. Buchmüller, F. Fischer, and D. A. Keim. Using visual
analytics to analyze movement and action patterns. In 2015 IEEE Confer-
ence on Visual Analytics Science and Technology (VAST), pages 171–172, 2015.
doi:10.1109/VAST.2015.7347665 [228].

• B. Schneider, C. Acevedo, J. Buchmüller, F. Fischer, and D. A. Keim. Visual
analytics for inspecting the evolution of a graph over time: Pattern discovery in a
communication network. In 2015 IEEE Conference on Visual Analytics Science and
Technology (VAST), pages 169–170, 2015. doi:10.1109/VAST.2015.7347664 [207].

• E. Cakmak, A. Gartner, T. Hepp, J. Buchmüller, F. Fischer, and D. A. Keim.
Applying visual analytics to explore and analyze movement data. In 2015 IEEE
Conference on Visual Analytics Science and Technology (VAST), pages 127–128,
2015. doi:10.1109/VAST.2015.7347643 [36].

• J. Buchmüller, F. Fischer, D. Streeb, and D. A. Keim. Using visual analytics
to provide situation awareness for movement and communication data. In 2015
IEEE Conference on Visual Analytics Science and Technology (VAST), pages
121–122, 2015. doi:10.1109/VAST.2015.7347640 [34].
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Situational awareness and cyber security has a strong need for visualization support
to involve the analyst in complex data analysis tasks.
Colloquially speaking the definition of situational awareness (SA) can be summarized

with the simple statement of “knowing what’s going on so you can figure out what to
do” [3]. This is also relevant for an airplane pilot checking and monitoring the various
instruments within the cockpit and observing potential threats outside the aircraft. So
what does it mean to have “good” situational awareness? How can that be evaluated
and measured? Obviously, this is quite challenging, because it refers to a mental state of
the pilot. This general concept of situational awareness is not only relevant for aviation,
but for many real-world scenarios. It is crucial in healthcare that a surgeon is aware of
the current situation, a driver in a car needs to know what is going on around the car,
and a decision maker needs to be aware of the whole circumstances to make the right
decisions. This is not only true in the physical world, but also in the cyber world. A
network operators needs to know what is going on, to understand the current situation,
to protect the network, mitigate attacks, or to be aware of the risks of a potential
malware threat.

Most theories about situational awareness have their roots in aviation and were
primarily influenced by Mica Endsley (e.g., see [66, 67]). She conducted extensive
research in SA and was Chief Scientist at United States Air Force and defined SA
as “the perception of the elements in the environment within a volume of time and

9
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space, the comprehension of their meaning, and the projection of their status in the near
future” [67]. The concept of SA in the physical world was quickly adopted also to the
cyber world (e.g., [235, 17]). In the scope of this thesis, we follow the intentions by
Franke and Brynielsson [93] and “think of situational awareness primarily as a mental
state that can be reached to a varying degree” [93] which relates to the various states
defined by Endsley, which will be briefly discussed in Section 2.1.3.

Situational Awareness / Assessment
Situational Awareness (SA) as a mental state can be referred to as a state of

knowledge, which can be achieved using various techniques. In the world of cyber
security, systems and tools exist to (visually) analyze, explore, and monitor the
current situation leading to findings, insights, and eventually knowledge. The
process to gain that knowledge can be “referred to as situation[al] assessment
or as the process of achieving, acquiring, or maintaining SA” [67].

2.1 Literature Review of Related Work
The following sections give a broad overview of the current state of research with respect
to visual analytics in the domain of cyber security. First, we present various related
surveys, discuss their shortcomings and contribute a detailed and comprehensive state-
of-the-art literature review for the research area. We introduce the various categories
and results here, and make use of more detailed results, tables, and discussions within
the respective chapters and sections throughout the dissertation.

2.1.1 Related Surveys

There are various surveys and literature reviews in the broader area of security vi-
sualization. In 2009, Tamassia et al. [238] review graph drawing techniques used
in 16 computer security visualizations. They identify graph drawing techniques to
support network monitoring, BGP analysis, access control, trust negotiation, and attack
graphs. Because the authors limit their survey to graph techniques, the work cannot
present a comprehensive view of security-related visualization systems. Zhang et al.
[282] focus in 2012 on a particular data type – computer network logs. They provide
a survey of security visualizations for this data source and distinguish between the
distinctive visualization designs. They classify the proposed tools in text-based, parallel,
hierarchical, three dimensional, and other forms of visual representations. While this is
a good start, the view is quite limited to the visual analysis of computer network logs,
which is only a particular data type interested for security analysts.

Shiravi et al. [216] fill this gap and present a comprehensive survey of visualizations
systems for network security in 2012 and review 45 publications and facilitate an use
case based approach to classify the reviewed tools. Shiravi et al. [216] also conclude that
the “process of achieving situational awareness is closely related to the capability of a
system in conducting real time analysis. Security visualization systems, in their current
state, are mostly suitable for offline forensics analysis.” [216]. This statement highlights
the need for research to provide real-time capabilities in cyber security visualizations as
we propose in Chapter 5 for data streams. Li et al. [158] does not take a use case based
approach, but focus on a limited selection of tools using network flow data as primary
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data source. The authors survey state of the art for analysis methods and visualization
approaches specifically for network flow analysis up to the year 2012. Because of the
security critical impact of prefix hijacking and the lack of literature reviews in this field –
even Shiravi et al. [216] only briefly mention a few tools – we published in 2012 a survey
together with Biersack et al. [25] reviewing visual analytics tools for BGP monitoring.
Here we review 9 tools, with respect to level of details, visualization techniques, features,
and applicable use cases, which will be discussed in Chapter 4. Harrison and Lu [114]
focus on a detailed review and comparison of few selected security visualizations for
network data rather than on a complete literature review in 2012. However, they reveal
strengths and weaknesses of the respective tools and propose future directions, especially
emphasizing the need for more scalable solutions. Tran Khanh Dang and Tran Tri
Dang [251] survey security visualization techniques for web information systems with
a different point of view. They distinguish the proposed visualizations mainly in client-
and server-side systems. Especially the client-side systems are not in the scope of most
other surveys. The authors describe proactive and reactive approaches (e.g., intrusive
and non-intrusive warnings), for example to present custom visualizations to the visitor
of a website, to help to distinguish between phishing/spoofed and real websites using
visual techniques. They also cover a limited number of server-side systems to visually
explore network packet, flow, and application generated data.

In 2014, Franke and Brynielsson [93] specifically focus on cyber situational
awareness and conduct a systematic review of literature. Their survey is quite broad
and focuses also on publications which are not related to visualization. They focus for
example on introductory literature on cyber situational awareness, SA in industrial
control systems, SA in emergency management, SA architectures and algorithms, and
on establishing nation-wide cyber situational awareness. They also focus in one section
explicitly on visualization support for cyber SA and human-computer interaction.
However, this overview is quite incomplete, because many publications not directly
talking about situational awareness, do still provide visual exploration and monitoring
techniques to support situational assessment to eventually contribute and enhance the
mental state of SA. This shows that a more comprehensive literature review is needed
to include even more visualization systems relevant for cyber SA.

In 2015, Guimaraes et al. [108] present an extensive survey on information
visualization for network and service management classifying “285 articles and papers
from 1985 to 2013, according to an information visualization taxonomy, as well as
a network and service management taxonomy” [108]. Because of their quite general
topic-based taxonomy, the authors provide a nice historic overview starting from papers
published in the 80’s until 2008, and describe relevant tools between 2009 to 2013 in
a state-of-the-art report in more details. Their survey also reveals, that most of the
relevant articles are published at the symposium of Visualization for Cyber Security
(VizSec)1. However, the taxonomy is quite general and lacks a more detailed classification
within the subtopic IP networks. Staheli et al. [223] provide a survey in 2014 of all
visualization evaluations for cyber security published at VizSec in the last decade. The
authors identify most common evaluation types for complex security applications and
reveal trends and future directions.

Over the years, a noticeable trend could be identified, that there is an increasing body
of research of visualization systems for malware analysis. To provide a state-of-the-art
report about novel techniques in this field, we conducted an extensive literature review

1 www.vizsec.org

http://www.vizsec.org/
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together with Wagner et al. [261] in 2015. In this work, we review 25 malware
visualization systems and propose a malware visualization taxonomy to classify the
systems into distinctive categories, which is also discussed in Chapter 4.

▲Figure 2.1 — Methodology of literature review. The literature review is based
on a combination of papers identified within existing surveys and keyword search in
various digital libraries to include recent state of the art.

2.1.2 Methodology

The survey presented here, is the most comprehensive literature review in the field of
visualization and visual analytics with focus on cyber security and situational awareness.
It incorporates all the publications reviewed in the well-structured survey by Shiravi et al.
[216]. However, we also extend the scope to the threat landscape and malware analysis,
which Shiravi et al. [216] did not include in their review. Additionally, we extend the
literature research to incorporate the most recent publications in the field until 2015 and
the identified articles within the aforementioned surveys. The initial starting point for
related research were papers published at the premier forum for Visualization for Cyber
Security (VizSec)2. This venues “brings together researchers and practitioners from
academia, government, and industry to address the needs of the cybersecurity community
through new and insightful visualization and analysis techniques” [259], for which we
also contribute a web-based overview3 of all papers published at VizSec, which is linked
from the official conference website. Additionally, we made use of a number of common
digital libraries (IEEE Xplore, ACM digital library, Google Scholar) and searched for
relevant keywords and especially focused on recent publications from 2012 to 2015, to

2 www.vizsec.org
3 vizsec.dbvis.de

http://www.vizsec.org/
http://vizsec.dbvis.de/
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include state-of-the-art work, not discussed in the aforementioned surveys. Figure 2.1
presents the general workflow we used to conduct the comprehensive literature review
for visualization approaches and tools to enhance situational awareness in cyber security.

2.1.3 Categorization and Taxonomy

We eventually identified a total of 155 academic articles and classified them according
to various taxonomies, which are briefly introduced in the following sections. Parts of
this survey were previously published in various publications [25, 261] and were partly
made publicly available as web applications4 to share the results with the community.
An interactive web-based visual library summarizing the overall literature review for
cyber security visualizations of this thesis can also been found online5. This web-based
exploration tool, as seen in Figure 2.2, helps to make interesting observations, to identify
trends, and reveal research gaps for the current state of the art.

▲Figure 2.2 — A survey of visualization systems for cyber security. An
extensive web-based literature review of visualization systems for cyber security.

Paper Types

The general paper type is just a basic categorization into (i) Survey Paper, (ii) Evaluation
Paper, (iii) Visualization Technique, and (iv) Application Paper as presented in Table 2.1.
We treat visualization techniques and application papers mostly as disjoint from each
4 vizsec.dbvis.de, malware.dbvis.de
5 cybervis.dbvis.de

http://vizsec.dbvis.de/
http://malware.dbvis.de/
http://cybervis.dbvis.de/
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other. While there are various application papers, which also present novel visualization
techniques, the main focus of these papers is generally not the visualization techniques
but the application focus instead. Therefore, we used the visualization technique
category only, when the technique was the primary focus and could be applied to various
other data sources in the field of cyber security. Articles in the category of evaluation
papers focus on the comparison of various visualization techniques for cyber security and
evaluate them; however in most cases they do not primarily focus on a new application
or technique.

▼Table 2.1 — State-of-the-art overview according to paper type. The table
gives an overview of the general paper types included in the overall literature review.

Category Methods6

Survey Paper [282] [216] [25] [114] [158] [93] [153] [108] [261]
Evaluation [243] [100] [8] [88]

Visualization Technique [69] [68] [14] [143] [161] [160] [70] [165] [22] [81] [131]
[189] [276] [71] [82] [169] [285] [290] [286] [133]

P
ap

er
T
yp

e

Application

[99] [180] [237] [242] [241] [209] [18] [142] [149] [173] [245]
[277] [278] [244] [49] [145] [271] [102] [155] [198] [45] [55]
[91] [148] [181] [199] [246] [50] [273] [182] [164] [27] [163]
[172] [185] [191] [193] [239] [51] [94] [166] [195] [252] [240]
[101] [46] [119] [21] [24] [47] [159] [215] [260] [279] [28] [73]
[105] [140] [176] [203] [53] [196] [130] [9] [85] [84] [106]
[115] [125] [157] [168] [206] [211] [253] [275] [30] [186]
[25] [221] [7] [78] [98] [109] [112] [113] [121] [156] [187]
[188] [226] [289] [272] [134] [63] [179] [41] [79] [88] [92]
[104] [122] [162] [213] [224] [263] [111] [110] [287] [212]
[144] [151] [281] [42] [90] [264] [183] [12] [37]

Survey

As discussed in Section 2.1.1, we include publications also reviewed in other literature
reviews and surveys. To highlight these relations, we use this category to show, which
approaches were reviewed by the most important existing surveys. This helps to quickly
identify those approaches which were not part of any previous literature review. We
include the surveys by Shiravi et al. [216], Biersack et al. [25], Franke and Brynielsson
[93], Guimaraes et al. [108], and Wagner et al. [261]. Table 2.2 summarizes the results
with respect to the aforementioned surveys.

6 References which are emphasized using bold font actually refer to methods contributed by this
dissertation, but have been previously published. However, for consistency reasons I decided to
include them in this overview.

7 Please note that some of the individual surveys actually review more publications than listed here. I
list only those papers which are also within the dissertation’s scope of cyber security visualizations.
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▼Table 2.2 — State-of-the-art overview of related surveys. Categorization of
papers reviewed by various existing surveys. Some of the papers in this literature review
were also discussed in previously published surveys. This table gives an overview, which
papers have been reviewed in the respective surveys.

Category Methods7

Shiravi et al. [216]

[99] [180] [237] [243] [69] [209] [68] [14] [142] [149]
[173] [245] [277] [244] [2] [49] [77] [143] [161] [1] [145]
[160] [271] [70] [102] [155] [198] [91] [148] [199] [246]
[50] [273] [165] [182] [22] [81] [131] [163] [189] [239]
[276] [159] [215]

Biersack et al. [25] [241] [18] [245] [49] [271] [55] [148] [181] [246] [214]
Franke and Brynielsson [93] [191] [193] [19] [130] [71]

Guimaraes et al. [108]

[99] [180] [237] [243] [69] [209] [68] [14] [142] [149]
[173] [245] [277] [244] [2] [49] [77] [143] [1] [145] [160]
[271] [70] [102] [155] [198] [45] [91] [148] [199] [246]
[50] [273] [165] [182] [22] [81] [131] [163] [172] [189]
[239] [166] [240] [46] [119] [276] [24] [159] [215] [28]
[140] [53] [115] [125] [168] [285] [186] [112] [179] [286]
[90]

Su
rv
ey

Wagner et al. [261]
[278] [185] [51] [195] [252] [105] [176] [196] [9] [106]
[206] [275] [290] [109] [188] [272] [134] [63] [104] [162]
[213] [267] [111] [110] [212]

Stages for Situational Awareness

As discussed in the introduction of this chapter and summarized by D’Amico and Kocka
[58], “situational awareness is not a simple, atomic state: it is a process” [58]. According
to Endsley [67], situational awareness is based on three major stages: perception,
comprehension, and projection [67].

• Perception – The stage of perception “refers to the knowledge of the elements in
the environment that one must know about, such as knowing what the Intrusion
Detection System (IDS) alerts are” [58]. Supporting this stage through information
visualization could mean, that the analyst must be able to perceive the overall
network activity, so that possible outliers or hosts with much network activity
become visually apparent as for example in ClockMap [82].

• Comprehension – This stage “refers to how people combine and integrate the el-
ements they perceive, to derive meaning from them with respect to their goals” [58],
which can be described as “knowing when you have perceived something impor-
tant” [58]. Visualization can for example help to enhance this stage to support the
analyst in exploration of connected events resulted from an individual attacker.
This often relates to highly interactive visualization systems, in which various
views are available to analyze a given event from multiple perspectives. Extensive
drill-down capabilities also help to foster comprehension through exposing the
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underlying data to the analyst. These techniques basically provide evidence to
support possible hypotheses of the analyst.

• Projection – The projection stage “is the individual’s ability to project forward
in time to anticipate future events. For example, mentally calculating that if the
current sequence of suspicious events continues, and they are coming from the
same source, then the next likely event will be of a specific type” [58]. Visualization
can help to visually analyze the threats to identify the modus operandi of similar
attacks, to help the analyst to mentally project and predict likely future events.

These stages can be related to the various uses of visualization and the general
analysis types. Both categories are discussed in the following sections. Figure 2.3 visually
presents the general relationships between these categories. While visualization is for
example needed for communication in all SA stages (e.g., to communicate results to other
analysts or managers), visual exploring is more relevant in the stage of comprehension.

Stages of Situational Awareness

Perception

Uses of 
Visualizations

Types of 
Analysis

Comprehension Projection

Real-Time
Analysis

Escalation, 
Correlation

Threat
Analysis

Communicating

Monitoring

Inspecting

Exploring

Forecasting

▲Figure 2.3 — Overview for stages of situational awareness. The general
relations between visualization usage, analysis type, and stage of situational awareness.
Table 2.3 gives an overview of trends for the various categories. This modified and
adapted figure is based on D’Amico and Kocka [58].
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Uses of Visualization

D’Amico and Kocka [58] identified five general uses of visualizations for cyber security
analysis, which are general enough to be applied to most of the literature and even to
other domains.

• Monitoring – An analyst “who is monitoring a system is watching an ongoing
phenomenon in which data may be continually changing. It is part of the perception
stage of situational awareness” [58]. To always present the actual current situation,
real-time aspects are important. Additionally, the visualization should be updated
automatically as soon the underlying phenomena changes. This can be achieved
using expressive dashboard designs [87] or even more sophisticated visualization
systems as proposed in Chapter 5.

• Inspecting – It is obvious that the analyst wants to further inspect interesting
situations perceived during monitoring. The “analyst searches for specific details,
requests clarification, and finds data to test hypotheses.” [58]. “Inspection is
part of the perception stage of situational awareness, and may continue into the
comprehension stage” [58] when the analyst tries to further explain and judge the
findings.

• Exploring – Besides of the specific inspection of interesting parts, the analyst
is interested in exploration, which is “characterized by undirected perusal, op-
portunistic discovery without a priori clues, novel data combinations, interactive
experimentation with data views, finding data regions of interest for analysis, and
hypothesis generation. Exploration relates to the perception phase of situational
awareness when the analyst is striving to see patterns, and relates to the com-
prehension phase when he or she begins to explain the findings and assess the
situation” [58].

• Forecasting – “The goal of forecasting can be to either find the likely future state
presuming the current progression continues without intervention, or to determine
a particular future state based on potential courses of action” [58]. This is not
necessarily done only by the integration of an automated analytical model, but
also by manual “pattern matching and trending” [58]. Therefore, forecasting
can also be done by the analyst using an implicit mental model. This is often
“achieved by matching the current situation against the past, and projecting the
future based on past progressions.” [58]. In the field of threat analysis and the
investigation of the modus operandi during attack campaigns (attack attribution),
visualization can also be used to forecast an emerging situation based on similar
attacks with the same pattern in the past. This can be done by attributing the
current situation to an already known attack campaign.

• Communicating – “Visual data presentation is a useful means for communicating
with other people, reporting to them, and educating them about one’s activities.” [58].
Communication is relevant on all stages for situational awareness depending on the
particular goal of communication. While decision-makers often rely on reports, it is
important that the visual representation to communicate complex observations, are
accurate and not misleading. Sometimes, it is indispensable that the visualizations
still convey the context, so that a situation can be judged adequately.
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Types of Analysis

• Real-Time Analysis – In cyber security analysis there are different functions
and roles. “The ‘real time’ analyst may have as little as 90 seconds to make a
decision regarding whether activity is suspicious or not. To support real time
analysis, visualizations must automatically update with new data” [58].

• Escalation/Correlation – In contrast with real-time analysis, many tasks, es-
pecially based on historic data, are related to escalation and correlation. For
example, analysts who are dedicated to correlation, “search through a day’s or
week’s worth of data, often across many sites, looking for unusual trends to ‘pop out
at them‘” [58]. Some tools especially focus on these scenarios. The “popping-out
that occurs is actually a cognitive event, when the analyst associates several pieces
of information with each other and adds a hypothesis for why these events are all
related. Data visualizations enables such ad hoc ‘visual discovery’ and recognition
of patterns, trends, and anomalies” [58].

• Threat Analysis – Some visualization systems explicitly help the analysts
to analyze threats and attacks in a detailed way. They provide possibilities to
identify common patterns, which is important to attribute an attack to a particular
campaign or type of attack. The impact and detailed behavior of a malware sample
is also highly interesting, because understanding such data helps to assess the
threat.

Use Case Classification

An important point of view to categorize and classify security-related visualization
tools, is the intended use case. This is especially true for complex systems and also for
visualization techniques that make use of heterogeneous data sources or can be applied
to different data types. Shiravi et al. [216] introduce an established taxonomy of five
general use case classes, which we extend with the categories of malware behavior and
attack attribution, which are highly relevant for cyber security but were not in the
focus of Shiravi’s work. Additionally, we categorize the resulting seven use cases into
two general classes: (i) network activity and (ii) network threats. The use cases of
the first category (internal/external, port activity, and host/server monitoring) focus
on the analysis of network activity, which primarily includes network traffic, but also
system log events, and alerts. These use cases are interesting for network planning,
troubleshooting, identification of network issues, but also for intrusion detection to
enhance the security. However, the second category (attack patterns, routing anomalies,
malware behavior, attack attribution) focuses on specific network threats and the deep
forensic analysis of attacks and the resulting anomalies.

8 References which are emphasized using bold font actually refer to methods contributed by this
dissertation, but have been previously published. However, for consistency reasons I decided to
include them in this overview.
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▼Table 2.3 — Overview of yearly trends for situational awareness. The table
gives an overview about the number of methods with respect to stages for situational
awareness, uses of visualization, types of analysis, and use cases. Only few visualization
systems address the projection stage or focus on the communication of insights. Threat
analysis and attack attribution use cases are also underrepresented in research.
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2002 6 4 0 6 4 4 0 0 6 4 0 0 0 2 1 3 0 0 2002
2003 3 2 0 3 2 1 0 0 2 1 0 0 0 1 1 1 0 0 2003
2004 7 8 1 7 6 6 1 0 3 8 1 2 1 1 2 2 1 0 2004
2005 14 9 0 14 9 5 0 1 11 8 1 2 1 1 8 2 0 0 2005
2006 7 6 1 7 6 5 1 0 6 6 0 0 0 0 4 4 0 0 2006
2007 4 2 0 3 3 2 0 0 2 2 1 0 0 0 4 0 0 0 2007
2008 10 11 1 8 11 9 1 0 7 11 2 2 2 5 1 1 2 0 2008
2009 6 7 1 3 7 7 1 1 3 7 0 1 0 0 5 0 2 0 2009
2010 6 5 2 4 5 6 2 0 3 5 2 0 0 2 4 0 0 1 2010
2011 8 7 5 5 7 8 5 0 3 8 4 1 0 2 2 0 3 2 2011
2012 18 16 5 13 18 15 5 2 12 18 6 0 1 8 3 3 5 1 2012
2013 16 12 5 7 17 12 5 0 6 17 5 1 1 5 4 1 5 0 2013
2014 16 11 8 5 17 11 8 0 5 17 10 0 0 6 3 0 7 1 2014
2015 7 7 0 6 7 6 0 0 5 7 1 0 0 5 2 0 0 0 2015

Use Cases Related to Network Activity

We identified the following three use cases, which are more related to general network
activity, because the intentions are not only related to actual threats and attacks, but
also focus on managing and maintaining an overview about network utilization.

• Internal/External Monitoring – Computer networks provide the infrastruc-
ture, so that hosts and servers can communicate with each other. A traditional
view for computer networks of organizations and companies is to focus on the
internal versus external networks (e.g., Internet). A visualization system focusing
on internal/external monitoring “incorporates a display of internal hosts, but in
relation to communicating external IPs” [216]. Ball et al. [14] presents a good
example for this category, called VISUAL [14], where the internal network is
mapped to a matrix-based grid in which each individual cell represents a computer
host in the network. Rectangles arranged outside the matrix represent external
hosts, while lines between the cells and rectangles depict the network connections.
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▼Table 2.4 — State-of-the-art overview based on primary use case. The
adapted and extended use case classification based on Shiravi et al. [216] helps to group
the approaches into various distinctive general use cases. Each approach is assigned to
a single use case category, which represents the primary use case respectively.

Category Methods8

Network Activity
Internal/External Monitoring [14] [277] [70] [102] [27] [193] [240] [28] [78]
Port Activity Monitoring [173] [1] [131] [239] [168] [226]

Host/Server Monitoring

[237] [69] [68] [149] [77] [163] [172] [189] [191] [94]
[21] [24] [19] [140] [71] [82] [85] [115] [157] [169]
[211] [221] [98] [112] [113] [121] [156] [79] [122]
[224] [263] [144] [151] [281] [42] [90] [264] [12]

Network Threats

Attack Patterns

[99] [180] [209] [142] [244] [2] [143] [161] [145] [160]
[155] [198] [45] [91] [199] [50] [273] [165] [182] [22]
[164] [81] [166] [101] [46] [119] [276] [47] [159] [215]
[260] [53] [130] [125] [285] [30] [7] [289] [179] [286]
[41] [92] [287] [183] [37] [133]

Routing Anomalies [242] [243] [241] [18] [245] [244] [49] [271] [55] [148]
[181] [246] [214] [84] [186] [25] [187]

Malware Behavior
[278] [185] [51] [195] [252] [105] [176] [196] [9] [106]
[206] [275] [290] [109] [188] [272] [134] [63] [104]
[162] [213] [267] [111] [110] [212]

Attack Attribution [279] [73] [203] [253] [88]

• Port Activity Monitoring – While network activity between hosts reveals
interesting patterns and network utilization, the analysis of activity on particular
ports provide a different perspective. Many services within the network operate on
various standard TCP ports. High port activity on TCP/80 is most likely related
to unencrypted HTTP web traffic. However, connections are not restricted to the
well-known port numbers, but can occur on any arbitrary port as long the firewall
permits such traffic. Observed port activity can help the system administrator
to get an overview about services within the network, but can also reveal hints
for compromised hosts, because some “malicious programs like viruses, Trojans,
and worms manifest themselves through unusual and irregular port activity” [216].
However in our definition, we extend this category to include not only network
activity time-series for various TCP ports, but also time-series data for other
descriptors in a more generic way. For example, similarly to the number of packets
on port TCP/80 over time, we have sensors in our network to count the number of
packets related to a specific protocol (e.g., TCP, UDP, FTP, IRC). If we make use
of deep packet inspection, the sensor, might even provide counters for in-depth
packet information (e.g., HTTP request codes, browser versions, user agent strings,
actual traffic type) or other specific keywords for which we want to provide a
summarized activity overview.
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• Host/Server Monitoring – This use case focuses on individual network hosts
and servers within the computer networks. “In this class of visualization, the
main display is devoted to the representation of hosts and servers. The intent
is to display the current state of a network by visualizing the number of users,
system load, status, and unusual or unexpected host or server activities” [216].
The display could focus on in-depth analysis of individual host and servers or
provide a detailed overview for many network hosts.

Use Cases Related to Network Threats

The following four use cases are stronger related to the inspection of actual threats,
attacks, and anomalies. This also includes routing behavior, because the primary intent
is to identify anomalies and BGP prefix hijacks which are severe network threats.

• Attack Patterns – “Visualizations of this class aid an administrator in not
only the detection of attacks but also the display of multistep attacks. Different
types of attacks show different behaviors and accordingly different visual patterns
appear” [216]. In previous work as depicted in Figure 2.4, we proposed a visualiza-
tion system called NFlowVis [81] to assess the relevance of alerts, to reveal attacks
based on visual patterns. Analyzing the impact of intrusion detection alerts with
such tools is important, to visually distinguish between false positives and critical
alerts. Quick triage of intrusion detection alerts is crucial, because a “major
drawback of IDSs, regardless of their detection mechanism, is the overwhelming
number of alerts they generate on a daily basis.” [216].

▲Figure 2.4 — Visualization of attack patterns with NFlowVis [81]. The
treemap represents the local computer network with hosts as rectangles. External
attackers are shown as colored circles on the outside. The splines represent the connec-
tions between attackers and computers within the network. This reveals a network scan
(from top) and a distributed attack (bottom) originating from hundreds of hosts.



22 Chapter 2 ● Visual Analytics for Situational Awareness

• Routing Anomalies – Routing is a fundamental concept in the Internet. Correct
path announcements are important to reach the correct destination servers. Despite
of the importance and the severe consequences of routing issues, the responsible
border gateway protocol (BGP) is quite vulnerable. Announcing malicious routing
paths can be used to hijack IP blocks. As a result the attacker can conduct
malicious activities from legitimate IP addresses. This highlights the need for
visualization techniques to support this use case. “Understanding the evolution of
(...) routing patterns over time is the main goal of this visualization class” [216].

• Malware Behavior – “Malicious code (or malware) is defined as software that
fulfills the deliberately harmful intent of an attacker. Malware analysis is the
process of determining the behavior and purpose of a given malware sample” [175].
This comprises static and dynamic malware analysis. In static analysis, the
suspicious file is processed and disassembled to reveal common patterns, so that it
can be distinguished from known, or identified as new malware family. In dynamic
malware analysis, the malware sample is actually executed within a sandbox
environment. Tools observe and log the behavior of all running processes. These
behavior logs are then analyzed and compared to known characteristics. Both
analysis approaches can benefit from visualizations. Visual analytics can also
help to enhance situational awareness especially with respect to the projection
stage, because knowing the capabilities of a given malware sample involved in a
successful compromising attempt, helps to forecast and assess the consequences.

• Attack Attribution – This category involves the use case of attack attribution,
which is “primarily concerned with larger scale attacks (...) determining their
root causes and (...) deriving their modus operandi” [57]. Analysts try to relate
attacks or malware samples to a larger group or attack campaign. Therefore, we
define the use case of attack attribution with respect to visualization as, providing
visual representations and visual analytics applications to explore and understand
inter-related datasets and clusters describing large-scale attack campaigns. The
overall goal is to relate new threats to a known group of attackers or campaigns,
and to understand the modus operandi and trends within the threat landscape.

Attack Attribution or IP Traceback?
“There is no real consensus on the definition of ‘attack attribution’ in the cyber

domain” [57]. David A. Wheeler and Gregory N. Larsen [61] define it as “determining
the identity or location of an attacker or an attacker’s intermediary” [61], which is
highly related to IP traceback, which can be defined as any “technique that begins
with the defending computer and recursively steps backwards in the attack path
toward the attacker” [61]. The ultimate goal of IP traceback is, therefore, to reveal
the actual originating IP address, and eventually identify the real physical location
and real-world identity of the attacker.

However, this dissertation follows the quite different definition by Dacier et al.
[57] in which attack attribution is “primarily concerned with larger scale attacks
(...) determining their root causes and (...) deriving their modus operandi” [57].
Thonnard et al. [249] also state while “tracing back to an ordinary, isolated hacker
is an important issue, we are primarily concerned by larger scale attacks that could
be mounted by criminal or underground organizations” [249].
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Data Sources

As also discussed by Shiravi et al. [216], there is a variety of different potential data
sources for security visualizations, which can be categorized into more general event
types. We use a similar but extended categorization to classify the most important data
sources in the following classes: Network Traces, Security Events, User/Asset Context,
Network Events, Host Events, Application Logs, and Malicious Data. A classification
of which approach is applicable to which data source can be seen in Table 2.5.

• Network Traces

– Packet Traces – Packet traces are the actual full packets transferred over
the network. A typical IP packet specifies various header information (e.g.,
version, length, protocol, checksum, source and destination IP address) and
the payload, which is arbitrary data sent to the application.

– Network Flows – In large-scale networks, flow data is collected, because it
is often not feasible to analyze the full packet traces. Routers, therefore,
have the possibility to export meta data on a flow-based level. Many packet
traces belonging to the same connection are aggregated. Flow packets (e.g.,
NetFlow) do not include any payload information, which is beneficial with
respect to privacy. Most network traffic visualization tools actually rely on
network flow records as seen in Table 2.5.

• Security Events

– IDS/IPS Alerts – Network intrusion detection systems (IDS) or intrusion
prevention systems (IPS) like for example SNORT 9, primarily analyze net-
work traffic, while host-based intrusion detection systems (HIDS) such as
OSSEC 10 also include specific host monitoring features and analyze log files,
network traffic, and file system changes. They try to identify unusual and
suspicious events primarily using rule- or signature-based approaches and
generate alerts to notify the system administrators. An IPS provides active
response capabilities to immediately block particular IP addresses or launch
other countermeasures. Visualization helps to investigate, correlate, and
explore such alerts to distinguish between false positives and critical events.

– Firewall Logs – Firewalls protect computer networks against illegitimate
network traffic. Traditional stateful packet inspection (SPI) firewalls track
the connection states of network connections, while deep packet inspection
(DPI) goes various steps further and analyzes the actual packet contents to
permit and block traffic based on application layer information. Firewalls
provide capabilities to log information about successful or denied connections,
which yield an important data source to be visually analyzed.

• User/Asset Context

– Vulnerability Scans – Nessus11 is a popular scanner to identify potential
vulnerabilities, misconfiguration, or weak passwords of remote systems within

9 www.snort.org
10www.ossec.net
11www.tenable.com

https://www.snort.org/
http://www.ossec.net/
http://www.tenable.com/products/nessus-vulnerability-scanner/
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the network. These lengthy scan reports alone do not help, until they are
analyzed by the system administrator. Eventually, the respective operators
are responsible for closing the potential vulnerabilities on the various systems,
before attackers start to actively exploit them.

– Meta Data – Some visualization systems also take a diversity of meta data
into consideration. Meta data involves general information about the network
structure, importance or usage of various hosts, or other network policies
within the network. Additionally, meta data can be retrieved about potential
attackers or involved domain names, by requesting registrar information, or
geographical relation of a specific IP subnet. Common vulnerability and
exposure (CVE) databases also provide important meta data information
about known vulnerabilities and possible exploits.

• Network Events

– System Metrics / Status Reports – Popular tools like Nagios12, Big Brother
(BB)13, and Munin14 collect and monitor primarily system metrics from
services and check their reachability. Such datasets provide rich information
(e.g., CPU utilization, memory usage, latency, disk performance) about all
services within large-scale computer networks. Such data reveal symptoms,
which can help to identify hardware failures, configuration issues, or even
security incidents. Abnormal and uncommon high CPU utilization on a
particular web server could give hints about an ongoing distributed denial-of-
service (DDoS) attack or could be a resulted by malware sending out huge
amounts of spam e-mails.

– DNS Logs – Malicious software, which might be part of a larger botnet,
needs to communicate with external command-and-control (C&C) servers.
While IP addresses often change, some malware samples use sophisticated
algorithms go generate special domain names. In a periodic manner these
bots connect to the generated domain names and use them as potential
rendezvous point. Such domain generation algorithms (DGA) were heavily
used by “Conficker” and many other malware families. An attacker could
just register one of these domain names in the future to communicate with
the bots and control their behavior, because he knows all details of the
algorithm and is aware of all possible domain names a bot will connect to.
Such requests might be visible in the logfiles of the company’s domain name
service, which is responsible for resolving requested domain names to valid
IP addresses. Exploration of such DNS logs, therefore, can reveal suspicious
or compromised machines in the network.

– BGP Messages – The border gateway protocol (BGP) is responsible for rout-
ing in the Internet. BGP messages convey the information how autonomous
systems (AS) can reach specific IP prefixes. A router in the Internet can
announce new routes, or withdraw previously announced routes. This update
message (basically an IP prefix, along with a list of IDs reflecting the AS
path) is sent to the neighboring autonomous systems. The receiving router

12www.nagios.org
13www.bb4.org
14munin-monitoring.org

https://www.nagios.org/
http://www.bb4.org/
http://munin-monitoring.org/
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updates the attached AS path and adds the ID of the sending AS to the
path and again propagates the message to other routers as seen in Figure 2.5.
Based on this information the routers update their routing table accordingly.
The routers are then able to route packets to a specific IP prefix to the best
neighboring router (with the shortest path) able to reach the final AS for
the respective IP prefix.

Example: Propagation of BGP Update Message
Announcement originating from AS 553

AS 553
BELWUE

134.34.0.0/16
University of Konstanz

AS 3356
Level 3 Comm. Inc.

AS 4637
Telstra Global

134.34.0.0/16
AS Path = 553

134.34.0.0/16
AS Path = 3356 553

AS 1221
Telstra Pty Ltd

134.34.0.0/16
AS Path = 4637 3356 553

▲Figure 2.5 — Propagation flow for BGP update messages. An example of a
BGP announcement originating from AS553 to neighboring AS routers and incremental
propagation to ASes around the world.

• Host Events

– Server Logs – Most hosts in the network provide logging capabilities. In large
computer networks these log messages are normally forwarded to a central
syslog server. This helps to centrally manage and correlate the events, but is
also essential when a host crashes and can’t be accessed any more. With a
central logging infrastructure in place, chances are high that the stored syslog
messages still reveal interesting hints to investigate the issue. The same is
true in cases a host gets compromised by an attacker. Criminals often try
to hide their traces and might remove various log files on the local machine.
However, removing and hiding logs and traces on the central logging server
is much harder, because they need to gain access first. Syslog messages
normally contain arbitrary textual contents with an attached timestamp.

– File System Changes – Successfully compromised machines often have mod-
ified system files. An attacker who injects code on the server, or embeds
malicious code to a website, leaves traces, which include modifications on the
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file system. Tripwire15 or OSSEC 16 monitor the whole file system or crucial
folders for any file changes. Change reports can be analyzed to investigate
suspicious unexpected file changes.

– Audit Trails – Audit trails or audit logs are highly related with the previous
data source, but go beyond the simple change detection of files. Most
operating systems and kernels can be configured to provide a detailed log
about all system calls and operations done by the currently running processes.
This involves file changes and the various file revisions, but also the initiation
of network connections, execution of programs, or any other events a process
is involved in. However, to identify actual suspicious or even malicious
operations in these vast log files is quite challenging and often only feasible
in the context of forensic analysis.

• Application Logs

– Webserver Logs – Within a computer networks there are various applications
which provide extensive log files. A critical source for log files are webserver
logs, because these server provide public data and information to external
clients. Such webserver or proxy logs provide detailed information about
which files have been requested. While most access requests are legitimate
and might be initiated by actual users, there are various other clients. Many
search engines heavily crawl all public websites, which results in a high amount
of requests within the webserver logs. However, most of these requests can
be easily identified using request parameters (e.g., user agent, IP range).
However, there are also various other scanners trying to find vulnerabilities
in the provided web services, or actively exploit known flaws. Monitoring
such events and evaluating the successful attempts is crucial for situational
awareness in cyber security.

– Database Logs – Databases provide various attack vectors for criminals.
Databases contain crucial and often sensitive data, which is highly interesting
for criminals involved in data breaches. Monitoring the access logs and queries
initiated to databases helps to identify suspicious and unusual requests, or
queries violating appropriate access rights or policies.

• Malicious Data

– Honeypot Logs – Honeypots are (virtual) services provided by special software
applications. They are just used to attract intruders, but do not provide any
real services. They are often set up in a way, that it is easy for attackers to
gain access to these machines using weak passwords or well-known exploits.
However, external attackers are not aware that they are just connected
to a honeypot. The honeypots log all interactions done by the intruder.
System administrators and security analysts, can then use the interaction
logs, to analyze the attacker’s behavior or understand the modus operandi.
Furthermore, the intruder’s IP address can immediately added to a black
list preventing access to all real services in the network.

15 sourceforge.net/projects/tripwire/
16www.ossec.net

http://sourceforge.net/projects/tripwire/
http://www.ossec.net/
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– Spam / Phishing Mails – Spam traps operate in a similar way than honeypots.
These are just e-mail addresses used to capture all kinds of spam or phishing
mails. These e-mail addresses are only set up to attract spam, and not for any
legitimate communication. With the help of such spamtraps, it is possible
to collect huge amount of malicious e-mails, or malware by extracting the
attachments. This data can be used to gather new and previously unknown
malware samples, or to identify IP addresses of compromised servers sending
out spam. This information can be used to improve spam filters or help to
understand the modus operandi of large-scale spam campaigns.

– Malware Files – The actual malware files collected via honeypots, spamtraps,
or other means, can also be analyzed. Therefore, some visualization systems
can read the binary files and relate them to other known malware samples.

– Behavior Logs – Malware can also be executed within sandbox environments
to capture the behavior of a running malware sample. These behavior logs
can contain system calls, network traffic, memory dumps, or any other
interaction initiated by the malware. This content-rich information helps to
extensively analyze the specific characteristics of malware families and judge
their impact, which is important to assess the overall severity to enhance
situational awareness with respect to the projection stage.

Visualization Types

For the categorization of the different visualization techniques we used the Information
Visualization and Data Mining taxonomy by Keim [136]. More precisely, we focused on
the part discussing visualization techniques. Based on this taxonomy it is possible to
divide the used techniques into five generalized categories:

• Standard 2D/3D Displays – Includes visualization techniques like x-y (x-y-z)
plots (e.g., scatter plots), bar charts, and line graphs [136].

• Geometrically-transformed Displays – This category aims to visualize inter-
esting transformations of multi-dimensional datasets (e.g., scatter plot matrices [10],
node-link diagrams, parallel coordinates [136], stardinates [152]).

• Iconic Displays – The attributes of multi-dimensional data items are mapped
onto the features of an icon or glyph. These compact representations are then
mapped to the display (e.g., chernoff faces [43]), needle icons, star icons, stick
figure icons [192], color icons, and tile bars).

• Dense Pixel Display – Each data point is mapped to a colored pixel and they
are grouped into adjacent areas that represent individual data dimensions (e.g.,
matrix visualizations).

• Stacked Display – Representations for hierarchical data (e.g., treemaps [217]) and
hierarchical layouts for multi-dimensional data (e.g., dimensional stacking [154]).
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▼Table 2.5 — State-of-the-art overview based on primary data sources. This
overview represents the primarily used data sources in the reviewed methods.

Category Methods

Packet Traces

[99] [14] [244] [77] [1] [145] [70] [102] [155] [50]
[273] [165] [182] [27] [131] [163] [189] [119] [260]
[28] [53] [82] [125] [290] [226] [179] [92] [281]
[37] [133]

Network Flows

[149] [173] [277] [271] [198] [45] [164] [81] [131]
[191] [193] [239] [166] [240] [101] [46] [21] [24]
[260] [140] [82] [30] [78] [112] [226] [289] [41]
[79] [92] [287] [90] [264] [183] [12] [133]

IDS/IPS Alerts

[180] [209] [142] [2] [143] [161] [160] [155] [91]
[22] [81] [163] [166] [276] [215] [19] [28] [125]
[285] [221] [7] [98] [112] [121] [289] [286] [41]
[79] [122] [287] [90] [12]

Firewall Logs [47] [130] [168] [285] [221] [98] [289] [286] [122]
[90]

Vulnerability Scans [47] [130] [115] [144]

Meta Data
[271] [91] [276] [47] [159] [279] [140] [203] [130]
[168] [78] [41] [88] [92] [263] [287] [144] [90]
[12]

System Metrics / Status Reports [69] [68] [172] [71] [82] [211] [113] [226] [289]
[41] [263] [287] [144] [42] [90] [12]

DNS Logs [199]

BGP Messages [242] [243] [241] [18] [245] [244] [49] [271] [55]
[148] [181] [246] [214] [84] [186] [25] [187]

Server Logs [237] [69] [68] [94] [85] [169] [121] [79] [122]
[224] [151]

File System Changes [157] [156]
Audit Trails [159] [263] [267] [281]
Webserver Logs [7] [121] [122] [151]
Database Logs [121]
Honeypot Logs [260] [279] [73] [203]
Spam / Phishing Mails [84] [253] [88] [263]

Malware Files
[278] [185] [51] [195] [252] [73] [105] [176] [196]
[9] [275] [290] [109] [188] [272] [134] [63] [88]
[162] [213] [111] [110] [212]

D
at
a
So

ur
ce

Behavior Logs [77] [195] [252] [159] [105] [196] [9] [106] [206]
[275] [88] [104] [267]
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▼Table 2.6 — Yearly trends for visualization types and techniques. The
table gives an overview about the most widely used visualization types based on a
general taxonomy by Keim [136] and various common visualization techniques.
Year Visualization Type Visualization Technique Year
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2002 3 2 2 2 3 1 2 2 2 0 1 2 1 0 1 0 0 2 0 0 0 3 0 0 0 0 2002
2003 1 1 2 1 0 0 2 2 1 0 0 0 0 0 1 2 0 0 0 1 0 0 1 0 0 0 2003
2004 5 1 3 2 5 1 2 3 0 5 1 2 1 1 3 1 1 4 0 1 0 5 0 0 0 0 2004
2005 8 2 7 0 5 0 1 6 0 4 1 1 0 2 3 1 3 4 0 0 0 5 3 0 0 0 2005
2006 7 2 6 1 2 1 4 4 1 2 1 3 0 1 1 5 2 1 0 0 0 2 2 0 0 0 2006
2007 1 1 1 0 0 2 0 0 0 0 1 1 2 1 1 0 0 0 0 0 0 0 1 0 0 0 2007
2008 9 2 6 3 1 3 3 3 0 4 2 2 2 1 3 6 3 2 1 2 1 1 2 0 0 2 2008
2009 5 2 6 0 0 2 1 3 1 2 1 2 2 3 2 2 3 0 1 1 0 0 1 0 0 2 2009
2010 7 0 5 0 3 1 1 2 0 2 0 0 1 1 0 3 4 0 1 2 0 3 2 0 0 0 2010
2011 9 3 5 3 3 0 4 5 2 3 0 1 0 1 2 4 1 2 1 0 0 3 0 0 1 2 2011
2012 11 3 11 8 7 5 11 7 2 2 2 6 3 2 3 5 8 4 4 3 0 5 5 0 1 0 2012
2013 13 1 10 3 7 2 2 6 1 3 0 4 2 3 6 9 4 7 2 3 0 7 6 0 0 3 2013
2014 16 0 10 3 8 3 6 7 0 1 0 8 2 3 7 6 6 4 2 5 2 9 3 2 0 0 2014
2015 7 1 6 1 4 2 1 3 0 2 1 1 1 1 4 5 2 3 1 1 0 3 4 0 0 0 2015

Visualization Techniques

Besides the aforementioned general visualization types, we also include a detailed
analysis about concrete visualization techniques used in the various approaches. The
overall yearly trends about these techniques are summarized in Table 2.6. The most
popular visualization techniques were: node link diagrams, timelines, pixel visualizations,
and glyphs.

Interaction Support

For the categorization of the systems’ interactive capabilities various interaction tech-
niques such as zooming, filtering, panning, details on demand, or brushing/linking are
available. Additionally, it is often possible to switch dynamically between different visual
data representations. As seen in our study concerning malware visualizations [261],
many of the papers did not specifically describe which of the aforementioned features
they actually support. Most of the time, the tools were only dubbed as interactive in
general without offering a more detailed explanation. Therefore, we decided to limit the
categorization to whether the system supports any kind of interaction without going
into detail.
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▼Table 2.7 — Yearly trends for used evaluation techniques. An overview about
the most widely used evaluation techniques in the reviewed methods and applications.
Obviously, case studies and usage scenarios are the most widely used technique, which
we categorize as insight-based strategies.
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2002 0 0 0 0 1 0 0 0 0 0 0 2 3 0 0 0 0 2002
2003 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 2003
2004 0 0 0 0 1 0 0 0 0 0 1 3 4 0 2 0 0 2004
2005 0 1 0 1 1 0 0 0 0 0 0 7 7 0 0 0 1 2005
2006 0 0 1 1 0 0 0 0 0 0 0 5 3 0 1 0 1 2006
2007 0 0 0 1 0 0 0 0 0 0 0 3 1 0 1 1 0 2007
2008 0 0 1 2 0 1 0 1 0 1 0 4 10 0 0 0 1 2008
2009 0 0 0 0 1 2 0 0 0 0 0 4 4 0 1 0 1 2009
2010 0 0 0 1 0 0 0 0 0 1 0 2 6 0 0 0 0 2010
2011 0 0 0 0 0 1 0 0 0 0 0 5 6 0 3 0 0 2011
2012 0 0 0 1 0 0 0 0 0 0 0 11 11 1 4 0 3 2012
2013 0 0 0 0 1 2 0 0 1 1 1 7 9 2 7 0 0 2013
2014 0 2 0 5 0 5 0 0 0 2 0 10 6 3 9 0 0 2014
2015 0 0 0 0 0 2 0 0 0 0 0 3 4 2 2 0 0 2015

Evaluation Approaches

As main categorization for the evaluation approaches we follow the general strategy
taxonomy by McGrath [171], which was further discussed by Carpendale [38] in the
context of information visualization. Additionally, we assign various techniques common
in cyber security visualization identified by Staheli et al. [223] to the respective strategies.
An alternative taxonomy, based on seven goal-based scenarios is proposed by Lam et al.
[150]. They also introduce and discuss an overview of various evaluation methods and
methodologies [150].

• Field Strategies

According to McGrath [171], the key characteristic of field strategies “is that the
behavior system under study is ‘natural’, in the sense that it would occur whether



2.1 ● Literature Review of Related Work 31

or not the researcher were there and whether or not it were being observed as part
of a study” [171]. This means that field strategies share a high amount of realism.

– Field Study – Carpendale [38] makes it clear, that a field study “is typically
conducted in the actual situation, and the observer tries as much as possible
to be unobtrusive. (...) Examples of this type of research include (...) case
studies in industry. In this type of study the realism is high but the results
are not particularly precise and likely not particularly generalizable. These
studies typically generate a focused but rich description of the situation being
studied.” [38].

– Field Experiment – On the other hand, a “field experiment is usually also
conducted in a realistic setting; however, an experimenter trades some degree
of unobtrusiveness in order to obtain more precision in observations. For
instance, the experimenter may ask the participants to perform a specific task
while the experimenter is present. While realism is still high, it has been
reduced slightly by experimental manipulation. However, the necessity of long
observations may be shortened and results may be more readily interpretable
and specific questions are more likely to be answered.” [38].
To also capture the reasoning process, these and other evaluation types with
domain experts can also be structured as Pair Analytics [13] session, which
is “a method for capturing reasoning processes in visual analytics” [13], but
is more obtrusive. In such sessions “verbal data about thought processes in a
naturalistic human-to-human interaction” [13] is gathered. One subject mat-
ter and one visual analytics expert are actively working together on a specific
task, while their interactions are being logged and verbal communication
transcribed and analyzed.

– Longitudinal Study – When a field study is conducted for a longer period,
we would classify them as longitudinal field study. Multi-dimensional In-
depth Long-term Case studies (MILCs) [219] as proposed by Shneiderman
and Plaisant [219] would also relate to such longitudinal studies.

– Interview – Many studies involve interviews, in which a user “is asked a
series of structured or semi-structured questions to elicit knowledge regarding
a particular topic, domain, or workplace” [223]. While this method is also
relevant within other strategies, in most cases the interviewee is domain
expert in the respective field. This category also includes less formally defined
interviews, like informal feedback sessions with the users or domain experts.
We decided to also include similar qualitative methods into this category,
like think-aloud protocols, in which users are asked to give direct feedback of
their thoughts and actions during actual usage of the application.

• Experimental Strategies
Compared to the previous strategy, field research “has to do with whether the
situation exists prior to and independent of the investigator, versus having been
concocted by the researcher” [171]. In the following experimental strategies, the
situation is, therefore, not the typical field environment, but an experiment
orchestrated by the researcher.

– Laboratory Experiment – “In a laboratory experiment the experimenters
fully design the study. They establish what the setting will be, how the study
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will be conducted, what tasks the participants will do, and thus plan the whole
study procedure. Then the experimenter gets people to participate as fully
as possible following the rules of the procedure within the set situation” [38].
Usability Testing [223] or a traditional user study to test specific design
decisions of an application would be part of this category.

– Experimental Simulation – In this method “the researcher attempts to
achieve much of the precision and control of the laboratory experiment but to
gain some of the realism (or apparent realism) of field studies. This is done
by concocting a situation or behavior setting or context, as in the laboratory
experiment, but making it as much like some class of actual behavior setting
as possible” [171]. This would refer to the Simulation category identified
by Staheli et al. [223]. User studies, which are defined in a realistic way, to
mostly reflect the actual field usage, would fall into this category.

• Respondent Strategies
These strategies “concentrate on the systematic gathering of responses of the
participants to questions or stimuli formulated by the experimenter” [171]. These
studies are arranged in a way, that they focus on observing behavior under
conditions where the behavior setting is made irrelevant to the response [171].
These strategies are often applied when the results should be highly generalizable
with high precision, but less focus is given to realism.

– Judgment Study – “In a judgment study the purpose is to gather a person’s
response to a set of stimuli in a situation where the setting is made irrelevant.
(...) Ideally, the environment would not affect the result. Perceptual studies
often use this approach.” [38]. This category is also related to a Labora-
tory Experiment, however the focus is more focused on a particular set of
stimuli. Studies in this category sometimes make use of psychophysiological
measurements (e.g., brain activity).

– Sample Survey – “In a sample survey the experimenter is interested in
discovering relationships between a set of variables in a given population” [38].
This covers general questionnaires sent to a larger group of persons answering
specific questions about a given topic or prototype.

• Theoretical Strategies

– Formal Theory – “Formal theory is a strategy that does not involve the
gathering of any empirical observations” [171]. Carpendale [38] gives an
example for a formal theory, in which “the results of several studies can be
considered as a whole to provide a higher-level or meta-understanding or
the results can be considered in light of existing theories to extend, adjust or
refute them” [38]. The work by Alshaikh et al. [8] could be considered in
this context as well, in which security applications are evaluated using the
theories of Alexander [6], which can be summarized in fifteen properties of
order [6]. Alshaikh et al. [8] then discuss in which extent the various security
applications follow the suggested properties of order. Therefore, the authors
use properties based on various formal theories to evaluate and compare the
strengths and weaknesses of various approaches.
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– Computer Simulation – This is another theoretical strategy, which is
non-empirical. “It is like the experimental simulation strategy (...) in that
it is an attempt to model some particular kind of real-world system” [171].
In the scope of cyber security visualizations, this could be an evaluation
based on an automatically generated synthetic dataset to be used in a case
study. For example, Fowler et al. [92] “generated synthetic DDoS attacks of
varying intensity against a monitored network over a period of 25 minutes,
using several attack topologies” [92]. Such data generation would relate to
an evaluation based on a computer simulation, because the data is generated
synthetically to reflect real-world scenarios.

– Critique – This methods builds around “a meticulous group discussion
centered on how well particular aspects or details of a visualization support
the intended goal” [129]. This method also relates to formal theory, because
critique and comments by the participants of group discussions, are often
based on previous perceptual studies.

– Inspection – “Usability inspection is the generic name for a set of methods
that are all based on having evaluators inspect the interface (...) aimed at
finding usability problems” [178]. According to Nielsen [178] this includes
for example, heuristic evaluation, cognitive walkthroughs, feature inspection,
consistency inspection, standard inspection, and others. While strictly
speaking this is not a traditional theoretical strategy, it still has some overlap,
because such techniques (e.g., heuristic evaluations) often follow known
theoretical and “established usability principles” [178].

• Insight Strategies – We introduce this category, which is not part of the
taxonomy by McGrath [171], to focus on evaluation techniques directly related to
describing the identification of findings and insights in visual analytics applications,
which is often done by various case studies or ground truth validations.

– Case Study – There are various types of case studies. Isenberg et al. [127]
distinguish between (i) case studies from domain experts, (ii) case studies
from close collaborations, and (iii) case studies conducted by visualization
researchers, who are also experts in the problem domain. Because of the lack
of details provided by the authors, it is often hard to assign the described
case studies to one of the stated types. Therefore, we decided to keep all
three types in a single category.

– Usage Scenario – This category is often also described as case study by
the authors, however “case studies” which only report how the visualization
approach could be used by hypothetical domain experts [127] are better
described as use cases or usage scenarios.

– Competition Participation – van Wijk [255] highlights the challenge of
evaluation for visual analytics application, but also state that an “interesting
alternative approach to evaluation is competition: present a problem to
the community and challenge researchers and developers to show that their
solution is best” [255]. Active participation in international competitions and
challenges help to compare and evaluate many approaches.

– Ground Truth Validation – The aforementioned challenges and competi-
tions can also help to orchestrate ground truth data, to validate findings with
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actual known findings. However, there are also other benchmark datasets
available to validate the gathered results. This often can be done for malware
classification use cases, in which known training data is available. However, it
is much harder for general network traffic datasets, because for real datasets
there is often no ground truth available at all.

• Computational Strategies – Sometimes it is also possible to follow fully auto-
mated computational strategies, in which no users are directly involved. The focus
of such techniques is more the evaluation of scalability with respect to performance
or processing time, but also the automated analysis of visualization results with
respect to various defined optimization functions.

– Automated Image Analysis – “Computer-generated analysis of a digitial
image for visual characteristics” [223] is the core of such analysis techniques.
For example, Mansmann et al. [165] use an optimization function to evaluate
the automatically generated data-driven layout adaption of treemaps with
respect to visibility, average aspect ratio, and layout preservation [165].

– Performance Testing – Testing the performance, memory usage, or other
resources, is a common technique to validate the technical scalability of
a system or a complex method. This also refers to the discussion of an
algorithm’s complexity, which is often important to judge the applicability
of a method to real-world scenarios. However, such techniques often do not
help with respect to the actual usefulness of an approach to answer analyst
questions. Therefore, performance testing is often used together with case
studies to cover the evaluation of usefulness and scalability issues.

2.2 Observations and Research Gaps

In the following we summarize Observations and Research Gaps (OG)17 based on
our extensive literature review for cyber security visualizations, which lead to specific
research objectives to be addressed in this thesis.

OG1 No single holistic visual analytics system for cyber security SA – Gaining
situational awareness in cyber security is indeed challenging. Each reviewed system,
visualization, and application, only contributes to single aspects in the situational
assessment workflow. There seems to be no holistic solution to address all questions
with respect to all use cases. While it would be desirable to have a single system
to address all aspects, more interdisciplinary research has to be conducted to
reach this goal.

OG2 Supporting the SA projection stage is challenging – Situational awareness
relates to various stages. Visualization can be used during situational assessment to
get a clear picture of the ongoing network activity and threats. This reaches from

17Please note, that parts of this dissertation have already been published at various venues to share
results with the community as soon as possible. This is the reason, why the presented literature
review does also contain some of our own applications and methods, which will be described in the
following chapters of this dissertation. To provide an holistic view of available literature including
publications which formed the basis of this dissertation, I decided to include them. However, the
observations and identified research gaps are partly solved and addressed by our proposed methods.
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basic perception of various interesting or suspicious findings, over comprehension,
to actually judge the identified events, to a projection stage, in which the analyst
gets a clear mental picture about the possible impact or consequences with
respect to the future. While most analysis system directly support perception and
comprehension, it is much harder to explicitly support situational assessment with
respect to the projection stage. This is also reflected in the number of methods
categorized to the various stages (Table 2.3), where only 29 are categorized to the
projection stage. Most systems in this category, provide the analysis of specific
attacks or malware samples. Being capable to classify an unknown malware sample
to an already known class or family using visual analytics techniques directly
supports the projection stage, because the analyst is then able to judge the likely
impact and project it to possible consequences. However, on the other hand,
systems with extensive visual exploration capabilities can also indirectly support
the projection stage. The in-depth exploration and analysis of a specific attack
pattern, can help the analyst to get a better understanding of the current threat.

OG3 Not enough research for all primary use cases – In the last decade most
research was conducted for attack pattern visualization (45 methods). However,
only 5 publications relate to port activity. 4 articles relate to the field of attack
attribution to understand the more general threat landscape. 15 methods relate
to routing anomalies and BGP prefix hijackings. Also various obvious reasonable
combinations of heterogeneous datasets are seldom used. While many tools
combine network flow data with IDS/IPS alerts (Table 2.5), there are no systems,
which combine control-plane data (BGP messages) and observations related to
data-plane data (e.g., spam and phishing mails).

OG4 Limited support for context-aware inspection and exploration – Most
cyber security applications use visualizations for inspection and exploration.
Smooth switching between these phases is often not intended. However, the
underlying tasks are indeed often highly interconnected to gain good situational
awareness. An analyst generally percepts interesting behavior during monitoring,
which makes it important to inspect this behavior in more details. However, also
exploring the context in which these anomalies happen is important to get a clear
picture of the event. This context-dependent in situ inspection and exploration
relates to the overall network, but also to the change over time during monitoring.

OG5 Limited scalability of visualization techniques – In general, there is lack of
good scalability for many proposed visual techniques. While many systems are
very helpful for small datasets, they are often not suited for real-world scenarios.
Sometimes neither the visualization, nor the used implementation would be capable
to address the current data load. Especially, many visual techniques do not provide
scalable exploration of the vast number of computer hosts in today’s networks.

OG6 Limited usage of novel scalable analytics methods – While most academic
methods and systems still use traditional databases or self-developed analysis
modules – not proven to be reliable for large-scale processing – only very few
academic systems actually employ and make use of emerging scalable analytics
products from the big data analysis domain (e.g, Hadoop, Cloudera Impala,
Apache Spark, Apache Storm) or hosted large-scale IaaS (Infrastructure as a
Service) systems (e.g., Google BigQuery).
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OG7 Only few dynamic visualizations for real-time monitoring – While many
systems use visualization for monitoring and fall into the scope of real-time analysis,
only few visual analytics systems (e.g., [27, 18, 203, 169]) actually address the
challenge of dynamic visualizations to be updated in real-time. Many systems claim
to be used for monitoring and real-time scenarios, however with heterogeneous data
sources the underlying visualization techniques often provide no possibilities to
be updated automatically and circumvent the resulting challenges. Such systems
normally rely on the user, to refresh the current view or select a temporal period,
which interrupts the visual analysis and might lead to a complete change of the
visualization.

OG8 Evaluating complex cyber security applications is challenging – The
proper evaluation of visual analytics application in general is extremely challenging.
As stated by van Wijk [255], “Insight, the major aim for visual analytics, is
ill-defined and hard to measure” [255]. This is true for general visual analytics
applications, but even more for the complex domain of cyber security, in which it is
hard to establish ground truth data, because of privacy issues, confidentiality, data
volume, and continually evolving threats. According to Table 2.7, most reviewed
systems only employ usage scenarios to evaluate their methods. This trend is also
observed by Staheli et al. [223], who state that such an evaluation technique “can
serve a purpose, but it is important to note that a lack of connection back to real
users or real data (or both) may question the validity and utility of the evaluated
tool” [223]. While field strategies provide direct contact with real experts to
evaluate the methods, they are often not feasible in the security domain. Another
approach, which is quite promising is the active participation in competitions,
which “have helped advance some fields quickly” [255].

OG9 No focus on communicating findings in VA application – Evaluating the
main uses of visualization (Table 2.3) reveals an interesting trend. Surprisingly,
there seems to be no focus on communicating findings in cyber security visual
analytics. Only very few systems, provide visualizations with an explicit focus
to communicate hypothesis, findings, and results to others. VIAssist by Goodall
and Sowul [101] is one of the few visual analytic systems integrating reporting
functionalities. The generated reports help others to understand the ongoing
situation easily through visual representations. The focus of these visualizations
is not to identify new insights, but to share and communicate suspicious patterns
or the current situation with others. However, most visualizations could be used
for communication reasons (as screenshots) as well, but only few visual analytics
systems actually focus on such a usage.

2.3 Research Objectives

While it is still a long way to close the gap and build a holistic situational awareness
system for all aspects of cyber security (OG1) and eventually anticipate or even predict
future threats (OG2), it is in the meanwhile important to further develop and improve
methods for all primary use cases in cyber security (OG3). Addressing OG3 will
eventually lead the way to the vision of an holistic visual analytics application. Based
on the aforementioned observations, we want to address some of the discovered research
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challenges and achieve the following specific Research Objectives (RO), which pave the
road towards closing the identified gaps (OG4-8):

RO1 Introduce novel visual techniques for context-aware exploration to sup-
port visual analytics for network activity – Exploration of temporal series
within its context is important for network activity analysis. However, most
systems provide limited visual support (OG4) and are often not scalable enough
(OG5). It is, therefore, important to investigate novel techniques which inherently
provide context-aware exploration, for example, to correlate a given host with
neighboring hosts in the same network. Such techniques, help to spot outliers
based on visual patterns. Such approaches can be evaluated in various ways,
using laboratory experiments, insight-based strategies, or active participation in
contests to compete with others (OG8).
This research objective will be addressed mostly in Chapter 3, in which we intro-
duce a scalable visual analytics system for cyber security, called VACS, which is
evaluated through active participation in a cyber security visualization challenge
(OG8). Furthermore, we extend this work with correlation analysis of time-series
within the context of similar and correlated series (OG4) using IAS-Explorer.
Additionally, we introduce ClockMap, which is a novel and scalable hierarchical
glyph-based technique to investigate time-series of network hosts within the context
of different network subnets (OG4). This technique is evaluated and integrated
into BANKSAFE, backed up by a scalable IaaS backend (OG6), to participate
in an international visual analytics competition (OG8) to solve realistic cyber
security tasks.

RO2 Combine multiple data sources to improve SA for BGP routing – Attacks
on the control plane (e.g., BGP prefix hijacking) are a major security threat in
the Internet. While there is some research in the area of BGP analysis, none
of the reviewed system include multiple data sources, to combine control- with
data-plane analysis (OG3).
This research objective will be addressed in Section 4.2, in which we introduce
VisTracer, a novel visual analytics application combining IP traceroutes from
ongoing spam and phishing campaigns to correlate BGP routes with malicious
activity (OG3).

RO3 Integrate visual analytics techniques for attack attribution – Based on
our literature review, most research was conducted in attack pattern visualization
for intrusion detection. While this is an important field of research, it is also
indispensable to understand the modus operandi of attackers on an higher level.
How do the criminals operate? To which attack campaign, does a current attack
belong to? A good understanding helps to estimate or project the actual threat
level on a broader scale. Such an understanding is important to achieve good
situational awareness. However, the literature review reveals a huge research gap
with respect to visualizations supporting such attack attribution use cases (OG3).
Therefore, we see it as essential to also support the analyst in the visual analysis
of the threat landscape, to help understanding and projecting (OG2) such attacks
with respect to orchestrated campaigns on a larger scale.
This research objective will be addressed in Section 4.4 in which various visual-
izations are used to support visual exploration of clustering results generated by
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one of the leading algorithms for attack attribution (TRIAGE [249]). We include
various visualization techniques into VACS, to eventually approach experts in a
field experiment (OG8).

RO4 Introduce a novel dynamic visualization concept for scalable real-time
monitoring for heterogeneous data streams – To specifically address re-
search gap OG7, a visualization system for real-time monitoring is needed, which
provides an interface updated in real-time, but still conveys the temporal context
(OG4) for heterogeneous cyber security data streams. Because of the vast amount
of data to be processed in real-world scenarios, it is important to make use of novel
and scalable analytic methods (OG6). To address the challenge of evaluating the
usage (OG8) of such systems for general situational awareness, active participation
in competitions focusing on real-time event monitoring seems promising.
This research objective will be addressed in Chapter 5 with its concepts shown in
the NVisAware visualization method, and integrated to the scalable NStreamAware
system. Furthermore, we apply the visual analytics approach to provide context-
aware summarization, steered by the expert knowledge of the analyst to provide
scalable methods for long time spans (OG5).

In the following, based on the two main classes network activity and network threats
as seen in Figure 2.6, we discuss in Chapter 3 and 4 the various use cases relevant for
cyber security visualizations and propose solutions to fill the aforementioned research
gaps respectively. To contribute explicitly on visual analytics for real-time use cases, we
use Chapter 5 to focus on situational awareness aspects for network streams.

▲Figure 2.6 — Thesis structure based on cyber security use cases. Visual
structure overview of the main chapters along the various network security use cases.
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Network activity use cases are often related to various types of network monitoring.
However, these techniques are not only used for monitoring, but also for in-

depth exploration with different view points. Therefore, we divide this category into
three use cases: (i) internal/external monitoring, (ii) port activity monitoring, and
(iii) host/server monitoring. All these areas together with interactive exploration are
eventually needed to get a clear picture about ongoing network activity to contribute to
the state of situational awareness. This is not necessarily needed only for threat, attack,
or intrusion detection, but also for management issues and maintaining an overview
of the usual network utilization. However, this also relates to cyber security, because
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successfully compromised computer systems often reveal network activity patterns,
which are different from non-compromised machines.

In this chapter, we introduce various visual analytics systems, but also novel vi-
sualization techniques. In Section 3.1, we propose a system, called VACS to analyze
internal network activity using a compact visual overview of individual time-series in a
small-multiple setting and interactive node-link diagrams to explore external communi-
cation patterns. To automate the identification of interesting parts of the time-series,
we provide means to support the analyst with visual correlation capabilities combining
automated and explorative techniques making use of vertically oriented line charts in
Section 3.2. Eventually, we contribute and discuss in Section 3.3 a novel visualization
technique, called ClockMap to analyze temporal network data within a given hierarchy
in a scalable interactive way.

3.1 Visual Overview for Internal and External Monitoring
Network activity analysis can be addressed from the perspective of internal versus ex-
ternal networks. Traditionally, many organizations and companies use routers, firewalls,
and network address translation (NAT), to separate the internal local-area network
(LAN) from the outside world (e.g., the Internet). Consequently, the distinction between
internal and external computers is also quite common with respect to monitoring of
network activity, because of this topological layout.

However, in the last years, this strong distinction (especially with respect to trustwor-
thiness of internal hosts) became problematic, because a large percentage of successful
attacks can be classified as insider threats, or were actually conducted over an internal
host, which got compromised. When the initial attack of this internal host was con-
ducted using a carefully crafted e-mail to an individual employee, chances are high that
the receiver opens the e-mail without getting suspicious about the attached malware
file. This is even more likely, when attackers employ social engineering techniques to
gain trust of the victims. The fact, that such attack vectors can hardly be recognized
in internal/external-focused monitoring visualizations, might be a reason why there are
only few recent systems actually focusing on such use cases as seen in Table 3.1. Another
reason, why only few visualization systems focus on this case, is the sheer number of
legitimate external hosts in communication with the internal network hosts. To visualize
these actual endpoints without applying clustering is often not feasible for large-scale
networks. While in IPv4 networks it is possible to represent 232 (approximately 4.3
billion) IP addresses, the emerging IPv6 protocol, which was developed to replace
IPv4 in the future, an unbelievable amount of about 2128 addresses can be addressed.
Taking these numbers into account the individual visual representation of these external
endpoints is hardly feasible and does not scale for monitoring use cases. However, for
attack visualization as discussed in Chapter 4, the presentation of individual external
hosts can still provide valuable insights, because in most cases only a limited number of
hosts are involved in an attack.

Related Work

Ball et al. [14] presents a good example for this category, called VISUAL, where
the internal network is mapped to a matrix-based grid in which each individual cell
represents a computer host in the network. Rectangles arranged outside the matrix
represent external hosts, while lines between the cells and rectangles depict the network
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connections. With the help of such and similar representations the analyst can identify
interesting network activities.

▼Table 3.1 — Related work for internal/external monitoring. Overview of
related work with respect to data source and visualization type.
Method Use Case Data Source Visualization Year
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VISUAL [14] 3 - - 3 - - - - - - - - - - - - - - - - - - - 3 - 3 - 2004
VisFlowConnect [277] 3 - - - 3 - - - - - - - - - - - - - - - - - - 3 - - - 2004
Erbacher et al. [70] 3 - - 3 - - - - - - - - - - - - - - - - - - - 3 - - - 2005
TNV [102] 3 - - 3 - - - - - - - - - - - - - - - - - 3 - - - 3 - 2005
NetGrok [27] 3 - - 3 - - - - - - - - - - - - - - - - - 3 - 3 - - 3 2008
NUANCE [193] 3 - - - 3 - - - - - - - - - - - - - - - - 3 - 3 - - - 2008
FloVis [240] 3 - - - 3 - - - - - - - - - - - - - - - - - - 3 - - - 2009
TVi [28] 3 - - 3 - 3 - - - - - - - - - - - - - - - 3 3 3 - 3 - 2011

From Table 3.1, we observe that most tools and methods use packet traces or network
flow data as data sources. While the analysis of raw packet contents is often not possible
because of privacy and performance reasons, the systems normally extract and only
make use of the information available in the packet header. Figure 3.1 shows the header
fields of a TCP/IPv4 packet. The length of the packet headers is a multiple of 32 bits
as indicated at the top in Figure 3.1. The length of the IPv4 [59, page 11] packet header
is 5 ∗ 32 bits, plus the optional options and padding. The respective header format for
IPv6 packets is defined in RFC 2460 [107, page 4], which we won’t describe in detail,
because IPv6 is seldom explicitly in focus of the surveyed systems. Most of the reviewed
systems still focus on IPv4 related datasets. The encapsulated TCP [60, page 15]
segment contains 10 mandatory header fields and the actual TCP payload data, which
is transferred to the application. As highlighted in Figure 3.1 (emphasized with bold
font style), most visualization systems only focus on payload/packet length, protocol,
source/destination IP address, source/destination port, and control bits, while all other
fields are less relevant for internal/external monitoring use cases. The analysis of the
actual content (TCP payload data), is often done automatically based on signatures for
intrusion detection, while visualization is used to explore the resulting alerts.

Alternatively, many monitoring approaches rely on network flow data (e.g., Cisco
NetFlow [233], sFlow [54], IPFIX [234, 124]). According to RFC 7011 [124], in which
the IP Flow Information Export (IPFIX) format is defined, the following flow definition
is used: “A Flow is defined as a set of packets or frames passing an Observation Point
in the network during a certain time interval. All packets belonging to a particular Flow
have a set of common properties.” [124, page 8]. These properties primarily include IP
and TCP header fields as seen in Figure 3.1, and various other characteristics [124].
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▲Figure 3.1 — Overview of TCP/IPv4 packet headers. The figure shows the
header fields for an IPv4 packet and the encapsulated TCP segment.

The full list [123] of information elements as defined by IPFIX covers over 400 fields,
which can be defined on such template-based IPFIX flow exporters. For the actual
analysis most systems in our survey only make active use of a very limited number of
information elements.

3.1.1 VACS – Visual Analytics Suite for Cyber Security

The sections coming next mostly build on the following publication [78]1:

F. Fischer and D. A. Keim. VACS: Visual Analytics Suite for Cyber Security - Visual
Exploration of Cyber Security Datasets. In VAST Challenge 2013 - Honorable
Mention, 2013 [78].

The perspective of an analyst monitoring computer systems is the internal network
related to the external network. To stay focused to the highly relevant aspects, we
address the challenge to propose an analysis workflow: (i) dashboard overview, (ii)
temporal selection, (iii) selection of internal hosts, and (iv) exploration of related
external connections using interactive node-link diagrams and treemaps. This allows a
classical internal/external exploration of large computer networks, while related work
is often not scalable enough and focuses only on very general patterns or very specific
limited datasets. We implement this workflow in VACS , which is a novel visual analytics
1 Within the VIS-SENSE project, I had the idea and implemented a web-based system to support
visual exploration of temporal network data to enhance cyber security, to integrate various techniques
developed in the project and make them applicable to other datasets to participate in the security-
related VAST Challenges to compare with others. The challenge submission and the supplementary
paper [78] were written by myself, while Daniel Keim gave advice and suggestions within the project.
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suite to analyze and visually explore large-scale cyber security datasets. To achieve
scalability for large datasets VACS makes use of an ElasticSearch2 cluster with multiple
nodes using commodity hardware. VACS is a web application using JavaScript, HTML5
and a variety of state-of-the-art toolkits and custom widgets and a mix of interactive
client-side visualizations and visual representations generated on the server-side due to
performance reasons. In the following, we describe the different elements and explain a
basic use case how an analyst can use the system for visual exploration which can lead
to a better situational awareness. Additionally, we successfully evaluate the system by
active participation in the VAST Challenge 2013 Mini-Challenge 3 [269] to compete
internationally with other researchers to solve the given tasks with respect to internal
and external monitoring for situational awareness.

Dashboard Overview

There is a lot of research in the design of information dashboards. Good guidelines are
given by Few [75] in his book about information dashboard design. Many dashboards
fail, because they do not convey the proper information and do not use appropriate
visualization techniques. While we proposed some experimental concepts [87] towards
user aware adaptiveness dashboards to investigate possibilities to automatically adapt a
dashboard with respect to user awareness, we do not focus on such topics in this thesis.
For VACS , we decided to include two types of widgets to monitor various important
network metrics. Figure 3.2 shows an example of such a dashboard, in which only few
metrics are shown. The dashboard uses so-called bullet graphs [74], to show the number
of flows within the last hour, the number of flows related to HTTP traffic, and the
unique count of destination ports. Stephen Few developed the bullet graph technique
to “replace the meters and gauges that are often used on dashboards. Its linear and
no-frills design provides a rich display of data in a small space, which is essential on
a dashboard. Like most meters and gauges, bullet graphs feature a single quantitative
measure (...) along with complementary measures to enrich the meaning of the featured
measure” [74]. For example, in Figure 3.2 the “complementary measure” indicated as
small white triangle could be used to represent the mean value of the respective measure.
Additionally, the integration of an temporal histogram shows the general amount of
network traffic over time as quick reference to identify peaks or overall trends.

Temporal Selection using Interactive Line Charts

Line charts are a well-known visual representation for time-series exploration. The
analyst can use a dialog to query the different datasets to extract time-series (e.g.,
network traffic over time, alerts above a threshold, traffic on specific ports, average
memory consumption). This representation as seen in Figure 3.3 helps to correlate
different time-series. However, the chart is also primarily used to guide the drill-down
process to parameterize other visualization with the selected time interval to follow the
proposed workflow.

Overview of Internal Hosts using Striped Thumbnail Glyphs

After the selection of an interesting time window, the view representing the internal
network can be updated accordingly. VACS also includes metadata with information
2 https://www.elastic.co/

https://www.elastic.co/
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▲Figure 3.2 — Dashboard example in VACS. Some widgets on a dashboard
showing the current situation using bullet graphs and a temporal histogram.

▲Figure 3.3 — Example of interactive line charts in VACS. Interactive line
charts show the overall incoming and outgoing network traffic (number of flows).
Different normalizations help to focus on peaks or low-traffic periods. Five enormous
peaks are standing out in this example.

about the various network hosts within the internal network. This helps to distinguish
between the various host classes (e.g., workstations, web servers, mail servers). To show
many internal computer hosts and correlate their behavior within the selected time
window, we employ a glyph-based technique to visualize the time-series for each host
using a compact representation with colored stripes (Figure 3.4). By default, we use a
blue to red colormap, in which dark blue colors refer to very low network activity (or
any other selected measure) and red to an high amount of network activity. White areas
within the compact representation, as seen in the middle of all glyphs in Figure 3.4,
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▲Figure 3.4 — Example of striped thumbnail glyphs in VACS. Small multiple
visualization of time-series metrics for internal hosts using striped thumbnail glyphs.

represent no data, which is important to identify network outages. The temporal glyphs
for the internal hosts can also be seen on the left part in Figure 3.5, in which VACS is
used on a large powerwall display to explore related external connections of selected
internal hosts.

Exploration of External Network Connections

After selection of time windows and internal hosts, VACS can retrieve the actual
network flow connections to various external ports and hosts from the database cluster.
Figure 3.6 shows an example of the different connections between various hosts and port
communications. This makes sense for shorter time spans or for specific queries, because
it would be too cluttered to get an overall overview, however when the filters are applied
which is intended in the proposed workflow, the analysis using such node-link diagrams
becomes feasible and is often the preferred visualization to explore inter-dependencies as
we found out in our field experiment with leading security experts from an operational
security response team in November 2013 [88], which is further discussed in Section 4.4.3.
However, often the automatically calculated force-directed layout is not perfect, so the
user is able to interactively modify the node-link representation. An interactive fisheye
lens can also be used to explore cluttered areas. Color is mapped to the different object
types (e.g., IP addresses, source ports, destinations ports).

To make use of a more scalable summary visualization, we also include a treemap
representation, to identify mostly used ports or hosts with the most traffic in a selected
time span as seen in Figure 3.7.

Eventually, a data exploration table can be loaded as additional view. This table is
quite important for the analyst, to show and export the underlying raw data to other
applications or to generate actionable reports out of it.

Usage Scenario and Analysis Workflow

An analyst wants to explore the past and the current network situation, because of
several reachability and connectivity issues in the company’s network. After getting a
basic idea using the dashboard about the current situation, he is interested in analyzing
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▲Figure 3.5 — VACS shown on a large powerwall display. VACS can be used
on a large powerwall display. Several time-series are shown as interactive line charts
on the top to select the overall time window. The colored striped thumbnail glyphs
on the left represent the different traffic patterns for relevant internal network hosts.
After selection of internal hosts, the interactive node-link diagram displays aggregated
connections between different source and destination ports or other external hosts.

the overall incoming and outgoing network traffic. In this analysis he is especially
interested to explore the reasons for the connectivity issues which happened several
times. In Figure 3.3 he can clearly identify major traffic peaks on five different points in
time. They seem to have slightly different patterns and differ in duration, extend and
volume. The analyst can answer more questions by selecting the different high peaks
using a rectangular selection. Additionally, he can add more related time-series to the
line chart (e.g., different ports, different critical servers, number of alerts). Loading
the treemap visualization even shows which hosts (or ports) are mostly involved and,
therefore, responsible for the selected peak. With the help of this visual exploration
possibilities he can distinguish between wide-spread denial-of-service (DoS) attacks
or very specific attacks on various ports or just an ongoing company campaign with
many legitimate connections. Further suspicious hosts can also be identified using the
thumbnail glyphs in Figure 3.4 while the node-link diagram in Figure 3.6 helps to
explore the aggregated connections of different hosts and attacks.

Overall, VACS can be used to analyze network activity with respect to internal
and external hosts. The focus on internal hosts is given through the striped thumbnail
glyphs to explore time-series in a compact way, while the connections during a selected
timespan can be explored using an interactive node-link diagram.
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▲Figure 3.6 — Example of an interactive node-link diagram in VACS. An
interactive node-link diagram helps to analyze the aggregated connections between hosts
and ports.

▲Figure 3.7 — Treemap overview of involved hosts in VACS. A treeemap is
loaded with underlying data from the selected time span. This helps to identify the
top talkers (e.g., IP address with most activity in that time) or to get an overview of
involved ports.
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3.1.2 Evaluation using VAST Challenge 20133

Evaluating a system like VACS is challenging, because many design decisions are
involved, and evaluation of a complete systems is more than studying individual aspects
in lab experiments. While best practices from visualization and design can be utilized,
we also had a close collaboration with security experts within the VIS-SENSE [258]
project, to gather feedback on early prototypes of the system.

However, to evaluate and compete with other international teams and to compare
findings and acquired insights, we participated in the VAST Challenge 2013. The VAST
Challenge 2013 consisted of three distinct mini-challenges. “Mini-Challenge 1 (MC1)
asked participants to use visual analytics to predict the success of new movies. Mini-
Challenge 2 (MC2) focused on the design of a situation awareness display for monitoring
the health, performance, and security of a large computer network. Mini-Challenge 3
(MC3) requested participants to identify the timeline of important network events in
two weeks of network data for a fictitious marketing company” [269].

In the context of cyber security, we participated in Mini-Challenge 2 and 3. For
our MC2 submission about adaptive use-aware dashboard design [87], we received the
award: “Honorable Mention - Interesting Visualization Technique” [269]. However, our
primary focus was VACS which we used to address MC3 and achieved an “Honorable
Mention for Intriguing Visualization” [269]. Furthermore, we also received valuable
feedback from seven anonymous reviewers, involving experts from the field of cyber
security and visualization.

Submission and Review Process

The VAST Challenge committee provided all datasets and various tasks and questions,
which the participants needed to address. It was open to the participants which tools
to use to solve the questions. Most teams started with state-of-the-art analysis tools.
However, because of the limitations and missing capabilities, participating teams quickly
moved on to specialized self-developed systems to address the challenge. The final
submission consists of a written HTML page answering the questions using text and
visualization screenshots. The participants were required to meet specific constraints
in terms of word count and number of images to be used in their answer. This helped
to have comparable submissions in the end. Furthermore, a 5 minute video with voice
narration was required to show the workflow and interactive usage of the involved tools.

“The VAST Challenge committee recruited reviewers with expertise either in visual
analytics, information analysis, or application domains. (...) Subject matter experts
were recruited from the pool of previous VAST Challenge reviewers and their social
networks. A total of 66 reviewers participated, each providing from 1 to 10 reviews.
Each submission received 4 to 7 anonymous peer reviews. All reviewers were given the
opportunity to recommend entries for award consideration. Peer review questions varied
across the individual challenges. However, in all cases, reviewers provided both ratings
and explanatory comments” [269].

Because of the complexity of the datasets “accuracy reviews were performed by
a small subcommittee of people very familiar with the data. These accuracy reviews
identified the degree to which the submissions identified the events embedded in the data,
but the accuracy reviewers also gave credit to submissions that identified other valid
events in the data that were not intentionally embedded as part of the scenario” [269].
3 http://vacommunity.org/VAST+Challenge+2013

http://vacommunity.org/VAST+Challenge+2013
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Background and Dataset Description

The challenge scenario was build around a story, about a fictitious company, called “Big
Marketing”, which is an “international marketing company employing a large staff of
marketing executives who create and manage advertising and public relations campaigns
for clients. Big Marketing has an internet research staff that stays current on the latest
business, consumer and entertainment trends, searches for new markets, and comes up
with ways to make Big Marketing’s clients stand out from the crowd. In addition, Big
Marketing operates web sites for selected clients” [210]. The participants should take
the role as “computer network manager, ensuring that Big Marketing networks are up
and running for both the Internet-facing web services and the internal workforce. This
responsibility encompasses the full range of maintaining current operations, planning
for future needs, and securing and defending network assets against threats” [210].

The provided data spans over a period of two weeks and consists of four major data
sources: (i) meta data and network description, (ii) network flow data, (iii) network
health and status reports, (iv) IPS alerts. Furthermore the participants could actively
ask questions to the challenge committee during the weeks before the deadline.

As discussed in the introduction of Section 3.1 most tools for internal and external
monitoring focus on packet traces and flow data, therefore, we also primarily used
the provided NetFlow records as data source. Each record consists of 19 dimensions.
The time period spans from 2013-04-01 07:30:00 until 2013-04-15 10:00:00 resulting in
about 69,396,995 records (about 14 GB of raw data indexed in ElasticSearch) as seen
in Figure 3.8. Further data analysis show that regular and legitimate network traffic
was dominated by web browsing of staff members, customers accessing the web servers,
e-mail traffic, and some FTP file transfers.

▲Figure 3.8 — Temporal overview of VAST Challenge’s network flow
dataset. Overview of network flows as line chart using square-root normalization
for the whole time period. This reveals huge data peaks, which make the analysis of
subtle signals challenging.

The data description revealed that the network “consists of three separate sites, each
with its own domain controller, email server, web servers, and user workstations. The
network is outfitted with a network flow collector which captures all of the traffic between
Big Marketing and the (fictitious) internet used in this challenge, as well as a small
portion of the internal Big Marketing traffic. In Week 2 of the data, the network is
augmented with an Intrusion Protection System as well. (...) The Big Marketing web
sites use addresses in the 172.x.x.x space internally. The internet in this scenario uses
IPs in the 10.x.x.x address space” [210].
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Questions for Mini-Challenge 3

The following questions and tasks are taken from the official submission entry form,
which can be downloaded as package from the VAST Challenge 2013 website4 or from
the official “Visual Analytics Benchmark Repository” [210].

Q1 “Provide a timeline (i.e., events organized in chronological order) of the notable
events that occur in Big Marketing’s computer networks for the supplied data. Use
all data at your disposal to identify up to twelve events and describe them to the
extent possible. Your answer should be no more than 1000 words long and may
contain up to twelve images” [210].

Q2 “Speculate on one or more narratives that describe the events on the network.
Provide a list of analytic hypotheses and/or unanswered questions about the notable
events. In other words, if you were to hand off your timeline to an analyst who
will conduct further investigation, what confirmations and/or answers would you
like to see in their report back to you? Your answer should be no more than 300
words long and may contain up to three additional images” [210].

Q3 “Describe the role that your visual analytics played in enabling discovery of
the notable events (...). Describe whether your visual analytics play a role in
formulating the questions (...). Your answer should be no more than 300 words
long and may contain up to three additional images” [210].

▲Figure 3.9 — Overview of incoming network connections in VACS. As seen
in the timeline at the top, almost all network traffic on 2013-04-01 happened in the
morning, while there are few interesting peaks throughout the day. The node-link
diagram reveals that the majority of the traffic relates to port TCP/80, referring to
web browsing by staff members and web server responses to customers.

4 http://vacommunity.org/VAST+Challenge+2013
5 The company takes the network down to investigate security concerns and to install an intrusion
prevention system (IPS).

http://vacommunity.org/VAST+Challenge+2013
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▼Table 3.2 — Evaluation of VACS using VAST Challenge 2013 MC3. The
ground truth of VAST Challenge 2013 MC3 consists of 29 official events and various
bonus events. This table provides an overview about the verified findings. Found events
in the competition and approved by reviewers are marked with 3, while found events
during exploration after the submission deadline and not reported in submission are
marked with (3). The reference value indicates the total percentage of submission
entries identifying the event as provided by the committee.

Event ID Subtlety Event Type Data Source Reference VACS Figure

(1) Questions only Videoconference - 0.0% - -
(2) Questions only Threatening Letter - 0.0% - -
(3) Subtle Port Scans NetFlow/BB 0.0% (3) Fig. 3.10
(4) Subtle Port Scans NetFlow 0.0% (3) Fig. 3.10
(5) Obvious DoS NetFlow 45.5% 3 Fig. 3.11
(6a) Subtle Server Crash NetFlow/BB 0.0% 5 -
(6b) Subtle Server Return NetFlow 0.0% 5 -
(7) Subtle Port Scans NetFlow 0.0% 5 -
(8a) Obvious DoS NetFlow/BB 63.6% 3 Fig. 3.12
(8b) Obvious DoS NetFlow 63.6% 3 Fig. 3.12
(9a) Subtle Server Crash NetFlow/BB 36.4% 5 -
(9b) Subtle Server Return NetFlow 36.4% 5 -
(10) Subtle Malicious Redirects NetFlow 0.0% 5 -
(11) Obvious Exfiltration NetFlow 18.2% 5 -
(12) Obvious Port Scans NetFlow 40.9% (3) Fig. 3.13
(13) Obvious Port Scans NetFlow 22.7% (3) Fig. 3.13
(14) Obvious Exfiltration NetFlow 18.2% 5 -
(15) Questions only Threatening Letter - 0.0% - -
(16) Obvious Network Down5 NetFlow 31.8% 3 Fig. 3.4
(17) Obvious Port Scans NetFlow/IPS 27.3% 5 -
(18) Obvious Port Scans NetFlow/IPS 22.7% 5 -
(19) Obvious Failed DoS NetFlow/IPS 36.4% 5 -
(20) Obvious Failed Exfiltration IPS 18.2% - -
(21) Obvious Port Scans NetFlow/IPS 18.2% 5 -
(22) Subtle Botnet Infection NetFlow 9.1% 5 -
(23) Obvious Botnet Communication NetFlow 36.4% 3 Fig. 3.14
(24) Obvious Port Scans NetFlow/IPS 9.1% 5 -
(25) Obvious Port Scans NetFlow/IPS 18.2% 5 -
(26) Obvious Botnet DoS Attacks NetFlow/IPS 18.2% 5 -
(27) Obvious Botnet DoS Attacks NetFlow/IPS 9.1% 5 -
(28) Obvious Port Scans NetFlow/IPS 22.7% 3 Fig. 3.15
(29) Obvious Port Scans NetFlow/IPS 22.7% (3) Fig. 3.16

(Bonus) Subtle RDP Attacks NetFlow 36.4% 3 Fig. 3.16
(Bonus) Obvious General Port Scans NetFlow 36.4% 3 Fig. 3.10
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Solving the Challenge using VACS6

The ground truth for MC3 consists of 29 official events and various bonus events. For
better readability, we include details from the fictitious, but realistic, ground truth
scenario [210] as well. This actual scenario helps to connect the various events to each
other, which makes the relations of the following events easier to understand.

▲Figure 3.10 — Interactive node-link diagram of port scans. The interactive
node-link diagram shows port scans with distinct patterns from 10.6.6.6 (Event 3) and
10.7.7.10 (Event 4) to primarily port TCP/80 and TCP/25. The visualization maps the
source IP address (10.7.7.10) to a green circle, the lines to many magenta circles refer
to the used source port addresses, the lines from those source ports all go through the
light-green destination port (TCP/25) to various targeted web servers. The layout is
calculated using a force-directed graph layout.

Table 3.2 provides an overview about the verified findings using VACS . While many
events could be identified, there are even more, especially the subtle events, which were
hard to catch. This actually highlights the need and more active usage of visualizations
specialized for host monitoring to catch such events as well. One example, of such
a technique is ClockMap [82], which will be discussed in Section 3.3. ClockMap was
actually integrated in VACS but was not heavily used in our submission for the VAST
Challenge 2013, because we decided to focus on the effectiveness of the other techniques.

Over the span of two weeks various anomalous network activities can be observed,
in which a group called “Butterfly Warriors” is attacking Big Marketing over the two
week period. Big Marketing is helping “Total Crop Protection Services” roll out a
marketing campaign for “Butterfly 2.0”, an altered butterfly that will eventually lead
to the extinction of natural butterflies. Prior to the dates covered by the dataset, the
6 In this section, I use facts and descriptions from the the official ground truth of VAST Challenge 2013
Mini-Challenge 3 by Whiting et al. [269], which is available from the Visual Analytics Benchmark
Repository [210] under Benchmarks / VAST Challenge 2013 / MC3 - Big Marketing / Solution.
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▲Figure 3.11 — Treemap representation to analyze DoS traffic. A denial of
service (DoS) attack on 2013-04-02 between 05:10 and 07:10 (Event 5). The treemap
obviously indicates that most traffic relates to port TCP/80 (HTTP traffic).

Butterfly Warriors send a threating letter to Big Marketing, which refers to Event (1)
and (2) in Table 3.2. As mentioned, challenge participants had the possibility to ask
specific questions to the organizers. The letter would have been only provided, if
someone would have asked for it. The reference value, for example, for Event (2) in
Table 3.2 of 0% indicate, that actually no participant made a hypothesis about such
possible threatening letter, hence no one could identify this event, which was also not
provided in the other data sources.

Figure 3.9 reveals connections on 2013-04-01. As seen in the timeline at the top,
almost all network traffic happens in the morning, while there are few interesting peaks
throughout the day. The node-link diagram reveals that the majority of the traffic
relates to port TCP/80, referring to web browsing by staff members and web server
responses to customers. However, various individual IP addresses stand out in the
node link diagram during interactive investigations. Restricting the time span and
therefore filtering the view to the peaks throughout the day, reveals Figure 3.10, in
which subtle port scans with distinct patterns from 10.6.6.6 and 10.7.7.10 to primarily
port TCP/80 and TCP/25 can be easily detected. The visualization maps the source IP
address (10.7.7.10) to a green circle, the lines to many magenta circles refer to the used
source port addresses, the lines from those source ports all go through the light-green
destination port (TCP/25) to various targeted web servers. These findings refer to
Event (3) and (4) in which attackers of the Butterfly Warriors seem to investigate the
network remotely.

Using VACS a major denial-of-service (DoS) attack can be recognized (Event 5) on
2015-04-02 between 05:10 and 07:10 as seen in Figure 3.11. Obviously, the attackers
started to heavily attack the network infrastructure. According to the ground truth,
these attacks cause one server to crash (Event 6). Another server, which uses load
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balancing across two servers, is able to withstand the attack and does not crash. However,
these events and also the following subtle port scan (Event 7) could not be detected by
any challenge participants. The DoS attacks continue on successive days. For example,
on 2013-04-03 between 09:30 and 12:00 (Event 8) as presented in Figure 3.12.

▲Figure 3.12 — Timline view for a DoS attack. A denial-of-service (DoS) attack
on 2013-04-03 between 09:30 and 12:00. The blue line represents traffic on TCP/80,
while the yellow line represents traffic on all other ports. This highlights that most
traffic involves TCP/80 traffic.

According to the ground truth scenario [210], the Butterfly Warriors also implant
malicious code on one of the Big Marketing externally-facing websites, which did not
leave any traces in the available data. Visitors to this affected website were immediately
redirected to a malicious web server, where they were also infected with malicious code.
The clues for this infection were very subtle. The only visible change was the decrease
of session durations for visitors on the infected website (Event 10).

▲Figure 3.13 — Using the treemap for root cause identification. Two major
port scans from 10.9.81.5 and 10.10.11.15 on 2013-04-06 between 11:10 and 12:00 (Event
12 and 13). The treemap helps to identify the attack origins.



3.1 ● Visual Overview for Internal and External Monitoring 55

Because one of the infected computers belong to the system administrator for Big
Marketing, the Butterfly Warriors use this vulnerability to open up all of the protected
ports on the network. Various major port scans (Event 12 and 13) appear on 2013-04-06
between 11:10 and 12:00 as seen in Figure 3.13. Additionally, the attackers exfiltrate
a couple of high value files from the Big Marketing network (Event 11 and 14). The
ground truth [210] reveals, that the exfiltrated files were a file containing Big Marketing’s
private client information and a recording of a video conference (referring to Event 1)
between Big Marketing and Total Crop Protection Services discussing the marketing
plan and the likely consequences of Butterfly 2.0. In this time Big Marketing also
receive another threating letter (Event 15) by the attackers. Furthermore, the system
administrator discovers that important files were being exfiltrated. Therefore, he decides
to pull Big Marketing off the internet in order to investigate and add an intrusion
protection system (IPS).

This results in a three day gap in the data collection (Event 16), which is visible
in various visualizations in VACS as for example in Figure 3.4. Various attacks in the
second week are stopped by the IPS and couldn’t affect the network (Event 17-21).
However, the Butterfly Warriors decide to post Big Marketing’s exfiltrated customer
information on the Internet. Account managers navigate to these external sites hosting
the leaked customer data and became infected with botnet malware (Event 22).

▲Figure 3.14 — Visualizing botnet communication. periodic botnet communi-
cation over SSH (TCP/22) starting at around 08:20 on 2013-04-12 (Event 23).

On 2013-04-12 08:20 the ongoing infection becomes visible, because infected machines
start to communicate via SSH (Event 23) to a command and control server running at
10.0.3.77. Figure 3.14 highlights the regular and suddenly started SSH patterns in the
timeline viewer at the top (red colored line) and visualizes the infected machines and
the respective command and control server using a node-link diagram. Further port
scans appear (Event 24 and 25) and 8 of the infected internal Big Marketing machines
start a DoS attack against an external machine (Event 26 and 27).

Figure 3.15 shows various port scans from 10.13.77.49, 10.138.235.111, and 10.6.6.7
starting around 2013-04-14 12:20 (Event 28). Additionally, these attacks continue on
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2013-04-15 07:45 (Event 29) primarily on port TCP/3389 and TCP/25, which is shown
as dominating ports in the treemap as seen in Figure 3.16.

▲Figure 3.15 — Various sources of port scans on 2013-04-14. Identification of
attackers orchestrating various port scans (Event 28) from 10.13.77.49, 10.138.235.111,
and 10.6.6.7 starting around 12:20.

▲Figure 3.16 — Identification of most attacked ports on 2013-04-15. Various
port scans on port TCP/3389 and TCP/25 from 10.13.77.49, 10.138.235.111, and 10.6.6.7
starting around 07:45 (Event 29).
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3.1.3 Conclusions and Limitations

Overall the VAST Challenge 2013 Mini-Challenge 3 received 11 submissions [269].
None of the them were able to identify all ground truth events. However, with our
submission using VACS , we were able to present and evaluate a scalable approach
to analyze network flow data. Interestingly, we could identify many highly relevant
events, even though we spend only a very limited amount of time in the actual analysis.
Our web-based application uses a distributed database cluster to achieve horizontal
scalability and combines state-of-the-art visual representations to assist the analyst in
achieving situational awareness. We identified and provide means to explain unusual
happenings in the network.

Overall, we received valuable and also very positive feedback from 7 reviewers and
our approach was awarded with an honorable mention for a system with intriguing
visualization capabilities. However, on the other side the active participation also helped
us to identify various limitations and shortcomings.

• Overplotting of superimposed line charts – Line charts are the most common
way to visualize time-series, which are easy to understand for the analysts. To solve
the real-world tasks in the VAST Challenge it was often needed to compare and
show several time-series at the same time. In VACS this is done by superimposing
line graphs within the same chart. However, as for example also seen in Figure 3.7
this can become quite cluttered, because various colors are used to distinguish
between the various time-series. Using small multiples as alternative is possible,
but needs more screen estate. Furthermore, having the time-series near to each
other as in superimposed line charts helps to recognize individual correlations
better. Compared to pixel-based visualization, line graphs have the advantage,
that they use position to encode the data value, which ensures quick recognition
and judgment of the impact and amount of data.
We use this limitation as one of the starting points for the technique proposed
within IAS-Explorer in the following Section 3.2. The problem of correlating
thousands of similar time-series can often be found in the use case to analyze
port activity. Therefore, we propose a vertically aligned small multiple display
to emphasize the comparison of individual segments of time-series data, to avoid
overplotting and the usage of color encoding, which could have helped in network
security scenarios as presented in VAST Challenge 2013.

• Lack of automated methods for correlation analysis – Additionally, we
missed to report various identified findings, because they were subtle and we
misclassified them as regular network activity. Integrating analytical methods to
support and enhance the visual representation would have the potential to address
such issues. Highlighting interesting parts or automatic retrieval of related highly
correlated time-series would have been beneficial.
In VACS the analyst can use filters and search options to add various time-series
to the visualization. However, often it would be helpful to get suggestions about
highly correlated or similar time-series or temporal anomalies. For example, if
the analyst identifies a peak in the time-series which represents flows/second over
time, it would be very valuable if the system, would provide other more specific
time-series for all individual TCP ports, in which this peak also appears. We also
address this limitation in IAS-Explorer in the following Section 3.2.
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• Missing contextual comparison for striped glyph thumbnails – While the
striped glyph thumbnails provide a compact way to represent and visually compare
network activity of individual hosts, insights are limited, because a simple tabular
layout doesn’t provide enough overview for thousands of network hosts to spot
outliers or anomalies. Visualizing them for example within the same IP subnet
would help to compare individual hosts to the baseline of similar hosts in the same
group to identify related hosts with similar patterns more easily.

Similarly, in the use case of host and server monitoring, it is important to visually
explore data within the context of other related hosts. We address this limitation
using a novel visual representation called ClockMap which is scalable and compact
enough to be used for visual exploration of network activity. We successfully
integrate this technique into VACS and describe the details and outcomes in
Section 3.3 and reevaluate the approach with the introduced VAST Challenge 2013.

3.2 Visual Correlation for Port Activity Monitoring

The sections coming next mostly build on the following publication [226]7:

F. Stoffel, F. Fischer, and D. A. Keim. Finding Anomalies in Time-Series using
Visual Correlation for Interactive Root Cause Analysis. In Proceedings of the Tenth
Workshop on Visualization for Cyber Security, VizSec ’13, pages 65–72, New York,
NY, USA, 2013. ACM. ISBN 978-1-4503-2173-0. doi:10.1145/2517957.2517966 [226].

In the following, we present IAS-Explorer focusing on techniques to analyze, visually
explore, and monitor large numbers of network activity time-series. The main motivation
for this work in the scope of this thesis is twofold: (i) supporting port activity use cases
especially for privacy-preserving setups, and (ii) providing better means to correlate
network activity time-series, addressing the limitations identified in Section 3.1.3.

Firstly, focusing on internal/external network monitoring comes with severe privacy
issues. Analyzing network connections on a workstation-based level, which is easily
possible with the techniques proposed in previous sections is a sensitive issue. On the
one hand, it is important for network analysts, to identify potential misconfiguration,
or even to detect compromised hosts to maintain the stability and security of computer
networks. On the other hand, such visual exploration techniques might also lead
to insights about specific user behavior resulting in ethical issues (which will briefly
highlighted in Section 6.3). The observation to which servers an employee is connecting
and what daily patterns a user might have – even unintentionally – can easily be seen by
a system administrator utilizing such visual analytics tools. The moral and ethical issues
of using such tools is not in the scope of this thesis, however, from a technical point
7 The work was the result of the supervised master’s thesis of Florian Stoffel. Based on previous
discussions with network security experts, we had the idea to develop a visual analytics system for
time-series correlation. I suggested to use scalable rotated time-series visualizations combined with
similarity search to analyze the temporal network security dataset. We discussed the various steps
together, while Florian did the implementation and introduced the analysis algorithms. Based on
these results, we wrote a paper [226] together to introduce the visual analytics system. Daniel Keim
gave advise and suggestions on the project.
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of view, the focus on port activity using counter-based sensors instead of flow-based
probes can be an alternative to privacy-invasive techniques.

For example, IAS [262] as presented by Waibel [262] and actively used by the Federal
Office for Information Security (BSI) in Germany, doesn’t capture any IP addresses. This
internet analysis system extracts information based on descriptors from packet data and
only increments and stores counters for them. This provides a privacy-preserving way
to gather aggregated network activity data for large-scale computer networks. However,
how should an analyst visually explore and correlate the time-series for millions of
distinctive but often highly related descriptors?

Secondly, analyzing such temporal counters relate to the same issues as discussed
in Section 3.1.3 in which the analyst extracts time-series from network flow data to
visualize them as line charts. It is feasible to overlay several line graphs to compare
the activity on various TCP ports over time. In VACS (Section 3.1.1), we superimpose
various lines in the same visualization, which helps to directly compare and correlate
them. However, when we select many time series the visualization gets cluttered and
hard to correlate. For example, representing network activity for TCP/80 together with
a few other well-known ports (e.g., TCP/443, TCP/25, TCP/22) is possible in such
a visualization, but there are a total of 65,535 distinctive TCP port numbers, which
are clearly not feasible to overlay. However, according to Fink et al. [76], it is very
common for network analysts to utilize correlation in their daily work: “Analysts perform
standard types of correlation in the course of their normal work, such as correlating
network flows to process activity” [76]. In the same work, the authors quote analysts,
that there is only very little visual support for such tasks [76]. Therefore, to address
the challenges of visual correlation, we propose a juxtaposed approach using vertically
arranged small multiples to represent the time-series and integrate analytics to show
most interesting or highly correlated time-series.

Related Work

The most extensive overview of visualization techniques for time-dependent data can
be found in the book of Aigner et al. [5] providing a systematic overview and survey
of many existing visualization techniques. A very compact visualization techniques is
called two-tone pseudo coloring [204], which uses two discrete colors for each value of
the time-series. This technique is also used and implemented in the so-called horizon
charts, which properties have also been compared by Heer et al. [116] against line charts.
However, using color to represent the value, restricts the further usage of color for
highlighting critical or suspicious segments. Additionally, we are not so much interested
in easy-to-detect peak values and the precise readability of the visual representation,
which is a key advantage of horizon charts. It is more important to recognize shapes,
correlations and patterns, where commonly used line charts provide a good basis.

The graphical perception for multiple time-series and line charts has been evaluated
by Javed et al. [132], who showed that the presentation of time-series as small multiples
is generally more efficient for comparisons across time-series with a large visual span.
Plotting several lines in the same diagram was more efficient for comparison of smaller
visual spans. This shows the trade-off we are confronted in our approach, because
we are actually interested in large visual spans to convey the overall shape and small
visual spans to correlate interesting anomalous segments against other time-series.
ChronoLens [284] is a highly interactive approach which enhances the exploratory
analysis of times-series. The user can select parts of the line charts. The data of the
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selected segment is automatically transformed to show derivatives, correlations or other
derived time-series for the selected focus lens area. This tightly integrates visual analysis
with user interaction and provides good means to deeply analyze multiple line charts.
With respect to the number of shown time-series, the Line Graph Explorer [139] is much
more scalable, because it provides a compact overview using colored pixels positioned
on a single line for each time-series. Selecting those pixel lines provides a lens mode to
give more space to the selected metrics to be shown as standard line charts. This tool
provides a compressed visual representation, which is very good to catch the overall
global similarity of many time-series. However, if you need to explore many time-series
in detail using the lens, the scalability degrades. While our technique is quite similar
to the Line Graph Explorer, we have a stronger focus on comparing specific segments
across thousands of metrics using the line chart to represent the relative value and using
colored highlighting to emphasize the deviation to the underlying analytical model.

▼Table 3.3 — Related work for port activity monitoring. Overview of related
work with respect to data source and visualization type.
Method Use Case Data Source Visualization Year
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PortVis [173] - 3 - - 3 - - - - - - - - - - - - - - - - 3 - - - 3 - 2004
Abdullah et al. [1] - 3 - 3 - - - - - - - - - - - - - - - - - 3 - - - - - 2005
Existence Plots [131] - 3 - 3 3 - - - - - - - - - - - - - - - - - - - - - - 2008
NetBytes Viewer [239] - 3 - - 3 - - - - - - - - - - - - - - - - 3 3 - - - - 2008
Mansmann et al. [168] - 3 - - - - 3 - 3 - - - - - - - - - - - - 3 - - - - 3 2012

Table 3.3 provides an overview for the most popular tools in the scope of port activity
monitoring for cyber security. PortVis [173] also address our motivation concerning
privacy issues in which data “can only be coarsely detailed because of security concerns or
other limitations” [173]. McPherson et al. [173] specifically address the question: “How
can interesting security events still be discovered in data that lacks important details,
such as IP addresses, network security alarms, and labels?” [173] However, we focus on
the visual correlation of arbitrary counters and not only for the given set of TCP/UDP
ports. McPherson et al. [173] also primarily use dense pixel displays to represent the
port activity using colored-matrix displays, while we stick to traditional line charts in
a small multiple setting. Additionally, most of the other approaches do not integrate
automated techniques to support the user, while our approach integrates correlation
analysis and similarity search for time-series. Best et al. [24] do not specifically focus
on port activity, but use advanced time-series analysis based on Symbolic Aggregate
approXimation [138] to find unusual sequences to improve network security and to
provide real-time situational awareness. Shafer et al. [211] also provide a visual analysis
system for time-series monitoring to identify anomalies by decomposing significant
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bursts and long-term trends. A good overview of related wavelet-based techniques to
provide anomaly detection for security-related applications can be found in [135].

3.2.1 IAS-Explorer – Visual Analytics for Port Activity Correlation

To address the challenge of visually correlate vast amounts of time-series to support
port activity monitoring, we build a system called IAS-Explorer . We decided to build a
separate application focusing on this topic, however, the developed techniques could be
integrated into VACS as well. The server-side component of IAS-Explorer is responsible
for managing the time-series data and providing analysis, query and retrieval related
functionality. A rich client application is then used to provide a graphical user interface
to explore and analyze the data. Multiple clients can operate independently from each
other with data from the same server instance.

The core of the server is a custom time-series database, which acts as the time-
series persistence layer. Although designed as a high performance retrieval system
for time-series data, the database also fills out missing values or re-samples the data
with a given interval transparently. This leads to a consistent dataset without missing
values, which allows the simplification of further analysis and the processing outside the
server. In addition, the resulting time-series are continuous in the time domain, which
is a requirement for the Fourier analysis. By default, the server provides support for
similarity queries. By specifying an originating time-series or its model and a time-span,
the server can search in a set of given candidates or the complete, available time-series
stored locally. By default, the distance of two time-series is computed by the euclidean
distance of the normalized query region. Thanks to the retrieval performance, the
server can finish a time-series query on a dataset of around 1.1 million time-series in
about a minute (10 months of data, indexed in five minutes intervals, Intel Core 2 Quad
Processor, 8 GB of main memory, Intel X-18 SSD).

Time-Series Modeling

Besides the data restoration and sampling, a model of the time-series is created or
updated when new data is inserted in the database. This model can be retrieved by the
client and supports additional visualization and analysis methods.

In general, there are certain key observations characterizing a network time-series on
two different levels. The first level is the intra-day level, where the observations refer to
phenomena lasting a few hours. The second level where key observations can be made
is the day level. A good example of such a day level key observation can be made when
comparing the overall shape of a time-series of labor- with non-labor days.

Those observations are the motivation of creating the time-series model per day.
Each time-series is modeled by seven independent models describing one weekday. There
is no distinction in holidays or vacations, which preserves the maximal generality of the
model on server side. Such adjustments should be made on client side, where in the
ideal case the user can interactively adjust any kind of filters or modifications on the
data. This also opens possibilities for task-specific adaptations of the model, where the
server is just providing general data and the client adapts them in a task specific way.

The model for one time-series contains two different models created by Fourier
and wavelet transform of the time-series [26, 190]. In general both methods can be
used to analyze and model time-series data. The Fourier transform decomposes the
signal in components, where each of the component can be interpreted as a longer or
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▲Figure 3.17 — The main interface of IAS-Explorer. On the left side the
data management and time-series selection window is shown. In the main area various
visualizations can be shown (e.g., the Explorer View). On the right side the user can
adjust settings to fully configure the visualizations. Reprinted from [226]. © 2013
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

shorter lasting phenomena in the time-series data. Besides this advantage, the frequency
domain data resulting from the Fourier transform looses its time dimension. Therefore,
it is almost impossible to properly model non-stationary signals which may change the
frequency over time, or very short lasting phenomena in general. To overcome this
limitation of the Fourier transform based models, an additional model based on the
wavelet transform has been added. The major advantage of the wavelet transform is
the dynamic window size, since the actual wavelet function is scaled to fit the input
in data and time domain. Together, both parts of the model can accurately capture
different longer lasting effects and also capture short phenomena in the time-series. To
maintain the general nature of supported analysis tasks by the server and the models,
there is no combination on the server side of the Fourier transform and the wavelet
transform of the time-series, but band-filtering of the models is supported. By choosing
such a design, the server does not restrict the available analysis tasks, but at the same
time supports common, potentially computation intensive filter techniques. To create a
Fourier and wavelet model out of different days, the resulting coefficients are aggregated
incrementally [141]. Besides being able to compute the incremental arithmetic mean
efficiently, a comparison of different aggregation methods has been made by creating
models out of 9 weeks of real network time-series data. To judge the quality of the
aggregation method, the resulting models have been evaluated with the sum of squared
residuals of the models and the input time-series. The resulting model can be used to
find anomalies by comparing the actual value of a time-series with its aggregated model.
The server returns both, the Fourier and wavelet model, which keeps the design space of
the application and its processing and application of the model as general as possible.
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Graphical User Interface

The overall interface of the client can be seen in Figure 3.17. It is composed out of
three main areas. On the left, there is the general data control and action area. The
center of the user interface, is designated to hold the visualizations (e.g., the Explorer
View). On the right area, various settings can be adjusted and context sensitive displays
are placed. This panel is also used to display details on demand, if the current context
provides such detail information. For example, if segments of one or multiple time-series
are selected, the minimum and maximum values of those selections will be shown. All
parts of the user interface can be detached and freely placed on or even outside of the
main application window. This also adds support for multi-monitor workplaces.

The Explorer View is built to support the following tasks: (i) shape recognition:
similar time-series should have similar visual appearance and shape. (ii) correlation
recognition: users should be able to visually identify time-series with high correlation,
and (iii) pattern recognition: The visualization should enable the user to recognize
similar patterns in different time-series. In addition, those tasks should also scale for
large amount of time-series. Our visual approach takes the context of the time-series
into account and allows refinements of the visual representation, which is desirable in
order not to loose any information. Also, the time resolution of the Explorer View
is freely adjustable and the visual appearance can be adjusted to fit the task best.
The visual interface also allows exploration and browsing through the data, which
should create a picture of the network condition and its usual patterns. In addition
to fulfilling the task specific requirements, line chart based time-series visualizations
have two further advantages. To label data in line charts is straight forward by re-using
the usually empty area in the background of the chart. Besides having the possibility
of enriching line charts with additional data, the scaling invariance of the actual line
shape facilitates level independent shape, correlation and pattern recognition.

Due to the layered network architecture, this property is desirable because a network
operation can have effects on different network time-series. For example, browsing
to a website generates data in (not only) the following features shown as time-series:
IP Traffic, TCP/80, and HTTP. Therefore, it is very likely that time-series, generated
from the different layer data, are composed of parts of the same operations. Scaling
the series in a fixed range, for example [0 . . .1], creates similar line charts in terms of
their shape and correlation. Obviously, this also helps with the visual correlation and
pattern recognition. The line charts in the Explorer View differ in one important aspect
from common line charts. The time axis is not on the horizontal, but on the vertical.
While this is not conform to the common line chart displays, it has an effect on the
perception of the operator. In the Western world, people are used to read text and
charts from the left to the right. This is also the case for line charts. This leads to the
behavior, that viewers tend to follow a single line chart, instead of comparing them to
each other even if there are multiple charts drawn next to each other. By placing the
time axis not on the horizontal, but on the vertical, we force the viewer to break this
habit, and try to direct the perception to comparing different line charts. The Explorer
View does not force this rotated view, the single series displays can also be rotated
by 90 degrees, which results in a common line chart arrangement. To account for the
nature of repeating patterns in the data, it is desirable that the visualization is able to
put the currently focused pattern in the larger context of the series. To support that,
each line chart is divided into three parts: the prae-focus, focus, and post-focus area.
The prae- and post-focus area are building the context area, the focus is located in the
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▲Figure 3.18 — Explorer view showing 63 different time-series. Each series
is scaled in a way, that the data of all time-series fit on a common workstation display.
The order of the time-series plots is determined by the volatility of the data in the
focus area. Reprinted from [226]. © 2013 Copyright is held by the owner/author(s).
Publication rights licensed to ACM.

middle of the visualization area. One key issue is the blending area of the non-focus
with the focus area, which is caused by the different scaling of focus and context area.
There are numerous different methods of techniques that those areas of different scales
have a smooth transition to each other, for example based on a Gaussian kernel or
hyperbolic functions [39]. In our case, comparison and exploration requires to have
the current interesting points in the focus area of the visualization. To have a steady
reminder of the different scales in terms of time and to minimize artifacts introduced by
distortions introduced by the time scaling techniques, the Explorer View uses a sharp
transition from the context to the focus area. An additional shadowing around the area
transitions can be enabled, to make the actual borders of the three areas clear to the
observer. This shadowing can be seen in Figure 3.17. Each time-series is displayed
as a single line chart, which according to Javed et al. [132] is the right choice for the
discrimination and therefore also the compare task. In the same work, the authors show
that displaying time-series with less space has little influence on the time the analyst
needs to accomplish a given task. The smaller size has only an effect on the ability
of estimating the value of the time-series, which is not a key issue in the tasks the
Explorer View is designed to support. Especially for tasks, where many time-series have
to be considered at once, this property is important. To fit as many time-series on the
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available display space as possible, all plots in one Explorer View instance can be freely
resized to fit the needs of the task and visual abilities of the analyst. In Figure 3.18, a
view with 63 different time-series is displayed. Although the space used to display the
time-series charts is very small, it is possible to get an impression about their shapes
and compare them with each other. Creating and executing queries on the displayed
time-series is supported by the visualization. To issue a similarity query, the analyst can
choose an area of a time-series via clicking and dragging the query time-span directly
on the visualization. After selection the query range, it is possible to narrow down the
search space and name the query before it is executed. The results can be displayed in
any Explorer View instance and inspected visually.

3.2.2 Evaluation using Port Correlation Case Study

In this section, we describe how our system can be used to correlate many time-series
within a computer network with around 20 users. Due to the general nature of network
traffic, the definition of an anomaly can be different. In the following, we define an
anomaly as a significant deviation from the usual traffic levels. The threshold of allowed
deviation from the time-series to the model can be adjusted in multiples of variances of
the time-series model.

For the following case study, the network traffic of a small computer network with a
mixed environment of around 30 workstations and servers with about 20 regular users,
has been analyzed on different network layers. To do so, a probe analyzes the traffic
going through a central switch by trying to match descriptors to the data.

The analysis system contains descriptors for different protocols like TCP or UDP,
SIP or HTTP, and application specifics, for example for each IRC command. For
each of those, a numerical counter exists, which is incremented each time a descriptor
matches. The counters are transmitted in five minute intervals to a data store, from
which applications can retrieve the counter values and build a discrete time-series out
of them. In the deployed system, a total of 1.6 million descriptors are contained, from
which around 300,000 matched in the captured traffic of the observed network.

Since the dataset contains numerical counters only, sensitive data like source IP,
destination IP, or the application payload can not be stored, which protects the privacy
of the users. While it is possible to use this dataset for traffic and application usage
analysis, it is not possible to conclude which workstations or servers are behaving

▼Table 3.4 — Overview of selected descriptors. A time-series group containing
some of the network time-series belonging to the most widely exploited services.

ID Descriptor Service Description

#1 TCP - Destination port 25 TCP/25 simple mail transfer protocol (SMTP)
#2 TCP - Destination port 194 TCP/194 internet relay chat (IRC)
#3 TCP - Destination port 465 TCP/465 secure e-mail transport (SMTPS)
#4 TCP - Destination port 587 TCP/587 secure e-mail submission (SMTPS)
#5 TCP - Destination port 6667 TCP/6667 internet relay chat (IRC)
#6 UDP - Destination port 53 UDP/53 domain name resolution (DNS)
#7 EthernetII - type 0x0800 (ip) IPv4 count for IPv4 packets
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anomalous. To overcome this limitation, multiple probes can be added to different
subnets or in front of single servers. Unfortunately, in our environment this was not
possible due to user concerns regarding their privacy.

A

▲Figure 3.19 — Overview of time-series for various descriptors. The Explorer
View showing the time-series selected at the beginning (the first six) and the time-series
returned by the server by the similarity query (the last seven). Reprinted from [226].
© 2013 Copyright is held by the owner/author(s). Publication rights licensed to ACM.

Root Cause Analysis using Port Activity Correlation

Our use case begins with the analyst browsing through the network time-series data.
Our system is capable of storing groups of time-series, so that if the active data source
contains series with the given name, they can be loaded quickly. In our example, the
analyst has created a time-series group containing the time-series shown in Table 3.4.
This group contains time-series (descriptors) describing the most vulnerable services,
which are usually target of attacks and are used to be exploited in various ways.
Therefore, anomalies in those series require special attention, because they often a sign
of unwanted network activity. The following interaction workflow is visually represented
in Figure 3.20.

To support browsing through data, the Explorer View visualization is switched to
the model difference mode, where significant deviations of a time-series from its model
are highlighted with a blue (lower value as modeled) or red (higher value as modeled)
background. This view mode is realized by querying the server for the time-series model,
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applying the reverse transformations with the configured band-filters, computing the
differences of the model and displaying them in the background of the line-chart.

▼Table 3.5 — Overview of automatically retrieved descriptors. The first
seven series returned by the server when the analyst queried for the anomaly region (A)
he visually identified as seen in Figure 3.19.

ID Descriptor Service

#1 IP - Packet length between 0 and 255 IP
#2 IP - Packet TTL between 64 and 95 IP
#3 TCP - Destination Port 22 TCP/22
#4 TCP - Source Port 36761 TCP/36761
#5 TCP - Destination Port 22 and packet length 0 - 2557 TCP/22
#6 TCP - Window Size 4096 - 4351 TCP
#7 TCP - Window Size 3840 - 4095 TCP

The browsing task can be performed by pressing the arrow keys or scrolling through
the data with the mouse wheel. This simple interaction induces only low cognitive effort
and allows the analyst to concentrate on the visual correlation of the time-series and on
detecting anomalous areas via the background color of the visualization.

By browsing through the data over time, the analyst spots an area, where the
general level of ethernet network traffic has a significant spike, which is identified as
large deviation from the model as seen in step 2 of Figure 3.20. Selecting the range
of the anomaly with the mouse and formulate a similarity query, which is executed
on the server, is the next step towards identifying the cause of the traffic spike. After
the query has finished, the analyst has the possibility of getting a list of resulting
time-series ordered by their similarity, or adding them in the visualization for visual
correlation analysis. Both, the visualization (Figure 3.19) and the list of similar time-
series (Table 3.5) indicate a very large, unexpected transfer of data to hosts outside
of the monitored network on port TCP/22. On the visualization side, the analyst
can clearly see that the selected spike (A) of the ethernet time-series in Figure 3.19 is
contained in all other visible time-series on the right of the originally queried series.
By that, the analyst can conclude that there are some very good candidates to get an
impression of the application and the actual root cause. This is strengthened by the
fact, that there are also no anomalous spikes in the focus area of the visualization. This
is additional information which can not be seen when just a list of similar time-series is
returned by the server. For all displayed time-series, the spike detected in the aggregated
network traffic is an anomaly which can be easily spotted by the operator. Having a look
at those series (Table 3.5), it becomes clear that a large transfer of data has happened.
The destination port TCP/22 is usually used for SSH based services, and there are some
protocols which use SSH as transport protocol for their application data like SFTP8

or rsync. Together with the detected anomaly in the aggregated network traffic, the
analyst can conclude that most likely a large transfer of data from the internal network
to a machine in the Internet has been executed relating to a possible data exfiltration.

8 SFTP: SSH File Transfer Protocol
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3.2.3 Conclusions and Limitations

To address privacy issues and support the analysis of many time-series, we built a visual
analytics system for examining and investigating time-series data. It provides tight
coupling of analytical models and visual representations capable of mining through
vast amounts of time-series data. To support this task, the system features a focus
plus context or lens based line chart carefully designed for displaying correlation of
sub-segments of time-series. The usefulness of the design has been shown with a case
study where the system allows an analyst to determine possible causes of a traffic
anomaly. Currently, we implemented only simple analytic models as proof of concept,
while the integration of more sophisticated analysis techniques would lead to even
better results. The Explorer View is also limited and could be enhanced with further
visual representations, for example based on glyphs designed specifically for showing
anomalies in time-series data. In addition to the automatic ordering of the series, it
is also desirable to identify groups and aggregate their visual representation in order
to reduce the number of visualizations shown at once. Although preliminary tests and
discussions had been promising, the Explorer View with its 90 degree rotation of the line
charts is not yet formally evaluated in contrast to alternative visualization approaches.

Total 
Network
0.0.0.0/0

Subnet
1.2.0.0/16

User loads an initial 
group of descriptors

Model-based deviations (anomalies) 
are automatically highlighted in red

User selects an interesting area to calculate/retrieve 
correlated time-series based on other descriptors 

The system adds related descriptors to the right to 
identify potential root causes 

▲Figure 3.20 — Interaction workflow of IAS-Explorer. This interactive process
when using IAS-Explorershows the combination of user interaction and analytical
guidances by the underlying models.
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3.3 Visual Exploration for Host and Server Monitoring

This section builds mostly on the following publications [82, 86]9:

F. Fischer, J. Fuchs, and F. Mansmann. ClockMap: Enhancing Circular Treemaps
with Temporal Glyphs for Time-Series Data. In M. Meyer and T. Weinkauf, editors,
Proceedings of the Eurographics Conference on Visualization (EuroVis - Short
Papers), pages 97–101, Vienna, Austria, 2012. The Eurographics Association. ISBN
978-3-905673-91-3. doi:10.2312/PE/EuroVisShort/EuroVisShort2012/097-101 [82].

F. Fischer, J. Fuchs, F. Mansmann, and D. A. Keim. Visual Analytics zur Firewall-
Konfiguration und Analyse von Netzwerkverkehr (in German). In B. f. S. i. d. Infor-
mationstechnik, editor, Informationssicherheit stärken - Vertrauen in die Zukunft
schaffen: Tagungsband zum 13. Deutschen IT-Sicherheitskongress (in German),
pages 273–283. SecuMedia Verlag, 2013 [86].

In the following, we present ClockMap which is a novel technique specifically designed for
host and server monitoring to visually explore time-series of large numbers of network
hosts within a given hierarchical context. The main motivation for this work in the
scope of this thesis is twofold: (i) supporting host and server monitoring use cases,
and (ii) providing context-awareness for host and server monitoring, addressing the
limitations identified in Section 3.1.3.

Especially for the analysis of network traffic of large computer networks, it is
important to monitor the network usage to detect anomalies or to understand the
behavior at different levels of detail. On the one hand, there is the need to gain an
overview about the current situation. However, obtaining details and more information
is crucial to understand such overall trends to eventually identify the underlying cause.

Furthermore, many real-world datasets contain an intrinsic hierarchy, which can
provide important information to the analyst. However, analyzing related work as seen
in Table 3.6, reveals that such hierarchical aspects are widely neglected in the utilized
temporal visualization techniques.

In network security, for example, such a hierarchy is often given through the network
definitions encoded in prefixes of IP addresses. Alternatively, computer networks can be
structured according to organizational groups or according to the main tasks of given
network hosts. Workstations will produce different usage patterns than server systems
in the computer network. Comparing and correlating all workstations belonging to
a specific department, therefore, helps to spot suspicious nodes, which have different
behavioral patterns.

To address this research gap, we provide an integrated overview and detail system
using a novel visualization technique, called ClockMap, which uses the approach of
circular treemaps as layout algorithm for a large number of temporal glyphs representing
9 I had the idea of the ClockMap method, which integrates the circular glyph within the seldom used
circular treemap layout. The writing, implementation, and programming was done by myself and
successfully published at EuroVis [82]. Florian Mansmann and Johannes Fuchs did the proofreading
and gave advice. Johannes Fuchs and Christopher Kintzel originally contributed to the glyph design,
which was used in matrix layouts in their previous work [140]. Additionally, we presented the approach
together with a method to visualize firewall policies by Florian Mansmann [168] on the German
IT-Security Congress of the BSI [86].
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▼Table 3.6 — Related work with methods for host and server monitoring.
Overview of related work with respect to data source and visualization type.
Method Use Case Data Source Visualization Year
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Tudumi [237] - - 3 - - - - - - - - - 3 - - - - - - - - - 3 3 - - - 2002
Erbacher et al. [69] - - 3 - - - - - - 3 - - 3 - - - - - - - - - - - 3 - - 2002
Erbacher [68] - - 3 - - - - - - 3 - - 3 - - - - - - - - - - - 3 - - 2003
NVisionIP [149] - - 3 - 3 - - - - - - - - - - - - - - - - 3 - - - 3 - 2004
Portall [77] - - 3 3 - - - - - - - - - - - - - - - - 3 3 - 3 - - - 2005
Mansman et al. [163] - - 3 3 - 3 - - - - - - - - - - - - - - - 3 - 3 - - - 2008
McLachlan et al. [172] - - 3 - - - - - - 3 - - - - - - - - - - - 3 - - - - 3 2008
Pearlman and Rheingans [189] - - 3 3 - - - - - - - - - - - - - - - - - - - 3 3 - - 2008
Phan et al. [191] - - 3 - 3 - - - - - - - - - - - - - - - - 3 - - 3 - - 2008
Frei and Rennhard [94] - - 3 - - - - - - - - - 3 - - - - - - - - 3 - - 3 - - 2008
Berthier et al. [21] - - 3 - 3 - - - - - - - - - - - - - - - - 3 - 3 - 3 - 2010
Best et al. [24] - - 3 - 3 - - - - - - - - - - - - - - - - 3 - - - 3 - 2010
ORCA [19] - - 3 - - 3 - - - - - - - - - - - - - - - 3 - - - - - 2011
Kintzel et al. [140] - - 3 - 3 - - - 3 - - - - - - - - - - - - 3 - 3 3 3 - 2011
Erbacher [71] - - 3 - - - - - - 3 - - - - - - - - - - - - - - 3 - - 2012
Fischer et al. [85] - - 3 - - - - - - - - - 3 - - - - - - - - 3 - 3 - - - 2012
NV [115] - - 3 - - - - 3 - - - - - - - - - - - - - 3 - - - - 3 2012
Change-Link [157] - - 3 - - - - - - - - - - 3 - - - - - - - 3 - - 3 - - 2012
StreamSqueeze [169] - - 3 - - - - - - - - - 3 - - - - - - - - - - - - - 3 2012
RainMon [211] - - 3 - - - - - - 3 - - - - - - - - - - - 3 - - - 3 - 2012
Song et al. [221] - - 3 - - 3 3 - - - - - - - - - - - - - - 3 - 3 - 3 - 2012
VAFLE [98] - - 3 - - 3 3 - - - - - - - - - - - - - - 3 - - - 3 - 2013
Hao et al. [112] - - 3 - 3 3 - - - - - - - - - - - - - - - 3 - - 3 - - 2013
Hao et al. [113] - - 3 - - - - - - 3 - - - - - - - - - - - 3 - - - 3 - 2013
ELVIS [121] - - 3 - - 3 - - - - - - 3 - - 3 3 - - - - 3 - 3 - 3 - 2013
Change-link 2.0 [156] - - 3 - - - - - - - - - - 3 - - - - - - - 3 - 3 3 - - 2013
CORGI [122] - - 3 - - 3 3 - - - - - 3 - - 3 - - - - - 3 - - - 3 - 2014
Visual Filter [224] - - 3 - - - - - - - - - 3 - - - - - - - - 3 - 3 - - - 2014
Walton et al. [263] - - 3 - - - - - 3 3 - - - - 3 - - - 3 - - 3 - 3 - - - 2014
Kotenko and Novikova [144] - - 3 - - - - 3 3 3 - - - - - - - - - - - 3 - 3 3 - - 2014
Pixel Carpet [151] - - 3 - - - - - - - - - 3 - - 3 - - - - - 3 - - - 3 - 2014
Zhang et al. [281] - - 3 3 - - - - - - - - - - 3 - - - - - - 3 - 3 - 3 - 2015
Chen et al. [42] - - 3 - - - - - - 3 - - - - - - - - - - - 3 - 3 - 3 - 2015
Wang et al. [264] - - 3 - 3 - - - - - - - - - - - - - - - - 3 - 3 - - - 2015
Ocelot [12] - - 3 - 3 3 - - 3 3 - - - - - - - - - - - 3 - 3 - - 3 2015
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data values of time-series. In particular, we apply this idea to a clock-based glyph
inspired by the work of Kintzel et al. [140], which we call clockeye. The advantage
of this circular design is, that we can smoothly switch between different levels of the
hierarchy and either show aggregated overview data for a subnet or show all individual
time-series as glyphs.

Related Work

In the last decade, treemaps [217] became one of the most popular techniques for
visualizing hierarchical data. While there are many different treemap types, rectangular
treemaps are used most often. Variants of such rectangular treemaps usually represent
several data dimensions using area and color of the different rectangles within their
actual hierarchy. Much research was conducted in the area of layout algorithms, but
also in visual improvements of the different treemap variants. Cushion treemaps [256],
for example, use intuitive shading to provide better insights in the hierarchical structure.
Since it is often important to compare different treemaps from different points in time,
stability is an important criterion of the algorithms. The layout algorithms can be
modified to consider such constraints. For example, Mansmann et al. [165] use treemaps
to visualize data traffic and use geographic location to optimize the layout. This
helps to compare different datasets of different points in time. Other adjustments of
treemaps focus on the integration of temporal information within a single treemap to
handle hierarchical time-variant data. Chin et al. [44] use animation in treemaps to
be useful for dynamic data. Other improvements integrate glyphs or small charts to
represent additional time-series information for a particular leaf node [208]. Besides of
the aforementioned rectangular treemaps other types have been developed like voronoi
treemaps [16] and circular treemaps [268]. However, for good reasons the circular
treemap has not been frequently used. Circular treemaps waste space, because they
do not “fill the available space completely” [268], which also means that they “fill
the available space to a varying degree” [268] and thus introduce imprecision in the
aerial representation of the upper levels. In contrast to space-filling techniques, glyph
visualizations are suitable representations [266] for many different purposes. Especially
to visualize a large amount of multi-dimensional data points or time-series, glyphs are
thus widely used. In the essence, our approach is a combination of circular nested
treemaps (e.g., Pebble Maps [268]) and a clock-like glyph for time-series data (cf.
ClockView [140]).

3.3.1 ClockMap – Visualization Technique for Host Monitoring

The ClockMap visualization technique is based on the combination of temporal glyphs,
called clockeyes, and a circular treemap layout. The basic idea of clockeyes is to make use
of the metaphor of a classic clock [140]. A circle is subdivided into sectors, each sector
representing a time span of one hour. When 24 slices are used, we have a 24-hour clock
as seen in Figure 3.21. In this example, there was no data from 00:00 to 06:00 o’clock
and from 23:00 to 24:00, which results in a noticeable empty area in the representation.
This can be very helpful to find specific patterns without data or zero data values. At
one point between 06:00 and 07:00, the time-series seems to start, having high peaks
between 08:00 to 09:00 and 10:00 to 11:00. Afterwards a clear downward trend until
23:00 can be observed, while no traffic is visible in the last hour of the day between
23:00 and 24:00.
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24:00 |  00:00

06:0018:00

12:00

Time‐Series 
with 24 
Hours

No Data

▲Figure 3.21 — Conceptual design of a clock glyph. Visual representation of
a single clock glyph, also named clockeye, showing a time-series of 24 hours. Each one
hour sector is colored by its data value. Circular shading is applied to emphasize the
borders of the glyph. Reprinted from [82]. © 2012 The Eurographics Association.

When many clockeyes are plotted to a dense area, it is important that they can be
separated from each other intuitively, without the need to have an additional border in
between. Circular shapes are very suitable for this purpose, because they are perceived
as separate items pre-attentively. However, if many have the same color values, this
task can become difficult in dense areas. To visually improve the perception of the
compactness and further emphasize the borders, we applied circular shading, which
seems to be an improvement according to our experiments. This generally led to
darker colors, therefore, we decided to use an intense yellow to red color mapping from
ColorBrewer [31] to counterbalance this effect. The inner black circle can be used for
additional meta labels or to indicate highlighting with color.

As discussed there are visualization techniques dealing with hierarchical data and
others, e.g., glyphs, displaying temporal or multi-dimensional information. Especially
in computer networks the combination helps to understand temporal dependencies in
different substructures of the network. With ClockMap we use circular treemaps in
combination with clockeyes. The circular treemap itself is often less powerful than
rectangular layouts, however, in the combination with clockeyes it seems to be a
promising use case. To make further use of the implicit characteristics of the layout
algorithm, we implemented ClockMap on top of a zoomable user interface, which enables
infinite zooming and panning possibilities. Each hierarchy can show the aggregated
values for all underlying children to provide the user with a high-level overview as seen
in Figure 3.22. While zooming into the aggregated areas more details and eventually
each host represented as small clockeye becomes visible. Through this semantic zooming,
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the scalability of the overall approach is improved, because less visual objects need
to be drawn to the canvas when zooming out. Even with thousands of leaf nodes
the visualization can be explored interactively. During exploration of real datasets it
became obvious that in some cases very prominent nodes need to be removed or moved
to another group. To facilitate this, we integrate edit operations to add hierarchies,
remove nodes or place them freely into other circles or outside the main circle. After
each modification the weights are changed accordingly to automatically recalculate the
layout. To search for specific attributes of the nodes, a search field is integrated to
ClockMap. The black inner circles of matching nodes are highlighted to guide the user
to relevant nodes.

▲Figure 3.22 — Expanded overview of a whole circular treemap in
ClockMap. A circular treemap is used to lay out hundreds of clockeyes into groups
based on their hierarchy. The rectangle illustrates, how the visualization will look like,
when the user zooms out. Reprinted from [82]. © 2012 The Eurographics Association.
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▲Figure 3.23 — Interaction workflow with ClockMap. The interactive workflow
in ClockMap uses semantic zoom to enhance monitoring and investigation of hosts in a
computer network.

Interactive Exploration using ClockMap

Network operators of large networks often use network flow data for host and server
monitoring. Such datasets do not contain payload information, but do contain commu-
nication flows between hosts. We used a real dataset of 24-hours with about 200 million
(anonymized) NetFlow records collected at the core routers. The data is stored to a
database and visually explored with ClockMap. The visual analysis does only focus on
the records describing the outgoing traffic of all 6,048 hosts belonging to the monitored
/16 IPv4 address block, which were active on that particular day. Figure 3.22 shows an
example of such a visualization.

The analyst starts with the total network, which is visualized as one single clockeye
representing the whole computer network (0.0.0.0/0). This workflow is represented in
Figure 3.23. The user further zooms in and is interested in the most dominant subnet
(1.2.0.0/16). Further zoominig reveals next hierarchy levels as seen in the third step
of Figure 3.23. Many subnets become visible and one subnet stands out, because of
its overall “pacman”-like shape revealing a strange time-series pattern. There was no
traffic at all during night hours. This looks suspicious to the analyst, so he further
zooms in and clicks on this interesting subnet to reveal the underlying hosts. Further
zooming into this expanded subnet reveals more details as also seen in Figure 3.24. This
form of details on demand is implemented using semantic zooming. After a user-defined
zooming threshold, the time-series for all underlying hosts become visible instead of
the previously shown aggregated subnets. Such a pattern could be a network outage
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▲Figure 3.24 — Hosts and servers within an interesting subnet. Underlying
hosts of a very prominent subnet having no night time traffic identified using the
interactive workflow represented in Figure 3.23.

or indicate a broken switch in the building were the physical machines are located.
However, in this case the pattern is legitimate, because it is known as wireless network
subnet, which is generally not in use during night time.

Discussion and Limitations

While the previous section showed the general applicability and usefulness of ClockMap
to explore large datasets to enhance host and server monitoring, the efficiency and
effectiveness needs to be evaluated and compared to other techniques. In the following,
we will discuss the advantages and limitations of our approach.

The layout of glyphs is often determined by coordinate systems or matrix layouts.
Kintzel et al. [140] use a matrix representation to position IP addresses in a meaningful
way. Compared to such matrix layouts, ClockMap has several advantages. Matrix
representations cannot convey the hierarchy in an intuitive way. The circular treemap
layout instead makes the hierarchy obvious, because it is visualized through nested
circles. Another advantage is, that the aspect ratio does not change in ClockMap.
We use circles, which can be further explored through interactive exploration with
techniques like zooming and panning. The integration of semantic zooming helps to
smoothly switch between general overviews and detailed time-series analysis. Both
approaches are overlap-free, while the free arrangement in ClockMap results in a tighter
packing of the glyphs and thus makes the approach slightly more scalable. In addition,
the tight packing better supports the user to visually compare the shapes and color
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▲Figure 3.25 — Comparing rectangular versus circular treemap. Side-by-
side comparison of a circular treemap with clock glyphs and a rectangular treemap with
embedded striped thumbnail glyphs. The temporal locations are better conveyed in the
circular representation, because of the stable aspect ratios compared to the rectangular
example.

distributions of neighboring hosts in one branch of the displayed tree. Consequently,
outliers with a different behavior in the group can be spotted pre-attentively.

The used clockeye glyph also has the advantage to use a common real-world metaphor.
Everyone knows how to read a clock, which helps the user to identify particular hour
values within the time-series. However, it is even harder to visualize hundreds of different
time-series simultaneously. Clockeye glyphs are very compact and general trends or
patterns can be distinguished even on a very small scale. This helps to provide a
scalable way to represent hundreds of time-series, and even more, when grouped within
a hierarchy.

Further studies from Diehl et al. [62] suggest to generally use Cartesian coordinate
system instead of such a radial display “unless there are clear reasons to favor a
radial one” [62]. However, the authors also show some beneficial effects of such radial
visualizations: “Memorizing single cells is easier in radial coordinate systems while
memorizing three cells is easier in Cartesian coordinate systems” [62]. Additionally,
they state: “When depicting as many sectors as rings in a radial visualization, sector
positions are easier to memorize than ring positions” [62]. When focusing only on sectors,
their study showed, that the study participants got 76% correct answers, compared
to about only 70% in the Cartesian alternative [62]. These observations are actual in
favor of our clockeye glyph, because we are interested in the identification of single time
intervals, and use colored sectors only and do not use the mapping of rings at all.

There are also drawbacks of our visualization technique, which are implicit by design.
Circular treemaps are indeed not space-filling. This means that, at least compared
to rectangular treemaps, space is wasted as seen in Figure 3.25. However, compared
to a matrix representation, this is not necessarily the case, because nodes are packed
tightly together while still conveying the hierarchy information. The ordering within
a group of the circular layout is also challenging and non-intuitive. This drawback
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can be overcome to a certain degree by interaction and tooltips. While comparison of
shape and color distribution in circular layouts is effective, the comparison of the area
of the circles is not. Additionally, the higher level circles only approximately match the
aggregated size of their descendants. Consequently, the visualization is probably less
precise with respect to these attributes. Clockeyes are using color to represent the data
values, which makes it hard to precisely compare the values, which would be better
in length-encoded glyphs. The basic design idea of clockeyes uses a clock metaphor.
Obviously, this metaphor cannot be applied any more, if an arbitrary time-series length
is used. This means, that a clockeye glyph is best suited for 12 or 24-hour time-series.
Other lengths of time-series will be less intuitive, but are still possible from a technical
point of view.

Figure 3.25 shows a circular treemap with clock glyphs compared to a squarified
treemap with embedded striped thumbnail glyphs as introduced in Section 3.1.1. The
same dataset is shown in both representations so direct comparison is possible. The
drawback of not being fully space-filling in the circular treemap reveals the advantage
of implicitly helping to distinguish the various nesting levels. Another advantage is the
stable aspect ratio of circle. The changing aspect ratios for the individual rectangles in
the squarified treemap, as seen in the right subfigure in Figure 3.25, makes it hard to
compare the embedded time-series with each other. While this effect can be minimized
algorithmically through further optimizations of the layout algorithms, as proposed by
Schreck et al. [208], the problem cannot be resolved completely.

3.3.2 Evaluation of Alternative Glyph Designs

In this and the following sections, we present four individual evaluations directly related
to ClockMap. This section evaluates the clock glyph and compares it with alternative
glyph designs for temporal data. Section 3.3.3 summarizes the evaluation approach
conducted by Alshaikh et al. [8] addressing the overall aesthetics of ClockMap. Sec-
tion 3.3.4 integrates and applies ClockMap to a big data challenge, in which we use
ClockMap within a larger system to successfully address VAST Challenge 2012, which
focused on large-scale big data analysis. Eventually, we revisit VAST Challenge 2013 in
Section 3.3.5 and validate findings and events with ClockMap, which were missed with
previous techniques as presented in Section 3.1.

The next part builds on the following publication [95]10:

J. Fuchs, F. Fischer, F. Mansmann, E. Bertini, and P. Isenberg. Evaluation of
Alternative Glyph Designs for Time Series Data in a Small Multiple Setting. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’13, pages 3237–3246, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-
1899-0. doi:10.1145/2470654.2466443 [95].

In the previous sections, we made use of mainly three different visual representations
to visualize time-series data and used them in a small multiple setting: (i) striped
10The responsibilities for this joint publication were divided as follows: Johannes Fuchs and Petra
Isenberg designed the user study. Johannes Fuchs and I conducted the experiment. Johannes
Fuchs was also responsible for analyzing the results and writing the paper. Petra Isenberg, Florian
Mansmann and Enrico Bertini gave advice and did the proofreading.
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thumbnail glyphs (STR), (ii) line glyphs (LIN), and (ii) clock glyphs (CLO). The striped
thumbnail glyphs are shown in Figure 3.4 and 3.25, line charts are used in various
contexts, for example Figure 3.17 and 3.25, while the clock glyph method can also be
seen in Figure 3.25.

To compare them in a controlled way, we conduct a formal user study to evaluate
the performance of these temporal glyphs in a small multiple setting. Additionally,
we also include star glyphs (STA) in the experiment, because the temporal aspect is
mapped to angle as it is in clock glyphs. However star glyphs use length instead of
color saturation for data value encoding. Table 3.7 shows an overview of the compared
glyphs with the different mappings used for temporal and data value encoding. We
show combinations of the encodings for quantitative data ranked according to the study
results by Cleveland and McGill [48] and highlight some general data density issues.

The results of our study were general enough to derive various design considerations
for glyphs representing time-series data. In the following, we will primarily focus
only on presenting the results to evaluate the glyph usage with respect to specific
temporal locations, which refers to Task 2 in our experiment [95]. All other details,
methodology, and extensive discussion of various additional findings can be found in
our joint publication [95].

▼Table 3.7 — Overview of compared glyphs within the user study. Partial
overview of the design space for temporal glyphs included in the experiment. We show
combinations of the encodings for quantitative data (cf. Cleveland and McGill [48])
ranked according to their study results11.

Glyph Temporal Enc. Data Value Encoding Data Density Issues

Line
(LIN) Position CS Position CS (1)/Direction (3) May become very dense

Star
(STA) Angle Length (3) Small angular differences are

hard to distinguish

Stripe
(STR) Position CS Color Saturation (6) Color blending for small areas

Clock
(CLO) Angle Color Saturation (6) Color blending

Experiment Results

Within our study we focused on three individual tasks: (1) Peak Detection, (2) Temporal
Location, and (3) Trend Detection. In the experiment design we defined the general
setup and derived various hypotheses based on two exploratory pilot studies. For each
trial, the same type of glyph, but with different data, was drawn on the screen in
a small multiple grid layout (8 × 6) showing 48 glyphs in total. Each glyph covered
11Ranking based on Cleveland and McGill [48]: 1) Position CS, 2) Position NAS, 3)
Length/Direction/Angle, 4) Area, 5) Volume/Curvature, 6) Shading/Color Saturation. Position CS
= position along a common scale. Position NAS = position along non-aligned scale.
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a fixed screen estate of 96 × 96 pixels. To test the scalability of the different glyph
designs, two data densities were tested. The small dataset contained 24 data values.
This reflects the standard mapping in ClockMap in which each data value maps to the
aggregated value for one hour. The large dataset contained 96 data values resulting in
a 15 minute resolution. In Task 2 the participants were asked to select the glyph with
the highest value at a predefined time-point amongst all shown small multiples. This
time-point was textually shown to the participant in advance (e.g. 3am). Therefore,
the task involved two mental steps: First the participants had to identify the location
of a time-point by making positional (LIN, STR) or angular judgements (STA, CLO).
Afterwards, the participants had to compare the peaks. The task consisted of four
training repetitions and four real trials for both densities. After the initial training
trials we asked participants to detect a different temporal location for the peak value.
Therefore, the first real trial was discarded due to the mental recalibration necessary by
the participants. In the following, we report the results of our user study for Task 2.

Accuracy

“There was a significant effect of glyph on error for both the low density
(χ2

(3,N = 32) = 17, p < .001) and the high density condition (χ2
(3,N =

32) = 7.81, p = .05). In the low density condition pair-wise comparisons
showed that errors in judgement were significantly worse for LIN (33.3%)
compared to CLO (100%) and STA (100%) (both p < 0.01) and STR (75%)
compared to CLO (100%) and STA (100%) (both p < 0.001). In the high
density condition STA (58.3%) significantly outperformed LIN (15.5%) and
STR (10%) (both p < 0.05). With an increasing data density, STA (from
100% to 58.3%), CLO (from 100% to 54.2%) and STR (from 75% to 10%)
significantly lost accuracy with p < .05 in each case.

Efficiency

For the completion time there was only an overall effect of glyph on time
in the low density (F3,21 = 9.1, p < .001) condition. Post-hoc comparisons
showed that CLO (9.2 sec.) significantly outperformed LIN (31.8 sec.)
(p < .01). There was another significant effect of glyph across densities
(F3,21 = 5.45, p < .01). From low to high densities CLO (from 9.2 sec. to
20.8 sec.) deteriorated significantly (p < .05).

Confidence

There was an overall effect of glyph on confidence for both the low den-
sity (χ2

(3,N = 32) = 13.78, p < .01) and the high density (χ2
(3,N = 32) =

12.12, p < .01) condition. For the low density condition the results showed
a clear picture for the confidence of the participants. The users were sig-
nificantly more confident when using CLO (73.8%, p < .05), and had least
confidence with LIN (50%, p < .05). For the high density condition the
subjects were nearly equally confident using CLO (52.5%) or STA (54.4%),
whereas LIN (44.4%, p < 0.05) and STR (35%, p < 0.001) are ranked worst.
From low to high densities STA (from 65.6% to 54.4%, p < .05), CLO
(from 73.8% to 52.5%, p < .001) and STR (from 65.6% to 35%, p < .001)
worsened.” [95]
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In the experiment design, we defined the following hypothesis: “When detecting
temporal positions, STA & CLO (angular enc.) outperform LIN & STR (position
enc.)” [95]. Our assumption was, that the usage of the familiar clock metaphor is
beneficial, so we expected that circular glyphs allow the perception of specific points in
time to be more accurate. We assumed that this effect is stronger for CLO than STA as
the clock shape is more clearly retained. The results, as shown in Figure 3.26 partially
support this hypothesis.

As seen in the first chart concerning accuracy in Figure 3.26, the star and clock
glyph outperform the line and stripe glyphs when the dataset was low with respect
to accuracy. Star and clock lead to 100% of correct answers. When data density was
high (dark blue) we observed the same trend, even though only the star glyph showed
significant differences with respect to stripe and line glyph. The good performance of
the star glyph can be explained with the combination of the encodings. The length
encoding for the data values makes it possible to easily spot the highest value even with
lots of datapoints. With the color encodings, participants had problems spotting the
peak value. We saw almost no significant differences between the designs for efficiency.
The average completion time is reported in the second chart of Figure 3.26. However,
the clock glyph was significantly better than the line glyph with low data density.
Furthermore, as visually represented in the third chart of Figure 3.26, participants were
significantly more confident and made significantly less mistakes with the polar designs.
The participants also reported to like the clock metaphor. Some suggested, however, to
visualize only 12 hours at a time for a more intuitive encoding [95].
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▲Figure 3.26 — Evaluation for peak comparison on temporal locations. The
summary of results for our conducted user study. It reveals differences between various
glyph designs with respect to accuracy, efficiency, and confidence. The clock glyph had
relatively high accuracy, with good efficiency (low completion time, especially for low
densities), and achieved high confidence scores for temporal peak locations tasks.

3.3.3 Evaluation of ClockMap’s Design Principles

The evaluation of design decisions, especially with respect to aesthetics, is often biased
by the author’s subjective opinion, which often relates to aesthetics found in nature.
Additionally, studies show that aesthetics influence efficiency and effectiveness of analysis
tasks [40]. In 2013, Alshaikh et al. [8] proposed a “novel evaluation approach for security
visualization based on Christopher Alexander’s fifteen properties of living structures” [8].
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Alexander [6] identified these fifteen properties of order in the context of art and nature:
strong centers, level of scale, boundaries, alternating repetition, positive space, good
shape, local symmetries, deep interlock and ambiguity, contrast, gradients, roughness,
echoes, the void separateness, simplicity with inner calm, and non-separateness [6]. These
“properties are derived from various visual patterns that appear in nature. Each property
represents the guidelines for good design” [8]. Alshaikh et al. [8] “believe that using
these fundamental properties have the potential for building a more robust evaluation.
Each property offers essential qualities that enable better analytical reasoning” [8].
Interestingly, Alshaikh et al. [8] used our ClockMap approach as an example and
evaluated and compared ClockMap with another visualization system for cyber security.
In the following, we present the summary of their findings when they evaluated ClockMap
according to the properties of order by Alexander [6]. They could actually find nine out
of Alexander’s fifteen properties (AFP) in ClockMap, while none of the properties could
be identified in the second approach under investigation:

“We believe that ClockMap’s ability to represent the network activity data
lays in its compactness and clarity due to its effective use of size, shape,
and color. But underlining ClockMap’s effectiveness is its compliance with
Alexander’s fifteen properties.

ClockMap used STRONG CENTRES represented in the circles as areas
show subnet activity. Using LEVELS OF SCALE, ClockMap shows the vari-
ation between subnets as circles take different sizes. THICK BOUNDARIES
is used in the relatively thick edge formed around each circle. At the centre of
each circle lies a black dot, or a circle, that represents THE VOID. ClockMap
makes use of GRADIENTS within each circle moving gradually from red to
yellow. The crescent shape around the clustered circles in the middle forms
a GOOD SHAPE. The edges of ClockMap forms a THICK BOUNDARY
using ECHOES and STRONG CENTERS. In the middle of the ClockMap,
two large circles apply LOCAL SYMMETRIES around the vertical axis,
and another two circles form symmetry around the horizontal axis. But in
both cases, the symmetry is not perfect. Notice that in both cases one of the
circles is smaller than the other, and in one case the circle on the right is
incomplete. So, there is an element of ROUGHNESS. The crescent on the
edge of the circle is not shaped by the clustering circles in the middle alone,
but by the POSITIVE SPACE surrounding it as well. The ClockMap is an
example of how to use the AFP to produce effective visualizations. (...) The
properties within the visualization work together to form a living structure
that responds to the context of the system, while maintaining beauty and
clarity.” [8]12

This positive feedback of other researchers analyzing our ClockMap method from
the perspective of design, highlights the visibility of our approach in the field of cyber
security, but also validates various design decisions made during sketching, designing,
and implementing ClockMap from a more formal design-oriented perspective.
12This paragraph is taken from the publication by Alshaikh et al. [8]. They are researchers with
background in computer and network security. I’m not affiliated with them. The authors evaluate
our approach completely on their own based on my publication about ClockMap [82], which was
previously published to share the technique with other researchers in a timely manner. Furthermore,
we made a simplified version available online, so they obviously could use the technique on their own,
without the need to re-implement the method.
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3.3.4 Evaluation using VAST Challenge 201213

The sections coming next build mostly on the following publications [83, 90]14:

F. Fischer, J. Fuchs, F. Mansmann, and D. A. Keim. BANKSAFE: A Visual
Situational Awareness Tool for Large-Scale Computer Networks (VAST Challenge
2012). In 2012 IEEE Conference on Visual Analytics Science and Technology
(VAST), pages 257–258, 2012. doi:10.1109/VAST.2012.6400528 [83].

F. Fischer, J. Fuchs, F. Mansmann, and D. A. Keim. BANKSAFE: Visual Analytics
for Big Data in Large-Scale Computer Networks. Information Visualization, 14(1):
51–61, 2015. ISSN 1473-8716, 1473-8724. doi:10.1177/1473871613488572 [90].

In this section, we focus on BANKSAFE , which integrates and applies ClockMap to a
big data challenge, in which we use ClockMap to successfully address VAST Challenge
2012, which focus on large-scale big data analysis. BANKSAFE , therefore, provides
a proof-of-concept with respect to scalability, of using ClockMap to actively solve a
big data analysis challenge. BANKSAFE was the award winner for an “Outstanding
Comprehensive Submission” amongst a total of “40 submissions with participants from 12
different countries” [52], while the datasets were downloaded by almost 1,100 people [52].
The VAST Challenge 2012 explicitly focused on scalability relating to visual analytics
for big data:

“The goal of VAST Challenge 2012 was to provide a set of realistic
computer network scenarios while pushing the boundaries of big data. The
setting of the Challenge is BankWorld, a planet much like Earth, but with
a very different geography. For this Challenge, the geography is one large
land mass containing several different nation-states. The most important
organization on BankWorld is the Bank of Money (BOM). BOM has many
offices of various sizes across BankWorld. Each of these offices has many
computers active throughout the day. In total, the organization operates
about 895,000 machines. Contestants were asked to focus on two general
problems using a visual analytics approach. First, how do you achieve cyber
situation awareness across the entire enterprise with such a large number of
systems? Second, when something does go awry, can you identify it and the
steps needed to resolve the problem?.” [52]

In the given scenario, the so-called “Bank of Money” operates in “BankWorld” and
has collected a dataset for two different challenges. This dataset comprises of 4.1 GB
of IDS alerts and firewall logs, and 7.5 GB of health and status checks data of a host
monitoring solution. These health checks are generated every 15 minutes by over 895,000
13http://vacommunity.org/VAST+Challenge+2012
14BANKSAFE was mostly implemented by myself, while Johannes Fuchs and Florian Mansmann
contributed to various individual parts, like the activity-policy matrix. Together, we submitted our
solution to the VAST Challenge 2012 leading to a short paper [83], in which all authors were involved
for writing, discussing, and proof-reading. The success of BANKSAFE lead to our joint journal article
[90], which highlights the lessons-learned. The writing was mostly done by myself. Florian Mansmann
focused on proof-reading, while Johannes Fuchs and Daniel Keim contributed with discussions and
comments.

http://vacommunity.org/VAST+Challenge+2012
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machines [52] and were the focus of the first challenge (MC1). The second challenge
(MC2) provides the security-related IDS alerts and firewall logs of one particular regional
office. The main task of MC1 was to create suitable visualizations to provide situational
awareness to understand the network health and identify problems of this global large-
scale computer network. MC2 required the identification of unusual and suspicious
events to propose countermeasures for a large-scale regional office.

BANKSAFE – A Scalable Visual Analytics System using ClockMap

To actively participate and compete in the challenges, we integrate our existing tech-
niques as discussed in the previous sections, and implemented BANKSAFE as seen
in Figure 3.27. To achieve scalability for large datasets our system makes use of the
cloud-based database service Google BigQuery [103]. Monitoring and security data
are imported into this backend. The remote data storage is accessed via an API. The
main application is developed as Java web application hosted by Apache Tomcat. To
further improve performance and to reduce costs, all queries are routed through a high-
performance caching system. Additionally, BANKSAFE provides a web-based graphical
user interface using the Vaadin Java Web Framework [254]. The different visualization
modules are implemented using Java Applets, HTML5, and D3.js [29]. Besides standard
bar charts to represent the number of active hosts or events, BANKSAFE includes
several visualizations to support the analyst in getting an overview, finding trends,
and identifying suspicious events. We developed different visualizations specifically for
monitoring data, but also integrated ClockMap as novel visualization approach.

▲Figure 3.27 — BANKSAFE in a control room scenario. The usage the
system in a control room setting helps to analyze big data in large-scale computer
networks to achieve situational awareness. Reprinted from [90]. © 2013 The authors.
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▲Figure 3.28 — Point-in-time network health overview. This treemap visu-
alization provides an overview for the current state of the whole computer network.
Reprinted from [90]. © 2013 The authors.

▲Figure 3.29 — Network health overview during an infection. This case
represents a wide-spread computer infection leading to a high percentage of critical
policy levels. Reprinted from [90]. © 2013 The authors.



3.3 ● Visual Exploration for Host and Server Monitoring 85

Usage Scenario and Analysis Workflow for VAST Challenge 2012

When an user starts the web application, three views are loaded on the left sidebar
(cf. Figure 3.28). Each view is related to the main tasks for a different type of data.
The network health view focuses on monitoring data, the firewall perspective is linked
to network traffic, and the intrusion detection view makes use of event-based alerts
generated by intrusion detection systems (IDS). Depending on the selected view, there
are different configuration settings available. The user can select a data source and time
interval to load a suitable visualization module, which is added as tab to the main display.
Additionally, a time chart is shown at the bottom of the web application, representing
the number of hosts or events over time depending on the selected view. With the help
of our web application, it is possible to get a visual overview of heterogeneous datasets
to enhance situational awareness. In the following, we describe the various visualization
components used to solve the VAST Challenge 2012:

• Network Health Overview – The network analyst needs to have a point-in-time
network health overview to be aware of the current situation of the overall network.
In the challenge’s dataset, each computer has a policy status ranging from 1 to
5, while 5 is the most critical one, indicating a possible virus infection. The
network is structured in classes, regions and facilities, leading to an organizational
hierarchy. Consequently, conveying this hierarchy in the visual representation helps
the analyst to detect abnormal behavior. Figure 3.30 for example presents the
distribution of policy levels as treemap of all about 50 servers in a single selected
facility. About 85 percent of the hosts do have a policy status of 1, represented as
the most prominent green rectangle, while just a few have higher policy levels,
visualized as smaller yellow and red rectangles. This simple, but space-filling and
scalable representations can give the analyst a point-in-time overview. When
this is applied to all regions and facilities in the network, patterns and suspicious
regions can be visually identified and explored as seen in Figure 3.28.

▲Figure 3.30 — Treemap to convey a facility’s policy distribution. A treemap
visualization showing the percentage of computers with different policy levels in a single
facility and region. Reprinted from [90]. © 2013 The authors.
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Based on this visualization the analyst can understand the current network
situation on 2012-02-02 at 14:00, which was a particular task in the challenge.
The overall impression is quite acceptable, because the green color, representing
a good system health status of most machines, is the dominating color in most
areas. Further filtering could be used to hide low policy levels, and just focus
on the infected hosts. However, visualizing the context is important to come to
the right conclusions. In this case for example, region-5 and region-10 visually
stick out, because here the yellow color is dominating, which means, that almost
all machines suffer from moderate policy deviations (no green rectangles at all).
Showing all regions is helpful for the analyst to judge such findings with respect
to the patterns in all other regions, which further supports the conclusion that
these regions have very suspicious computer health distributions. At a later point
in time, the analyst wants to get another network overview, which is shown in
Figure 3.29. The visual impression is completely different than the previous one:
Many yellow, and even red-colored rectangles indicate a wide-spread infection of
thousands of computers at 2012-02-04 03:30.

• Temporal Network Health – Another task is the identification of possible
trends in the monitoring data. To provide a compact, but high-density information
display, we implemented the following matrix idea. A single 5 × 5 colored pixel-
matrix is depicted in Figure 3.31. Each pixel represents the number of underlying
hosts. The matrix shows all possible combinations of policy level and activity
scores of a single region for one hour. This means that the yellow pixel at position
row 2 column 3 represents the number of hosts having activity flag 2 and policy
status 3. To get a temporal overview, these matrices are arranged in a small
multiple display where each row represents a single region and the different columns
the different hours. Additionally, the ordering of the rows is done according to a
1D MDS projection of the geographic coordinates of the respective headquarters.
Geographically near regions are plotted near to each other. As a result, as seen
in Figure 3.32, clear temporal patterns can be identified. With the help of this
representation, the general trend of a continuous shift to higher policy levels and
more activity became visible. Furthermore, many machines in the East suddenly
went offline, which was another unexpected and very suspicious finding.

▲Figure 3.31 — Activity-policy matrix visualization. Colored rectangles rep-
resent the number of hosts having a particular activity flag and policy combination.
Reprinted from [90]. © 2013 The authors.
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• Relaxed Timeline for IDS Alerts – To analyze IDS events, the analyst can
use the Relaxed IDS Timeline, similar to the one used in previous work [85].
Events are plotted on different timelines. Each timeline contains the events of
a particular source IP address. The color is mapped to the event classification
attribute, which helps to visually distinguish the event types. Selecting an event
presents more information and highlights all other events of this particular type
using connecting lines. With the help of this visualization for event data, several
hosts producing IRC authorization messages could be identified. It seemed that
those machines became suddenly infected and attempted to talk with their bot
master over IRC.

• ClockMap for Firewall Data – To visualize time-series data of many hosts
within their respective subnet or organizational hierarchy, we use the ClockMap
visualization technique. In the second mini-challenge, the analyst need to solve
the task to identify suspicious events and connections. Figure 3.33, for example,
shows the traffic of all computers within the network, connecting to an IRC
service on port 6667/TCP. This technique was also used to identify forbidden
SSH connections, which were initiated by intruders. Interactively exploring this
compact glyph representation is, therefore, capable of answering questions like:
Which host has suspicious connections to a specific port? Which subnets are
affected? What is the connection pattern? How much traffic do they produce?

▲Figure 3.32 — Small multiple representation of activity-policy matrices.
Each row represents all hourly activity-policy matrices for a given region in a small
multiple setting to get an overview about temporal developments of network health.
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Evaluation Results

The visualizations integrated in BANKSAFE helped to identify trends, patterns and
suspicious events in both datasets of the VAST Challenge 2012. We successfully used
BANKSAFE to actively participate and address the challenge. In the following, we
quote the review process and afterwards present the scores as given by the anonymous
reviewers:

“Including both the visualization community reviewers and the subject
matter expert reviewers, a total of 102 reviewers participated, each providing
between one and five reviews. (...) Reviewers were asked to rate the analytic
process, the visualizations, the interactions, the clarity of explanation, and
the relative novelty of the submission. (...) Reviewers provided both ratings
and explanatory comments. These comments were as important as the scores
in identifying award candidates. Reviewers were also asked to evaluate the
plausibility of the answers provided, rather than the accuracy of the solutions.
The datasets used this year were realistically complex. Although there were
certain known patterns embedded in the data, the committee recognizes the
likelihood that additional patterns exist in the data that were not intended and
that could reasonably be considered by the participants to be of significance.
Consequently, reviewers were provided with a list of the expected patterns
that were embedded in the dataset to support the scenario, but they were
also instructed to accept other solutions for which the submission provided
well-reasoned supporting evidence. The VAST Challenge Review Committee
held a one-day meeting to determine awards. Prior to the meeting, all of
the committee members examined at least nine of the submissions in detail,
with five committee members examining all 40 submissions. During the
meeting, the committee reviewed and evaluated the award recommendations
from the reviewers, taking the totality of the scores and reviewer comments
into account.” [52]

Our submission was judged by seven anonymous reviewers, who provided a summary
and detailed written comments about the various fields of interests. Table 3.8 summarizes
the general scores as provided by the reviewers (R1-7) for our VAST Challenge 2012
solution with submission ID #118 focusing on MC2 featuring our ClockMap approach.
We also successfully submitted a solution for MC1, which primarily used the other
visualizations (e.g., network health overviews as seen in Figure 3.28 and 3.32), however
theses techniques are not the primary concern of this section’s evaluation.

As presented in Table 3.8, all reviewers, except Reviewer 4 (R4), gave an overall rating
of “good” or “excellent”. Sadly, R4 was the only reviewer not providing any comments or
details supporting or explaining the scores. 5 of 7 reviewers also explicitly acknowledged
the novelty of the ClockMap approach, while R7 commented: “I felt like I was battling the
visualizations rather than having them help me” (R7). Probably, more training or a more
detailed explanation of the visualization techniques would have helped to address such
issues (which was not possible due to the limitations of the overall submission length).
However, R7 still acknowledged that almost “all events” were successfully identified.
R3 wrote: “The authors correctly identified the illegal introduction of a botnet to the
network, leading to high TCP traffic in general and to suspicious SSH traffic over night.
For the latter, their time-based clockmap visualization turns out to be very helpful!” (R3).
R2 states that, the “ClockMap visualization is probably the most informative” (R2).
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▼Table 3.8 — Summary of reviewer scores for BANKSAFE. The table
presents the scores given by the anonymous reviewers (R1-7) for our VAST Chal-
lenge 2012 solution with submission ID #118 focusing on MC2 featuring our ClockMap
approach.

R1 R2 R3 R4 R5 R6 R7

Reviewer Type: external external external external external external external
Identification of Events: some events some events most events most events most events most events all events
Identification of Trends: average good average good excellent excellent excellent
Root Causes: good good excellent average good excellent average
Clarity of Explanation: good good excellent good excellent excellent average
Visualizations: good good excellent average excellent excellent marginal
Interactions: average good good average good excellent average
Novelty: good average excellent good excellent excellent marginal
Overall Rating: good good excellent average excellent excellent good

R3 also stated: “I especially liked how the clockmap helped in detecting the suspicious
temporal SSH patterns” (R3). R6 was impressed by the interaction capabilities and
stated: “The video showed examples of navigating from overview visualizations to details
interactively. It was clear that patterns observed at overview levels could be explored
and investigated down to the record level. The interactive response time shown in the
video was impressive for a dataset of this size” (R6).

▲Figure 3.33 — ClockMap visualization in BANKSAFE. The different colored
circles represent local computers establishing connections to IRC servers. The colored
segments of each circle represent the number of connections over time. Reprinted from
[90]. © 2013 The authors.
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3.3.5 Evaluation using VAST Challenge 201315

In this section, we revisit VAST Challenge 2013, as introduced in Section 3.1.2. While
it was not possible to detect various suspicious (including many subtle) events with the
common visualization techniques originally included in VACS (Table 3.2), we use the
ClockMap visualization approach to explore the VAST Challenge 2013 dataset again to
see, which of the missed events, can be easily detected when utilizing ClockMap instead.
The findings are summarized in Table 3.9.

▼Table 3.9 — Ground truth evaluation for ClockMap. The ground truth for
the VAST Challenge 2013 MC3 consists of 29 official events and various bonus events.
This table provides an overview about only those events missed in VACS as previously
shown in Table 3.2. Events, which are quite obvious in ClockMap are marked with 3,
while those which are harder to catch with (3). The reference value indicates the total
percentage of how many submissions in the challenge actually identified the event.

Event ID Subtlety Event Type Data Source Reference ClockMap Figure

(6a) Subtle Server Crash NetFlow/BB 0.0% (3) Fig. 3.34
(6b) Subtle Server Return NetFlow 0.0% (3) Fig. 3.35
(7) Subtle Port Scans NetFlow 0.0% 3 Fig. 3.38
(9a) Subtle Server Crash NetFlow/BB 36.4% 3 Fig. 3.36
(9b) Subtle Server Return NetFlow 36.4% (3) Fig. 3.37
(10) Subtle Malicious Redirects NetFlow 0.0% 5 -
(11) Obvious Exfiltration NetFlow 18.2% 3 Fig. 3.43
(14) Obvious Exfiltration NetFlow 18.2% 3 Fig. 3.44
(17) Obvious Port Scans NetFlow/IPS 27.3% 3 Fig. 3.39
(18) Obvious Port Scans NetFlow/IPS 22.7% 3 Fig. 3.40
(19) Obvious Failed DoS NetFlow/IPS 36.4% 3 Fig. 3.40
(21) Obvious Port Scans NetFlow/IPS 18.2% 3 Fig. 3.40
(22) Subtle Botnet Infection NetFlow 9.1% (3) Fig. 3.45
(24) Obvious Port Scans NetFlow/IPS 9.1% 3 Fig. 3.41
(25) Obvious Port Scans NetFlow/IPS 18.2% 3 Fig. 3.42
(26) Obvious Botnet DoS Attacks NetFlow/IPS 18.2% (3) Fig. 3.46
(27) Obvious Botnet DoS Attacks NetFlow/IPS 9.1% (3) Fig. 3.47

Analyzing the Impact of Denial-of-Service (DoS) Attacks

When monitoring the internal hosts and servers, peaks in network activity can directly
been seen in ClockMap. Figure 3.34 focuses on the subnet with various web servers on
2013-04-02 based on the feature firstSeenSrcTotalBytes of the underlying network
flow data. Visualizing them in their context, helps to judge the peaks at specific
point in times with respect to other hosts in the same organizational level. The host
annotated with (A) in Figure 3.34 reflects the hourly network traffic of 172.30.0.4
(WEB03.BIGMKT3.COM), which is the company’s main server. The analyst can utilize
mouseover tooltips to reveal details about a host underneath the mouse pointer. The
15http://vacommunity.org/VAST+Challenge+2013

http://vacommunity.org/VAST+Challenge+2013
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extreme peak between 05:00 and 07:00 refers to a massive denial-of-service (DoS) attack
(discussed as Event 5 in Section 3.1.2). Interestingly, network activity is suddenly
decreasing starting between 07:00 and 08:00, which is quite unusual for the company’s
main webserver, leading to the assumption that this server cannot handle the load
any more (Event 6a). However, there is still some traffic visible in the following hours
(Event 6b), therefore, the server is probably not completely unavailable or started to
resume operations. To confirm the actual health status of the server, a more detailed
exploration is needed. The visualization in Figure 3.34 only uses an one hour resolution,
however, when using minute intervals for each clock segment, it would be visible that
the server returns to operate on 07:16 as seen in the timeline plot shown in Figure 3.35.
Therefore, ClockMap can somewhat identify that the server returns to operation, but
not exactly when, because of the currently used hourly aggregation level.

A

▲Figure 3.34 — Degraded network activity after DoS attack. The visu-
alization shows network traffic on 2013-04-02, in which (A) represents 172.30.0.4
(WEB03.BIGMKT3.COM). Extreme peaks between 05:00 and 07:00 are caused by
an ongoing DoS. However, the network traffic suddenly decreases between 07:00 and
08:00, and stays on a very low level (light yellow) which are are symptoms for major
server issues (Event 6a).

On 2013-04-03, it is possible to observe another major server crash between 11:00
and 12:00 (Event 9a) after a high traffic peak caused by another DoS attack. Figure 3.36
shows the obvious pattern of 172.30.0.4 (WEB03.BIGMKT3.COM), in which no traffic
at all can be seen after the crash. Actually, the server comes back online not until two
days after this event (Event 9b) as shown in Figure 3.37.
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▲Figure 3.35 — Detailed temporal network activity for main webserver.
High amount of network traffic originating from 172.30.0.4 until 07:02. No response
until 07:16. Afterwards the web server recovers and resumes operations (Event 6b).

A

▲Figure 3.36 — Visualization for server crash on 2013-04-03. (A) represents
the host 172.30.0.4 (WEB03.BIGMKT3.COM) having lots of network activity followed
by a long period without network traffic, indicating a major server crash (Event 9a).
Other hosts in the subnet obviously do not experience such outages.

Another denial-of-service attack can be seen in Figure 3.40 on 2013-04-11 in the
clock segments between 11:00 and 13:00, in which many external hosts (attackers) have
a high number of distinct source ports. However, contrary to the previous DoS attack
the server withstands the attack and continues to operate normally.

Detection of Subtle Port Scans

Analyzing the external network hosts on 2013-04-02 reveals an interesting pattern
as seen in Figure 3.38. The visualization shows the distinct count for the feature
firstSeenSrcPort. This feature refers to the number of distinct source port numbers
seen in the network flow data within a specific hour of a host. Many opened distinctive
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A

▲Figure 3.37 — Visualization of server return on 2013-04-05. (A) represents
the host 172.30.0.4 (WEB03.BIGMKT3.COM), which was offline after a server crash
and returns back to operation between 07:00 and 08:00. Please note, that compared
to Figure 3.36 the host’s location within the visualization has changed, because of the
heavily reduced overall network traffic.

ports from an external host could mean, that many connections are established to
internal hosts to check for running services (e.g., using a port scan). Depending on
the amount of distinct source ports, this can also relate to connections from a DoS
attack. To focus on hosts with high numbers of distinct ports, the analyst can use
the normalization slider (A) to interactively change the value at which a segment is
visualized using a dark-red color. Switching the normalization technique from linear
to square-root further helps emphasize some variations in more detail. Multiple hosts
pop up immediately, which have high number of distinct ports between 05:00 and
07:00. However, a more subtle pattern appears for two of those hosts: 10.7.7.10 (B)
and 10.6.6.6 (C) which are clearly suspicious have another peak between 13:00 and
14:00 while all other “red-colored” hosts don’t have any other communication beside
the major attack in the morning. Obviously, those two hosts reveal a different attack
pattern or conduct an additional attack (in this case port scans) between 13:00 and
14:00. This highlights the capabilities of ClockMap to show suspicious patterns within
the context of other related hosts, to successfully identify such subtle attacks as well.
Actually, as can be seen in Table 3.9 none of the challenge submissions (reference value
of 0.0%) was capable to identify this event (Event 7).
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A

C

B

▲Figure 3.38 — Detection of subtle port scans. The visualization of distinct
ports on 2013-04-02. Using the normalization slider (A), subtle port scans from
10.7.7.10 (B) and 10.6.6.6 (C) between 13:00 and 14:00 can be identified (Event 7),
which are not part of the more obvious DoS attack (Event 5) between 05:00 and 07:00.

Focusing on the hourly number of distinct ports for external hosts, reveals more port
scans on the following days. After using the normalization slider (A) in Figure 3.39
on 2013-04-10, multiple attackers stand out (Event 17), annotated with (B-D). The
prominent clock pattern, helps to assume that this is most likely an orchestrated port
scan, because they conduct their port scans in the same time window, with a similar
strength. Port scans for longer period of time become obvious on 2013-04-11, in which
two hosts stand out in Figure 3.40. While attacker 10.12.15.152 (A) and 10.6.6.7 (B)
reveal distinctive patterns, they still share the same pattern of conducting port scans
over a longer period of time. The attack of (A) is also verified by the ground truth as
Event 18, while the port scan of (B) reflects Event 21. Various other high-volume port
scans can be identified on 2013-04-12 (Event 24) and 2013-04-13 (Event 25) as seen in
Figure 3.41 and 3.42.
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A

B C

D

▲Figure 3.39 — Multiple attackers conducting orchestrated port scans. Var-
ious port scans (Event 17) from multiple attackers on 2013-04-10 are clearly visible.
Using the normalization slider (A), the hosts stand out revealing quite distinctive
patterns than related hosts in the respective subnets.

Detection of Malicious Redirects

Malicious redirects are hard to analyze on a flow-based level, because possible signals
are very subtle. Therefore, Event 10 could not be detected easily with ClockMap,
without actual knowledge about the event. The ground truth reveals, that one of the
webservers, “www.bigmkt2.com is compromised and a malicious redirect is added to a
web page” [210]16, so that all “visitors to www.bigmkt2.com are redirected to a malicious
web site, where the visiting computers can also become infected with malware” [210].
Event 10 could have been detected if someone would use ClockMap to show the session
durations, but normally there is no good reason to do so. However, the ground truth
reveals for Event 10, that because of the malicious redirects, network flows for this host
“exhibit shorter session durations and smaller payloads” [210].

Identification of Data Exfiltrations

Visualizing the network activity on 2013-04-06 reveals various peaks in network activity.
With the help of ClockMap the root causes can be identified using interactive zooming
and exploring the underlying hosts within the different subnets to reveal possible outliers
within their contexts. Expanding subnet 172.10.0.0/24, as seen in Figure 3.43, reveals
that most of the traffic between 10:00 and 11:00 originates from a single host, which
is the administrator’s workstation (Event 11). Further exploration of the underlying
16The ground truth can be found in the Visual Analytics Benchmark Repository [210] under Benchmarks
/ VAST Challenge 2013 / MC3 - Big Marketing / Solution.
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A

B

▲Figure 3.40 — Identification of port scans over longer periods of time.
The high peaks between 11:00 and 13:00 on 2013-04-11 are symptoms of a DoS at-
tack (Event 19). Additionally, various port scans from attacker 10.12.15.152 (A) and
10.6.6.7 (B) over multiple hours relate to Event 18 and 21.

▲Figure 3.41 — Port scans of attackers belonging to the same subnet. Port
scans from 10.12.15.152 and 10.12.14.15 between 2013-04-12 11:00 and 16:00 (Event 24).
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▲Figure 3.42 — Port scans of attackers originating from different subnets.
Port scans from 10.17.15.10 and 10.12.15.152 stick out with mostly red segments (high
number of distinct utilized ports) starting at about 2013-04-13 05:00 (Event 25).

▲Figure 3.43 — Root cause identification of high network activity. Exfiltra-
tion (Event 11) becomes visible on 2013-04-06 between 10:00 and 11:00. High network
traffic in the subnet 172.10.0.0/24 (expanded in the highlighted rectangle) originates
from a single host, which is the administrator’s workstation. Further exploration of the
underlying network flow records reveals a data exfiltration to 10.7.5.5 of 109.6 MB via
file transfer protocol (FTP).

network flow records, reveal a successful data exfiltration to 10.7.5.5 of 109.6 MB via file
transfer protocol (FTP). A similar exfiltration can be seen on the day after (2013-04-07)
between 07:00 and 08:00 in Figure 3.44 (Event 14), in which an even larger file (about
650 MB) is exfiltrated to 10.7.5.5.
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A

▲Figure 3.44 — Identification of large data exfiltrations. Another exfiltration
becomes visible on 2013-04-07 between 07:00 and 08:00 using ClockMap (Event 14).
The high traffic in the subnet 172.10.0.0/24 originates the administrator’s workstation
(A). Further exploration of the underlying network flow records reveals another data
exfiltration to 10.7.5.5 (about 650 MB).

A B

C

▲Figure 3.45 — Identification of outliers in various subnets. Compromised
hosts become visible after a successful malware infection (Event 22). In subnet
172.30.1.0/24 two hosts stand out with their pattern (A). In subnet 172.20.1.0/24
three hosts (B) are visible very prominently, and another three hosts (C) are in the
focus of 172.10.2.0/24.
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Identification of Botnet Infection and Compromised Hosts

Taking a look at the network activity of company’s main internal subnets, in which
most of the workstations are located, reveals interesting patterns on 2013-04-12. In
each of the main subnets, very few hosts behave differently than the rest of the hosts
within their contexts. In subnet 172.30.1.0/24 there are many hosts with much network
activity, however two still stand out with their pattern (A). In subnet 172.20.1.0/24
three hosts (B) are visible very prominently, and another three hosts (C) are in the focus
of 172.10.2.0/24. Something seems to be wired with those hosts. Further exploration
of the underlying network flows reveals many SSH connections suddenly appearing
starting between 08:00 and 09:00 and continuing throughout the day (Event 23), which
relates to the finding presented in Figure 3.14 within Section 3.1.2. Obviously, the hosts
became compromised and started to contact their command and control server. While,
we could not directly see the very subtle initial infection, ClockMap was helpful to still
identify the hosts due to the immediate symptoms of the successful infection (Event 22).

In the following days, on 2013-04-13 (Figure 3.46) and 2013-04-14 (Figure 3.47), the
infected machines, now part of a botnet, start to become clearly visible with respect
to the hourly number of utilized distinct source ports. Further investigations on the
aggregated network flow data for the selected hosts, show that these internal hosts
target an external webserver, conducting an orchestrated distributed DoS attack, which
relates to Event 26 and 27 in the ground truth data.

▲Figure 3.46 — Distributed DoS by internal hosts on 2013-04-13. Eight
internal hosts start conducting an attack targeting an external webserver (Event 26).
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▲Figure 3.47 — DoS attack originated by internal hosts on 2013-04-14. The
hosts continue to attack another external target on 2013-04-14 (Event 27).

3.4 Conclusions

In this chapter, we addressed three important use cases to support network activity
analysis, which is a major factor to gain situational awareness for cyber security with re-
spect to local computer networks. We designed, implemented, and extensively evaluated
three prototypes, namely VACS , IAS-Explorer , and ClockMap to specifically address
the limitations of related systems for internal/external, port activity, and host/server
monitoring. We showed in particular, that the novel and scalable visualization tech-
nique ClockMap helped to visually explore large number of network hosts within their
respective contexts.

Furthermore, ClockMap is generic enough to be used for other hierarchical time-series
data as well. The technique combines a circular nested treemap layout with a radial
glyph representation for time-series data and proved to be effective for comparative
tasks on large amounts of hierarchically structured time-series data. When being used
in combination with circular glyphs, the shape preserving property of circular nested
treemaps outweigh the known disadvantages of such treemap variants and facilitates
comparative tasks (especially for temporal peak detection tasks) within and across
hierarchy levels.

Successful active participation in international competitions with VACS and the
BANKSAFE system featuring the ClockMap approach helped to evaluate the advan-
tages and limitations of our methods compared to a wide variety of other approaches.
Eventually, the integration of ClockMap into VACS helped to combine the strengths of
all integrated visualization techniques as seen in Figure 3.48, in which we even integrate
the possibility to use the hierarchical ClockMap representation to visualize hierarchy
clustering results of the time-series. The circles on the upper levels in Figure 3.48
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▲Figure 3.48 — Integration of ClockMap into VACS. The integration combines
the strengths of all visualization techniques into a single web-based visual analytics
suite.

actually contain all network hosts having similar time-series. Therefore, the network
can not only be represented with the focus on the organizational or subnet hierarchy,
but also with respect to the actual behavior of the underlying hosts.

Overall, Chapter 3 primarily fulfills research objective RO1 as identified in Section 2.3,
to introduce novel visual techniques for context-aware exploration to support visual
analytics for network activity.





“People often represent the weakest
link in the security chain and are
chronically responsible for the failure
of security systems.”

— Bruce Schneier
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Network threats are an ever increasing challenge in computer networks and more
general in the whole cyber world, having critical effects on the real world. While

the previous chapter focused on monitoring use cases, how visual analytics can help
to achieve situational awareness for internal/external, port activity, and host/server
monitoring to recognize symptoms for possible threats, this chapter has a different
motivation: To further advance situational awareness in cyber security, it is inevitable
to analyze the behavior and eventually the possible impact of threats. This mainly
refers to the comprehension and projection stage of situational awareness as introduced
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in Chapter 2 (Figure 2.3), in which threat analysis is a major type of analysis. This
chapter, therefore, focuses on use cases related to the identification and analysis of
specific (i) attack patterns, (ii) routing anomalies, (iii) malware behavior, and (iv) attack
attribution to relate characteristics of a threat to the ecosystem (threat landscape) on a
larger scale. Eventually, this also helps to understand the impact or distinguish between
the motivation behind a cyber security threat.

Section 4.1 focuses on providing visual overviews for attack patterns, while we make
use of Temporal MDS Plots (TMDS) to address existing limitations of previous work,
focusing mostly on IDS alerts, and are not generic enough to identify and visualize events
based on arbitrary features. Section 4.2 focuses on a visual analytics system to visualize
routing anomalies to identify BGP prefix hijacking, which has severe consequences
on the whole cyber infrastructure. Section 4.3 gives an overview for the emerging
field of visual analytic techniques for malware behavior. The literature review also
revealed, that most of the reviewed attack pattern visualization do not really focus
on the projection stage for situational awareness. In the context of visualization for
network threats, this means to attribute and relate occurring attacks to the overall
threat landscape to place them in the context of a larger campaign or attribute them to
a specific attacker group. This attack attribution use case is discussed in Section 4.4.

4.1 Visual Overview for Attack Patterns
According to Shiravi et al. [216] the focus for visualizations supporting the identification
and analysis of attack patterns is “not only the detection of attacks but also the display
of multistep attacks. Different types of attacks show different behaviors and accordingly
different visual patterns appear” [216]. Because it is hard to convey such information
in a textual or tabular way, it is very natural to use visualization within such use
cases. This is also the reason, why this use case comprises the largest body of research
according to our literature review in Chapter 2 (Table 2.4).

Related Work

Table 4.1 represents related work for attack pattern visualization methods. The table
highlights the strong body of research focusing on this particular use case. Interestingly,
most methods involve only a very limited number of data sources. Since 2009, more
and more tools also include other data sources. However, still most attack pattern
visualizations rely on IDS/IPS alerts together with packet traces and network flows.

From the perspective of used visualization techniques almost all widely used visual-
ization techniques have been employed in the field of attack pattern visualization, while
in recent years, node-link diagrams, timelines, and radial visualizations are slightly more
frequently used.

Many approaches (e.g., [7, 47, 166, 81, 165, 164]) use treemaps to give a general
overview of attacks, however, this often limits the possibility to convey the temporal
aspects of an attack directly within the visualization. Other systems use alternative
techniques to focus better on the temporal development and use scatter plots (e.g.,
[273, 50, 198, 142]), or pixel-based visualizations (e.g., [37]). SnortView [142], uses a
2D time diagram, similar to a scatter plot, in which the x-axis is mapped to time and
the y-axis is mapped to the various source IP addresses (e.g., attackers). The various
alerts are mapped to colored icons (glyphs) placed at the corresponding position in the
scatter plot, representing the different attack types.
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▼Table 4.1 — Related work for attack pattern visualization methods.
Overview of related work with respect to data source and visualization type.
Method Use Case Data Source Visualization Year
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PCAV [45] 3 - - - - 3 - - - - - - - - - - - - - - - - - - 3 - - - 2005
VisAlert 2006 [91] 3 - - - - - 3 - - 3 - - - - - - - - - - - - 3 - 3 - - - 2006
Ren et al. [199] 3 - - - - - - - - - - 3 - - - - - - - - - - 3 - 3 3 - 3 2006
Rumint [50] 3 - - - 3 - - - - - - - - - - - - - - - - - 3 - 3 - 3 - 2006
Xiao et al. [273] 3 - - - 3 - - - - - - - - - - - - - - - - - 3 - - - - - 2006
Mansmann et al. [165] 3 - - - 3 - - - - - - - - - - - - - - - - - - - - - - 3 2007
SVision [182] 3 - - - 3 - - - - - - - - - - - - - - - - - - 3 - - - - 2007
SpiralView [22] 3 - - - - - 3 - - - - - - - - - - - - - - - 3 - 3 - - - 2007
Mansmann et al. [164] 3 - - - - 3 - - - - - - - - - - - - - - - - - - - - - 3 2007
NFlowVis [81] 3 - - - - 3 3 - - - - - - - - - - - - - - - 3 - - - - 3 2008
Mansmann et al. [166] 3 - - - - 3 3 - - - - - - - - - - - - - - - 3 - 3 - - 3 2009
VIAssist [101] 3 - - - - 3 - - - - - - - - - - - - - - - - 3 - 3 - - - 2009
Choi et al. [46] 3 - - - - 3 - - - - - - - - - - - - - - - - - - 3 - - - 2009
MOVIH-IDS [119] 3 - - - 3 - - - - - - - - - - - - - - - - - 3 - - - - - 2009
Yelizarov and Gamayunov [276] 3 - - - - - 3 - - 3 - - - - - - - - - - - - - 3 3 - - - 2009
Chu et al. [47] 3 - - - - - - 3 3 3 - - - - - - - - - - - - 3 - 3 - - 3 2010
ENAVis [159] 3 - - - - - - - - 3 - - - - - 3 - - - - - 3 3 - 3 - - - 2010
Avisa [215] 3 - - - - - 3 - - - - - - - - - - - - - - - 3 - 3 - - - 2010
PeekKernelFlows [260] 3 - - - 3 3 - - - - - - - - - - - - 3 - - - 3 - - - 3 - 2010
Corchado and Herrero [53] 3 - - - 3 - - - - - - - - - - - - - - - - - 3 - - - - - 2011
Jajodia et al. [130] 3 - - - - - - 3 3 3 - - - - - - - - - - - - 3 - - 3 - - 2011
DAEDALUS-VIZ [125] 3 - - - 3 - 3 - - - - - - - - - - - - - - - - 3 3 - - - 2012
Zhao et al. [285] 3 - - - - - 3 3 - - - - - - - - - - - - - - 3 - 3 - - - 2012
Sol [30] 3 - - - - 3 - - - - - - - - - - - - - - - - - 3 3 - - - 2012
Alsaleh et al. [7] 3 - - - - - 3 - - - - - - - - - 3 - - - - - 3 - 3 - - 3 2013
NetSecRadar [289] 3 - - - - 3 3 3 - - 3 - - - - - - - - - - - 3 - 3 - - - 2013
P3D [179] 3 - - - 3 - - - - - - - - - - - - - - - - - - 3 3 - - - 2013
IDSRadar [286] 3 - - - - - 3 3 - - - - - - - - - - - - - - 3 - 3 - - - 2013
OCEANS [41] 3 - - - - 3 3 - - 3 3 - - - - - - - - - - - 3 - 3 - - - 2014
IMap [92] 3 - - - 3 3 - - - 3 - - - - - - - - - - - - 3 - 3 - - - 2014
MVSec [287] 3 - - - - 3 3 - - 3 3 - - - - - - - - - - - 3 - 3 - 3 - 2014
Toa [183] 3 - - - - 3 - - - - - - - - - - - - - - - - 3 3 3 - - - 2015
SNAPS [37] 3 - - - 3 - - - - - - - - - - - - - - - - - 3 - - - 3 - 2015
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Such view provides a good overview of alerts, or even multi-step attacks of individual
attackers over time. If one attacker conducts multiple attacks over time (and can
be identified using the IDS system), the temporal evolution of the attacks becomes
visible as timeline. However, in larger computer networks, a vast amount of external IP
addresses are involved. SnortView can only provide very limited scalability, because
the occupied screen space directly correlates with the analyzed time span and the
number of external IP addresses, which can be quite high. Additionally, there is no
integrated analytical support, to group or cluster various events to make usage of
space more efficient. To address such limitations, we focus on the challenge to identify
patterns based on events (or NetFlow records) over time. We analyze them and use
multi-dimensional scaling (MDS) to place each event to a specific location based on an
arbitrary number of weighted event features. In contrast to SnortView’s approach, our
layout won’t necessarily need more space, when the number of external IP addresses
increases.

4.1.1 Usage of Temporal MDS Plots for Attack Patterns

This section builds on the following publication [133]1:

D. Jäckle, F. Fischer, T. Schreck, and D. A. Keim. Temporal MDS Plots for Analysis
of Multivariate Data. IEEE Transactions on Visualization and Computer Graphics,
22(1):141–150, 2016. ISSN 1077-2626. doi:10.1109/TVCG.2015.2467553 [133].

Together with Jäckle et al. [133] we published a novel technique to visualize patterns
over time. This approach is also suitable for attack pattern visualization in the context
of cyber security. Because I was primarily just involved in evaluating the approach, I
quote the following brief description of the TMDS technique of our joint publication.
For more details, the reader is referred to the detailed description of concepts discussed
in Jäckle et al. [133].

“Temporal Multidimensional Scaling (TMDS) [...] takes temporal multi-
variate data into account and visually presents the data enabling analysts
to identify patterns and explore the data space [...] TMDS applies a sliding
window approach on the data and computes a one-dimensional (1D) MDS
for each window. The resulting sequence of 1D MDS mappings are then
organized along the temporal axis: The x-axis represents the time, and the
y-axis represents the MDS similarity value. Similar events are grouped over
time and can efficiently be identified. To analyze the multivariate nature,
we augment the visualization with a sequenced diversity matrix aligned with
the MDS plot revealing the different temporal behaviors of single variables.
Furthermore, we introduce a new algorithm to find similar patterns based

1 The publication’s main contribution (TMDS) was developed by Dominik Jäckle, so most of it was also
described by him in our joint publication [133]. I applied his technique to a real-world dataset as a
case study and conducted a ground truth evaluation using VAST Challenge 2013. The responsibilities
for this joint publication were divided as follows: Dominik Jäckle did most of the writing concerning
the technique. I primarily focused on writing the case study and ground truth evaluation. Tobias
Schreck actively contributed to the paper, while Daniel Keim gave advice and suggestions. All authors
were also involved in proofreading.
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on the user selection and the behavior along dimensions. TMDS enables
the efficient detection of recurring patterns and further allows to identify
evolution of patterns, being based on varying scales and intervals. [...] Most
existing approaches employ two-dimensional MDS projections. TMDS relies
on 1D MDS projections, taking the second dimension in the plot to show the
change of multivariate data patters over time.” [133]2

Figure 4.1 shows our TMDS application for a real network flow dataset. The main
display, which looks like a large scatter plot is based on many vertically-aligned 1D
MDS projections (as columns), which are placed next to each other. This means that
all colored dots, having the same x-value, represent the events occurred in a single time
window. The y-value represents the MDS similarity value.

During calculation of a single 1D MDS, events of the previous time windows are
included as well. Consequently, highly similar events will be placed on a similar y-
position in the respective columns. For example, most events visualized as blue-colored
dots in (B) of Figure 4.1 represent NetFlow records, which have the same source IP
address together with few specific TCP port numbers.

Previous work in network security visualization typically focuses either on general,
temporal independent, patterns (e.g., [81]), or on temporal patterns (e.g., TNV [102]),
which can typically not be analyzed promptly due to scalability and level-of-detail
issues. At first sight, TMDS might look similar to PortVis [173], yet our approach
does fundamentally differ as described in the previous paragraph. PortVis solely uses
time and port range as axes to represent the events and thus particularly focuses on
port scans. Our approach does not only focus on ports, but takes arbitrary (weighted)
dimensions into account, and is therefore able to identify today’s complex temporal
attack patterns showing general behavior. TVi [28] for internal/external monitoring also
operates on temporal slices using entropy, but uses PCA-based techniques to analytically
identify anomalous behavior using a timeline visualization combined with histogram
charts.

To demonstrate the effectiveness of our method, we present in the following section a
case study using network traffic. The interested reader, can find an additional evaluation
using the VAST Challenge 2013 dataset in Jäckle et al. [133].

4.1.2 Evaluation using Network Security Case Study

In this case study, we focus on all loud events of a full period of 24 hours of a public
/16 computer network. We want to obtain a rough image of interesting events with
different characteristics. The data is based on a privacy-preserving and anonymized
data collection infrastructure, which we developed and used in previous research [81].

To facilitate this analysis, we use Apache Spark3 to preprocess and sample the
NetFlow data files, which are about 4 to 10 GB per day, to generate a suitable CSV file
of incoming data flows only. This preprocessing step reduced the network flows to 16,474
records. Focusing solely on TCP traffic leads to 6,908 records as visualized in Figure 4.1.
After loading the CSV file into our interactive prototype, we weight the different main
dimensions with respect to increasing the impact of the IP addresses and the destination
port. Because we analyze incoming network traffic, we are particularly interested in
how possible attackers access services within our network. In such cases, the source port
2 This paragraph was mostly written by Dominik Jäckle in our joint publication [133].
3 https://spark.apache.org/

https://spark.apache.org/
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is less helpful to distinguish between different attack patterns, because it is assigned
by the operating system or router from a ephemeral port range, respectively. However,
the destination port is relevant to assign attacks to similar attack vectors. A higher
weight of such ports leads to visual clusters of attacks to the same service (e.g., focusing
on port TCP/80, which is the default port for HTTP traffic). After weighting the
dimensions, TMDS is computed within seconds and the visualization display is loaded.
It is quite usual for network traffic, that most connections are quite diverse and are hard
to distinguish, because legitimate traffic does often not represent any clear patterns or
clusters. We observe the same situation here, thus many records are diversely spread
on the vertical axis (light blue dots) as seen in Figure 4.1. However, several interesting
and unexpected visual patterns are clearly visible. We discovered various salient visual
patterns using TMDS, which are labeled from A to D in Figure 4.1. Finding these
events with diverse characteristics without visual support of TMDS, would require the
analyst to issue various manual queries on the data. Manual queries would have been
hard without knowing them beforehand and would also have been quite time-consuming.
In the following a list of main patterns found with TMDS.

A

B

C

D

▲Figure 4.1 — Temporal MDS plots applied to network traffic data. For each
temporal MDS plot (top) the sequentially aligned matrix (bottom) provides an overview
of correlations among dimensions. The visualization reveals the attack patterns for a
distributed brute-force attack (A, D) and various different port scans (B, C). Reprinted
from [133]. © 2016 IEEE.

• Pattern A: Distributed Brute-Force Attack – This pattern reveals a long-
term distributed brute-force attack from a distributed bot network on port TCP/22
to break into reachable SSH servers. Using the similarity clustering after manual
selection of an arbitrary part of the pattern, it becomes obvious that the attack
is operated over a longer period of time. Figure 4.1 shows all events in magenta
related to this specific distributed botnet attack.

• Pattern B: Massive Port Scan – Drilling-down the visual pattern (highlighted
in dark blue) reveals a massive port scan from a single IP address to a specific
exclusive set of ports (TCP/80, TCP/81, TCP/443, TCP/8000, TCP/8080) of
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many internal computers from a single external attacker, which is not related to
the ongoing brute-force attack. The scan was operated from 10:36 until 10:56.
The goal of this scan was to check for running web servers on various common
ports.

• Pattern C: Single Port Scan – This pattern reveals a port scan to our network
looking for accessible webservers on port TCP/80. In addition, some port scans
search for open SMTP server on port TCP/25, which is typically performed to
identify mail servers. Open mail servers can be used as open relay for sending
spam.

• Pattern D: Brute-Force Continuations – The magenta color refers to the
same characteristics as seen in Pattern A. Some attackers are still trying to attack
SSH services, however in a much more subtle way than during night time as seen
in Pattern A.

4.1.3 Conclusions and Limitations

In previous years, there was a lot of research focusing on visualizations for attack patterns.
However, most of them relied on IDS alerts to provide good high-level overviews of
major network threats, which are previously identified using mostly signature-based
intrusion detection systems. However, this also limits the possibility to provide a holistic
view for more complex targeted attacks, primarily for advanced persistent threats
(APT), in which possible traces in many different data sources provide important hints
contributing to a thorough threat analysis. Our approach using TMDS plots is more
generic and takes into account an arbitrary number of weighted features and combines
analytics with a scalable visualization to identify and reveal temporal attack patterns.
Compared to other approaches, the visualization is independent from specific features,
because the similarity of events is highlighted to identify re-occurring or orchestrated
attacks sharing common features. In our case study, we showed the usefulness of this
approach in the analysis of network traffic and identified various interesting findings.

However, there are various limitations of TMDS, which will have to be addressed
by future research. The technique depends on various parameters. Because these
parameters depend on the data characteristics and size, it is hard to predict and set
them automatically. Eventually, the user is responsible for setting an appropriate window
and step size to define the sliding windows. Furthermore, the current implementation of
TMDS needs a lot of memory and processing time. Therefore, we had to heavily sample
the original network-security datasets, so that they could be analyzed with TMDS.
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4.2 Visual Correlation for Routing Anomalies

The sections coming next build mostly on the following publications [25, 84]4:

F. Fischer, J. Fuchs, P.-A. Vervier, F. Mansmann, and O. Thonnard. VisTracer:
A Visual Analytics Tool to Investigate Routing Anomalies in Traceroutes. In
Proceedings of the Ninth International Symposium on Visualization for Cyber
Security, VizSec ’12, pages 80–87, New York, NY, USA, 2012. ACM. ISBN 978-1-
4503-1413-8. doi:10.1145/2379690.2379701 [84].

E. Biersack, Q. Jacquemart, F. Fischer, J. Fuchs, O. Thonnard, G. Theodoridis,
D. Tzovaras, and P.-A. Vervier. Visual Analytics for BGP Monitoring and Pre-
fix Hijacking Identification. IEEE Network, 26(6):33–39, 2012. ISSN 0890-8044.
doi:10.1109/MNET.2012.6375891 [25].

In the previous sections, we focused on attacks on the Internet and often assumed that
the IP addresses involved in an attack are meaningful. An active brute-force attack
originating from a specific IP address most likely means, that the respective host is
either owned by the attacker, or is actively misused without the knowledge of the
legitimate owner (e.g., a host which is part of a botnet). On the other hand, if we
receive an e-mail from a legitimate mail server or legitimate IP address, which is not
blacklisted, the e-mail is most likely less suspicious than others.

However, these assumptions only hold, when the underlying routing is correct.
Routing is a fundamental concept in the Internet. Correct path announcements are
important to reach the correct destination servers. Despite of the importance and the
severe consequences of routing issues, the responsible border gateway protocol (BGP) is
quite vulnerable. Announcing malicious routing paths can be used to hijack IP blocks.
As a result the attacker can conduct malicious activities from legitimate IP addresses.
Distribution of vast amounts of spam is a scenario where the misuse of legitimate IP
prefixes helps the attackers to circumvent widely used IP-based blacklists.

Related Work

In Table 4.2, we provide an overview of visualization method for BGP-related analysis
tasks. These systems can be classified into various main categories, which will be
described in the following.

Systems with High-Level AS Overviews

BGPlay [18], which is one of the most popular BGP analysis tools, uses a node link
diagram to present an intuitive high-level AS view to show the autonomous systems and
their connections with each other. BGPlay was improved by integrating a topological
4 The responsibilities for our joint publication about VisTracer [84] were divided as follows: Johannes
Fuchs and I did the programming and the writing. Pierre-Antoine Vervier provided the data and
was also involved in the writing, especially with respect to the case study. Florian Mansmann and
Olivier Thonnard did the proofreading and gave advice. The joint publication [25] was an outcome
of our close collaboration with BGP experts in the VIS-SENSE project, providing a survey of BGP
visualization methods to identify prefix hijacks, in which I mainly contributed in describing the
various tools.
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▼Table 4.2 — Related work of visualization methods for routing behavior.
Overview of related work for visual analysis of routing behavior and anomaly detection.
Method Use Case Data Source Visualization Year
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Teoh et al. [242] - 3 - - - - - - - - - - 3 - - - - - - - - - 3 - - - 3 - 2002
Teoh et al. [243] - 3 - - - - - - - - - - 3 - - - - - - - - - 3 3 - - 3 3 2002
ELISHA [241] - 3 - - - - - - - - - - 3 - - - - - - - - - 3 - - - 3 - 2002
BGPlay 2003 [18] - 3 - - - - - - - - - - 3 - - - - - - - - - 3 - 3 - - - 2003
EventShrub [245] - 3 - - - - - - - - - - 3 - - - - - - - - - 3 - - 3 - - 2004
Teoh et al. [244] 3 3 - - 3 - - - - - - - 3 - - - - - - - - - 3 3 - - 3 3 2004
BGPlay 2005 [49] - 3 - - - - - - - - - - 3 - - - - - - - - - - - - - - - 2005
TAMP [271] - 3 - - - 3 - - - 3 - - 3 - - - - - - - - - 3 - 3 - - - 2005
BGPlay 2006 [55] - 3 - - - - - - - - - - 3 - - - - - - - - - 3 - 3 - - - 2006
Link-Rank [148] - 3 - - - - - - - - - - 3 - - - - - - - - - 3 - 3 - - - 2006
VAST [181] - 3 - - - - - - - - - - 3 - - - - - - - - - - 3 3 - - - 2006
BGP Eye [246] - 3 - - - - - - - - - - 3 - - - - - - - - - 3 3 - - 3 - 2006
BGPeep [214] - 3 - - - - - - - - - - 3 - - - - - - - - - 3 - 3 - - - 2008
Papadopoulos et al. [186] - 3 - - - - - - - - - - 3 - - - - - - - - - 3 - 3 - - - 2012
BGPfuse [187] - 3 - - - - - - - - - - 3 - - - - - - - - - 3 - 3 - - - 2013

map [55] to represent hierarchies. Both tools provide timelines, which can be used to
focus on interesting time intervals. Animation helps to present routing changes and
route flappings. Several colored lines describe the advertised routes as node-link diagram
to the selected prefix.

While this interactive animated visualization is quite intuitive for the visual explo-
ration of historic events in BGP data, the analyst must have a clear idea of which time
span and which prefix is relevant for the analysis. Compared to static representations,
animation is time-consuming and the analyst needs to focus on many changing aspects
of the graph. The main benefit of such an animated view is to present a known case,
but not necessarily to identify a suspicious event.

Link-Rank [148] is a similar system, because it also uses a graph based representation
of the ASes. Additionally, the edges are weighted according to the number of routes
and changes between the different AS links. With this supplementary information the
analyst can observe routing changes and link instabilities. Activity plots further help
to focus on the most suspicious update bursts, which might indicate prefix hijacking
resulting in major route changes.

Another tool, focusing on animated node link diagrams, is TAMP [271]. It displays
a pruned graph for the network topology, an animated clock with controls to show
and manipulate the time of the current state of the graph and another detailed chart
to present the events belonging to a selected edge. Compared to other tools, strong
statistics are included to detect correlations between BGP events at any time scale.
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The algorithms can be enriched with additional data sources like traffic flows or router
configuration files to improve the diagnosis of BGP anomalies. The combination of
statistical methods, data enrichment and visualizations helps to detect prefix hijacking,
route flapping and anomalies in long time periods.

VAST [181] uses 3D visualizations to show topological connectivity between different
ASes. Interaction possibilities like rotating, zooming, or panning help to explore the 3D
space. Furthermore, different filter techniques provide the possibility to focus on certain
aspects of the data. The tool allows mainly to visually explore AS connectivity and to
identify critical infrastructures. Within the visualization update bursts of specific ASes
become visible, which can be an indicator for occurred prefix hijacking.

EventShrub [245] uses an automatic anomaly detection algorithm combined with
a tightly coupled visual timeline. Pie charts used as small glyphs are plotted to this
timeline to represent the different instability events. This representation helps to identify
deviations from normal behavior.

▲Figure 4.2 — Pixel-based visualization of ELISHA. The main visualization
consists of a scalable pixel-based approach to display BGP data. Each pixel represents
an IP address with a color encoding according to the corresponding BGP event. The
three detailed windows at the top enlarge areas of interest to better analyze single IP
addresses. Reprinted from [25]. © 2012 IEEE.

Systems with Low-Level IP Views

In contrast to the previous tools, which focus on high-level AS overviews, there are
various tools focusing on the low-level IP space. ELISHA [241] makes use of a pixel-based
approach. The screen is filled with colored pixels, each representing single IP addresses.
They are laid out according to their corresponding IP range. The BGP messages are
classified in different event types. Visually mapping this information to color provides
a scalable and space-filling overview visualization as seen in Figure 4.2. With this
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animated visualization, analysts are able to detect, explore, and visually present routing
anomalies and MOASes5. Overall, ELISHA provides an IP prefix centered approach
without representing the overall AS routing paths.

An overview visualization focusing on textual content instead of temporal aspects is
provided by tag clouds, which are a key component in BGPeep [214]. The different tags
represent the names of autonomous systems. The size of tags depends on the number
of update messages for the specific AS. To make use of the hierarchical structure of
IP addresses and to provide a more IP-space centered view, horizontal parallel axes
are used by BGPeep. The first axis represents the AS number; the other four, one
byte of an IP address. An update message is represented by a line intersecting the
axis at appropriate positions. Using this visualization technique, it is possible to reveal
potential router misconfiguration, route flapping, or multiple advertised prefixes.

Systems with Multiple Views

BGP Eye [246] combines data mining techniques and visualizations using multiple
views. Update messages are classified and clustered. An overview visualization displays
the activity among different ASes in a graph layout. Additionally, a 3D matrix with
connecting lines, reveals more detailed information about a single AS. Therefore, prefix
hijacking or changes in the overall routing behavior can be detected.

RIPEstat6 is a popular web interface, which is continuously improved, with a variety
of different charts to show historic activities or different distributions related to the
selected AS or IP prefix. These visualizations do not present a general overview to
detect anomalies, but help to investigate individual cases, and also includes various
techniques found in academic research papers (e.g., integrated version of BGPlay [18]).

Other Methods and Approaches

Besides the visualizations of routing data, several solutions to secure BGP have already
been studied in by Bush and Austein [35] and Kent [137], but the high computational
cost of using cryptography and the required changes in protocol and infrastructure
retain their deployment. Automated BGP hijack detection techniques attempt to
uncover abnormal changes in the routing infrastructure likely due to a BGP hijack by
monitoring the control plane and/or the data plane. Most automated systems [147, 194]
only monitor BGP updates and trigger an alert when a new advertisement conflicts with
their model of the Internet topology. Various other methods [15, 120, 283, 288, 236] also
use data plane information to collect information about the different hosts and networks
along the forwarding path from a source to a monitored network. Several features of
data plane traces can be leveraged to help detect abnormal routing changes, e.g., a
network reachability change [236], an AS-level traceroute deviation [283], a significant
change in the traceroute path length [288]. Finally, Hu and Mao [120] combine control
plane BGP hijack detection techniques with host fingerprints.

However, these automated techniques do not really enhance situational awareness
with respect to BGP anomalies, because the context is not conveyed to the analyst.
Therefore, visualization techniques are needed to visually explore the situation to
distinguish between false positives and actual suspicious anomalies.
5 Multiple Origin Autonomous Systems: IP prefixes appearing to originate from more than one AS.
Such originating AS is called MOAS.

6 https://stat.ripe.net/

https://stat.ripe.net/
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Overall most of the aforementioned visualization tools show the routing changes
mainly as animation, which is appropriate for visually presenting a particular known
event. For exploratory analysis, animation is not entirely satisfying. Therefore, other
techniques have to be investigated in order to improve the temporal analysis. To
combine the strengths of scalable and informative approaches for long-term analysis,
the tight coupling of different techniques seems to be promising.

Our approach, which will be presented in the following sections, instead makes use
of a combination of pixel-based techniques to present anomalous events in an overview,
and glyph-based techniques to represent historical information for analyzed targets. We
do also include a graph representation. However, our focus is the direct integration of
temporal information into the nodes of the graph using a temporal glyph representation.
Besides of the optional animation, this static integration in our approach can help
the analyst to get a quick overview of the path without having to replay the whole
communication as animation to understand the temporal changes.

In our system we leverage different features of the traceroutes like the IP/AS paths
(based on the BGP messages), the route length, the host and AS reachability as well as
some BGP information to detect abnormal routing changes. We also correlate them to
help determine whether observed routing changes are benign or malicious.

4.2.1 VisTracer – Visual Analytics for BGP Prefix Hijacking

The focus of our work is the large-scale analysis and exploration of routing anomalies
for IP addresses starting to send spam in the Internet. This is achieved by actively
tracking and measuring the traceroutes to the origin IP addresses over longer periods
of time to eventually monitor possibly malicious path changes. Because of the vast
amount of trace data with their changing underlying BGP routes, it is not helpful to
just visualize the raw data. To make sense of the data it is important to algorithmically
identify anomalies first. The tight integration of visual displays can be used to get an
overview for quick ad-hoc analyses to identify noteworthy events and to differentiate
them from false positives. The proposed visualizations in our work help to visually
correlate anomalies, gain deep insights, and explore the events within their context of
historic and related anomalous traceroutes. Furthermore the analysts can push their
findings back to the system. This feedback could then be used for further improving
the underlying anomaly detection algorithms.

The three main contributions of our work with respect to BGP anomaly detection
are (i) a visual analytics tool called VisTracer to analyze large-scale traceroute data, (ii)
the integration into a large-scale analysis system and (iii) novel glyph- and graph-based
summary visualizations for traceroutes. Additionally, we present an in-depth discussion
of recent case studies for suspicious routing anomalies with respect to spam activities.

Analysis Infrastructure

Manipulating the Internet routing infrastructure to hijack a block of IP addresses involves
modifying the route taken by data packets so that they reach the physical network
of the attacker. A system called Spamtracer [257] has been developed by Vervier and
Thonnard [257] to monitor the routes towards malicious hosts by performing traceroute
measurements repeatedly for a certain period of time. IP-level routes are translated into
AS-level routes using live BGP feeds. The motivation for monitoring data plane routes
towards specific hosts involved in spam campaigns is to collect the route taken by data
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packets to reach these hosts as soon as a spam is received from them. By performing
multiple measurements on consecutive days for a certain period of time, typically one
week, routes towards a given host or network can be compared and analyzed in depth to
find evidences of a possible manipulation by an attacker of the routing infrastructure.

This system is based on a linear data flow where a feed of IP addresses to monitor is
given as input and a series of enriched traceroute paths produced as output from which
abnormal patterns can be uncovered. The incoming feed of IP addresses are retrieved
from Symantec.cloud [232] spamtraps. This data is enriched with IP traceroutes.
A customized version of the classic traceroute function is implemented and takes
advantage of ICMP, UDP and TCP packets to increase the likelihood of hosts to be
reached by them. Due to the many artifacts that can be found in IP-level traces, we also
build the AS-level routes. The IP-to-AS mapping is performed using live and distributed
BGP feeds from RouteViews [202] to obtain as accurate and complete mappings as
possible. Additionally, information about the different hosts, AS owners, IP networks
and geo locations is collected.

Extracting Routing Anomalies

We analyze the collected routes to uncover abnormal routing changes and classify
them as benign or malicious. Routing anomalies are extracted independently for every
monitored IP addresses. The first approach does focus on extracting routing anomalies
from BGP hijacking scenarios, while the second one searches for suspicious patterns
based on different metrics. To identify malicious BGP hijacks, we start from existing
scenarios of BGP hijacking [120] for which we know the resulting routing anomalies.
However, it has to be considered that such routing anomalies can also result from
benign BGP routing practices, e.g., multi-homing of customer ASes by ISPs, or from
non-malicious incidents due to misconfiguration or operational errors.

• Prefix Ownership Conflicts occur when a block of IP addresses appears in
the Internet routing infrastructure as originated by multiple ASes. This routing
behavior can be the result of a hijacker advertising someone else’s IP space in
order to attract traffic to or originate traffic from that IP space. Advertising
the same prefix is a possible way for BGP hijacking, if the IP prefix is already
advertised by a different AS. This technique creates a routing anomaly referred to
as Multiple Origin AS (MOAS). Announcing a slightly different prefix can also be
used for tampering the ownership of a given IP prefix, which can be more (resp.
longer) or less specific (resp. shorter). In this case, we refer to this anomaly as a
Sub Multiple Origin AS (subMOAS).

• BGP AS Path Anomalies occur, when the location of a network in the Internet
AS topology changes. As a result of a BGP hijack it is likely that the sequence of
ASes traversed from two different points will change. Significant changes in the
BGP AS paths should be investigated to determine if they are indeed benign or
if they result from a malicious manipulation of the routing infrastructure. The
Next-Hop AS anomaly can be observed with a certain number of different next-hop
ASes, i.e., ASes next to the origin AS in an AS path, for a given origin AS and
BGP collector. A Complete AS Path anomaly consists in observing a significant
change in the AS paths for a given origin AS and BGP collector.
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The second approach searches for suspicious patterns in traceroutes based mostly on
metrics already used in previous works [288, 236].

• Traceroute Destination Anomalies refer to suspicious values in features re-
lated to traceroute metadata. Host/AS reachability defines if a destination host or
AS towards a given IP address is reachable (unreachable) for a certain number of
days during the monitoring period and suddenly becomes unreachable (reachable)
and remains like this until the end of the monitoring period. This reachability
anomaly can result from a major routing change which causes the destination
host or AS to become (un)reachable. The hop count or the length of a traceroute
path is the value of the last TTL for which a reply to our probe IP packets has
been received. The hop count anomaly is the consequence of a significant and
sudden change in the hop count. This situation suggests that an important routing
change occurred to permanently change the route taken by packets to reach the
destination network.

• Traceroute Path Anomalies refer to suspicious changes in the sequence of
hops traversed by traceroute paths to a given destination host. Using the different
features collected for IP/AS hops, we can consider a traceroute not only as a
sequence of IP addresses or ASes, but also as a sequence of countries, domain names,
RIRs, etc. These alternate paths are leveraged in this detection of suspicious
traceroute paths. The AS-level Path Anomaly consists in observing a significant
change in the AS-level paths towards a given IP address.

Country-level Path Anomalies are observed by extracting traceroute paths towards
a given host exhibiting significant discrepancies in the sequence of traversed
countries. This assumes that the countries traversed to reach a given destination
from a given source is likely to remain constant even if routing changes occur at
the IP or AS levels.

Design and Development Process

To bridge the gap between domain and visualization experts to generate a useful tool to
solve the analyst tasks is a challenging problem. We addressed this issue through a tight
collaboration with security experts. While my own background is in data visualization,
but also with work experience in system administration, I could support the effective
communication between these two groups. Such a situation, where one person has the
role as a liaison has been formalized by Simon et al. [220] with the “goal to overcome
the interdisciplinary communication issue” [220].

The development process of VisTracer also followed the general idea of co-creation
[205], in which the target group, in our case the BGP security expert, was an active part
of our team. This enabled us to incrementally design and develop VisTracer according
to the specific needs of the BGP analysts.

Graphical User Interface

The continuously growing Spamtracer database can be accessed by the analyst using our
visual exploration tool called VisTracer. The graphical user interface is built in a way
to satisfy the needs of experienced analysts by providing an overview linked to more
detailed visualizations. This helps to solve the different analysis tasks. The individual
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views can be placed according to the user’s preference or adjusted to the working
environment which is important, when the tool is used in multi-display environments.

▲Figure 4.3 — Graphical user interface of VisTracer. (1) and (2) provide
access to constraint filters and a table with observed anomalies. (3) Visual ASN
Overview with occurred anomalies. A Feedback Panel is provided in (4) and access to
individual traceroutes in (5) with map-based (6), glyph-based (7) and graph-based (8)
visualizations. Reprinted from [84]. © 2012 ACM.

The general workflow of VisTracer is inspired by Shneiderman’s information seeking
mantra of having the overview first and then focusing on certain areas of interest
to retrieve additional details [218]. The overall graphical user interface is shown in
Figure 4.3.

The left panel (1) provides a tabular anomaly view with all occurred anomalies.
To investigate specific cases a filter box is integrated for quick ad-hoc queries. Using
different constraints (2) for anomaly types and subtypes the user can focus on the
different classes and combinations of anomalies. Based on the given constraints the
ASN Overview (3) provides an overview of all anomalies using a visual representation.
Findings can be stored in the database using the feedback panel (4), which can be
used to annotate anomalies and comment on findings to make them accessible for
other analysts. The right panel (5) provides tabular access to all destination targets
with their traceroutes. Selecting entries in any of the tables will update the loaded
visualizations for further investigation. A zoomable geographic map (6) to visually
present the currently selected AS path is included. The Visual Traceroute Summary
(7) is a compact visual representation, while the Temporal Graph Representation (8) is
used to get an in-depth overview of temporal usage for involved nodes.
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▼Table 4.3 — Various glyphs used in VisTracer visualizations. An overview
about the three glyphs, which are incorporated in the various visualizations in VisTracer .

Glyph Usage Description

Anomaly
Glyph

Visual ASN
Overview

Used as glyph in matrix overview to represent
most dominating anomalies for the various AS
networks over time. Color shows the percentage
distribution of various anomaly types.

Hop
Glyph

Target History
Visualization

Represent if the current traceroute hop is being
used. Color at bottom and label represents coun-
try. Background color reflects incomplete (gray)
and complete (green) traces, while brightness is
hop’s latency.

Clock
Glyph

Temporal Graph
Representation

Used as hop representation (including country
flag) in node-link diagrams. Each segment repre-
sents a particular day, on which a traceroute was
gathered. The color of a hop’s segment shows if
the node was part of the respective traceroute.

Visual ASN Overview

The main starting point for an exploratory analysis is to monitor different ASes and the
occurring anomalies over time. Therefore, a zoomable matrix layout has been chosen as
the basis for the visual marks shown in Figure 4.3 (3). The x-axis encodes the time and
the y-axis the different destination ASes of traceroutes. By default, the ASes are ordered
according to the total number of anomalies, while other sorting algorithms might be
more appropriate for finding common patterns and correlations between different ASes.
Due to the fact that multiple anomalies of different types can occur on specific points
in time, rectangular glyphs are used to encode this additional information. Glyphs have
the advantage of showing multiple data dimensions in a space efficient compact way.
Each glyph has a fixed size and consists of several colored vertical stripes. Each colored
stripe encodes one type of anomaly. The stripe width is proportional to the amount of
daily anomalies for the respective event type. We decided to chose this additional size
encoding to emphasize on the most prominent anomaly types in the overview, especially
when they spread over longer periods of time. The stripe’s color encoding is based on a
qualitative color scale provided by ColorBrewer [31] and helps to visually distinguish
between the different kinds of anomalies. Therefore, ASes with characteristic colored
patterns are a visual hint for reoccurring anomalies. To further focus on the “hot spots”
with lots of anomalies, opacity is used to encode the overall number of occurred events.
Table 4.3 shows a closeup of such a single anomaly glyph. An AS-based normalization
is used to avoid artificially promoting heavily used large ASes. Suspicious ASes can be
further investigated through double clicking on the different rectangles, which updates
the different views and tables to provide more details on demand.
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Target History Visualization

Traceroutes to the same destination can be investigated in the Target History Visual-
ization as seen in Figure 4.3 (7). The main idea of this visualization is to provide a
visual traceroute summary to show hop usage variances of single traceroutes to the same
target. Therefore, the x-axis encodes the individual hops and the y-axis the traceroutes
on the different days. Whenever a hop is used within a traceroute a small glyph is
placed accordingly. This rectangular glyph encodes the country code of the hop with a
small label and a colored bar. With the help of this colored bar, connections within
the same country can be spotted preattentively. The main color of the glyph reflects
whether the traceroute was complete (green) or incomplete (gray). This prominent
feature is visible at first sight because it is considered of high importance. Additionally,
brightness is used to encode the latency of the individual hops. A closeup of this glyph
can be seen in Table 4.3. At the end of each traceroute row, a small anomaly container
is placed. The container represents the four main types of anomalies with equally sized
rectangles. These rectangles are further divided into smaller rectangles representing
the subtypes. Whenever a type/subtype combination can be found in a traceroute the
corresponding rectangle is colored. Thus, anomalies lasting for a longer period can be
easily detected as a reoccurring pattern over many traceroutes. Suspicious traceroutes
with lots of anomalies show several colored rectangles and, therefore, are easy to spot.
Examining the anomalies in combination with the used hops and the completeness of the
traceroutes over time can lead to relevant findings and helps the analyst to understand
the traceroutes. This visualization is especially effective to get an overview of the used
hops in the different traceroutes.

Temporal Graph Representation

The previous visualization does not focus on following the exactly used routes or the
identification of the most common route in the correct order. To solve this task, an
additional graph visualization is provided as seen in Figure 4.3 (8). The graph layout is
extended with an additional glyph encoding to show routing changes over time. The
nodes represent the different hops, the edges show the connections with each other.
The width of an edge depends on the amount of traces using this exact connection.
The nodes are visualized by circular glyphs with equally sized slices and small flags
reflecting the country of the hop as can be seen in Table 4.3. Because of the aspect
ratio, the circular glyphs can directly be integrated into the graph nodes without
wasting additional space for this temporal information or requiring disturbing and more
time-consuming animation. The number of slices depends on the amount of traceroutes
shown in the graph. The clockwise arranged slices represent the different traceroutes for
the selected days. When a hop was used in a traceroute the respective slice is colored,
otherwise it is not displayed at all. The color depends on whether the traceroute reaches
its destination or not. This encoding supports the analyst in detecting the main route
(i.e., based on the path’s width), the usage of hops (i.e., the proportion of colored
slices), the reachability of the destination (i.e., the hue of the colored slices) and the
temporal development of the route (i.e., the partition of the slices). Additionally, the
geographic location of the corresponding country can be taken into account in the
layout to highlight possible route flappings between different countries with the help of
the graph’s layout. To focus on the main route, we additionally propose an Enhanced
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Baseline Layout which displays the most common path at the bottom. The hops, not
being part of the baseline are arranged in a force-directed way above the baseline.

Combining the different views or looking at them individually supports the user in
the different analysis tasks. To evaluate the tool’s effectiveness, the following section
describes the analyst’s workflow and how the visualizations help.

4.2.2 Evaluation using Case Studies

In this section we describe how suspicious routing events are identified and how the
VisTracer framework reflects this workflow to assist the analyst. We also present two
case studies of routing events identified as suspicious using the developed visualization
tool. Figure 4.4 depicts the steps involved in the analysis of the network traces collected
by Spamtracer . Furthermore, this figure shows where in the workflow the visualizations
can assist the analyst in examining the data. In detail the analysis is based on (1)
automatically extracting routing anomalies from the traces, (2) selecting the monitored
ASes having a meaningful set of anomalies, and (3) investigating cases using all the
collected data to identify the suspicious cases. The result of the investigation of a case
is finally reported back to the database (4).

Extraction of
Routing Anomalies 

Spamtracer
Database

Selection of
Candidate Suspicious Cases

Visualization Support:
Visual ASN Overview

Investigation of
Candidate Suspicious Cases

Visualization Support:
Target History Visualization,

Temporal Graph Representation

Report of
Investigation Results

Interface Support:
User Feedback

1

4

2 3

▲Figure 4.4 — Visual analysis workflow in VisTracer. The figure shows the
overall interactive analysis workflow relating the various steps to the visualizations and
views integrated in VisTracer .

VisTracer supports the Selection of Candidate Suspicious Cases by providing a
graphical user interface to filter for anomalies which match a given set of constraints on
the type, the number and the time of appearance of the anomalies. These correspond to
the most likely suspicious cases. This step is associated with the Visual ASN Overview,
which allows the analyst to define the constraints on the anomalies and then explore
the resulting set of targets aggregated at the AS level. The Investigation of Candidate
Suspicious Cases means to investigate the suspicious cases with the help of the collected
traces as well as some external routing information services to determine if a case
is benign or if it results from a malicious BGP hijack. When investigating a case,
the Temporal Graph Representation and Target History Visualization as well as the
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traceroute hop list provide the analyst with all the data available to determine whether
the routing anomalies observed reflect a malicious routing behavior. To communicate
and further make use of the findings the tool also focuses on Reporting of Investigation
Results. The feedback loop embedded in VisTracer allows to share the result of the
investigation with other analysts.

The Spamtracer dataset used to produce the following two case studies contains
traceroutes collected from April 2011 until the end of August 2011. 848,916 data plane
routes were collected towards 239,907 IP addresses and 5,912 ASes. After the routing
anomalies were extracted from the traces 41,430 destination IP addresses were found
to have at least one anomaly. Given the high number of cases exhibiting at least one
anomaly, we decided to focus on cases having the following combinations of anomalies:

• BGP Origin & BGP or Traceroute Path Anomalies – Select cases exhibit-
ing a prefix ownership conflict with a significant change in the BGP or traceroute
AS path.

• BGP Origin & Traceroute Destination Anomalies – Select cases exhibiting
a prefix ownership conflict with either an IP/AS reachability change or a significant
data plane route length change.

• Traceroute Destination Anomalies & BGP or Traceroute Path Anoma-
lies – Select cases exhibiting a significant change in the BGP or traceroute AS
path with an IP/AS reachability change or a significant data plane route length
change.

We have thus applied these filters in the Traceroute Anomalies panel of VisTracer to
focus our analysis on these cases.

Case Study: Analysis of Suspicious BGP Anomaly

The first case study conducted by our BGP security experts, presents the visual analysis
of a network whose traffic was apparently hijacked by another AS. Actually, we show
how such a case can be uncovered and investigated using the visualizations and other
information provided by VisTracer .

“From the ASN Overview visualization, one particular case caught our
attention, which can be seen in Figure 4.5. Two ASes actually appeared to
share several anomalies, which occurred on the same day. The visualization
allows to extract such time correlation between anomalies in different ASes
thanks to the ASNs and time dimensions. Looking at the anomalies extracted
for the two ASes reveals (i) a Traceroute Destination Anomaly (related to
the destination AS reachability), (ii) Traceroute Path Anomalies, (iii) BGP
Path Anomalies (AS Path Deviation) and, (iv) a BGP Origin Anomaly
(related to a subMOAS conflict).

We can make use of the Target History Visualization to have a first view
of the traceroute paths and the uncovered routing anomalies. Figure 4.6
shows the set of IP hops traversed by traceroutes from the vantage point
in France to the destination host throughout the monitoring period. From
this visualization we can say that there is a noticeable change in the set
of traversed IP hops between the third and the fourth traceroute. The six
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▲Figure 4.5 — Suspicious AS networks. Closeup of the Visual ASN Overview
showing two nearly identical anomaly distributions for two different ASN at the same
point in time. Reprinted from [84]. © 2012 ACM.

routing anomalies uncovered for these traceroutes on the fourth day confirm
that a major routing change occurred. In this case, a change in the origin
AS of the destination IP prefix occurred at the same time as a change in the
sequence of ASes traversed both in the traceroutes and in the BGP AS paths.
The BGP Origin Anomaly, in the third column, has been marked as benign
(green) by Spamtracer, because the two conflicting ASes were found to have
a provider-customer relationship.

▲Figure 4.6 — Target History Visualization of the first case study. The
visualization shows the significant difference in the ASes traversed between the third
and fourth day. The routing anomalies observed on the fourth day are also shown.
Reprinted from [84]. © 2012 ACM.

To further investigate the case, we make use of the Graph Visualization,
which is presented in Figure 4.7 for the same monitored host. The Graph
Visualization allows the analyst to look at the IP-, AS- or the Country-level
traceroute paths, i.e., the sequence of IP hops, ASes or countries traversed.
While the AS-level graph is particularly well suited to investigate abnormal
changes in inter-domain routing, the IP- or Country-level graphs can also be
leveraged to investigate routing anomalies. Actually, they are complementary.
It is thus interesting to start from the high-level view of the Country-level
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graph and go down the levels to analyze in more details specific parts of the
routes.

In the present case we decide to make use of the AS-level graph to compare
the sequence of traversed ASes before and after the change of origin AS.
The origin and destination AS before the change belongs to a backbone ISP,
which advertises an aggregated IP prefix including the destination IP prefix.
The unreachability of the destination AS after the change can be observed
on day four and correlated with the Traceroute Destination Anomaly seen
on the same day in the Target History Visualization. Also, the last AS that
could be reached by traceroutes appears in the collected BGP AS paths, as
the next-hop AS, which is the direct upstream provider, of the new origin
AS. This provider-customer relationship could not be officially explained.
Hijacking a network can actually be performed by advertising it with a correct
origin AS and by putting the attacking AS as the next-hop AS.

▲Figure 4.7 — Graph visualization in VisTracer. The node-link diagram with
embedded clock glyphs shows significant difference in the ASes traversed between the
third and fourth day. Reprinted from [84]. © 2012 ACM.

After an investigation, it turned out that the next-hop AS belonged to a
company providing DDoS mitigation as service by sink holing the attacking
traffic of their customers. The analysis suggests that either the security
company redirected the traffic of their customer’s AS because they were under
attack or the security company may sometimes act as an ISP for some
companies’ AS to easily protect them from undesired traffic. Given the fact
that the security company advertised the route in BGP for at least three days,
we believe that it actually acted as an ISP for its customer.

Although we have detected abnormal routing changes regarding this net-
work, it is quite difficult to validate these anomalies as a real hijack case
since we lack the feedback from the owner of the network.” [84]7

Case Study: Link Telecom BGP Hijack

This second case study presents the visual analysis of a validated BGP hijack performed
by a spammer to send spam from the stolen IP address space. The general hijacking
7 The case study is mostly written by BGP security expert Pierre-Antoine Vervier and is also part of
our joint publication [84].
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spammer phenomenon has already been observed in [197, 120] and consists of spammers
taking control of unused IP address space in order to send spam from clean, non-
blacklisted IP addresses.

“From the ASN Overview (Figure 4.8), AS31733 caught our attention,
because many diverse routing anomalies occurred within a limited period
of time. Moreover, several anomalies occurred on the same day, which
reinforced the idea that a major routing change occurred at that time for
this AS. The uncovered anomalies related to AS31733 include (i) Traceroute
Destination Anomalies (related to the destination host and AS reachability),
(ii) Traceroute Path Anomalies and, (iii) BGP AS Path Anomalies (AS
Path Deviation).

▲Figure 4.8 — Visual ASN Overview of AS31733. The glyphs reveal many
different anomalies over a longer period of time. Reprinted from [84]. © 2012 ACM.

The Target History Visualization of a monitored host within AS31733
exhibiting a combination of Traceroute Destination Anomalies, Traceroute
Path Anomalies and BGP AS Path Anomalies. Figure 4.9 presents the Target
History Visualization which shows the set of ASes traversed by traceroutes
from the vantage point in France to AS31733 throughout the monitoring
period. We can clearly see that the set of traversed ASes changes significantly.
By looking at the anomalies extracted for that case, we can also see that
all anomalies were observed on a particular day, i.e., just after the change
in the traceroute path. The observation of the set of IP hosts traversed by
the traceroutes shows the exact same behavior. From these observations we
can say that the location of the monitored AS in the Internet AS topology
changed significantly.

Figure 4.10 presents the Graph Visualization of the same monitored
host within AS31733. This visualization shows the sequence of IP hops,
ASes or countries traversed by the traceroutes. In this case, looking at the
Country-level paths would show that packets always seem to go through the
US to go from a source in France to a destination in Russia. While this
routing behavior can be considered abnormal, we also know that some big
ISPs, i.e., backbone ISPs, are spread across continents and may be introduce
US hops in a European route. If we now look at the AS-level graph we can
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▲Figure 4.9 — Target History Visualization of multiple traceroutes. The
figure shows the significant difference in the set of ASes traversed between the fourth
and fifth day. The routing anomalies observed are also shown. Reprinted from [84].
© 2012 ACM.

see that US ISPs Level-3 (AS3356) and Internap (AS12182) both appear
in the routes. Besides being a backbone ISP, Level-3 also appears in every
traceroute during the monitoring period. However, Internap only appears in
the first traceroute, before the routing change. To have more details about
the traceroute going through AS12182 Internap, we can have a look at the
IP-level graph. The graph reveals that the first traceroute goes through two
routers of AS12182 apparently located in the US and then directly ends in
AS31733 apparently located in Russia. This suggests that the destination host
currently using an IP of AS31733 is likely located in the US instead of Russia.
Furthermore, the visualization also shows that the destination host and AS
could not be reached from the fifth day until the end of the monitoring period.
This observation is corroborated by the Traceroute Destination Anomalies
(related to the host/AS reachability) uncovered on the fifth day. All this
suggests that the routing change observed lead to the destination host and
AS to become unreachable.

After the investigation, it turns out that on August 20th 2011 the network
administrator of the Russian telecommunication company “Link Telecom”,
whose AS31733 belongs to, complained on the North American Network
Operators’ Group (NANOG) mailing list that his network had been hijacked
by a spammer [222]. On both August 25th and August 29th 2011 changes were
observed in the traceroutes and BGP routes towards AS31733. These changes
were the result of the owner regaining control over his network. In this case,
the aggregation in the ASN Overview of the routing anomalies extracted for
the individual monitored hosts within their AS actually uncovered the pattern
of several diverse and timely close routing anomalies.

We further described this hijack case in Symantec’s Internet Security
Threat Report 2012 [230]. Although the prefix appeared to be announced
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▲Figure 4.10 — Temporal Graph Representation of the confirmed BGP
hijack. The figure shows the significant difference in the sequence of ASes traversed.
It also highlights the unreachability of the destination AS after the routing change
occurred. Reprinted from [84]. © 2012 ACM.

by the correct origin AS, i.e., AS31733, it was routed via a US ISP called
Internap (AS12182). During this period the network was under the control
of the spammer, spam messages were received by Symantec.cloud honeypots.
The hijack lasted for five months from April 2011 until August 2011 and is a
validated case of a hijacking spammer that managed to steal someone else’s
IP space and sent spam from it.” [84]8

4.2.3 Conclusions and Limitations

In the previous sections we presented a novel visual analytics tool called VisTracer
to investigate routing anomalies and BGP hijacks. In particular, spamming activities
were monitored with the help of a large-scale traceroute collection system. In contrast
to related work, our approach was the first method using visual analytics to combine
control- with data-plane data sources, to investigate BGP anomalies with the focus on
spam campaigns. Special care was taken to design VisTracer to support the workflow of
analyzing the large-scale dataset according to the analysts’ needs. The tool’s flexibility is
derived from the integration of several linked data views and visualizations into a powerful
analysis suite, which can address a variety of analysis questions. Furthermore, the
usefulness and effectiveness of VisTracer for network security analysts was demonstrated
in two case studies conducted by BGP security experts. The results and events
identified with Spamtracer and further explored with VisTracer could also be used by
our colleagues from Symantec to be incorporated in Symantec’s 2012 Internet Security
Threat Report [230]. However, the actual validation of highly suspicious IP prefix
hijackings still remain challenging. Regular usage of VisTracer by our analysts would
show, which additional views and techniques should be integrated, to even better support
the analysis of future BGP and routing-related threats. To improve the scalability of
the graph representation, further layout improvements would be beneficial to reduce
possible clutter of traceroutes with very complex connections and to incorporate missing
hops in the layout.

8 The case study is mostly written by BGP security expert Pierre-Antoine Vervier and is also part of
our joint publication [84].
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4.3 Visual Analysis for Malware Behavior
This section builds on the following joint publication [261]9:

M. Wagner, F. Fischer, R. Luh, A. Haberson, A. Rind, D. A. Keim, and
W. Aigner. A Survey of Visualization Systems for Malware Analysis. In
R. Borgo, F. Ganovelli, and I. Viola, editors, Eurographics Conference on Visual-
ization (EuroVis) - STARs, Italy (Cagliari), 2015. The Eurographics Association.
doi:10.2312/eurovisstar.20151114 [261].

“Malicious code (or malware) is defined as software that fulfills the deliberately harmful
intent of an attacker” [175] and is a major threat in our modern computer networks.
Symantec’s 2015 Internet Security Threat Report [231] confirms again that e-crime and
malware is still an increasing major threat. Especially, so-called ransomware attacks
have “more than doubled in 2014, from 4.1 million (...) up to 8.8 million” [231].
Ransomware is a specific type of malware, either scaring the user with fake warning
messages, restricting the access to the computer, or even automatically encrypting the
whole file system. Eventually, ransomware demands money from the victim to provide
means to get their data back. To pay the ransom, the victim is often requested to
pay in bitcoins, which makes it quite difficult to track and shut down such scams [231].
While it is generally not advisable to indulge in such kinds of blackmail, the victims
often have no other choice, if they do not have any off-site backup of their data.

A major challenge to fight against malware, is the sheer number of new malware files
collected every day. Malware authors make use of sophisticated methods to introduce
polymorphism. As a result malware samples differ from each other, so that automatic
detection based on simple hash functions is not possible any more. However, anti-
malware companies and organizations still need to classify these constantly modified
files, which are often obfuscated, to the actual underlying malware family. Therefore,
malware analysis often has to focus on the behavior, which is more characteristic for
a malware family. In malware analysis, therefore, security experts and researchers
focus on “the process of determining the behavior and purpose of a given malware
sample” [175] that helps to find such common characteristics to eventually define robust
signatures to detect malware. This comprises static and dynamic malware analysis.
In static analysis, the suspicious file is processed and disassembled to reveal common
patterns, so that it can be distinguished from known, or identified as new malware
family. In dynamic malware analysis, the malware sample is actually executed within
a sandbox environment. Tools observe and log the behavior of all running processes.
These behavior logs are then analyzed and compared to known characteristics. Both
analysis approaches can benefit from visualizations. Visual analytics can also help to
enhance situational awareness especially with respect to the projection stage, because
knowing the capabilities of a given malware sample involved in a successful compromising
attempt, helps to forecast and assess the consequences.
9 This published STAR report was eventually the outcome of an initial joint research meeting in
Konstanz. All authors were involved in writing and contributed to the paper. Markus Wagner had the
overall lead and guided the literature review. Markus and I classified all methods, and I introduced
the initial taxonomy draft, which we further refined together. In the paper, I primarily had the lead
on Section 5, which I also present in this dissertation. Together, we identified various open gaps and
discussed further research directions.
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▼Table 4.4 — State-of-the-art overview for visual malware analysis.
Overview of state-of-the-art techniques for visual analysis of malware behavior.
Method Use Case Visualization Technique Visualization Year
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Yoo [278] - - 3 - - - - - - 3 - - - - - - - - - 3 - - - - - - 3 - 3 - 2004
Panas [185] - - 3 - - - - - 3 3 - - - - - - - - - - - - - - - 3 3 - - - 2008
Conti et al. [51] - - 3 - - - - - - - - - - - - - - - - 3 - - - - - - - - 3 - 2008
Quist and Liebrock [195] - - 3 - - 3 3 - - - - - - - - - - - - - - - - - 3 3 3 - - - 2009
Trinius et al. [252] - - 3 - - - - - - - 3 - - 3 - - - - - - - - - - 3 - - - - 3 2009
Grégio and Santos [105] - - 3 - 3 3 3 - - - - - - 3 - - - - - - - - - - 3 3 3 - - - 2011
Nataraj et al. [176] - - 3 - - - - - - - - - - - - - - - - 3 - - - - - - - - 3 - 2011
Quist and Liebrock [196] - - 3 - - 3 3 - - - - - - - - - - - - - - - - - 3 3 3 - - - 2011
Anderson et al. [9] - - 3 - - 3 - - - - - - - - - 3 - - - 3 - - - - - - - - 3 - 2012
Grégio et al. [106] - - 3 - 3 - 3 - - - - - - 3 - - - - - - - - - - 3 3 - 3 - - 2012
Saxe et al. [206] - - 3 - 3 - - - - - - - - - - 3 - 3 - 3 - - - - - - - 3 3 3 2012
Yee et al. [275] - - 3 - - 3 - - - - - - - - 3 - - - - - - - - - - - 3 - - - 2012
MalwareVis [290] - - 3 - 3 - - - - - - - - - 3 - - - - - 3 - - - - - 3 3 - - 2012
Han et al. [109] - - 3 - - - - 3 - - - - - - - 3 - - - 3 - - - - - - - - 3 - 2013
Paturi et al. [188] - - 3 - - - - - - 3 - - - - - 3 - - - - - - - - - - 3 - - - 2013
Wu and Yap [272] - - 3 - - - - - - - - - - - - 3 - - - - - - - - 3 - - - - - 2013
Kancherla and Mukkamala [134] - - 3 - - - - - - - - - - - - - - - - 3 - - - - - - - - 3 - 2013
Donahue et al. [63] - - 3 - - 3 - - - - - - - - - 3 - - - 3 - - - - 3 - - - 3 - 2013
SEEM [104] - - 3 - 3 - - - - 3 - - 3 - 3 - - 3 - 3 - - - - 3 - - 3 3 3 2014
Long et al. [162] - - 3 - 3 3 - - - - - - - - - - - - - - - - - - 3 - 3 - - - 2014
Shaid and Maarof [213] - - 3 - - - - - - 3 - - - - - - - - - 3 - - - - 3 - - - 3 - 2014
DAVAST [267] - - 3 - 3 3 - - - - - - - 3 - - - - - - - - - - 3 - 3 - - - 2014
Han et al. [111] - - 3 - - - - - - - - - 3 - - - - - - 3 - - - - 3 - - - 3 - 2014
Han et al. [110] - - 3 - - - - 3 - - - - - - - 3 - - - 3 - - - - - - - - 3 - 2014
Shaid and Maarof [212] - - 3 - - - - - - 3 - - - - - - - - - 3 - - - - 3 - - - 3 - 2014

In the following section, we will provide an overview of visualization systems for
malware analysis, which is an emergent field of research in security visualization, as
more and more methods have been proposed in recent years as shown in Table 4.4.
More precisely, we provide a taxonomy of existing visualization systems. Furthermore,
we identify future research perspectives to eventually enhance malware analysis through
visual analytics.

4.3.1 Taxonomy of Visualization Systems for Malware Analysis

Using visualization obviously helps to understand malware behavior, which is helpful for
forensics and malware detection. Additionally, visual analysis can help to support the
malware classification process. Malware detection does mostly refer to the automatic
identification of malware (e.g., anti-virus software for end users), however, in more
complex scenarios, targeted attacks, or for unknown malware, manual analysis by
malware experts is inevitable. Such analyses help to identify suspicious behavior, to
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eventually create rules and signatures, which can then be used to improve automated
malware detection. Malware classification focuses on the aspect to assign an unknown
malware sample to a known group of malware types.

In general, we identified two different main goals of malware visualization systems.
On the one hand, there are systems for malware forensics which are used to understand
the individual behavior of a malicious malware sample and on the other hand, there are
malware classification tools which are used to identify the common behavior of malware
samples. Based on these main groups, we differentiate between three underlying main
categories and propose a Malware Visualization Taxonomy as seen in Figure 4.11. We,
therefore, define these categories as follows:

• Individual Malware Analysis – These systems support the individual analysis
of primarily single malware samples to gain new insights of its individual behavior
related to malware forensics.

• Malware Comparison – This category fits to visualization tools that are pri-
marily used for comparison of various malware samples for the identification of
common behavior (e.g., the malware family) to support malware classification. In
general, we have identified two different subcategories:

– Feature-Based Approaches – These systems explore and compare dif-
ferent malware samples based on extracted features and use various data
visualization techniques to compare characteristics with each other.

– Image-Based Approaches – Visualization tools in this category generate
visual images based on binary data or the behavior logs of the malicious
software. Eventually, those visual fingerprints are compared using computer
vision techniques.

• Malware Summarization – Systems of this category summarize the behaviors
of many different malware samples or whole malware corpora to identify similarities
and to gain new insights of their common general behavior.

As sketched in Figure 4.11, eventually, one or several malware analysis tools can be
used in combination to generate rules and signatures for malware samples or malware
families based on the generated insights. Additionally, the increasing use of visual
analytics methods will enhance the forensics and classification methods for malware
detection. From the taxonomy as seen in Figure 4.11, it becomes obvious that 9 tools
focus on individual malware analysis, 11 on malware comparison, and 5 on malware
summarization to provide visual summaries of large amounts of malware samples
and their characteristics. Additionally, it is interesting to see that only 4 tools for
malware comparison are using primarily the feature-based approach, while 7 focus on
image-based approaches. Based on the various publication years, it becomes apparent
that using malware characteristics (based on features extracted through static and
dynamic malware analysis) is becoming more common since 2013 and that fewer systems
focus on individual malware analysis (malware forensics). Most of the research for
individual malware analysis was performed between 2004 and 2012. In the past 10
years, visualization seems to be used more often to generate image-like representations
of malware samples which are then used for visual comparisons.
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Malware Classification
understanding of malware corpora and

identification of common behavior

Malware Forensics
understanding of individual

malware behavior

Malware
Comparison

1. Feature-Based Approach

2. Image-Based Approach

Using Visual Analytics to Enhance
Forensic / Classification Methods for Malware Detection

Malware
Summarization

Individual
Malware Analysis

1 2 3

[51, 195, 252, 105,
196, 275, 290, 63,

267]

[106, 206, 104, 162]

[185, 176, 272, 134,
213, 212, 111]

[278, 9, 188, 109,
110]

▲Figure 4.11 — A Taxonomy of visual methods for malware analysis. –
Categorization of malware visualization systems into three categories, namely (1)
Individual Malware Analysis, (2) Malware Comparison, and (3) Malware Summarization.
All systems have the ultimate goal to generate rules and signatures for fully-automated
malware detection systems. While the first category tackles the problem of understanding
the behavior of an individual malware sample for forensics, the latter two focus on the
identification of common behavior for malware classification.

Visualization Support for Individual Malware Analysis

The first group contains visualization systems geared towards the extensive analysis
of individual malware samples [51, 195, 252, 105, 196, 275, 290, 63, 267]. Zhuo and
Nadjin [290], for example, focus on only one specific type of malware behavior – the
network activity of a malware sample – which is then visualized by a glyph-like chart.
This specific feature can be explored in great detail which is not possible in other, less
specialized visualization tools.

Other tools consider various features at the same time, but still focus on the individ-
ual analysis of single malware samples. Trinius et al. [252] use treemaps and so-called
thread graphs to visually analyze system calls executed by the selected malware. While
basic comparison is also possible with most of the tools in this category (e.g., using
multiple instances of the same tool), they do not specifically support bulk analysis.

Future Research Directions: The visual analysis of individual malware samples leads
the analyst to a better understanding of the specific behavior and can help to judge
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if an unknown sample is indeed malicious or not. However, current work could be
improved with respect to malware detection, because many of those tools do not
include classification methods to compare the observed behavior to the behavior of
known malware types. In the future we expect more visual analytics tools to combine
individual malware analysis with automated methods and to incorporate methods to
directly relate and compare findings with behavior of known or previously analyzed
samples. Automatic highlighting of important or possibly malicious aspects, would help
the analyst to quickly focus on most suspicious behavior first to reduce the time needed
for manual analysis.

Visualization Support for Malware Comparison

While the individual analysis is needed to get a deep understanding of a malware
sample, the comparison with already known malware samples is crucial for malware
classification. On the one hand, this step helps to reduce the number of samples that
need time-consuming manual analysis. On the other hand, comparison with other
samples can help to identify groups or malware families. All the systems which are
represented in this category use visualizations to enhance the comparison of multiple or
many malware samples for the identification of their common behavior (e.g., to identify
related samples, find the correct malware family). Technically, we distinguish between
feature-based and image-based approaches.

Feature-based approaches [106, 206, 104, 162] use visual analytics techniques to let
the user filter, search, compare, and explore a wide range of properties extracted during
analysis. These systems provide means to compare malware samples based on their
similarities of features. Individual exploration of these features is also possible, but
is much more limited, compared to the previous category. While some of the tools of
the previous category were specifically designed to do an in-depth analysis of network
activity or to fully explore the temporal sequence of system calls, feature-based malware
comparison tools try to focus on a broad set of different features and characteristics,
and try to make them all accessible to the analysts. This leads to more abstract
representations, higher aggregation levels, and eventually less details for individual
features (e.g., ignoring the temporal aspects of network connectivity). The advantage
of such approaches is that the analyst can directly compare various features. This helps
to understand in which features malware binaries are related and in which they are not.

Future Research Directions: The comparison of characteristics helps to visually enhance
the malware classification process in various ways. Tools in this category also focus
on the question of which features can be extracted and used for comparison. Compar-
ing such malware characteristics helps to identify related samples based on similarity
metrics and to identify the common behavior of the explored samples for classification.
Especially, the possibility to compare many different features at once and the possibility
to apply standard methods from the field of data analysis (e.g., MDS, PCA, clustering)
opens a promising research direction. Using visual interfaces to guide the analyst in the
selection of features seems to be a good way to better support malware classification.
Such visual analytics interfaces would eventually help to define better classifiers to
improve malware classification models.
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(a) Win32/FakeRean.D (b) Win32/FakeRean.E (c) Trojan.Mebroot

▲Figure 4.12 — Comparison of malware images. Visualizing malware executa-
bles as grayscale images is a common technique to visually identify similarities with low
computation costs.

Image-based approaches [185, 176, 272, 134, 213, 212, 111] have in common that
they use visual mappings to render an image for each malware sample. For example, the
analyst might need to correlate a given suspicious file to a cluster of malware variants
in order to associate the file to a specific malware family. Similar images can be visually
clustered using either a manual or an automatic approach based on algorithms from
the areas of computer vision and image processing. Some systems visualize the binary
data and directly map the (raw) byte-code representation or respective entropy values
to an image (e.g., [176, 111]). We applied this technique to variants (D and E) of the
Win32/FakeRean malware as seen in Figure 4.12 (a) and (b). We use this to detect
similar images representing related malware samples. As shown in Figure 4.12 binary
images of this particular malware familiy exhibit quite characteristic and highly similar
images, even they represent different files. According to Microsoft threat encyclopedia,
Win32/FakeRean is a “family of rogue security programs pretend to scan your PC for
malware, and often report lots of infections. The program will say you have to pay for
it before it can fully clean your PC. However, the program hasn’t really detected any
malware at all and isn’t really an antivirus or antimalware scanner. It just looks like
one so you’ll send money to the people who made the program. Some of these programs
use product names or logos that unlawfully impersonate Microsoft products”10.

These particular malware samples can be visually distinguished from Figure 4.12 (c),
which represents a Trojan.Mebroot malware sample, sharing no visual patterns with the
other malware family. This malware “was designed to run undetected on compromised
computers and uses a number of sophisticated rootkit techniques to ensure its stealthy
execution and thereby prolong the lifespan of the threat. The Trojan modifies the MBR
so that it is able to execute even before Windows starts, which means that it is able to
bypass security features and create hooks deep in the core of the operating system.”11.

Nataraj et al. [177] extract various texture features from such images, to eventually
use them for classification. The advantage of this technique is, that it can be applied
to any file and can be computed efficiently, which is important for large malware
corpora. While classification accuracy is quite comparable for many malware variants,

10microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Win32/FakeRean
11 symantec.com/security_response/writeup.jsp?docid=2008-010718-3448-99

https://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Win32/FakeRean
http://www.symantec.com/security_response/writeup.jsp?docid=2008-010718-3448-99
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the approach is limited because it does not make use of any dynamic analysis and only
relies on the actual bytes found in the binaries. Another problem is, that the visual
impression is strongly dominated by possible images embedded in the resource section
of an executable, which could be avoided by malware authors to create less obvious
visual patterns. To overcome this drawback, the approach was extended to visualize
disassembled CPU instructions or API calls (e.g., [185, 212, 213]) in a similar way,
however, resulting in higher computation costs.

Future Research Directions: One possible future research direction could be the imple-
mentation of interaction methods to segment a region of interest or to characterize these
texture patterns. Automated image comparison would help analysts to visually identify
common code portions or specific instruction blocks within a sample. This information
could be used to directly highlight relevant sections in the image. Additionally, the
integration and combination of image- and feature-based methods could be promising.
Image-based methods using static analysis together with a probability score can be
used as efficient first step in a classification pipeline. Afterwards, the more expensive
feature-based methods together with dynamic analysis would only be applied to those
samples, which share less distinctive image representations, eventually leading to a more
scalable classification process.

Visualization Support for Malware Summarization

While this category is more diverse, the associated tools [278, 9, 188, 109, 110] all provide
primarily some kind of summarization capability for a large number of malware samples
within the visualization. Some identify a visual mask that is common for all selected
samples (e.g., [278]). Others summarize and extract a single combined representative
out of many malware variants (e.g., [109, 110]). Finally, some use visual representations
to show hierarchical clusters [188] or use heatmaps to visually represent kernels used
for a support vector machine classifier to summarize and eventually classify malware
samples [9].

Future Research Directions: The combination of different types of base data and data
provider analysis modes are frequently stated as future work in this category. This
will result in larger amounts and more heterogeneous data as input for visualization
systems. Another direction into larger amounts of data can be the comparison of
malware families as a whole based on their summarization. Finally, the integration of
malware summarization with malware comparison and malware forensics using semantic
zoom for example is a promising direction.

4.3.2 Conclusions and Limitations

In the previous sections, we provided an extensive overview about the state-of-the-art of
visualization systems for malware analysis, which is also presented in an interactive web
application12. We identified three major categories, namely individual malware analysis,
malware comparison, and malware summarization. Each method could be assigned to
one of these categories. Future malware visualization systems should investigate more
comprehensive designs. For example to switch the perspective between summarization
and comparison, or to semantically zoom into individual analysis mode. Likewise the
12malware.dbvis.de

http://malware.dbvis.de/
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integration of common features of malware families can be integrated into individual
malware forensics to make it more expressive. We also found out, that most systems
directly visualize the raw output of the various dynamic or static malware analysis
techniques. However, only few systems (e.g., [206]) provide a tighter integration of
additional analytical methods to classify or cluster the data. Such integrations and
also the stronger visual support in the scope of feature selection and during the actual
classification process, seem to be promising future research directions. Enhancing the
awareness and a better understanding through visual analytics of common characteristics
for misclassified malware samples, would eventually lead to better classifiers and could
make the analysis process more efficient.
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4.4 Visual Exploration for Attack Attribution
The next sections build mostly on the following publication [88]13:

F. Fischer, J. Davey, J. Fuchs, O. Thonnard, J. Kohlhammer, and D. A. Keim.
A Visual Analytics Field Experiment to Evaluate Alternative Visualizations for
Cyber Security Applications. In M. Pohl and J. Roberts, editors, Proc. EuroVA
International Workshop on Visual Analytics. The Eurographics Association, 2014.
ISBN 978-3-905674-68-2. doi:10.2312/eurova.20141144 [88].

The behavioral analysis of attackers in the Internet is a challenging, but highly relevant
field of research. It is important to understand their modus operandi to mitigate attacks
and develop new methods to protect network infrastructures, customers, and to identify
fraud. However, threat actors may belong to various organizations that operate in
different ways making it hard to differentiate them based on common behaviour. Fully
automated data mining algorithms, and data collecting infrastructures, can help to
address this challenge, but when used alone they are often not capable of providing
actionable insights, because human analysts can hardly understand the results generated
by these algorithms.

Attack attribution is “primarily concerned with larger scale attacks (...) determining
their root causes and (...) deriving their modus operandi” [57]. Analysts try to relate
attacks or malware samples to a larger group or attack campaign. The scope of the
following sections is to make use of various visualization techniques to explore and
understand inter-related datasets and clusters describing large-scale attack campaigns.
The overall goal is to relate new threats to a known group of attackers or campaigns,
and help security response analysts to understand the modus operandi and trends
within the threat landscape. The three main contributions are: (i) The adaptation of
several well-known visualizations to enhance the interactive analysis of threat landscapes.
(ii) The integration into VACS to visually explore and make sense of the complex results
of threat intelligence clustering algorithms. (iii) Sharing results and lessons learned of
conducting a field experiment with domain experts.

Related Work

In the field of visual analytics for cyber security, there are not too many systems,
which directly focus on threat landscape analysis to support threat intelligence. In the
following, we want to highlight some of the systems, which are directly related to this
use case, as also seen in Table 4.5.

Yu et al. [279] propose a system, called EMBER, which uses primarily geographical
displays to provide a visual high-level overview about extreme malicious behavior. Using
normalization based on the population of the various countries, the authors use the
map, to highlight regions with unexpected high malicious activity. Their system “uses
a metric called Standardized Incidence Rate (SIR) that is the number of hosts exhibiting
13The responsibilities for this joint publication were divided as follows: I lead the paper and did
most of the writing. Together with James Davey and Olivier Thonnard, we conducted the actual
field experiment in Dublin. Olivier applied his TRIAGE algorithm, and described the technique.
James helped primarily in summarizing the results, while all authors gave feedback, and helped with
proofreading.
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▼Table 4.5 — Related work for analyzing the threat landscape. Overview of
related work to analyze the threat landscape and provide visual support for attack
attribution.
Method Use Case Data Source Visualization Year
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EMBER [279] - - - 3 - - - - - 3 - - - - - - - - 3 - - - 3 - 3 - - - 2010
Nicter [73] - - - 3 - - - - - - - - - - - - - - 3 - 3 - 3 - - - - - 2011
BURN [203] - - - 3 - - - - - 3 - - - - - - - - 3 - - - 3 - 3 3 - - 2011
Tsigkas et al. [253] - - - 3 - - - - - - - - - - - - - - - 3 - - 3 - 3 - - - 2012

malicious behavior per 100,000 available hosts” [279]. Such systems help to get a
high-level overview of the current threat landscape. While EMBER uses a geographical
approach to analyze source IP addresses from detected attacks, collected by honeypots
(and other systems) around the world, Roveta et al. [203] focus on rogue autonomous
systems (AS). They propose a visualization system, called BURN [203] to display and
explore temporal data about rogue autonomous systems. The data is also collected
via honeypots using the FIRE [227] system, which gathers data, for example using
honeypots, to “identify and expose organizations and ISPs that demonstrate persistent,
malicious behavior” [227]. This data is visualized in BURN to give an overview about
the most malicious computer networks around the world. To make this data accessible,
they use various visual representations, and mainly use animated interactive bubble
charts to provide a global view. This system, therefore, helps to identify ISPs, which
host many malicious websites or illegal services.

While the previous systems, focus on the overall threat activity around the world,
Tsigkas et al. [253] focus more on the analysis of threat activity related to specific
types of attacks. Tsigkas et al. [253] propose a technique to create abstracted node-link
diagrams, to analyze common feature values of spam campaigns to gain “insights into
the strategic behavior of spam botnets and spammers operations” [253]. The input data
is gathered by spamtraps distributed around the world, to gather spam and phishing
e-mails. These “honeypots” attracting malicious e-mails, provide a rich dataset to get
an in-depth view about ongoing spam campaigns and the behavior of these attackers on
a larger scale.

In the following, we propose a set of alternative visualization approaches, tackling
the very same problem. In contrast to Tsigkas et al. [253], we not only employ node-link
diagrams, but also apply a graph-based clustering algorithm, to analyze the resulting
clusters with space-filling techniques and use glyph-based representations in a small
multiple setting to provide an overview and compare multi-dimensional clusters, which
relate to distinctive malicious campaigns (e.g., spam campaigns).
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4.4.1 Data Analytics for Threat Intelligence

In the following we leverage the multi-criteria clustering algorithm TRIAGE [249],
which was designed to support threat intelligence and attack investigation tasks. The
applicability of this algorithmic approach has been previously shown and evaluated in
different uses cases on various datasets [126, 250, 248, 56].

The TRIAGE algorithm uses a combination of graph-based analysis and data
aggregation methods as used in multi-criteria decision analysis [249]. The system can
generally be applied to various security-related datasets consisting of individual events,
for the purpose of identifying groups of related events that might have a common root
cause, e.g., series of cyber attacks sourced by the same attackers or threat group. In
a spam e-mail dataset, for example, each message represents one event with different
features (e.g., sender address, recipient, subject), denoted as Fk, with k = (1, ..., n). For
each feature an undirected edge-weighted graph Gk(Vk,Ek,wk) is created, where the
vertices Vk represent the message features, and the edges Ek weighted by the function wk

reflect similarities among messages [248]. Afterwards the different weighted graphs Gk

are combined using an aggregation function. The resulting multi-dimensional clusters
(MDCs) represent groups of events correlated by a number of features, where the
combination of correlated features may vary within the same cluster, depending on the
data fusion model. In a spam dataset such MDCs are likely to reflect individual spam
campaigns containing messages having similar characteristics, and hence a common
root cause.

4.4.2 Integrated Visualizations for MDC Exploration

To conduct interactive exploration of multi-dimensional clusters, we integrate vari-
ous additional visualizations into VACS , which were afterwards also integrated into
Symantec’s visual analytics application containing visual dashboards, charts, tables for
feature selection, and cluster visualizations to cover the whole analysis workflow. In the
following, we focus on the usage of three visualization techniques as seen in Figure 4.13
that can be used to explore individual MDCs: The Treemap View (TV), the Graph
View (GV), and the Chord View (CV).

• Treemap View (TV) – This space-filling view as seen in Figure 4.13 provides
an overview of the features, mapped to color, and their value occurrences. Each
colored rectangle on the upper level represents a feature, containing further
rectangles representing cluster prototypes. The more frequently a value, the bigger
the corresponding rectangle in the squarified treemap [32]. Interaction enables
the user to zoom in and reveal splines to show the event co-occurrences of values
in entities. Treemap representations with splines are also used in related security
applications [81] for the exploration of network traffic, while treemaps alone are
commonly used to provide overviews for forensics [118] and malware analysis [252].

• Graph View (GV) – This interactive node-link diagram shows the relationships
between feature values, which is widely used in various security applications [170].
Each node represents a value occurring in the cluster, whereas an edge indicates
the co-occurrence of a pair of values in an event of the dataset. The node sizes
are mapped to the number of events and the thickness of the edges is determined
by the number of co-occurrences. The graph is highly interactive and provides,
zooming, panning, re-positioning nodes, and the modification of edge thickness,
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▲Figure 4.13 — Using VACS for visual attack attribution. After feature
selection and analysis, the shown visualization display can be used to explore the MDC
clusters. The small-multiple view at the top can be used to select MDCs. The Treemap
View (TV), the Graph View (GV), and the Chord View (CV) show the respective MDC
of a well-known scam campaign impersonating the company “Eskom Holdings” [126].

label size, and node size. To handle large datasets, a sampling can be applied and
the layout is calculated on the server-side using Graphviz [65].

• Chord View (CV) – This interactive circular chart enables the exploration of
all relations between the different feature clusters composing the MDC. The circle
segments on the edge of the view represent the values, their colour is determined
by their feature. Interactive highlighting shows which feature clusters have co-
occurring events. When the users selects a feature cluster, the shown chords
encode the number of co-occurring events to the other feature clusters. The
implementation is based on D3.js [29] using an approach similar to Circos [146],
which is widely used to analyze complex datasets.

The visualization modules were built on top of VACS (as introduced in Section 3.1.1),
which is a web-based research framework providing visualizations and a secure REST
interface to remote datasets and algorithms of multiple VIS-SENSE project partners.
This modular architecture helps to interdisciplinarily develop visual analytics applica-
tions that enables us to work on sensitive datasets and novel algorithms, while preserving
the rights of the property owners.

4.4.3 Evaluation using Field Experiment

In the field of visual analytics, evaluation is quite challenging [255]. On the one hand,
real-world scenarios often have no ground truth, and on the other hand, only experts
can identify and validate insights. User studies in the lab are not an appropriate
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or realistic approach to judge the usefulness of visual analytics applications, which
require in-depth domain knowledge. Shneiderman and Plaisant [219] propose the use
of “Multi-dimensional In-depth Long-term Case studies (MILCs)” [219], which is a
promising long-term evaluation approach. However, this is hard to achieve in practice
due to the lack of financial support and willingness of experts to participate in such
studies. Shiravi et al. [216] states that “one of the reasons that security visualization
systems, despite their great potential, are not often incorporated (...) is the result of
failing to address the focal points of user experience” [216]. We tried to address this issue
and gathered feedback about the user experience for the three visualization techniques.
Within VIS-SENSE , we had the chance to conduct a two-day field experiment [38] with
security experts from an operational response team while observing them, how they
worked with their own data using our visual analytics application deployed as prototype
system on their premises.

Field Experiment with Security Response Experts

▲Figure 4.14 — Investigation during the field experiment. Example of an
MDC found during the field study, attributed to a notable espionage campaign. Reprinted
from [88]. © 2014 The Eurographics Association.

The two-day field experiment was conducted in November 2013 and carried out on the
premises of Symantec Security Response in Dublin, Ireland and involved six participants
with a solid background of cyber security threat analysis. The study was focused on
collecting a qualitative assessment of the visual analytics system and to evaluate the
user experience of the interactive visualizations. It consisted of three phases. First, a
general introduction to the goals and results of the VIS-SENSE project were given,
followed by an interactive demonstration using data known by the project partners.
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Then, the main part of the field experiment consisted in a hands-on session, in which
the participants used the system for analyzing their own data. The demonstration was
designed to show how a typical exploratory session would be carried out. It illustrated
the use of the main functionalities, such as the overview, search, and visualization
features and showed how to find, confirm, and explain interesting patterns. The main
task was to “explore clusters to understand the reasons why these entities have been
grouped together” including questions like: Which customers are targeted? What are
the strongest correlative features and characteristics of a campaign? What are the most
significant coalitions of features that are linking entities?

Hands-On Session

In the hands-on session, the participants had approximately two hours to analyze their
data with our visual analytics system. There were four users (three analysts and one
designer) actively using the application on three laptops. Their dataset consisted of
44 features and approximately 100,000 entities and had not previously been analyzed
with TRIAGE and was completely unknown to us. Due to a lack of experience with the
dataset, the parameters for the clustering algorithms were chosen based on what had
worked well previously with other similar datasets. Based on density and cardinality 10
features were selected as input to the clustering algorithm. In spite of these challenges,
we were able to find clusters suitable for exploratory analysis and hypothesis formulation
and validation. An example is illustrated in Figure 4.14, which represents a notable
cyber espionage campaign that affected two large defense industries in April 2012, and
was attributed to the Elderwood gang [229]. To acquaint the analysts with the software,
a series of simple, predefined interactive tasks, and general questions were given to
the participants. However, the analysts were able to freely use the software to explore
their dataset. We observed the participants passively, but were available on request to
answer questions and provide guidance to the participants. After the hands-on session
an informal discussion was conducted and feedback of the participants was recorded.
At the end of the experiment, a summary was presented to all participants and further
interested parties.

Results of the Field Study

During the introductory presentations the participants posed detailed questions about
the techniques, hardware, and software. They appeared to see the applicability of
the visualizations to their own work. In particular, the participants wanted to know
more about the potential for the integration of visualization components into other
environments. They stated that their goal in the field experiment was to try out the
components to see whether they could achieve the tasks, they previously had to do
manually, faster with our technologies. We found this encouraging and it explained
the overall high degree of interaction during the meeting. The users began working
on the tasks set for them during the hands-on session and had little trouble achieving
basic tasks. In some instances, a few words or a sentence from the observers was
required to guide the participants, but no deeper explanations were necessary. The
participants diverged from the structured tasks frequently to engage in more exploratory
activities, returning occasionally to the tasks. In this way they were able to test out
each of the interactive features of the interface. Some participants started targeted
searches for specific phenomena in the data, copied attributes from the application and
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compared them manually with other datasets and internal systems. One participant
began a deeper exploration of a cluster in GV, repositioning nodes and conducting
a closer examination of connections. The cluster showed a cyber-criminal campaign.
The participant was able to identify and characterize distinct phases of the campaign
and used the visualization to explain the modus operandi of the attacker to another
participant. Other similar spontaneous discussions between users about their findings
occurred, which showed that our system fostered collaborative analysis.

The participants had some difficulty acquainting themselves with the UI due to
missing UI features and lack of UI documentation. For example, they applied filters in
tables and expected similar filtered views of the data in the visualizations. However, this
feature was not yet implemented and the lack of linking in the displayed data led to some
confusion. They also complaint about the lack of meta-data integration. In general,
GV was perceived as the most useful of the three alternative visualizations. Indeed, GV
was used most intensively by the participants. To avoid the influence of layout and
positional preference and to force the analyst to focus on each visualization individually,
each visualization was shown in full-screen and not as integrated display as seen in
Figure 4.13. The other two were tried out initially, but not pursued much subsequently.
Participants generally preferred TV to CV while the latter was criticized as lacking
usefulness for their workflow. However, it still may be useful for short overviews of
relations in very large datasets. A participant commented that their most common
workflow is of an investigative nature; drilling down into the data and exploring details.
Thus, visualizations focused on providing an overview without possibilities for deeper
interactive exploration are not very useful for them. In addition, GV was the most
interactive of the three views. Overall, it was concluded, that GV was best suited for
their need of detailed structural exploration for medium sized MDCs, TV provided an
helpful and compact overview, while the least preferred CV mostly focused on exploration
of relations between clusters within a MDC. A high-level overview summarizing the
qualitative feedback is presented in Table 4.6. A participant commented that the
system did open many new possibilities for data exploration and representation. The
system was perceived as very useful to speed up analysis tasks. Furthermore, the
participants provided many constructive suggestions for improvement, in particular for
further enhancing user interactions and data analytics capabilities.
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▼Table 4.6 — High-level summary of qualitative feedback. A selection of
results based on qualitative feedback during the field experiment.

Visualization Best Task Usefulness Pros & Cons

Treemap
View (TV)

compact
overview useful

+ compact overviews

+ good scalability

– splines not lockable

Graph
View (GV)

detailed
structural
exploration

very useful

+ high interactivity

+ encouraged discussion

+ investigative workflow

+ most time spent

Chord
View (CV)

cluster
relations limited use

– fixed layout

– hovering not lockable

– navigation issues

4.4.4 Conclusions and Limitations

We presented a web-based visual analytics application to analyze multi-dimensional
clusters to support the TRIAGE algorithm and enhance attack investigation tasks
associated with it. We conducted a field experiment to gather qualitative feedback from
domain experts specifically on the usage of three visualization techniques. Furthermore,
we identified primary tasks for these alternative visual representations on the basis of
the feedback of the analysts. The detailed feedback can be summarized in three areas,
which can guide future research directions:

• Parametrization for the clustering of unknown datasets proved to be challeng-
ing, which further strengthened the importance of visual feature and parameter
selection to make justified decisions.

• The feedback showed the importance of highly interactive visualizations. Slight
improvements (e.g., filtering, highlighting multiple elements) in the visualizations
can lead to considerable changes in user experience and it may have a strong
impact on the usability to solve real-world problems.

• Inconsistent design decisions easily cause confusion. In collaboratively developed
software, inconsistencies in design are common but should be avoided.

The research prototypes have since been integrated into Symantec’s internal research
framework to analyze security datasets and are actively used for other activities.
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4.5 Conclusions
In this chapter, we investigated some critical use cases of visual analytics with respect to
network threats. Identification and understanding the behavior of cyber security threats
is an important factor for situational awareness. In the first section, we made use of a
generic visualization technique, called TMDS, to be used in the context of attack pattern
visualizations, and evaluated its applicability. Furthermore, we addressed one of the
most critical threats attacking the fundamental routing in the Internet, which are BGP
prefix hijackings. To provide means to support analysts, investigating such incidents,
we developed a visual analytics system, called VisTracer , to explore occurred anomalies
with respect to actual spam campaigns. Because of the recent trend in visualization
systems for malware analysis, we conducted an extensive literature review, and provided
a taxonomy for visualization methods in the context of malware analysis. Additionally,
we discussed future research directions, which suggest further usage of visual analytics
in this highly relevant field. Eventually, we focused on attack attribution and the overall
threat landscape, in which visual analytics can be used to support security response
teams in their daily work analyzing ongoing threats on a larger scale. This is done by
integrating various visualizations to support the visual exploration of multi-dimensional
clusters into VACS . To evaluate this approach, we conducted a field experiment in the
premises of an operational security response team. The usage of our visual analytics
systems on their own data was very well received and they provided extensive feedback
which will be valuable for future research in visualization support for threat intelligence.





“It is just good practice to do a
situational scan and have situational
awareness when you are out in the
world.”

— Phillip C. McGraw
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Gaining situational awareness in the field of cyber security, when real-time net-
work streams are involved, is often not a static process, but a dynamic visual

analytics [167] problem. To gain insights a tight coupling of interactive monitoring
and visual exploration is needed. However, the previous chapters, and also most of the
state-of-the-art do not explicitly focus on the visualization challenges for incrementally
changing heterogeneous real-time data. This is also stated by Shiravi et al. [216], that
security “visualization systems, in their current state, are mostly suitable for offline
forensics analysis.” [216], while real-time “processing of network events requires extensive
resources, both in terms of the computation power required to process an event, as well
as the amount of memory needed to store the aggregated statistics” [216].

To emphasize the importance of visual analytics systems, explicitly supporting the
analysis of evolving data streams in a real-time 24/7 monitoring fashion, we completely
devote this chapter to such a challenge. Furthermore, we show that our approach is
quite generic for heterogeneous data streams, which makes it relevant for more than
one of the security-related use cases described in the previous chapters.

145
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Situational Awareness for Data Streams

This chapter builds mostly on the following publications [79, 80]1:

F. Fischer and D. A. Keim. NStreamAware: Real-Time Visual Analytics for Data
Streams to Enhance Situational Awareness. In Proceedings of the Eleventh Workshop
on Visualization for Cyber Security, VizSec ’14, pages 65–72, New York, NY, USA,
2014. ACM. ISBN 978-1-4503-2826-5. doi:10.1145/2671491.2671495 [79].

F. Fischer and F. Stoffel. NStreamAware: Real-Time Visual Analytics for
Data Streams (VAST Challenge 2014 MC3). In 2014 IEEE Conference
on Visual Analytics Science and Technology (VAST), pages 373–374, 2014.
doi:10.1109/VAST.2014.7042572 [80].

In many security-related scenarios the analysis and situational assessment of data
streams is crucial to detect suspicious behavior, to monitor and understand ongoing
activities, or to reduce streams to focus on the most relevant parts. As discussed in
Chapter 3 there are various data sources for network activity monitoring. Network
routers and servers, for example, produce a continuous stream of network flow records
or system log messages, and hundreds of system metrics and performance data. In some
times, analysts do a close real-time monitoring, while in other situations analysts have
no choice, but to focus only on the most important parts of a data stream. The same
is true in the field of law enforcement in the analysis of criminal activities of ongoing
threats to maintain situational awareness. In this scenario, analysts need to handle
streams of possibly important social media messages and call center messages. Both
scenarios are technically related and show the high importance of research in the field
of data stream analysis with the analyst in the loop that is a key to enhance situational
awareness. The challenge in this field is also to merge and aggregate heterogeneous high
velocity data streams. While we do have a wide variety of highly-scalable databases
and there has been much research in intrusion and anomaly detection, fully automated
systems are not working sufficiently. To convey and support understanding, generate
insights, and evaluate hypothesis, analysts need to have a central role in such a system,
to not loose context, and to be able to judge data provenance. The ultimate goal allows
the analysts to actually get an idea what is going on in a data stream to gain situational
awareness. Such analysts are often “being asked to make decisions on ill-defined problems.
These problems may contain uncertain or incomplete data, and are often complex to
piece together. Consequently, decision makers rely heavily on intuition, knowledge and
experience” [200], which highlights the need to guide analysts to the right parts of a
data stream, because it is impossible to explore everything in the same level of detail.

In the following sections, we introduce NStreamAware, which is a visual analytics
system designed to address this challenge using latest technologies available from the
big data analysis community [280] and real-time visual analytics research [167].

The main contributions of this chapter are the following: Firstly, a system archi-
tecture, called NStreamAware, based on Apache Spark Streaming [11] to summarize
1 The writing, implementation, and programming was done by myself and successfully published at
VizSec [79]. Daniel Keim gave advice and suggestions on the project. The application to the VAST
Challenge dataset was also done by myself with some support of Florian Stoffel for the challenge
submission [80].
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incoming data streams in sliding slices. Secondly, a web-based visual analytics applica-
tion, called NVisAware, using a novel combination of various visualization techniques
within multiple sliding slices to visually summarize the data stream based on selected
features steered by a visual analytics interface.

Design Considerations

Based on the given problem, experience, and expert feedback with earlier work in the
field, we identified following design considerations and principles as crucial for our
approach.

DC1 Incorporation of novel scalable analytics methods – Scalable, distributed,
and proven large-scale analysis frameworks must be building blocks of a system
able to address big data problems. We need to take advantage of such novel
technologies from the big data community and use them in visual analytics
application. We need to bring those worlds together and keep the analyst in the
loop to address complex problems.

DC2 Enabling real-time monitoring – While it is not possible to present all raw
messages for high speed streams, it is still relevant for many scenarios, where
analysts want to closely monitor messages from a particular system, or based
on a specific filter criteria in real-time. Many available visual analytics systems,
however, still do require a static batch loading first. We see the need to be able to
directly push data to our system in a streaming fashion, and be able to smoothly
switch between monitoring and exploration.

DC3 Deterministic screen updates, independent from data stream – The
problem in systems supporting DC2 is the high cognitive load for the analysts
when analyzing real-time streams. Because of the unpredictable characteristics of
data streams with respect to volume, velocity, variety, and veracity, we additionally
need visualizations able to decouple the flow-rate of a data stream from screen
updates and keep the latter constant and predictable to not overwhelm the user.
There is a trade off between DC2 and DC3 to achieve both at the same time.

DC4 Fusion of heterogeneous data sources – Many available systems do focus on
individual data sources, and provide less flexibility to incorporate and correlate
various heterogeneous data sources. However, focusing on particular individual
data sources helps to develop highly effective specific visualization systems. On
the other hand, it is important to cover a broader field of scenarios and tasks, to
provide better situational assessment.

DC5 User-steered feature selection – Feature selection is an important field to
support analysts using appropriate visualization and interaction techniques. Our
goal is to enhance understanding of data streams and provide more compact
overviews. In this process, we want to integrate the human in the workflow
that requires a tight coupling of visual representations, interaction and analytic
methods.

Related Work

The contributions of this work are related to various research fields, so we discuss various
areas in the following section. Many researchers focus on the algorithmic analysis of data
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streams, especially in the field of stream clustering [4] and event detection. In recent
years, there was a focus on social data streams, because of the wide availability of such
data. While most of these systems focus on the detection of events, our work contributes
more in the field of visualizing a condensed heterogeneous data stream to focus on
more interesting changes, omitting or merging less interesting ranges to eventually
focus on important parts in more detail. This idea is related to the work of Xie et al.
[274] proposing a fully-automated merging algorithm for time-series data streams. A
recent study by Wanner et al. [265] takes a look at the evolution of visual analytics
applications for event detection for text streams and concludes that “visualizations were
primarily used as presentation, but had no interaction possible to steer the underlying
data processing algorithm” [265]. This confirms our assumption, that many systems do
not cover DC5 appropriately. Our approach differs, that we provide interactions, so
that users are able to steer the feature selection process. Therefore, the system does not
only rely on the fully-automated selection of interesting parts, but on the user-adjusted
feature set. The ultimate goal of visual analytics systems for data streams is to enhance
situational awareness to facilitate decision making. Endsley [67] provides a widely used
generic definition of SA as also described in Chapter 2. It “is the perception of the
elements in the environment within a volume of time and space, the comprehension of
their meaning, and the projection of their status in the near future” [67]. Further work
makes it clear, that situation awareness primarily resides “in the minds of humans”,
while situation assessment better describes the “process or set of processes” leading to
the state of SA [235]. In the complex field of computer network security operations,
only a combination of various tools used by experienced domain experts, will eventually
be able to guide the user to such cognitive state.

As described in the previous chapters, there is lot of research to enhance situational
awareness for network activity and also for network threats using various visualization
techniques. Erbacher [71], for example, designed various visualization techniques to
explicitly convey the current state of the network to best support situational assessment.
ELVIS by Humphries et al. [121] is a highly interactive system to analyze system log
data, but cannot be applied to real-time streams. SnortView [142] focuses on the specific
analysis of intrusion detection alerts and also does not satisfy DC2. The focus of previous
work of our own, the Event Visualizer [85], is to provide real-time visualizations for event
data streams (e.g., system log data) to provide real-time monitoring and possibilities
to smoothly switch to exploration mode covering DC2 and DC4. In contrast to this
event-based approach, Best et al. [24] proposes another real-time system to enhance
situational awareness using the analysis of network traffic based on LiveRAC [172]. The
analyzed and aggregated time-series are displayed in a zoomable tabular interface to
provide the analyst an interactive exploration interface for time-series data, while the
approach, we are going to present, is more general to include also other data types (e.g.,
frequent words or users, hierarchical overviews) addressing DC4.

5.1 Visual Overview for Stream Monitoring

Implementing a visual analytics application, which is capable of providing a basic
overview about the raw messages of heterogeneous data streams is initially not very
complex. Therefore, we integrated a straight-forward implementation of an interactive
display into the VACS system (introduced in Chapter 3) to provide an initial real-time
display for data streams.
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5.1.1 Usage of Dynamic Visualizations for Stream Monitoring

Figure 5.1 shows the main display of our web application and includes various filter
capabilities to restrict the incoming messages in real-time. In the upper part, the
whole incoming textual data stream is shown. This is done similarly to the popular
tail -f command on Unix-based systems. Various coloring schemes can be applied
to highlight different features. This can, for example, be used to visually emphasize
uncommon messages, which are not seen frequently. The incoming data stream can also
be preprocessed to extract geographic locations (e.g., from known GPS data, or derived
from geographic IP or ASN lookups). The map in Figure 5.1 will plot each message to
the respective position and applies clustering to improve visual overview.

▲Figure 5.1 — Real-time visualization display. A basic visual display to monitor
incoming live streams as raw messages and plot extracted geographic locations to a map.
Reprinted from [79]. © 2014 Copyright is held by the owner/author(s). Publication
rights licensed to ACM.

5.1.2 Conclusions and Limitations

In this section, we successfully integrated a real-time visualization into VACS to track
and filter active and dynamic data streams. However, the main problem of such real-
time displays, that represent the raw data without any form of aggregation, is that the
screen updates are not independent from the velocity of the data stream. Analytics,
ranking, scoring, and filtering can help to focus on parts of the data stream. Real-time
monitoring of parts of a data stream is indeed a common use cases. However, this
implies that the analyst actually knows, what he is looking for. If he knows so, for
example, if he want to focus on all messages of a specific server, or wants to investigate
the occurrences of a specific known error messages, such real-time visualization displays
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are definitely helpful. However, for large-scale data streams, this is not feasible. Because
of the ever changing display, the cognitive load gets too high for a single analyst to
make sense out of the data to stay aware of the current situation. So the main question,
we need to tackle is: how can we build a scalable system and a visualization, which
reduces the cognitive load of the analyst?

5.2 Visual Correlation for Heterogeneous Data Streams

Before we are able to address the visualization challenge, to reduce the cognitive load
of an analyst, we need to step back and focus on the scalable infrastructure needed to
provide means to buffer, correlate, preprocess, and analyze heterogeneous data streams.
In the following, we describe the building blocks of NStreamAware, which provides
scalable analytics for the correlation of heterogeneous data streams.

5.2.1 NStreamAware – Scalable Analytics for Data Streams

To process the data stream, we made use of various modern technologies to provide
a scalable infrastructure for our modular visual analytics system. Our architecture
consists of our REST Service, Spark Service and a web application integrated to VACS
with various visualizations. This is the basis to analyze heterogeneous data streams,
control data fusion, and eventually conduct a visual analysis as seen in the previous
section in Figure 5.1. To provide proven and scalable data processing, we make use of
Apache Spark2, RabbitMQ3, ElasticSearch4, and MongoDB5. The overall architecture
can be seen in Figure 5.2. The REST Service (1) connects to the data streams (2),
preprocesses the data, and calculates various additional information for the incoming
events. The service does also provide a REST interface to retrieve historical data or
manage insights. All events are stored to a distributed ElasticSearch cluster and are
forwarded to our message broker RabbitMQ. The Spark Service (3), which runs on top of
the Apache Spark Streaming [11] platform for analytics, generates real-time summaries
on sliding windows, and stores them to a MongoDB database (4). Spark Streaming is a
development framework to help to implement analytical algorithms executed in large
distributed cluster environments to provide scalability even in big data scenarios. The
Spark Service is implemented using Scala and calculates various statistics and features
based on sliding windows. The used window size, overlap, and other parameters need
to be manually defined to roughly match the data characteristics and analysis goals.
Table 5.1 shows a selection of calculated example features for a network security use
case. We call these summaries, which are generated in a regular interval, sliding slices.
Those slices and also a selection of raw messages are eventually forwarded to our web
application NVisAware (5), so that they can be visualized in the graphical user interface
to the analyst using various interactive real-time displays.

All modules are loosely coupled, so that they can be deployed on separate computers
or in cluster environments to achieve best performance for large-scale data streams.

2 https://spark.apache.org/
3 http://www.rabbitmq.com/
4 http://www.elasticsearch.org/
5 http://www.mongodb.com/

https://spark.apache.org/
http://www.rabbitmq.com/
http://www.elasticsearch.org/
http://www.mongodb.com/
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▲Figure 5.2 — System architecture of NStreamAware. Various modern sys-
tems, including Apache Spark, RabbitMQ, MongoDB, and ElasticSearch, to provide the
needed scalability for an interactive visual analytics application for big data use cases.

REST Service Module

The REST Service (1), which is implemented as multi-threaded standalone Java ap-
plication, provides a REST interface accessible by all other modules, especially the
web application. This REST service is used to handle job queuing and to answer data
requests. To attach new data streams, the respective jobs can be sent to the service
via a defined REST API. The job is added as new thread and the API can be used to
control or retrieve status information about these running jobs. Incoming messages
from the data stream are then preprocessed, fields are extracted, and eventually treated
as individual events, enriched with various additional attributes. The procedure is based
on the assigned scenario configuration. For social media messages, sentiment values
are calculated, while for IP-related data geo lookups can be made. In practice, many
servers do not provide very accurate timestamps, therefore, a new field with the current
timestamp is added as well, to have more accurate timings in cases where a sending
host does not make use of the network time protocol or uses deviating time settings.
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Scalable Analytics Module

Apache Spark provides distributed memory abstraction, that is fault-tolerant and
efficient. This helps to program distributed data processing applications without
worrying about fault-tolerance. Apache Spark introduces a programming model, called
Resilient Distributed Datasets (RDDs), which provide an interface to coarse-grained
transformations (e.g., map, group-by, filter, join). The RDDs can be addressed within
Scala similar to normal collections, however, they are indeed spread over the underlying
cluster machines. If a transformation is called on a RDD, the execution is actually
done on various worker machines. When an action is called (e.g., count), the result
is retrieved from all workers to return final results. We use the streaming extension
of Apache Spark and use the same programming model to analyze data streams in
real-time. We define a sliding window and connect to a RabbitMQ queue to receive
messages forwarded by the REST Service. Currently, we defined various feature types
to be calculated on the incoming messages: count, set, new-set, key-value list, and
key-array list. All features as seen in Table 5.1 for example belong to one of these
message types. After calculating the various features, they are directly stored to a
MongoDB collection. When all features are ready, the web application is notified via
RabbitMQ to retrieve the sliding slice content via the REST API using the appropriate
database queries. Count provides a simple counter of number of messages. A set stores
a list of unique values occurred within a sliding window, while a new-set feature will
only include values, which have never been seen in the whole stream before. A key-value
list can be used to count the number of occurrences for all words to gather a list of
frequent words. The key-array list can be used to store for each key an array of values.
This can be used, for example, to track for each IP address, all used port numbers in
the sliding window.

5.2.2 Conclusions and Limitations

With the infrastructure of NStreamAware it is possible to do data fusion for various
heterogeneous data streams in a scalable way using Apache Spark. The system is able
to automatically generate summaries of a variety of features in a window-based fashion
as seen in Table 5.1. For example, having lots of IPS alerts (e.g., as represented in the
feature ossecAlerts), gives a good hint, that there is something bad going on. Judging
them without any context is challenging. However, the sliding slice also contains other
features from other data streams (e.g., NetFlow details) correlated over time, that might
reveal more insights about the actual incident occurred in the current time window.
The main limitation of this approach is, to define suitable window sizes. In practice,
we tested various window sizes, however it is hard to define them automatically. Good
window sizes strongly depend on the data stream characteristics, but also on the user’s
individual analysis goals, with respect to use cases and detailedness. We leave this
particular challenge of defining – or even integrating adaptive sliding windows – for
future research. While a tabular representation of the heterogeneous features helps a lot,
it is not suitable for quick understanding and timely situational awareness. Therefore,
the next section proposes a technique called NVisAware to visualize sliding slice data.
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▼Table 5.1 — Features for various network-related data streams. The table
shows a selection of aggregation features, which are automatically calculated in regular
intervals by our implemented analysis and aggregation module for each sliding window.

ID Feature Type Stream Description

(1) #events count Syslog number of syslog messages
(2) timestamps set Syslog a set with timestamps
(3) #programs count Syslog number of programs having syslog messages
(4) #hosts count Syslog number of servers sending syslog messages
(5) #frequentWords count Syslog number of frequent words
(6) programs key-value list Syslog list of programs with respective counts
(7) hosts key-value list Syslog list of servers with respective counts
(8) frequentWords key-value list Syslog list of frequent words with respective counts
(9) newHosts new-set Syslog hosts not seen before
(10) newPrograms new-set Syslog programs not seen before
(11) srcAddr key-value list NetFlow list of source IPs with respective counts
(12) dstAddr key-value list NetFlow list of destination IPs with respective counts
(13) srcPorts key-value list NetFlow list of source ports with respective counts
(14) dstPorts key-value list NetFlow list of destination ports with respective counts
(15) topTalker key-array list NetFlow communication patterns of top talkers
(16) #srcAddr count NetFlow distinct count of source IPs
(17) #dstAddr count NetFlow distinct count of destination IPs
(18) #srcPorts count NetFlow distinct count of source ports
(19) #dstPorts count NetFlow distinct count of destination ports
(20) ossecAlerts key-value list OSSEC list of IPS alerts and respective counts

5.3 Visual Exploration for Sliding Windows

The graphical user interface provided by our web application, contains various displays.
The application is written in HTML5 and JavaScript using various visualization libraries.
The display consists of multiple configuration and parameter views and six main tabs:
Real-Time Data Stream, Real-Time Sliding Slices, Visual Feature Selection, Summarized
Sliding Slices, Event Timeline & Insights, and Search & Exploration. The first display
has been described in Section 5.1.1 and is used to take a look at the raw messages in
the data stream to get a first overview. In the following section, we introduce the main
contribution, which is a widget-based visualization technique for sliding slices.

5.3.1 NVisAware – Visualization Technique for Sliding Slices

To visually represent the generated sliding slices, we provide a novel visualization
with various embedded charts like word clouds, node-link diagrams, geographic maps,
treemaps, and counters within each slice. The slices are juxtapositioned next to each
other to provide a timeline based on consecutive slices as seen in Figure 5.3. The
prominent background color uses a colormap from dark green over white to magenta
based on a diverging ColorBrewer [31] set. The color indicates a similarity score to
the previous slice to alarm the analyst. In the upper left corner a star icon can be
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▲Figure 5.3 — Using NVisAware to visualize heterogeneous data streams.
The figure shows various real-time sliding slices. New slices of the most recent sliding
window will automatically added on the right.

used, to store the slice for further investigations. The slice will also be added to the
Event Timeline & Insights view, where all starred objects are presented in a traditional
interactive timeline to explore the events flagged and labeled by the analysts.

Real-Time Sliding Slices

As soon as a new slice is available via NStreamAware, it is loaded and shown in all open
and active instances of NVisAware as seen in Figure 5.3. New slices are added on the
right, so the analyst can still focus and explore previous slices, while smoothly switching
to the most recent one. This helps to reduce the need to stop working on a slice, as
soon as new data comes in. The level of stress, and the cognitive load of the analyst can
be reduced through the fixed interval, in which new slices become available. In times,
when a vast amount of events are suddenly occurring, it won’t negatively influence the
analysis flow of the user. In such times, a given slice would just contain more events than
usual, which would be clearly visible in the respective counters. The top-most widget of
each slice, as seen in the example in Figure 5.3, shows the distribution of IPS alerts
using their severity identifier (L1-L10) as treemap. Further drill-down interaction would
actually reveal the underlying IPS alerts with the respective severity level. Various
counters are shown to reflect statistical information about the underlying events. The
word cloud represents frequent words based on the occurred syslog messages, while
the treemap underneath shows the top talker in the current time window, based on
the correlated NetFlow data. The most frequent programs reporting syslog messages
are also shown as treemap, while a node-link diagram is used to make the dominating
communication patterns (source IPs to destination ports) visible.
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Using Visual Feature Selection for Stream Summarization

In many situations, the analyst is not interested in following the data stream in real-time.
However, in some cases a summary of the current data stream should be provided.
Fully-automated summarizations are hard to achieve for complex heterogeneous data
streams. Therefore, we provide a visual feature selection interface as seen in Figure 5.4,
to steer the merging algorithm based on the user’s criteria.

▲Figure 5.4 — Using visual feature selection for NVisAware. All temporal
features can be visualized as time-series for feature selection.

All count features, as for example seen in Table 5.1, can directly be used in the
feature timelines in Figure 5.5. More features can be derived from key-value lists. For
example the occurrences over time of a specific word found in the stream. Each feature
timeline contains many values, one value for each sliding slice observed so far. This
data is processed on the server side and each feature timeline is cut into segments:
Each timeline is clustered using the DBSCAN [72] algorithm. Afterwards, consecutive
slices belonging to the same cluster are merged to a segment. The start and end points
of these possibly important segments are visible as vertical colored lines and through
the background shading within the timelines. The analyst can visually interpret these
segments, modify them, or add new segments for interesting parts, which were not
detected by the algorithm. The analyst can remove or reorder the features using drag
and drop. The final feature order and selection is sent to the REST service, where all
segments are merged together with the given constraints, while ignoring low-ranked
conflicting features and keeping non-conflicting and more specific segments.

Eventually, the original sliding slices are compressed using map and reduce on the
MongoDB database according to the heuristic merge and importance model. Less
important segments are merged together providing a multi-focal scaling of the data
stream steered by the analyst according to the tasks at hand. The list of features is
evaluated by the heuristic to ensure: (i) the order of the feature list as defined by the
analyst, (ii) if the identified segments in the following features are non-conflicting keep



156 Chapter 5 ● Visual Analytics for Network Streams

▲Figure 5.5 — Example of selected features. The analyst is in the loop to steer
the merging algorithm through selecting, ranking, and modifying feature segments, to
provide meaningful summaries of sliding slices. Reprinted from [79]. © 2014 Copyright
is held by the owner/author(s). Publication rights licensed to ACM.

both, (iii) in case of conflicts, keep more specific segments, (iv) do not overwrite specific
segments with more general spans, to (v) include smaller events, when completely within
a larger segment.

Interactive Data Stream Summarization

The interactive analysis workflow is shown in Figure 5.6. Various data streams (1) are
eventually retrieved via the REST Service and analyzed by the Spark Service. Features
are extracted (2) and correlated from the heterogeneous streams. With the support
of Apache Spark Streaming, micro batch processing is used to create sliding slices
based on temporal windows to conduct feature analysis. The streams are correlated and
aggregated statistics are calculated (e.g., distinct counts per feature, counter aggregation,
frequent occurrences) as presented in Table 5.1. If real-time NVisAware displays are
registered via the message broker, they get notified about the new available sliding slice
and the slice is automatically added to the visualization display as seen in Figure 5.3.
Additionally, the whole data is sent to the data storage (6) to support interactive data
stream summarization, in which the user interacts with the extracted time-series based
on the sliding slices (7). Interesting segments are automatically highlighted based on
clustering and peak detection. The user can further assist the analysis through domain
specific knowledge: The analyst can select relevant features, modify, and rank them.
Additionally, the suggested segments can be modified if needed. Afterwards the result
is sent back to the server, which summarizes the respective sliding slices using map
and reduce aggregation (8), which is executed on the data storage (6). Afterwards,
the resulting summarized sliding slices are pushed to NVisAware. The visualization
then shows summarized sliding slices for the originally defined time span. More slices
will be shown for times with lots of interesting segments, while slices belonging to less
interesting segments are merged into a common single slice instead.
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▲Figure 5.6 — Overview of the interactive visual analytics workflow. Visual-
ization with NVisAware is used for real-time analysis, but also for summary visualizations
based on the multi-focal aggregation of sliding slices using an interactive visual feature
selection process.

5.3.2 Evaluation using Network Security Case Study

In general, it is quite challenging to evaluate complex visual analytics applications.
Individual design decisions can be formally evaluated in user studies and many decisions
are indeed based on perception studies. However, proper evaluation of complex expert
applications is more than to evaluate all individual design decisions. Describing convinc-
ing use cases or presenting case studies with experts are often the only reasonable ways.
However, also these results are often subjective and hard to compare to alternative
approaches. Another reason is, that “insight, the major aim of visual analytics, is
ill-defined and hard to measure” [255]. This is even more true, if we are talking about a
mental state of situational awareness as goal of the system.

Having this in mind we decided to go for two directions of evaluations. Firstly, we
describe a case study, how our system can be used in an operational computer network
of a working group to help the system administrator to stay informed about the most
important activities. Secondly, to evaluate the real-time capabilities of our system and
the insights management, we actively participated in VAST Challenge 2014 with an
early version of our prototype.

To show the capabilities of our system, we implemented our system in a computer
network of a working group with about 85 active local devices including workstations,
mobile devices, and servers, producing about 1.4 million NetFlow records per day with
peaks up to 10,000 records per minute. 13 servers are connected to a central syslog
server, producing 30,000 to 80,000 messages per day with individual peaks of up to
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▲Figure 5.7 — Example of findings using NVisAware. Visualization to monitor
data streams using sliding slices to reveal interesting findings. The interactive display
can be explored by the analyst while new sliding slices are continuously added. Reprinted
from [79]. © 2014 Copyright is held by the owner/author(s). Publication rights licensed
to ACM.

5,000 messages per minute. These servers are also monitored using OSSEC [184], which
is a widely used “host-based intrusion detection system that performs log analysis, file
integrity checking, policy monitoring, rootkit detection, real-time alerting and active
response” [184]. The generated alerts are also pushed to the central syslog server. With
this infrastructure in place, we were able to forward the data streams to our REST
Service to make them available for NStreamAware. In the following, we made use of the
system log stream (SL), NetFlow stream (NF), and OSSEC alert stream (OS). It would
be easy, to further include additional data from the underlying network, for example,
system metrics, Snort alerts, or web server access logs.

The analyst opened the web application in a modern web browser and added the
data streams as jobs to the server-side REST Service. Seconds later, the first messages
appeared in the Real-Time Data Streams tab as seen in Figure 5.1. This view is a
split-screen showing the real-time events of SL and OS as textual messages. The bottom
window presents a zoomable geographical map to plot and cluster extracted geographic
locations. NF records are not plotted to the geographic map, because a geographic map
of the total IP traffic will most likely not provide actionable insights. However, mapping
specific IP addresses of successful logins can be worth monitoring to identify suspicious
behavior or to reveal misuse of login credentials. Furthermore, real-time filtering and
search can be applied to reduce the number of live events shown in the display.

The Spark Service was operated in local mode on a normal workstation Dell OptiPlex
980, Core i7-860, 8GB RAM 4x 2.80GHz with 10 separate working threads. To provide
further scalability the service could also be deployed to a cluster of hardware machines
running Apache Spark or to a cloud-based deployment. To provide a new sliding slice
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every 30 seconds, we initialized the system with a batch and slide interval of 30s and a
window length of 60s. These settings depend on the general characteristics of the data
streams.

▲Figure 5.8 — Example of summarization results. Visual feature selection
helps to merge many slices to single summary slices. Reprinted from [79]. © 2014
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

To reduce the cognitive load, the analyst decided to switch to the real-time sliding
slices visualization as seen in Figure 5.7 showing an example of five consecutive slices.
The interactive display can be explored by the analyst while new slices are continuously
added to the right in regular intervals to support situational awareness. The first slice
in Figure 5.7 contains critical OSSEC alerts (L5, L10, L3) visualized in a small treemap
widget (1). Alerts with a severity of 10 should warn the analyst of ongoing security
issues, which should be explored using drill-down functions. Those alerts are related to
authentication issues as seen in the word cloud (2). Another treemap widget in the first
slice (3) gives an overview of involved programs. The third slice suddenly reveals a high
port usage (4), which can be recognized at the port counter. The treemap of source
hosts (5) reveals the source host. The analyst can use the IP-Port node-link diagram
based on NF (6) to visually explore those suspicious connections.

Later on, the analyst decided to not look on all sliding slices, but to compress the
view based on specific features. Figure 5.8 shows that the analyst is interested in
slices with highly critical OSSEC alerts of level 10, segments based on the number
of syslog messages received, and based on the number of destination ports utilized in
the computer network. Based on this selection the slices are merged accordingly. In
Figure 5.8, (1) relates to the segments relating to a port scan. After that, there were no
important slices according to the feature selection, so a long time span is merged to a
single summary slice (2). The analyst was also interested in the message drop in (3).
Then various OSSEC alerts occurred in multiple sliding slices (4). This area seams to
be highly suspicious, leading to many individual summary slices to provide more details.
Eventually, there are further suspicious events based on NF data in (5) and another
peak with OSSEC alerts in (6) related to invalid SSH logins.
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5.3.3 Evaluation using VAST Challenge 20146

Evaluation of a real-time visual analytics application with respect to situational aware-
ness is challenging and hard to compare. To reuse a given dataset and stream it back
to a system under review often cannot provide a faithful evaluation, because the actual
dataset is normally known by the researcher, so the implemented tools can be specifically
designed for that particular dataset. Known details from previous forensic analyses
based on the full dataset also bias proper evaluations. However, in real scenarios, the
data – completely unknown to the analyst – comes in incrementally, so that patterns
and insights evolve over time. Luckily, the VAST Challenge 2014 exactly addressed that
problem in Mini-Challenge 3 (MC3) and provided a real-time data stream and forced
the participants to actually work on a previously unknown real-time data stream. We,
therefore, took this opportunity and actively participated in this challenge to evaluate
the applicability of our method to solve the given streaming challenge. The data was
not related to cyber security, but contained various social media streams. However,
this still enabled us to provide a proof-of-concept for situational awareness in data
streams. Furthermore, the successful participation shows the general applicability of our
approach, which was as shown in the case study originally developed for cyber security.

▲Figure 5.9 — Timeline of major VAST Challenge 2014 MC3 events. The
colored histogram highlights major events based on extracted keywords and insights of
interesting events, which could be identified in real-time. Reprinted from [79]. © 2014
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

Application for Social Media Streams

The requirement of the challenge was to analyze the data streams made available by
the organizers over a WebSocket connection in real-time. The data stream contained a
stream with micro blog and call center messages covering a time from 17:00 to 21:30. A
first analysis had to be sent to the committee within three hours after first connecting
to the final data stream from 20:00 to 21:30, which could only be streamed once, to
force the participants to do real-time processing and provide immediate situational
assessment under time pressure.

The fictional but realistic scenario was the so-called Kronos Incident in which several
employees of a company named GAStech, located at the island of Kronos went missing.
Because of an ongoing conflict between an organization known as the Protectors of
Kronos (POK), they are suspected in the disappearance. Within that challenge, the
main focus of MC3 was to analyze a real-time data stream based on micro blog records
that have been identified by automated filters as being potentially relevant to the
ongoing incident and text transcripts of emergency dispatches by the local police and
6 http://vacommunity.org/VAST+Challenge+2014

http://vacommunity.org/VAST+Challenge+2014
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fire departments. During the real-time analysis, we could identify multiple interesting
events using NVisAware and could make sense of the overall story, as summarized in
Figure 5.9. The first event as showed up in Figure 5.10, which is present from 17:00
until around 19:00, is a rally, organized by POK with different speakers and a concert.
Various leaders of POK and many supporting persons are attending this gathering.

▲Figure 5.10 — Using NVisAware to solve the VAST Challenge 2014 MC3.
New sliding slices are automatically added on the right to to summarize the most recent
events happening on Kronos island.

At one point an incoming sliding slice caught our attention by the red colored
background indicating much changes to the previous slice as seen in Figure 5.11. And
indeed various people are actively talking about a major fire. Using the geographic
map, the location can be easily identified, which was the so-called Dancing Dolphin
Apartment. After firefighters were able to get the fire under control, we realized subtle
messages around 21:00 that the fire flared up again, resulting in an explosion later on
around 21:30.

The most important event with respect to the overall situation was an incident
related to a black van involved in an hit and run. A biker got hit by the car. In the
following, the van was spotted again at another location and could be stopped at Gelato
Galore by the police leading to a standoff. It turns out that there are two hostages
and two kidnappers in the van. In the process one of the suspects shot a police officer.
After a while the SWAT team arrived and suddenly the suspects surrendered and could
be taken into custody. It turned out that the two hostages were indeed employees of
GAStech. With this information and insights from the data streams, we were also able
to participate in the grand challenge, in which two other mini challenges with additional
datasets had to be solved. After combining all the information, we gained a high level
of situational awareness and were able to make informed decisions and isolate locations,
where the other hostages are likely to be held.
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▲Figure 5.11 — An example for a major fire incident. Three stream slices out
of many slices of the data stream to show the evolving topics in the word cloud. The
red background color reflects a high word cloud dissimilarity to the previous slices.

Evaluation Results

VAST Challenge 2014 received a total of 73 submissions, while 23 teams submitted
to MC1, 30 to MC2, 13 to MC3, and 7 to the grand challenge (combining all three
mini-challenges) [270]. In the history of VAST Challenges, MC3 “was the first to require
access and use of streaming data. While first-of-a-kind mini-challenges are often less
popular than more traditional mini-challenges” [270] the committee still received 13
submissions. “The VAST Challenge committee recruited reviewers with expertise either
in visual analytics or related disciplines and domain experts. Ninety-five reviewers
participated, each providing from 1 to 9 reviews. Each submission received 3 to 6
anonymous peer reviews. (...) They were asked to provide an overall rating, comments
on the overall rating, a review of how well task questions were answered and how well
visual analytics were applied, including whether or not innovative tools were created for
the challenge” [270]. Afterwards, the committee “held three separate one-day meetings
to determine awards for each of the mini-challenges and grand challenge” [270]. MC3
was especially challenging, because it “required sophistication in both receiving and
processing the social media stream as well as analyzing the stream in real-time” [270].
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Our submission was reviewed by 4 independent, anonymous, and external reviewers
(R1-4). Eventually, our approach got awarded for an “Outstanding Comprehensive Mini-
Challenge 3 Submission” [270]. In the following, we want to highlight some comments
as provided by the anonymous reviewers.

The first reviewer stated: “This is the best system I have reviewed. The strength is
the clarity of presentation, and most important the scalability of the architecture.” (R1).
While R1 focused primarily on the overall system, R2 highlights the visualization in
more detail and states, that “the mixed use of self developed and already existing tools
represents a clear strength of the submission, as it shows how a realistic analytic dis-
course can be created making use of different combined coordinated visualizations” (R2).
Additionally, R2 concludes that “the proposed approach does not show only the conclu-
sions just to find an answer to the questions of the challenge, but rather illustrates how a
complex reasoning could be carried on in a realistic manner and in real time” (R2). R3
further focused on the usage of our “useful and interesting method” (R3) and highlights
the fact that it “significantly reduces the burden on the analyst when first analysing the
data” (R3). However, R3 also concludes that “further aggregation of text (...) could
be incorporated in events message stream to reduce text on the screen” (R3), which
is a valid point. We agree that there are many more possibilities to further enhance
the system with respect to text analytics. The reviewers also had to judge identified
findings and provided also quite positive feedback: “The team have successfully found 4
major events” (R3). Furthermore, the “slices provide a rich snapshot of the immediate
past that has enabled the team to show how they found events in a quick manner” (R3).
R4 states that there “were some inaccuracies in interpreting the data, but some visual-
ization techniques were quite useful” (R4). The NVisAware visualizations “were a great
approach to showing chunks of real-time data” (R4). In summary, R4 concluded, that
the “real-time stream analytics (slices) was a novel and visually attractive approach to
summarizing chunks of data by time so that they are more consumable” (R4).

5.4 Limitations and Conclusions

Various performance measurements and evaluations [280] showed that Apache Spark
Streaming is scalable and fault-tolerant. The different database technologies can also
scale out horizontally to handle large data volumes. However, the system still needs to
be applied to a larger computer network, which is part of the future work. The main
limitation with respect to performance and scalability issues could be found in the web
application, developed in HTML5 and JavaScript. While the backend is able to use
capped collection, and provides data rotation and retention strategies, the real-time
graphical user interface does not. When displaying hundreds of sliding slices at the
same time the performance decreased, because of browser and memory restrictions of
the workstation. However, the responsiveness could be improved by including paging
mechanisms in all views and by integrating automatic heuristics to remove old elements.
More work needs to be done to keep the display interactive when analysts use the web
application for hours without manually removing or reloading some displays.

Automatically defining good sizes for the sliding windows is also planned for the
future. The merging model based on the feature selection process, could also be applied
to the real-time stream, to actually merge sliding slices in real-time, which is not fully
implemented yet. Tracking individual events over time was not the focus of this work,
however, more work seems to be promising to extend the approach in that respect
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as well. To comply with privacy standards and to prevent misuse of such a system,
more research should be conducted to integrate privacy-aware technologies or establish
multiple access levels.

Overall, based on various design considerations addressing current limitations of re-
lated work, we presented in this chapter a visual analytics system, called NStreamAware,
to analyze data streams. The interactive user interface is integral part of the whole
system, because it allows analysts to interact with the system and steer the clustering
process to condense data streams to meaningful segments. The system incorporates
novel scalable analytics methods (DC1) through Apache Spark Streaming. This enables
real-time monitoring with interactive filtering (DC2), which is implemented using Rab-
bitMQ as message broker to provide real-time communication between the different
modules. Furthermore, we developed a visualization technique to visually represent the
generated sliding slices, to present data stream summaries using deterministic screen
updates using aggregations on sliding windows (DC3). This approach also makes it
possible to combine various heterogeneous data sources (DC4) and include them with
various embedded visualizations like word clouds, node-link diagrams, treemaps, and
counters. To summarize data streams and to provide a multi-scale timeline to compress
the stream based on user-steered interesting functions, we integrated an interactive
visual feature selection display (DC5). Eventually, we evaluated our system using
data streams of an operational computer network and used our system to successfully
participate in the VAST Challenge 2014 to compete with other real-time SA solutions
and show the applicability for other domains.



The man who trades freedom for
security does not deserve nor will he
ever receive either.

— Benjamin Franklin
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This thesis proposed a variety of different visual analytics methods to enhance
situational awareness for cyber security. To achieve this research goal, we defined

various research objectives and actually covered more than that, as we eventually
contributed to all network security use cases as originally defined by Shiravi et al. [216].
This chapter summarizes the work of this dissertation, reviews the main contributions,
and highlights various important future research directions.

6.1 Summary
After introducing the overall motivation for the urgency of improving situational
awareness for cyber security to sustain future attacks in Chapter 1, it became clear
that visual analytics is a suitable approach to address this challenge. In Chapter 2, we
conducted an extensive literature review focusing on visualization systems supporting
situational assessment in cyber security. The literature review incorporates existing
related surveys, but also includes novel methods of recent years, which have not
been covered by existing surveys, but could be identified using the systematic review
methodology. Afterwards, we discussed our observations and revealed various research
gaps. To convey the broad field of cyber security, we decided to structure the thesis
according to major visualization use cases for cyber security.

Chapter 3 focused on monitoring of network activity. We primarily introduced
VACS , which is a web-based visual analytics suite for cyber security, originally designed

165
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for internal and external monitoring of computer networks (Section 3.1). Because
of the open challenge to properly evaluate complex visual analytics applications, we
actively participated in international competitions to evaluate and compete with others
on realistic datasets, for which ground truth data is available and judgment is made
by independent reviewers, who are either visualization or domain experts. Their
feedback helped us to address limitations of VACS with respect to scalability and
context-awareness. We, therefore, integrated more analytical methods to enhance visual
correlation for port activity monitoring in Section 3.2 and proposed a novel visualization
technique, called ClockMap in Section 3.3. This scalable approach, which is a novel
combination of circular temporal glyphs and radial treemaps, filled an open research gap
to analyze temporal network activity with respect to a given hierarchical context. We,
and also other researchers, extensively evaluated this approach from various perspectives
and we were able to successfully identify almost all events of the VAST Challenge 2013
ground truth data.

While it was possible with ClockMap to identify suspicious hosts and servers within
computer networks, we shifted our focus specifically to the visual analysis of various
network threats in Chapter 4. While most of the research in cyber security visualization
in the last decades has focused on techniques to visually represent attack patterns, we
gave a brief overview about the state-of-the-art in Section 4.1 and focused primarily on
evaluating a novel generic approach, called temporal multi-dimensional scaling (TMDS)
using a network security case study and the VAST Challenge 2013 dataset. Less research
has been conducted focusing on a major cyber security threat, called IP prefix hijacking,
which we addressed in Section 4.2. Such attacks targeting the border gateway protocol
(BGP), which is crucial for routing in the Internet, have severe consequences. Together
with security experts from Symantec we, therefore, proposed a novel visual analytics
system, called VisTracer , to correlate routing anomalies based on traceroutes with
ongoing spamming activity by attackers. Eventually, we evaluated our approach with
cases studies, provided by Symantec’s security experts who used VisTracer to successfully
identify various IP prefix hijackings. Another major threat in the cyber world, are
advanced persistent threats (APTs), which often involve highly specialized malware
samples. Because of the high relevance, and the emerging visualization techniques
proposed in the last years, we introduced a taxonomy of visualization systems for
malware analysis in Section 4.3. Furthermore, we not only summarized the state-of-
the-art, but also identified future research directions of visual analytics for malware
behavior analysis. However, security analysts are not only interested in the detailed
analysis of individual malware samples, but also on the threat landscape on a larger
scale. Attributing attacks and involved malware samples to related attack campaigns
is crucial for situational awareness with respect to the modus operandi of groups of
attackers. We addressed this challenge related to strategic decisions in Section 4.4, in
which we implemented various visualization techniques into VACS to analyze the result
of recent clustering algorithms specifically designed for threat intelligence. To evaluate
our approach, we conducted a field experiment in the premises of Symantec security
response with leading cyber security experts.

The literature review showed, that most of the visual analytics techniques in cyber
security, do not explicitly focus on the dynamic real-time characteristics. However,
with respect to situational awareness, real-time capabilities are crucial. To emphasize
the importance and foster more research in this direction, we introduced a novel and
scalable infrastructure, integrated to VACS , for heterogeneous network stream analysis
in Chapter 5. We specifically proposed, NStreamAware, which is a stream analysis
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system based on Apache Spark to provide aggregated data slices to be presented to
the analyst using a novel visualization technique, called NVisAware. Furthermore, we
integrated visual feature selection techniques to provide meaningful summaries of those
slices. Eventually, we successfully evaluated the system using a network security case
study, and evaluated the general applicability in the context of situational awareness
through active participation in VAST Challenge 2014, in which our approach got
awarded for an outstanding comprehensive submission.

Overall, we successfully fulfilled the stated research goal and proposed, implemented,
and evaluated interactive visualization systems to enhance situational awareness in
cyber security through the scalable exploration of network activity, the analysis of
network threats, and visual analytics support for the analysis of heterogeneous data
streams by combining automated methods with scalable and interactive visualizations.

6.2 Contributions

In the following, we briefly summarize the main contributions, as provided in this thesis,
which formed the basis for successfully addressing the overall research goal of this work.

I. A Survey of Visualization Systems for Cyber Security

In this thesis we contributed a comprehensive survey of visualization systems for cyber
security. This was the first literature review covering the broad field of cyber security
visualizations, including an extensive survey of BGP, malware, and attack attribution
visualization systems with network security applications, extending existing taxonomies
to provide a holistic view of visualization methods to enhance situational awareness.

II. A Taxonomy of Visualization Systems for Malware Analysis

Additionally, we provided together with Wagner et al. [261], the first survey and
taxonomy of visualization systems for malware analysis, which is an emerging field of
research in the last years. Together with malware security researchers, we extensively
analyzed the various capabilities and classified them according to major use cases.
Furthermore, we proposed various future research directions to guide other visual
analytics researchers to interesting starting points and research gaps to further enhance
malware analysis through novel visualization approaches.

III. ClockMap – A Visualization Technique for
Scalable Exploration of Hierarchical Temporal Data

The main contribution of ClockMap was the novel combination of clock-based glyphs with
circular treemaps. Although, there are major drawbacks of such treemaps, we showed in
various case studies, that the integration as layout algorithm for the placement of circular
glyphs is quiet effective for situational awareness in cyber security especially with respect
to host and server monitoring. This technique was further evaluated and integrated
into BANKSAFE [90] to participate in an international visual analytics competition to
solve realistic cyber security tasks. Furthermore, we evaluated various design decisions
together with Fuchs et al. [95] using formal user studies. This contribution primarily
fulfills RO1, as described in Section 2.3 to “introduce novel visual techniques for context-
aware exploration to support visual analytics for network activity” [page 37].
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IV. IAS-Explorer – A Visual Analytics Method for
Privacy-Aware Correlation of Temporal Network Activity

The main contribution of IAS-Explorer in the scope of this thesis was a visual analytics
method to analyze, visually explore, and monitor large numbers of network activity
time-series. With this, we were able to support port activity use cases especially for
privacy-preserving setups, and to provide better means to correlate network activity
time-series. Our approach using vertically arranged line charts in combination with
integrated analytics to retrieve similar time-series effectively avoids overplotting and
forces the user to focus on the comparison and correlation of specific patterns and
temporal network activity peaks. This contribution partially fulfills RO1, as described
in Section 2.3 to “introduce novel visual techniques for context-aware exploration to
support visual analytics for network activity” [page 37].

V. VisTracer – A Visual Analytics System for
BGP Prefix Hijacking Detection using Traceroutes and Spam

The novel visual analytics system, VisTracer , combines IP traceroutes from ongoing
spam and phishing campaigns to correlate BGP routes with malicious network threats.
In particular, we contributed a visual analytics tool to analyze traceroute data, provided
a successful integration into a large-scale automatic analysis system, and introduced
novel glyph- and graph-based summary visualizations for routing data. Furthermore,
we evaluated the approach together with experts and shared the results of their case
studies of suspicious routing anomalies with respect to spam activities to identify BGP
prefix hijacking. This contribution primarily, fulfills RO2, as described in Section 2.3 to
“combine multiple data sources to improve SA for BGP routing” [page 37].

VI. NStreamAware – A Visual Analytics System to
Enhance Interactive Analysis of Heterogeneous Data Streams

The main contribution of this work was a system architecture, called NStreamAware,
based on Apache Spark to summarize incoming data streams in sliding slices. Secondly,
a web-based user interface, called NVisAware, using a novel combination of various
visualization techniques to present actionable visual representations of sliding windows
to the analyst in real-time to convey the current state based on correlated heterogeneous
data streams. Furthermore, we integrated interactive visual feature selection techniques,
to provide meaningful summaries of those slices. This eventually produced context-aware
summarizations, steered by the expert knowledge of the analyst to provide scalable
methods for long time spans. This contribution primarily, fulfills RO4, as described in
Section 2.3 to “introduce a novel dynamic visualization concept for scalable real-time
monitoring for heterogeneous data streams” [page 38].

VII. Evaluation of Alternative Visualizations for Attack Attribution

In the field of attack attribution, we integrated various alternative visualization into
VACS and conducted a field experiment with cyber security experts in the premises of
Symantec Security Response. The analysts made use of our visualizations for visual
exploration of clustering results generated by one of the leading algorithms for attack
attribution [249]. The usage of this visual analytics system on their own data was very
well received and they provided extensive feedback which will be valuable for future
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research in visualization support for threat intelligence. This contribution primarily,
fulfills RO3, as described in Section 2.3 to “integrate visual analytics techniques for
attack attribution” [page 37].

VIII. VACS – A Visual Analytics Suite for Cyber Security

The main contribution of VACS was originally the incorporation of various common
visualization techniques for internal and external monitoring of computer networks.
However, in the context of this thesis, we integrated many more of our proposed methods
and implemented them on top of VACS . This eventually lead to a research prototype,
providing a visual analytics suite for cyber security with respect to network activity,
threat, and data stream analysis use cases.

IX. Evaluation of Security Applications through Competitions

Eventually, we extensively showed in the aforementioned systems how active participation
in international competitions can help to successfully evaluate complex security-related
visual analytics applications. We reported not only the results but also shared feedback
and limitations addressed by the anonymous reviewers. We also showed how other
challenges (e.g., VAST Challenge 2014) not focusing on cyber security, could still be
used for the evaluation of real-time aspects which are comparable to 24/7 monitoring in
cyber security. We also made use of our knowledge about these challenges to help other
researchers evaluating their approaches (e.g., Jäckle et al. [133], Behrisch et al. [20]).

6.3 Future Perspectives

Besides of detailed future research directions with respect to particular cyber security
use cases, as discussed in various sections of this thesis, we briefly want to highlight
some more general future perspectives to conclude this thesis.

Implications for Privacy

In the context of this thesis, we deliberately haven’t discussed the implications on
privacy of this work. We only partially addressed this sensitive issue in Section 3.2.1 in
the context of describing IAS-Explorer , which is a privacy-preserving monitoring system.
However, most of the other techniques especially in Chapter 3 are not. However, we
strongly believe that more research is needed addressing the question how to balance
cyber security situational awareness and privacy in an appropriate way. On the one
hand, system administrators, network operators, and other security response analysts
definitely need novel technologies to monitor and protect the computer networks, for
which they are responsible. However, most of such visual analytics technologies can
also be used, either on a larger scale to monitor individual (end-)users, or to be used
in an unauthorized or unlawful way. A proper discussion of these moral and ethical
implications is out of the scope of this thesis. However, like most novel technologies,
also visual analytics systems for cyber security can be used for the good, or for the
bad. Illegitimate mass surveillance of citizens without proper legislative authorization
is an example, for which such technologies are being misused. More research should
be conducted, to implement standards, suitable laws, and technologies to protect the
privacy of end-users, but still being able to protect computer networks and critical
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infrastructures, without the need for detailed large-scale preservation and retention of
personal end-user data to eventually respect human rights to privacy and informational
self-determination.

Data Provenance and Uncertainty

The goal for visual analytics applications is to acquire new knowledge about a situation
under investigation. The combination of analysis with a variety of visualization tools
helps to identify findings and insights, which eventually guide the decision-making
process. However, these conclusions can only be as good as the initial data provided
by the various data sources. Such issues inject various uncertainties in the workflow.
However, it is still an open challenge how to automatically identify such possible
uncertainties and how to convey data quality, data provenance, and uncertainty in a
way, that the security analyst is not biased or misleaded to rash decisions. During
active participation in the competitions, we were often required to rate the certainty
and relevance of stated hypotheses. Thus, handling uncertainty is not only relevant in
the context of the input data, but also in reporting findings. The analyst should not
only be guided to annotate identified findings, the system should also provide means
to relate and link various evidence (e.g., alternative visualizations, or underlying data
records) to objectively support stated hypotheses. This research also leads to the next
future perspective about communicating and reporting of insights and findings.

Communication and Reporting of Insights and Findings

Highly interactive visualizations, which are primarily used to identify suspicious events,
are often not the best way to communicate and report the acquired insights and findings.
However, visual analytics systems should not only provide means for monitoring or
threat analysis, but also incorporate appropriate ways to communicate the achieved
mental state of situational awareness to others. Reporting could benefit from novel
visualizations specifically designed to convey complex findings together with appropriate
evidence to allow others to follow the reasoning process of the actual analysts and
come to own conclusions and decisions. Only very few existing systems focus on such
reporting mechanisms to interactively support the creation of executive or detailed
summaries for the various stakeholders.

Further Integration of Novel Analytics Approaches

The overall goal of the visual analytics approach is a strong and tight coupling of
advanced analysis techniques with novel visualizations to eventually combine the best
of two worlds: The highly scalable computing power of computer systems and the
creativity, intuition, and domain knowledge of the human analyst. However, fulfilling
this vision comprehensively is still extraordinary challenging. Within this thesis, we
could only provide some steps into the right direction, however more research is needed
to tightly integrate advanced analytics, in which the user is able to intervene, re-iterate
at various steps and different levels of the analysis pipeline. Developing such holistic
visual analytics systems in the field of cyber security requires the close collaboration of
experts and researchers with highly specialized in-depth knowledge. This observation
makes the following aspect even more crucial for the future.
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Encourage Interdisciplinary Research Projects for Cyber Security

Without a doubt more interdisciplinary cyber security research will be needed in the
future to keep on top of the ever growing number of highly advanced threats. More and
more devices and systems are added to our computer networks, especially in the context
of Internet of Things (IoT). Furthermore, the accessibility of critical infrastructure over
the Internet and the deployment of smart grids, will increase the risk and in particular
the impact of cyber attacks targeting such systems. To address these challenges and to
be prepared for the future, interdisciplinary research is needed to bring together leading
experts of various fields. The research in the scope of this thesis was only possible,
because of the funding from the European Commission’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement no. 257495, “Visual Analytic Representation of
Large Datasets for Enhancing Network Security” (VIS-SENSE), which made it possible
to combine the strengths of visual analytics and the in-depth knowledge of leading
cyber security experts. We, therefore, believe that funded projects, which involve
visual analytics researchers and partners from cyber security industry are inevitable for
providing novel technologies to continue protecting our connected world.
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4.2 Pixel-based visualization of ELISHA. The main visualization con-
sists of a scalable pixel-based approach to display BGP data. Each pixel
represents an IP address with a color encoding according to the corre-
sponding BGP event. The three detailed windows at the top enlarge areas
of interest to better analyze single IP addresses. Reprinted from [25].
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Chapter 5
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