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Abstract

RNA sequencing (RNAseq) using next-generation-sequencing (NGS) technologies

allows, nowadays, to produce transcriptomic data in a high throughput fashion.

However, the analysis of these large and complex biological data sets remains

a great challenge. This analysis is highly of explanatory nature and requires to

constantly connect observations with implicit domain knowledge. This requires

interactive visual analysis systems and an expert user in the analysis loop. The chal-

lenge of designing interactive visual analysis systems for the analysis of RNAseq

data demands interdisciplinary research at the interface between molecular biology

and visual data analysis. However, the epistemic distance between both fields is

typically very high and, therefore, knowledge gaps and interdisciplinary commu-

nication issues hamper effective collaboration. In order to bridge the knowledge

gap between domain and visualization experts, I introduce the Liaison role for

problem-driven research in the visualization domain which fosters a better and

richer interdisciplinary communication. In this thesis, I contribute a problem char-

acterization and task descriptions to discover and describe genes using RNAseq

data. Based on the problem characterization, I identify two research gaps: First,

assessing the trustworthiness of RNAseq data in the analysis and, second, discover-

ing and relating genes to identify their functions. With the systems NGS Overlap

Searcher and VisExpress, I present two visual analysis solutions that address these

research gaps. Furthermore, I evaluate and apply both systems on real data sets

with real experts leading to important insights for the biological domain as well as

for problem-driven visualization research.
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Zusammenfassung

Die Anwendung von Sequenzierungstechnologien der nächsten Generation (next-

generation-sequencing (NGS)) erlaubt es heute Transkriptomdaten mit hoher Durch-

satzgeschwindigkeit zu produzieren (RNAseq). Die Analyse dieser großen und

komplexen biologischen Datensätze bleibt allerdings eine große Herausforderung,

da hier die Exploration der Daten im Vordergrund steht und Beobachtungen im-

mer mit implizitem Expertenwissen in Zusammenhang gebracht werden müssen.

Daher werden interaktive visuelle Analysesysteme benötigt, die Experten in den

Analysezyklus miteinbeziehen. Um der Herausforderung zu begegnen, interak-

tive Visualisierungssysteme für die Analyse von RNAseq Daten zu entwickeln,

wird eine interdisziplinäre Forschung an der Schnittstelle zwischen Molekular-

biologie und visueller Datenanalyse benötigt. Wissenslücken und Probleme der

interdisziplinären Kommunikation, die durch die hohe epistemische Distanz zwis-

chen beiden Forschungsgebieten gehäuft vorkommen, behindern allerdings eine

effektive Kollaboration. Um diese Wissenslücke zwischen Domänen- und Visual-

isierungsexperten zu überbrücken und eine bessere und reichere Kommunikation

zu fördern, führe ich die Liaison Rolle für problemorientierte Forschung im Bere-

ich Visualisierung ein, die zwischen beiden Fachgebieten vermittelt. Mit dieser

Dissertation trage ich eine Problemcharakterisierung sowie eine Beschreibung

von Aufgaben bei, um Gene mit Hilfe von RNAseq Daten zu entdecken und

zu beschreiben. Basierend auf dieser Problemcharakterisierung identifiziere ich

zwei Forschungslücken: Erstens, die Vertrauenswürdigkeit von RNAseq Daten

in der Analyse zu bewerten und zweitens, Gene zu entdecken und miteinander in

Verbindung zu bringen, um ihre Funktionen aufzuklären. Mit den Systemen NGS

Overlap Searcher und VisExpress stelle ich zwei visuelle Analyse Systeme vor,

welche die genannten Forschungslücken behandeln. Beide Systeme wurden mit

echten Daten und von echten Experten angewandt und evaluiert, was zu wichti-

gen neuen Einblicken in der Biologie, als auch im Gebiet der problemorientierten

Visualisierungsforschung geführt hat.
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Glossary

count

Number of reads overlapping an open reading frame (ORF). xi, xiii, 36, 42, 43, 71

differential gene expression

A gene or ORF is differentially expressed, if its gene activity levels differ significantly

between two experiment conditions. Different statistical methods exist to determine

differentially expressed genes (ORFs). In this thesis, all pair-wise comparisons (n:n) are

considered, however, in many studies only a (1:n) comparison is considered. Thus, several

conditions are compared against one reference condition. See also Section RNAseq Data

(p. 42) and Differential Gene Expression Data (p. 43). 8, 42, 43, 52, 53, 80–82, 115

FOG-Project

FOG-Project: “Finding new overlapping genes and their theory (FOG-Theory)”, part of

the priority programme “Information and Communication Theory in Molecular Biology”

(InKoMBio SPP 1395) of the German Research Foundation (DFG), 2010-2015. 3, 32, 34,

44, 70, 80, 86, 102, 114, 117

fold-change

Fold change denotes the ratio between the gene activity levels (counts) of two experiment

conditions. See Section RNAseq Data (p. 42). xii, 42, 43, 93

gene activity level

Value describing the strength of transcription of an ORF. For instance, the normalized

Reads Per Kilobase per Million mapped reads (RPKM) value or the raw counts. xi, xii,

xiv, 42–45, 47, 52, 70–72, 82, 99, 114

xi



Glossary

gene activity ratio (GAR)

The gene activity ratio is the ratio of the gene activity levels of a gene (or ORF) of two

experiment conditions. The gene activity ratio is also denoted as fold-change. xii, 43, 82,

91, 98, 115

gene activity ratio (GAR) pattern

The GAR pattern of a gene (or ORF) comprises the gene activity ratios (GARs) of all

pairs of condition comparisons. For instance for four conditions, the GAR of condition

1vs2, 1vs3, 1v4, 2vs1, 2vs2, 2vs3, 2vs4, 3vs1, 3vs2, 3vs3, 3vs4, 4vs1, 4vs2, 4vs3, 4vs4.

See V.4 (p. 89) for an illustration. 43, 53, 55, 82, 88, 89, 94, 99, 100, 117

gene activity ratios (GARs)

See gene activity ratio (GAR). xii

next-generation-sequencing (NGS)

Sequencing technologies of the next generation which sequences DNA in a high through-

put fashion by synthesis. See Section RNAseq Using Next-Generation-Sequencing (p. 33).

2, 33, 58, 79, 114

nucleotide

The DNA is composed of the nucleotides adenine (A), cytosine (C), guanine (G) and

thymine (T). See also Section Open Reading Frames and Genes (p. 29).. 29, 33, 42, 65–67

open reading frame (ORF)

An Open Reading Frame is defined by a start and a stop codon on the same reading frame.

ORFs which encode for a protein are denoted genes, i.e., the term ORFs comprises genes

as well as ORF not known to be coding. See Section Open Reading Frames and Genes

(p. 29). xi, xii, xiv, 29, 42, 47, 51, 52, 58, 69, 70

open reading frames (ORFs)

See open reading frame (ORF). 40, 44, 50, 56, 58, 59, 63, 72, 74, 117

operon

An operon describes several adjacent genes which are transcribed together. They build

one long mRNA. In general, the genes of an operon are functionally related. 50

xii



Glossary

overlapping genes (OLGs)

An overlapping gene pair is defined by two genes whose reading frames overlap at the

same genome location. See Section Overlapping Genes (p. 32). xiv, 32, 40, 44, 52, 70,

74, 77, 111

pathogenicity

Pathogenicity is the ability to cause a disease. 2, 44, 79

plasmid

Plasmids are small DNA molecules which exist separately in many bacteria cells. 42, 48

Polymerase Chain Reaction (PCR)

The Polymerase Chain Reaction allows an exponential multiplication of the DNA frag-

ments. See Section Amplification by Polymerase Chain Reaction (p. 36). 36

read

Sequenced fragments of DNA are named reads. See Section RNAseq Using Next-

Generation-Sequencing (p. 33). xiv, 33, 40, 42, 60, 63

read coverage

Read coverage describes the number of reads mapped to each genome position. The reads

overlapping an ORF are denoted as the read coverage of the ORF, meant is a vector with

the numbers of overlapping reads per ORF position which can be visualized as a line chart

(Figure III.5 (p. 35)). Due to uncertainties in the RNA sequencing, experts need to assess

the trustworthiness of the read coverage to verify a gene (or ORF) as active. An active

ORF is most likely a gene which has not been detected yet. See also Section RNAseq

Using Next-Generation-Sequencing (p. 33). xiv, 34, 36, 42, 44, 50, 58–60, 63, 65–67,

69–72, 74, 82, 115

Reads Per Kilobase per Million mapped reads (RPKM)

Normalized value to describe the strength of transcription of an ORF. Counts are normal-

ized for the length of the ORF and the total number of reads mapped to the genome in the

respective sequencing run. See Section RNAseq Data (p. 42). xi, 42, 99

RNA Sequencing (RNAseq)

RNAseq describes the use of NGS to indirectly sequence and, therefore, quantify RNA

from a genome at a given condition and moment in time. RNA is transcribed to DNA

xiii



Glossary

(so-called copy DNA), since NGS can only sequence DNA. See Section RNAseq Using

Next-Generation-Sequencing (p. 33), as well as RNAseq Data (p. 42). 2, 33, 44, 58, 79

RNAseq measurement

RNAseq measurements are the reads mapped to the genome. The RNAseq measurement

of a gene (or ORF) are the reads mapped to the gene (or ORF) and can be described by

the read coverage or the gene activity level. If a gene (or ORF) has a trustworthy RNAseq

measurement, the gene is active. Due to uncertainties in the RNAseq measurement,

experts need to assess the trustworthiness of the RNAseq measurement to verify a gene

(or ORF) as active. An active ORF is most likely a gene which has not been detected yet.

See also Section RNAseq Using Next-Generation-Sequencing (p. 33) and Assessment of

the Trustworthiness of RNAseq Measurements (p. 47). 44, 47, 48, 50–52, 58, 59, 63, 69,

74, 80, 116

shadow ORF (sORF)

An open reading frame (ORF) which overlaps with a gene is denoted shadow ORF (sORF).

sORFs are potential overlapping genes (OLGs). See Section Overlapping Genes (p. 32).

40

untranslated region (UTR)

Untranslated region (UTR): The transcription of a gene starts before the start codon and

ends after the stop codon. The regions not belonging to the gene are called untranslated

regions (UTRs), as they are not translated into the protein. The UTR of one gene might

start or end within an adjacent gene. xiv, 49, 59, 71

UTR

See untranslated region (UTR). 50, 71
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Chapter I

Introduction

I-1 Information Visualization and Visual Analytics

As vision is one of our most important human senses, it is not surprising that visualizations have

been used early on in human history. Starting with rock engravings as a symbolic communi-

cation in prehistory, of which some could be as old as 40,000 years, symbolic representations

have nowadays become an important medium of communication. So called Infographics are

frequently used in print and online media as well as on television to present information, for

entertainment, or both.

However, advancements in computer graphics and computer science in general have opened

up the possibility to combine graphics with interactions, enabling to use visualization for

interactive exploration in knowledge generation. This offers a great advantage over pure

automatic method, for which tasks or data patterns have to be well defined since computers can

only provide results if the human asks the right questions in the right way. However, tasks are

often ill-defined when researchers want to advance the state-of-the art in their domain. Often

they can just state that they want to gain new insights from their data [van Wijk, 2006]. The

advantage of visualization is to incorporate the expert into the analysis process. Experts can

steer the analysis to match the current analysis task and help to answer or even to identify new

questions. A further advantage of visualizations is the efficiency of our vision system to identify

patterns intuitively that may be hard to verbalize or describe in a form that a computer would

understand. Studies of visual representations to reinforce such human cognition processes build

the research field of visualizations (Vis).

In the field, three directions are distinguished: Information Visualization (InfoVis), Visual

Analytics (VA) and Scientific Visualization (SciVis). InfoVis combines visualization techniques

with interactions to build systems which support users in analyzing their data interactively. VA

is closely related to InfoVis but has the focus to tightly integrate visualizations with automatic

models, as visualizations can help to understand and steer algorithms. One advantage of the

integration of visualizations and automatic methods is, for instance, that meanings behind auto-

matic method parameters can be conveyed, leading to the possibility of an informed parameter

adjustment within the system. Furthermore, resulting uncertainties can be incorporated in

the data visualizations. While in InfoVis and VA the spatial representation can be chosen to

1



I. INTRODUCTION

represent a data attribute, the spatial representation is given in SciVis. SciVis can be defined by

visualizing data with an inherent structure, in which the continuous spatial dimensions express

(natural) structural information. Often 3D phenomena are considered, for instance, computer

tomography measurements or 3D structures of molecules.

Visualization research is mainly driven by real-world problems. Either directly by problem-

driven research which deals with real users, real data and relevant domain problems or indirectly

by technique-driven research. Technique-driven research develops new techniques for general

(abstract) tasks and/or data set which are applicable in several domains. Other directions address

evaluations and meta-research categories like methodologies. The challenges in visualization,

especially visual analytics research, have been discussed by Keim et al. [Keim and Zhang, 2011,

Keim et al., 2009, 8]. See Section I-4 for more information.

The books of Colin Ware [Ware, 2004], Ward et al. [Ward et al., 2010] and Tamara Mun-

zner [Munzner, 2014] provide an overview on the Vis field, from perception to design, techniques

and applications. “Mastering the information age - solving problems with visual analytics” of

Keim et al. [Keim et al., 2010], introduces and discusses visual analytics in more detail.

I-2 Biological Data Visualization

Advances in molecular biology can lead to new knowledge about diseases and development

of new medical treatments (medicines). However, the complex relations and dependencies

in biology necessitate a human in the analysis to connect implicit domain knowledge with

measured data. Furthermore, high-throughput technologies have lead to the need of exploration

to generate new hypotheses from the immense data volumes.

Many genes are, for instance, still not discovered, even in well researched organisms like

Escherichia coli. Furthermore, the function of many genes remains unknown. The exploration of

the functions of bacteria genes would open up many lines of research. An improved understand-

ing of human pathogenicity would help, for example, to develop new medical treatments and a

better comprehension of bacteria utilized in biotechnology would contribute to the production

of new substances. RNA Sequencing (RNAseq) by next-generation-sequencing (NGS) is a

technology which allows to make advancements in this direction. RNAseq enables measurement

of genes in a high throughput fashion. The large and complex data sets necessitate new scalable

and interactive data analysis approaches which support directed verification of hypothesis, as

well as data exploration. In this context, I address an interesting and fascinating molecular

biology topic in my thesis - the visual analysis of RNAseq data to discover and describe genes

in bacteria.

2



I-3 Structure and Contributions of this Thesis

Furthermore, many general visualization challenges need to be addressed to design and

develop interactive visualization systems for molecular biology applications. The most important

ones are: scalability, uncertainty, evaluation and interestingness, which I discuss in Section

I-4 in detail. I see further challenges which are especially relevant in the biological domain.

First, the challenge to bridge the gap between domain and visualization experts and, second, to

abstract data and tasks in an appropriate way to address scalability, uncertainty and interactions.

See Section I-4 for a discussion of these points.

I-3 Structure and Contributions of this Thesis

My aim was to orient my work on real problems in RNAseq analysis, therefore, I performed

problem-driven visualization research in the course of the FOG-Project1. Due to the interdisci-

plinary nature of this project, I had the opportunity to collaborate closely with domain experts

and to analyze real data.

The reader can learn from this thesis the specifics of visualization challenges in problem-

driven biological research (next Section I-4). In chapter II I introduce the Liaison role to

tackle the general problem of interdisciplinary research which is the knowledge gap between

domain and visualization experts and the interdisciplinary communication issue leading to

misunderstandings in communication. The definition of this role and its tasks description allows

readers to utilize this role in their own problem-driven visualization research to overcome the

general Bridging the gap challenge between domain and visualization experts.

Chapter III provides the reader with an introduction to the biological topic of genes and

RNAseq data. In Section III-4 of this Chapter I identify the two main research gaps for the

(visual) analysis of RNAseq data to discover and describe genes in bacteria: first to assess the

trustworthiness of RNAseq measurements and second to discover and relate genes to identify

their functions. For these research gaps I contribute two analysis systems that are described in

Chapter IV and Chapter V. Based on the problem characterization and a set of abstracted tasks,

readers can develop alternative systems. Definitions of interestingness and uncertainty are given

to bypass, respectively understand, these challenges for the stated tasks in RNAseq analysis.

Chapter IV introduces the NGS Overlap Searcher system which allows to assess the trust-

worthiness of RNAseq measurements. Thereby, the NGS Overlap Searcher provides a solution

to address the scalability and the uncertainty challenge for the described tasks in RNAseq

analysis.

1FOG-Project: “Finding new overlapping genes and their theory (FOG-Theory)”, part of the priority programme
“Information and Communication Theory in Molecular Biology” (InKoMBio SPP 1395) of the German Research
Foundation (DFG), 2010-2015

3



I. INTRODUCTION

Chapter V introduces the VisExpress system which supports data exploration to discover

and detect new genes as well as to relate genes with functions. Thereby, the VisExpress

system provides a solution to address the scalability and the uncertainty challenge for the

described tasks in RNAseq analysis. The design of VisExpress is validated with a pair analytics

study [Arias-Hernandez et al., 2011], showing the applicability of this approach to address the

evaluation challenge.

Chapter VI will conclude the thesis, summarizing the contributions and outlining a number

of interesting open issues for future research.

I-4 Challenges in Visual Analytics and Biological Visualizations

Thomas and Cook, and Daniel A. Keim et al. have introduced researcher directions and chal-

lenges of visual analytics in the books “Illuminating the Path: Research and Development

Agenda for Visual Analytics” [Thomas and Cook, 2005] and “Mastering the information age

- solving problems with visual analytics” [Keim et al., 2010]. Keim et al. have also further

discussed visual analytics challenges in [Keim et al., 2009, Keim and Zhang, 2011, 8] 1 : scal-

ability, uncertainty, hardware, interaction, evaluation, infrastructure, interestingness and text

data stream.

I add a description of two further challenges which seem to be relevant, in my opinion,

especially in the biological domain: bridging the gap and abstraction. All challenges are

covered by the main aim of visual analytics which is to generate new knowledge with visual

analytics systems (see Sacha et al. [Sacha et al., 2014]).

Hereinafter I briefly explain the challenges most relevant for biological data visualization

and name the specific biological characteristics. Challenges not included in [Keim et al., 2009,

Keim and Zhang, 2011, 8] are marked with *.

Bridging the gap*

If visual analytics addresses complex real world problems, the first challenge is to characterize

the domain problem. This is often hampered by a knowledge gap between domain and visual-

ization experts. This is also described as the interdisciplinary communication issue (see Section

II-3 and [13]). A missing mutual knowledge and different domain languages, often lead to

misunderstandings and sub-optimal designs. Beside the knowledge gap between domain and

visualization experts, an interest gap exists. Domain experts need a tool to accomplish their

1I co-authored the publication Keim et al. [8]. However, I have not contributed to the challenge definition. See
for the work distribution Solving Problems with Visual Analytics: Challenges and Applications (p. 12).
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aims which might be a simple or automatic solution. Visualization experts are interested in

visualization research and do not want work as a toolsmith. Van Wijk has described these gaps

and discussed how to bridge them in [van Wijk, 2006].

Specific biological Bridging the gap characteristics. Molecular biology is an especially

complex domain, with its own domain language and expectations for many rules. Thus, bridging

the knowledge gap is hard and often needs much time. See Chapter II for an approach to address

this issue with a Liaison.

Defining Interestingness

The human visual system is powerful in perceiving patterns. However, complex and big data

necessitates to abstract data. To do so, user tasks need to be considered since they define which

data aspects are of interest. Since tasks are often ill-defined, this necessitates understanding

interestingness in the domain. This understanding allows subsequently to match the metal

model of domain experts with the visual and interaction design to optimally support users.

Additionally, automatic methods need to be defined which can capture the interesting parts in

the data. Feedback mechanisms could be used in this context to learn individual interestingness

functions, based on user behavior.

Specific biological interestingness characteristics. See last subsection Specific biologi-

cal Bridging the gap characteristics. Chapter III provides an abstraction for RNAseq data and

the tasks to discover and describe genes, leading to the definition of interestingness for the aim

to discover and describe genes.

Achieving an Abstraction*

Achieving a meaningful abstraction for data and tasks is challenging as a grounded domain

knowledge is needed, as well as a grounded knowledge of task analysis and visualization

techniques. Furthermore, algorithms might need to be abstracted or replaced by heuristics

to allow a subsequent scalability and seamless interactions. Thus, also knowledge on the

algorithmic side is needed. A good abstraction matches the mental model of the domain experts

to support the generation of insights. See also “Data Representations and Transformations

(Chapter 4)” in [Thomas and Cook, 2005].
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Specific biological abstraction characteristics. See subsection Specific biological Bridg-

ing the gap characteristics (p. 5). Chapter III provides an abstraction for RNAseq data and the

tasks to discover and describe genes.

Conveying Uncertainty

Uncertainty can occur in visualization on different levels. First on the raw data level, second

on the pre-processing data level and, third, on the perception level. Raw data can already be

erroneous, for instance, due to inaccurate measured or missing values. Sometimes the strength

of bias can be stated and visualized if a measuring instrument has a known margin of error. In

other cases the bias cannot be stated.Also data pre-processing can introduce uncertainties, for

instance, by simple data pre-processing steps like binning or complex ones like data models or

prediction which might be inaccurate. However, if uncertainty can be measured , for instance,

as the confidence of an analysis algorithm, visualizations can incorporate and represent these

to raise the awareness of users for data quality. The third aspect is the human perception of

visual representations and color. Some visual representations are more accurate than others, and

some visual designs might be misleading and ambiguous which depends predominantly on the

analysis task and on faithfully representing data [Mittelstädt et al., 2015a]. Beside the typ of

visual representations, color is an important visual variable but color vision is also influenced

by contrast effects [Mittelstädt et al., 2014]. Humans perceive colors differently, depending on

the surrounding color. Therefore, designers of visualization systems have to consider accepted

design guidelines, as well as human perception and cognition principles. Furthermore, all

measurable and relevant uncertainties need to be incorporate in the design to enable the users to

make informed decisions.

Specific biological uncertainty characteristics. Biological data can contain many un-

measurable uncertainty sources, due to many consecutive error prune data preparation steps. This

is the case, for instance, with RNAseq data (see Section III-2.2). Furthermore, the awareness

of quality and the assessment of trust is very important for biologists, as subsequent validation

experiments are time and cost intensive (see Section III-4.2 and III-4.3). See chapters IV and V

for systems which address the Uncertainty challenge.

Reaching Scalability

Problems addressed with visualizations often deal with complex, heterogeneous and large

data sets (Big Data). Following, a visual representation of all data and/or all different data

aspects is not possible due to limited screen space. Furthermore, automatic analysis slows

6
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down with data size which can only be partially compensated by modern computer hardware,

as especially visual analytics requires real-time interactions. Therefore, appropriate data ag-

gregations are needed to analyze data according to the visual information seeking mantra of

Shneiderman [Shneiderman, 1996] “Overview first, zoom and filter, then details-on-demand”.

Automatic analysis needs to be replaced or combined with heuristic approaches to provide

users with estimated solutions. Furthermore, visualizations of preliminary analysis results are

an interesting direction as these allow users to steer and influence the algorithms by adjusting

parameters during runtime.

Specific biological scalability characteristics. For visualization of large and complex

biological data sets, data aggregations are needed which are effective and intuitive to read. A

limitation might be here that biologist are often not trained in visualizations, hampering the use

of too complex visualizations. Specific trainings might be a solution here. However, how to

effectively teach visualizations still needs more research. See Chapters IV and V for systems

which address the Scalability challenge.

Learning form Evaluation

Visual Analytics solutions address complex real world problems which often aim to advance the

state of the art in the application domain by generating new insights from data. This fact hampers

an evaluation in form of control lab studies - insight is not directly measurable. New evaluation

methodologies need to be developed, which account for this fact, and address all steps of the

design process. See papers of Munzner and Meyer et al. [Munzner, 2009, Meyer et al., 2013,

McKenna et al., 2014] going in the same direction. Additionally, evaluation methods are needed

which help to achieve a better understanding how visualizations support human cognition and

decision processes. See Arias-Hernandez et al. [Arias-Hernandez et al., 2011] for an approach

to address this issue.

Specific biological evaluation characteristics. Even if real data is analyzed by real users

in an evaluation, the complexity of the biological domain can hamper to capture and/or under-

stand gained insights for the visualization researcher. This hampers to extend or improve the

visualization solution in the right way. See Chapter II for an approach to address this issue with

a Liaison and chapter V for a system which has a strong evaluation.

Further Specific Biology Characteristics

Biology is a very fast advancing and developing field. On the one side, new technologies and

falling cost bring up new interesting lines of research which could not be addressed before.

7
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However, often accuracy and biases are, at first, not known for new technologies. On the

other side, new research results bring up new questions for old data sets which could be re-

analyzed in this respect. Public data sets can be analyzed, e.g., for overlapping genes (see

Overlapping Genes (p. 32)). However, such problems are often very specific. Necessitating to

develop many different and specially tailored systems. In this connection it is challenging to

identify commonalities between different specific tasks to increase the applicability of systems.

Additionally, systems should be decoupled from data sources, as these can change over time.

For instance, many systems have been devolved to analyze differential gene expression from

DNA mircoarrays but nowadays RNAseq has become the standard for gene expression data.

I-5 Citation Conventions

This thesis is based on published papers I authored or co-authored (see also Publications

Utilized for this Thesis (p.9)). A different reference style is used in order to distinguish these

publications from references. My publications are numbered with arabic numbers, for instance,

[14]. References are cited with aberrations, for instance, [Sedlmair et al., 2012b].

Most chapters and sections comprise some content of my publications. Parts of these

chapters appeared verbatim in my publications 1. Other parts are based on my publications, but

the text is paraphrased and extended. At the beginning of each chapter or section I state the

publication it is based on. For instance:

Note

This chapter is based on the following publication and parts of this chapter appeared in this

publication [12]:

Svenja Simon, Sebastian Mittelstädt, Daniel A. Keim, and Michael Sedlmair. “Bridging

the Gap of Domain and Visualization Experts with a Liaison.” Eurographics Conference

on Visualization (EuroVis) - Short Papers, Cagliari, Italy, 25 - 29 May 2015, 127-133, The

Eurographics Association, 10.2312/eurovisshort.20151137, 2015.

Paragraphs that are based on the contributions (and text) of co-authors are quoted and italicized.

Related work and state-of-the-art is cited according to the common reference style in the com-

puter science community, for instance: Sedlmair et al. introduced the design study methodology

framework [Sedlmair et al., 2012b].

1All parts which are copied from publications are written by myself or quoted. See also Publications Utilized
for this Thesis (p.9) for a listing of the work distribution among the co-authors.
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I-6 Publications Utilized for this Thesis

This section lists all publications utilized for this thesis: First Author Publications and Co-

Authored Publications. For each publication the contributions are stated and assigned to the

corresponding author. Furthermore, the division of responsibilities and work is stated.

First Author Publications

Bridging the Gap of Domain and Visualization Experts with a Liaison

Svenja Simon, Sebastian Mittelstädt, Daniel A. Keim, and Michael Sedlmair. “Bridging the Gap

of Domain and Visualization Experts with a Liaison.” Eurographics Conference on Visualization

(EuroVis) - Short Papers, Cagliari, Italy, 25 - 29 May 2015, 127-133, The Eurographics

Association, DOI: 10.2312/eurovisshort.20151137, 2015. [12]

The main research problem, how to deal with the knowledge gap between domain and visualiza-

tion experts, was identified in a discussion by myself, S. Mittelstädt, A. Stoffel, BC Kwon and

D.A. Keim, during the paper project VisExpress. The contributions of this paper are:

1. Description of the Liaison role and its variations to address the interdisciplinary communica-

tion issue (ICI).

1a. A simple model, based on a metaphor of spaces to illustrate the ICI.

2. Guidelines how to utilize and integrate the Liaison in the design process.

3. A discussion of benefits and pitfalls of the Liaison role based on experiences in the VisExpress

design study.

Identification and Development of Contributions:
Contribution 1 and 2 were identified in a discussion with all authors and developed by myself.

Contribution 1a was identified by M. Sedlmair and developed by M. Sedlmair and myself.

Contribution 3 was identified and developed by myself.

Implementation: Does not apply.

Authorship: The paper is written by myself. All authors reviewed the paper.

Supervision: M. Sedlmair and D.A. Keim supervised the paper project and commented on

paper drafts and contributions.
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Visual Analysis of Next-Generation Sequencing Data to Detect Overlapping Genes
in Bacterial Genomes

Svenja Simon, Daniela Oelke, Richard Landstorfer, Klaus Neuhaus, and Daniel A. Keim. “Vi-

sual Analysis of Next-Generation Sequencing Data to Detect Overlapping Genes in Bacterial

Genomes.” 2011 IEEE Symposium on Biological Data Visualization, October 23 - 24, Provi-

dence, Rhode Island, USA, 47-54, IEEE, DOI: 10.1109/BioVis.2011.6094047, 2011. [14]

The main research challenge, expressively visualizing RNAseq data and guiding the search in

large RNAseq data sets, was identified in discussion with all authors. The contributions of this

paper are:

1. A representation of the RNAseq measurements without introducing artifacts.

2. A visualization of RNAseq measurements in the open reading frame (ORF) representation

allowing to determine how well the transcript fits to the ORF location.

3. A filter functionality to focus on interesting ORFs to handle the large data volumes.

4. An overview representation to adapt filter parameters based on visual feedback, as well as a

navigation possibility to ORFs of interest.

Identification and Development of Contributions:
Contribution 1-4 were identified in discussions with D. Oelke and developed by myself.

Additionally: R. Landstorfer and K. Neuhaus contributed biological background information.

Implementation:
The executable system prototype was implemented in Java by myself, D. Oelke and Daniel

Seebacher (student assistant). Data processioning was performed by myself with R.

Authorship:
Introduction: R. Landstorfer and K. Neuhaus.

All other sections: The rest of the paper is written by myself. All authors reviewed the paper.

Supervision:
D. Oelke and D.A. Keim supervised the paper project and commented on paper drafts and

contributions.
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VisExpress - Visual Exploration of Differential Gene Expression Data

Svenja Simon, S. Mittelstädt, BC Kwon, A. Stoffel, R. Landstorfer, K. Neuhaus, A. Mühlig,

S. Scherer, and D.A. Keim. “VisExpress - Visual Exploration of Differential Gene Expression

Data.” Information Visualization, 1-26, DOI: 10.1177/1473871615612883, 2015. [13]

The main research challenge, allowing a quality aware visual exploration of differential gene

expression data for expert users, was identified by myself. The contributions of this paper are:

1. Problem characterization and abstraction of tasks & data for the topic “visual exploration of

differential gene expression data”.

2. The validated visualization design of VisExpress, based on an overview to detail visualization

approach and gene fingerprints to explore differential gene expression data.

2a. Final design and validation of VisExpress.

2b. Colormap design for the gene fingerprint designs “Stacked” and “2D colormap” matrix.

2c. Optimization of the recursive pattern layout.

3. A pair analytics study to validate the design of VisExpress.

4. A discussion of the resulting biological findings.

Identification and Development of Contributions:
Contributions 1 and 4 were identified and developed by myself. The co-authors R. Landstorfer,

K. Neuhaus and A. Mühlig commented on the corresponding paper parts from a biological view.

Contribution 2 was identified by myself and developed by myself and the co-authors S. Mittel-

städt, BC Kwon and A. Stoffel as a VIS team (see Design Process (p.85) for further information).

Contribution 2a was developed by myself.

Contributions 2b an 2c were identified and developed by S. Mittelstädt.

Contribution 3. BC Kwon had the idea to validate the system design with a pair analytics

study [Arias-Hernandez et al., 2011] and commented on the study design. I designed the study

myself and performed the study with R. Landstorfer, K. Neuhaus and A. Mühlig.

Implementation:
The executable system prototype was implemented in Java by S. Mittelstädt. Data processioning

was performed by myself with R.

Authorship:
Colormap design in Stacked matrix (p. 91) and 2D colormap matrix (p. 92): S. Mittelstädt.

Optimization details of the recursive pattern layout (p. 97): S. Mittelstädt.

All other sections: The rest of the paper is written by myself. All authors reviewed the paper.

Supervision:
BC Kwon, A. Stoffel, D.A. Keim and S. Scherer supervised the paper project and commented

on paper drafts and contributions.
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Co-Authored Publications

Visual Boosting in Pixel-based Visualizations

Daniela Oelke, Halldór Janetzko, Svenja Simon, Klaus Neuhaus, and Daniel A. Keim. “Vi-

sual Boosting in Pixel-based Visualizations.” Computer Graphics Forum, 30(3):871-880, DOI:

10.1111/j.1467-8659.2011.01936.x, 2011. [10]

The main research idea, adressing the question how to boost interesting and important informa-

tion in pixel-based visualizations and providing a guideline, was identified by Daniela Oelke. I

co-authored this paper and contributed the following:

a) Discussions about influencing factors for the effectiveness of boosting techniques.

b) The idea for the distinction between image- and data-driven boosting as an influencing factor.

c) Discussions about the effectiveness of boosting techniques based on influencing factors,

leading to a guideline.

d) Biological application scenario.

e) Text for the biological application scenario and review of the paper.

f) The executable prototype was implemented in Java. The prototype was based on a pixel-based

visualization implementation of Daniela Oelke. Halldór Janetzko and myself took over the re-

sponsibility to implement a few of the suggested boosting techniques within the implementation

of Daniela Oelke.

Solving Problems with Visual Analytics: Challenges and Applications

Daniel A. Keim, Leishi Zhang, Miloš Krstajić, and Svenja Simon. “Solving Problems with

Visual Analytics: Challenges and Applications.” Journal of Multimedia Processing and Tech-

nologies, Special Issue on Theory and Application of Visual Analytics, 3(1):1-11, 2012. [8]

The main research idea, adressing the challenges and applications in visual analytics, was stated

by Daniel A. Keim. I co-authored this paper and contributed the following parts:

a) Application example in the area of Next-Generation-Sequencing data analysis.

b) Text for the biological application.
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I-7 Further Publications

During my PhD I authored or co-authored the following publications which are not part of this

thesis. See also also Chapter VI Applications (p. 118).

Peer-reviewed Publications

[9]: R. Landstorfer, Svenja Simon, S. Schober, D. A. Keim, S. Scherer and K. Neuhaus. “Com-

parison of strand-specific transcriptomes of enterohemorrhagic Escherichia coli O157:H7

EDL933 (EHEC) under eleven different environmental conditions including radish sprouts and

cattle feces.” BMC Genomics, 15(1):353, DOI: 10.1186/1471-2164-15-353, 2014.

[7]: L. Fellner, N. Bechtel, M. A. Witting, Svenja Simon, P. Schmitt-Kopplin, D. A. Keim, S.

Scherer and K. Neuhaus. “Phenotype of htgA (mbiA), a recently evolved orphan gene of Es-

cherichia coli and Shigella, completely overlapping in antisense to yaaW.” FEMS Microbiology

Letters, 350(1):57–64, DOI: 10.1111/1574-6968.12288, 2014.

[4]: F. Benites, Svenja Simon and E. Sapozhnikova. “Mining Rare Associations between

Biological Ontologies.” PLoS ONE, Public Library of Science, 9(1):e84475, DOI: 10.1371/jour-

nal.pone.0084475, 2014.

[3]: M. Behrisch, J. Davey, Svenja Simon, T. Schreck, D. A. Keim and J. Kohlhammer. “Visual

Comparison of Orderings and Rankings.” EuroVis Workshop on Visual Analytics, The Euro-

graphics Association, DOI: 10.2312/PE.EuroVAST.EuroVA13.007-011, 2013.

[11]: Svenja Simon, R. Guthke, T. Kamradt and O. Frey. “Multivariate analysis of flow cytomet-

ric data using decision trees.” Frontiers in Microbiology, 3(00114), DOI: 10.3389/fmicb.2012.00114,

2012.
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Poster and Other Publications

[6]: M. El Assady, D. Hafner, M. Hund, A. Jäger, W. Jentner, C. Rohrdantz, F. Fischer,

Svenja Simon, T. Schreck and D. A. Keim. “Visual Analytics for the Prediction of Movie Rating

and Box Office Performance.” VAST Challenge 2013 - Award for Effective Analytics, 2013.

[2]: F. Al-Masoudi, D. Seebacher, M. Schreiner, M. Stein, C. Rohrdantz, F. Fischer, Svenja Simon,

T. Schreck and D. A. Keim. “Similarity-Driven Visual-Interactive Prediction of Movie Ratings

and Box Office Results.” VAST Challenge 2013 - Award for Effective Visualization, 2013.

[5]: M. Chen, J. Heinrich, J. Kennedy, A. Kerren, F. Schreiber, Svenja Simon, C. Stolte, C.

Vehlow, M. Westenberg and B. Wong. “Uncertainty Visualization.” Chapter in Biological Data

Visualization (Dagstuhl Seminar 12372). Dagstuhl Reports, Volume 2, Issue 9, Chapter 4.6,

pages 154-155. Editors: Carsten Görg and Lawrence Hunter and Jessie Kennedy and Sean

O’Donoghue and Jarke J. van Wijk, DOI: 10.4230/DagRep.2.9.131, 2013.

[1]: J. Aerts, J.-F. Fontaine, M. Lappe, R. Machiraju, C. Nielsen, A. Schafferhans, Svenja Simon,

M. O. Ward and J. J. van Wijk. “Sequence Data Visualization.” Chapter in Biological Data

Visualization (Dagstuhl Seminar 12372). Dagstuhl Reports, Volume 2, Issue 9, Chapter 4.2,

pages 143-148. Editors: Carsten Görg and Lawrence Hunter and Jessie Kennedy and Sean

O’Donoghue and Jarke J. van Wijk, DOI: 10.4230/DagRep.2.9.131, 2013.

[16]: Svenja Simon, D. Oelke, K. Neuhaus and D. A. Keim. “Visualization of the sensitivity of

BLAST to changes in the parameter settings.” Poster at GCB 2012 - German Conference on

Bioinformatics 2012, Jena, Germany (Poster), 2012.

[15]: Svenja Simon, D. Oelke, R. Landstorfer, K. Neuhaus and D. A. Keim. “Visual Analysis

of RNAseq Data to Detect Overlapping Genes in Bacterial Genomes.” Poster, VIZBI 2012,

Heidelberg, Germany, 2012
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Chapter II

Bridging the Gap to Domain Experts:
The Liaison Role for Problem-Driven
Visualization Research

Note

This chapter is based on the following publication and parts of this chapter appeared in the

following publication [12]1:

[12]: Svenja Simon, Sebastian Mittelstädt, Daniel A. Keim, and Michael Sedlmair. “Bridg-

ing the Gap of Domain and Visualization Experts with a Liaison.” Eurographics Conference

on Visualization (EuroVis) - Short Papers, Cagliari, Italy, 25 - 29 May 2015, 127-133, The

Eurographics Association, DOI: 10.2312/eurovisshort.20151137, 2015.2

Please note that I will use “we” throughout this chapter instead of “I”, as this chapter is

based on a publication1. “I” will only be used to refer to my role as a Liaison.
1For the division of responsibilities and work, as well as a statement of contributions in this publication,

see Bridging the Gap of Domain and Visualization Experts with a Liaison (p. 9).
2I own (with the co-authors) the copyright of this publication. EUROGRAPHICS holds the exclusive

license for publishing ([12]). The definitive version is available at http://diglib.eg.org/
Direct link to the published article: http://diglib.eg.org/handle/10.2312/eurovisshort.20151137.127-131

II-1 Introduction

In the last chapter I introduced challenges and opportunities of problem-driven research in the

application area of molecular biology. One issue is the collaboration with domain experts which

is essential for a design study [Sedlmair et al., 2012b]. Effective collaboration is heavily based

on communication. However, often a large knowledge gap between domain and visualization

experts exist and, thus, a missing common language and understanding often hampers an

effective communication (Bridging the gap* challenge).

This knowledge gap is especially high in exploratory data analysis and visualization projects.

First, tackled problems in visualization research are often ill-defined and even domain ex-
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perts cannot clearly define their tasks, as they ’just’ want to generate new insight and to

advance the state of the art [van Wijk, 2006]. Secondly, problems are inherently complex

and need a human in the loop to integrate implicit domain knowledge in the analysis pro-

cess. In application domains, such as genomics [Meyer et al., 2009, Meyer et al., 2010b], se-

curity applications [Mittelstädt et al., 2015b], or automotive engineering [Sedlmair et al., 2011,

Piringer et al., 2010] the knowledge gap to visualization researchers is especially high and ad-

ditionally patterns of thinking and strategies for solving problems differ significantly. This

might lead to difficulties and impede the work of visualization researchers identifying the needs

and understanding domain experts. This knowledge gap hampers an effective communication,

leading to an interdisciplinary communication issue.

Due to the specifics in exploratory data analysis and visualization projects, methods from

Software Engineering (e.g., Requirement Analysis [Grady, 2013] and Human-Computer In-

teraction (e.g. in User-centered Design [Vredenburg et al., 2002]) do not sufficiently address

the interdisciplinary communication issue for visualization research. Despite the issue for

problem-driven research, visualization literature has focused little on communication processes

so far.

In this chapter,

• we describe the concept of a Liaison role as one approach to foster a better and richer

interdisciplinary communication.

• we provide a simple model that can be used to reason and understand the interdisciplinary

communication issue.

• we characterize the Liaison and how different variations of this role can be utilized in

problem-driven visualization research.

The idea for the Liaison is based on our own experience from several different design studies

where we implicitly used this role. For illustration of benefits, characteristics, and potential

limitations of the Liaison, we will refer to the VisExpress project [13], in which we have first

explicitly utilized this role (see also Chapter V).

II-2 Related Work

The HCI community has spent a considerable amount of work on better understanding how

to include users into design processes (e.g., User-Centered Design [Vredenburg et al., 2002]).

Participatory Design [Spinuzzi, 2005] goes even further as users actively participate in the

design process. For participatory design and co-design [Albinsson et al., 2007] also the term

liaison is used. However, a clear definition is missing. A liaison in these areas usually refers

to domain experts involved in the design process or to a person who gives technical support to
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target users. In contrast, we characterize the Liaison for problem-driven visualization projects

as a role that abstracts domain problems for visualization experts but do not involve domain

experts actively in the design process. In the visualization community, Sedlmair et al. specified

roles in their Design Study Methodology framework [Sedlmair et al., 2012b]. Their translator

is similar to our Liaison but has been merely mentioned and not been characterized. We decided

to use the term “Liaison” to strengthen the cooperation and mediation aspect.

Independent of the kind of – broadly speaking – software design a common understanding

is needed. The higher the knowledge gap to the problem domain, the more common under-

standing is needed. Bratteteig discussed mutual learning [Bratteteig, 1997] in this respect. For

visualization projects, Lloyd & Dykes proposed to use lectures to introduce visualizations to

domain experts and domain presentations for the visualization expert [Lloyd and Dykes, 2011].

Kirby & Meyer give recommendations for successful visualization collaborations

[Kirby and Meyer, 2013] and suggest learning the domain expert language. The use of the

domain language and the associated domain understanding supports to capture the mental model

and thereby to build intuitive visualization systems [Kirby and Meyer, 2013]. Gaining domain

knowledge and learning the domain language is one way to become a Liaison (see Section II-4).

In the visualization literature guidance for the visualization design and evaluation process is

given by a number of frameworks, models and methods. Sedlmair et al. provided a nine stage

framework for design studies in order to structure the visualization process. Furthermore, they

identified common pitfalls not only in the design process itself but also in the precondition phase

of a design study [Sedlmair et al., 2012b]. Meyer et al. proposed the nested blocks and guide-

lines model for design and validation of visualization systems [Meyer et al., 2013]. McKenna

et al. provided a design activity framework to break down each activity of design & evaluation

in motivation, outcome and methods [McKenna et al., 2014]. In order to capture reasoning

processes Arias-Hernandez et al. introduced Pair Analytics [Arias-Hernandez et al., 2011].

II-3 The Interdisciplinary Communication Issue

For illustration of the issues of interdisciplinary communication we propose a simple model

based on a metaphor of spaces (see Fig. II.1) 1. The domain expert/s span a Problem Space

which comprise domain problems composed of facets such as domain goal, tasks, data, and

constraints. The visualization expert/s (short VIS team), on the other hand, span a Design Space

of visual solutions composed of visual analysis tasks & data abstractions, visual encoding &

interaction techniques, and algorithms. Addressing a domain problem implies that all its facets

1Michael Sedlmair had the idea to illustrate the interdisciplinary communication with a simple model, based on
a metaphor of spaces. I developed this idea and designed the graphic in Figure II.1.
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Figure II.1: The Problem Space comprises all domain problems and the Design Space all visual
solutions. (A) Without a common language the domain and visualization experts communication
builds a cone, leading to a small Solution Space. Thus, many possible solutions are missed (gray
lines). (B) A Liaison mediates between domain and visualization experts to widen the Solution
Space, which covers more possible solutions (1,3,4) for (a) and allows the identification of additional
interesting domain problems (b, c). This graphic appeared in [12].

need to be understood at first which requires large domain knowledge. The design of a visual

solution (indicated by lines in our model) requires that different design choices need to be

considered that match problem abstractions and techniques to domain problems and tasks. Thus,

a good solution requires both, a large domain and a large visualization knowledge. Otherwise,

solutions can be composed of bad design choices and do not solve the domain problem.

Ideally one person covers both knowledge spaces but the issue of problem driven research is

that rarely one person has a grounded knowledge in two domains. Thus, typically a domain and

a VIS team work together and communicate to connect the knowledge of both spaces with the

aim to capture all design alternatives (solution lines) for a domain problem. Without a common

understanding both communication endeavors build a cone resulting in a restricted overlap and

common understanding (see Figure II.1 A). Thus, just a small part of the solution lines are

contained in the Solution Space leading to potentially sub-optimal solutions. We denote this
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issue as the interdisciplinary communication issue and suggest the Liaison role as a solution to

broaden the communication channel and Solution Space (see Figure II.1 B).

II-4 The Liaison Role

The goal of the Liaison is to overcome the interdisciplinary communication issue. A Liaison

shares knowledge and language with both domains for mediating between domain and visualiza-

tion experts. This establishes a common understanding and greater coverage of the Problem and

Design Space resulting in a larger Solution Space and, thus, a better yield of good solutions (see

Figure II.1 B). The Liaison grasps information of the domain experts and interprets, selects and

processes these for the VIS team. Therefore, the Liaison needs knowledge from both domains.

In particular, the Liaison needs the domain language to allow a free speech and collaborative

analysis with domain experts (see benefits, Section II-5). Even though a grounded visualization

knowledge and language is beneficial, a basic understanding is sufficient. The VIS team can

compensate this missing knowledge, whereas a certain domain knowledge is essential to bridge

the knowledge gap.

II-4.1 How to Become a Liaison.

There are three general ways to become a Liaison (see Fig. II.2) which have been used implicitly

but not been reported explicitly yet. First, starting as a domain expert interested in visualiza-

tion, e.g. in [Mittelstädt et al., 2015b] (domain Liaison); second, starting as a visualization

expert who gathered much knowledge in an application domain during a design study, e.g.

in [Sedlmair et al., 2011, Sedlmair et al., 2012a] (visualization Liaison) and, third, inherently

starting from an interdisciplinary subject, such as, bio-, geo-, or business-informatics, e.g.

in [12] (interdisciplinary Liaison). All three types have different advantages and disadvantages.

The domain knowledge of a visualization Liaison might not be sufficient to master the

problem complexity, as gaining domain knowledge requires much time. Staying in one applica-

tion domain is, therefore, advisable. The benefit of this Liaison is that the grounded visualization

knowledge might allow a smaller VIS team. In order to broaden the Problem Space and to

ensure that solutions match the domain problem, joint meetings with domain experts and the

VIS team are recommended. Such meetings also address the issue of focusing just on a research

contribution and not on solving the domain problem.

The other extreme is the domain Liaison who might have problems to identify an interesting

visualization problem, due to a small visualization knowledge. However, this Liaison is effective

in capturing the problem complexity and in validating design alternatives of the VIS team since
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she focuses on a practical solution. A close collaboration with a strong VIS team is advisable

who can focus on technical novelty.

The interdisciplinary Liaison has grounded knowledge in both domains, which makes her

more effective in problem and task abstractions than the other Liaison types. The prevalence

of further advantages and disadvantages depends on the current focus of the interdisciplinary

Liaison. The interdisciplinary background is a strong advantage since the interdisciplinary

Liaison can contribute interdisciplinary methods to improve data and analytical grounding for

visualizations. Even though, an interdisciplinary Liaison might rarely be at hand, interdisci-

plinary researchers might be interested to join a project as Liaison and would be willing to learn

more about visualizations.

II-4.2 Instantiations of the Liaison Role and the VIS Team

Both Liaison and VIS team are roles and can be instantiated in different ways. The minimal

team would be a two-man-show; the Liaison and one visualization colleague. However, with

this team instantiation the Design Space will be small and suboptimal-solutions are probable. A

senior visualization supervisor (as VIS team) might compensate for this issue and span a “broad-

enough” Design Space. Even though we recommend a VIS team (several visualization experts)

to ensure a broad Design Space and to design a visual solution. Prototyping, tool-building and

paper writing can be done by one or more members of the VIS team. In any instantiation the

Liaison works closely with the VIS team. Figure II.2 defines the tasks both roles have to perform

in each design study step.

For completion of the design study team, domain experts are essential. How the work is

distributed and organized can differ between projects. However, as the Liaison is proposed

to address the interdisciplinary communication issue, we assume a knowledge gap between

domain and visualization experts. Therefore, joint meetings are often only effective for high

level discussions. The Liaison can help here to avoid misunderstandings due to different usage

of terms or wrong presumptions on both sides.

An engagement of visualization and domain experts in mutual learning to establish a

common understanding is sometimes performed and has advantages and disadvantages. First

this needs a lot of time on both sides and visualization experts might run in the same pitfall as

a Liaison, that the Awareness of the problem complexity contradicts with a practical solution,

as the VIS team is not independent. Second, domain experts with grounded visualization

knowledge might mistake visualization researchers as tool smiths, for instance, by stating

explicit requests leaving no room for design alternatives.
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One the other hand side, advantages are that misunderstandings can be resolved in a direct

communication (no Lost in translation) and that the appropriateness of ideas can be judged by

all visualization experts (avoiding A Liaison may suppress ideas). Additionally, a grounded

visualization knowledge of domain experts can also have the potential to build highly tailored

and well adapted systems. Design study projects with a close collaboration and a mutual learning

between domains are close to participatory design. Due to a reduced or closed knowledge gap

in such studies a Liaison is not necessary.

However, a further point to consider is the possible difference between a common lan-

guage and a domain language. A common language is less rich and limited in expressive-

ness hampering the capturing of the mental model. Kirby and Meyer argue, therefore, that

visualization experts should learn the domain language instead of establishing a common

language [Kirby and Meyer, 2013].

II-5 Benefits and Tasks of the Liaison and the VIS Team

Hereinafter we will present the VisExpress-project to exemplify the application of the Liaison

role. Further on, we will discuss the benefits of the Liaison for the design study process

according to concrete tasks (see Fig. II.2).

II-5.1 Example Project with a Liaison- The VisExpress-Project

The VisExpress-project is a design study with the goal to identify “interesting genes” in a vast

amount of biological data (see Chapter V). More precisely this is a high level aim with ill-defined

tasks. Biologists first requested to inspect genes with potential quality issues. The VIS team

abstracted tasks & data and came to the conclusion that the problem is related to time series

analysis with interactive filters (exclude genes without potential quality issues). This allows to

efficiently handle quality issues and to reduce the amount of data for the analysis. A standard

visualization solution with small multiple line charts was sufficient for this problem and task

abstraction (see Figure III.16 I). When the solution was deployed, the VIS team identified that

the design was intuitive to the domain experts and quality aware analysis could be performed,

however, it seemed that the solution did not meet their expectation.

Due to the interdisciplinary communication issue it was hard for the VIS team to understand

their problems. As a visualization Phd student with a major in bioinformatics, I identified the

issues with the problem characterization based on the prototype. The full complexity of the

problem was not captured in the first problem characterization. Indeed the domain experts
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Figure II.2: Short test “Am I a Liaison?” and list of the Liaison and VIS team tasks in each design
process step. This graphic appeared in [12].

needed a quality aware data exploration system to detect patterns in a vast amount of data.

Handling data quality issues was just one aspect of this problem.

My experiences during my doctoral studies and especially in the course of the VisExpress-

project led to the idea of the Liaison role. With a major in bioinformatics I acted as an

interdisciplinary Liaison in the VisExpress-project. I was supported by a VIS team of three

colleagues also working in the field of visualization , however, as a visualization PhD student I

acted also as part of the VIS team. In this case the team has to be aware of role conflicts (see

Section II-6). The revised problem characterization led to the complex visual exploration

system VisExpress (Figure III.16 II and Chapter V). Here Gene-fingerprint matrices replaced

the line charts, by representing all pair-wise time series ratios as well as their quality. Using

the gene-fingerprints, a three levels architecture from overview (a) to data view (b) and detailed

view (d) was designed to support data exploration and pattern detection. Hereinafter we will

elaborate on lessons learned from utilizing the Liaison role in the VisExpress-project.
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Figure II.3: Visualization approaches to visualize gene expression data. I) discarded prototype. II)
final VisExpress-system. This graphic appeared in [12].

II-5.2 Tasks & Benefits

We will describe tasks and benefits of a Liaison and how this role can help to mitigate known pit-

falls (PF) in the design process of problem-driven visualization projects [Sedlmair et al., 2012b]

(ordered by their occurrence in Fig. II.2).

Capturing the problem complexity. Even though methods like, e.g., contextual inquiries

[Beyer and Holtzblatt, 1997] work well, speaking the domain language and knowledge in the

domain lead to a better problem understanding. Furthermore, also unspoken information can be

captured and the risk to overlook things is minimized with a Liaison.

Capturing the mental model. In order to support insight generation, matching the mental

model of the target users is one of the biggest challenges in visual design to allow the generation

of insights [Yi et al., 2008]. However, capturing the mental model is challenging and requires a

deep domain understanding. For the Liaison it is easier to capture the mental model since the

Liaison can build on domain understanding and intensive discussions with domain experts in

their language.

Faster and richer abstraction. A Liaison can avoid the pitfall to abstract too little (PF-19

in [Sedlmair et al., 2012b]) or erroneous. Despite the pitfall of capturing only parts of the

problem, we observed in the VisExpress-project that the VIS team tended to concentrate on an

interesting visualization problem, thereby changing the focus which did not match the domain

problem. Thus, a Liaison is needed to ensure that task and data abstractions still meet the

domain problem.
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Design validation. Another common pitfall is observing a Design Space which is too small

(PF-20). Here the independent VIS team ensures to span a broad Design Space. Without direct

contact to domain experts the VIS team is independent and, thus, not biased by detailed domain

issues that may hamper the development of ideas. Here, several persons are helpful to avoid a

related pitfall which is to assume that the own latest visualization technique is a right match

(PF-21). The Liaison canalizes the Design Space to balance design alternative against their

fitting of the mental model.

Expressive and valuable evaluation. Evaluation issues are often artificial usage scenarios

without real data & tasks (PF- 24) and little expressive statements like “The domain experts liked

the tool.” (PF-26). The reasons are a missing grounded problem understanding and a layperson’s

language. In contrast, the Liaison can speak the domain language and can act as a real analysis

partner in a collaborative analysis with real data and tasks. Such an evaluation allows the Liaison

to deeply discuss and assess findings during the study, leading to a clarification of tasks and

usability issues. Feature requests can be captured between the lines in the domain language. In

the VisExpress-project one statement was, e.g.: “I would like to order the genes of one cluster

in synteny to look for operons”. The Liaison understood that the aim was to arrange genes

sequentially to identify neighboring genes with the same pattern.

Furthermore, we see high potential for a Liaison in Pair Analytics where the goal is to

capture users reasoning processes during collaborative analysis [Arias-Hernandez et al., 2011].

II-6 Discussion and Limitations

Awareness of the problem complexity contradicts with a practical solution. A deep un-

derstanding of the problem domain regularly brings up new issues which contradict with the

current solution direction (PF-18 in [Sedlmair et al., 2012b] - learning too much). This can

make it harder for the Liaison to narrow down to a self-contained but still meaningful and

essential visualization problem. Therefore, a consultation of the VIS team for the selection of a

promising domain problem is important in the problem characterization phase.

A Liaison may suppress ideas. There is a risk that the Liaison might over-criticize ideas of

VIS team members, especially if the Liaison person is also part of the VIS team. In brainstorming

the Liaison can, e.g., easily use the domain knowledge and language for supporting own

ideas. Therefore, we suggest to first discuss the ideas of the VIS team. In this round the

Liaison contributes no own ideas but objectively comments on the ideas of the VIS team
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members. In the next step the Liaison contributes own ideas. All solutions are then presented,

merged, refined or rejected in a discussion phase with the whole team.

Lost in translation. The Liaison reduces the direct communication between domain and

visualization experts in a design study. Therefore, the success is highly dependent on the quality

of the Liaison. Misinterpretations of domain problems, domain expert comments and study

findings can lead to failed projects. In order to reduce these issues we recommend to discuss all

interpretations with the domain experts to check their validity.

Domain Drift of the Liaison We argue that a more grounded knowledge is needed in the

application domain compared to visualization knowledge. The critical point in problem-driven

research is to really solve the addressed domain problem and to design a system which is

adopted by domain experts. This often requires to deeply understand the domain problem, the

context and high-level domain goals. Discussions with domain experts and observations of those

are needed to achieve these goals. Therefore, a domain understanding and at least a common

language is needed. Preferably is even the possibility to communicate in the domain language

and to act as an analysis partner. If, however, a domain expert can take over the task to abstract

domain problems, a less comprehensive domain knowledge would be needed for the Liaison.

Sedlmair et al. specify such a domain expert as a translator in their Design Study Methodology

framework [Sedlmair et al., 2012b]. Thus, a missing grounded domain knowledge, needs to be

compensated with a second dedicated role, a domain expert acting as a translator. In contrast, a

VIS team is a general part of a design study team, allowing to compensate a missing grounded

visualization knowledge of the Liaison much easier.

Business analyst vs. Liaison A Liaison is similar to a consultant or business analyst. Consul-

tants and business analysts can have diverse backgrounds, for instance, in computer science,

design, psychology, business or even social science. In software projects these experts are often

involved in requirement analysis and specification, as well as in negotiations of deliverables

and operating plans. Consultants and business analysts are experts in analyzing and abstracting

workflows and requirements. Their work effort often spans several month and includes a certain

learning of the application domain and necessitates a basic knowledge of the technical feasibility.

In this way a consultant or business analyst can be seen as a Liaison, as they become one by

the learning during the project. The difference is more in the area of deployment. Due to the

costs of such experienced experts, they are mostly deployed for large scale software develop-

ment projects only. Even though exceptions exists (for instance in [Mittelstädt et al., 2015b]),

dedicated consultants or business analysts are, therefore, rarely deployed in research projects.
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Nevertheless, in my opinion, methods from business analysis, software engineering and human

computer interaction provide valuable resources for visualization research projects.
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Chapter III

Requirement Analysis and Problem
Abstraction

Note

This chapter is partly based on biological background information parts of the following

two publications and parts of this chapter appeared or will appear in these publications

[14, 13]1.

However, Section Problem Abstraction (III-4) is (in this form) a new contribution made

through this thesis. Subsection III-4.2 was formulated retrospectively and is not directly

based on publication [14]. Subsection III-4.3 is based on publication [13] and parts of this

subsection will appear in publication [13].

[14]: Svenja Simon, Daniela Oelke, Richard Landstorfer, Klaus Neuhaus, and Daniel A.

Keim. “Visual Analysis of Next-Generation Sequencing Data to Detect Overlapping Genes

in Bacterial Genomes.” 2011 IEEE Symposium on Biological Data Visualization, October

23 - 24, Providence, Rhode Island, USA, 47-54, IEEE, DOI: 10.1109/BioVis.2011.6094047,

2011.2

[13]: Svenja Simon, Sebastian Mittelstädt, BC Kwon, Andread Stoffel, Richard Landstor-

fer, Klaus Neuhaus, Anna Mühlig, Siegfried Scherer, and Daniel A. Keim. “VisExpress -

Visual Exploration of Differential Gene Expression Data.” Information Visualization, 1-26,

DOI: 10.1177/1473871615612883, Published online before print December 14, 2015.3

1For the division of responsibilities and work, as well as a statement of contributions in
these publications, see Visual Analysis of Next-Generation Sequencing Data to Detect Overlapping Genes
in Bacterial Genomes (p. 10) and VisExpress - Visual Exploration of Differential Gene Expression Data
(p. 11).

2The Institute of Electrical and Electronics Engineers (IEEE) is the copyright owner of
this work [14] but, as an author, I am permitted to re-use the work of this publication
(vertabim and derivative) for my personal use. Link to the published article in IEEE Xplore.:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6094047

3I own (with the co-authors) the copyright of this publication. The SAGE Publications Ltd holds the sole
and exclusive right and license for publishing ([13]). The definitive version is available at http://ivi.sagepub.com/
Direct link to the published article: http://dx.doi.org/10.1177/1473871615612883
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III. REQUIREMENT ANALYSIS AND PROBLEM ABSTRACTION

III-1 Introduction

This chapter provides a requirement analysis and problem abstraction for analyzing RNAseq

data from bacteria. After an introduction to the biological topic of genes and RNAseq data by

next-generation-sequencing (NGS), I introduce the two main research gaps I identified for the

(visual) analysis of RNAseq data to discover and describe genes in bacteria. First, assessing

the trustworthiness of measurements and second, to discover and relate genes to identify their

functions.

The contributions of

• a problem characterization and abstraction for the (visual) analysis of RNAseq data to

discover and describe genes in bacteria,

• a corresponding set of tasks and

• a definition of interestingness and uncertainty to bypass, respectively understand, these

challenges for the stated tasks

are the foundation for the two analysis systems described in Chapter IV and Chapter V, which

address the identified two research gaps.

The given problem characterization and abstraction can also be used by other researchers

who might develop alternative systems for the problem of (visual) analysis of RNAseq data

to discover and describe genes in bacteria. Sedlmair et al. [Sedlmair et al., 2012b] consider a

problem characterization and abstraction as one of the three contribution types of problem-

driven research and argue even to consider it “as a first-class contribution of a design study”1.

III-2 Biological Background

The genome encodes the genetic information of organisms. The thousands of genes encoded

on the genome are the information units - they encode proteins which perform a vast number

of functions in cells. The protein hemoglobin, for example, transports oxygen in vertebrates2.

Depending on environmental conditions, a different composition of proteins is produced. If

the oxygen content of the air is low (e.g., in high altitude on a mountain), for instance, more

hemoglobin is needed and produced.

Even though the function of many proteins is known, a vast number of protein functions is

still unknown. A better comprehension of protein functions and their interplay would facilitate

the understanding of diseases and medical treatment and is, therefore, of major interest for

biologists and physicians.

1[Sedlmair et al., 2012b]
2Animals with a vertebral column (also denoted as backbone or spine).
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RNAseq by next-generation-sequencing (NGS) is a technology which allows making ad-

vancements in this direction. RNAseq is a high-throughput experimental method permitting

measuring the ’production’ of genes under a certain experimental condition. Thereby, new genes

can be identified and functions of proteins that are so far unknown can be inferred.

III-2.1 Open Reading Frames and Genes

The genome consists of DNA which is a double-helix composed of the nucleotides adenine (A),

cytosine (C), guanine (G) and thymine (T). In the double-helix certain nucleotides are comple-

mentary to each other (A-T and C-G) and are connected by hydrogen bridges. This complemen-

tary nature of the DNA allows representing the genome as one computer-readable sequence over

the alphabet A, C, G, T (Σ = {A,C,G,T}).
Information is encoded by triples of nucleotides, the so-called codons. Codons build the

genetic code. In bacteria genes start with a specific start codon and end with specific stop codon,

the variable number of codons between start and stop codon encode the genetic information (see

Figure III.1). A sequences of codons starting at a specific position is called a reading frame and

the sequence between a start and a stop codon is called an open reading frame (ORF) .

Figure III.1: The six reading frames of a genome, with one highlighted open reading frame (ORF).
The start codon of the ORF is indicated with blue, the stop codon with red.

However, not each ORF is a gene. ORFs can occur by chance, therefore, false gene

candidates need to be ruled out to determine the genes of an organism. Genes are ORFs that

encode proteins. Proteins carry out specific functions in cells. The protein collagen, for instance,

is a main part of the connective tissue and, therefore, collagen has a structural function in

cells and influences the strength and elasticity of the skin. As the necessity for many proteins

is depended on the current environmental or experimental condition, regulatory elements are

needed to control the production of proteins. During aging, for example, the protein collagen is

produced less and less leading, among others, to wrinkles.
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If a regulatory element triggers the production of a protein, first the corresponding gene is

transcribed to so-called messenger RNA (mRNA) which is basically a copy of the gene. RNA

also consists of nucleotides but the chain is build with ribose (RNA) instead of deoxyribose

(DNA) and the nucleotide thymine (T) is replaced by uracil (U). In a next step, named translation,

the mRNA is translated into the protein. A protein is a chain of amino acids that build a secondary

structure to perform a specific function. Thereby, each codon of the mRNA encodes for one

amino acid. In total 64 codons exist but only 20 amino acids. The genetic code is, therefore,

redundant. Some amino acids are encoded by more than one codon. This assignment is the

genetic code. The whole process of transcription and translation is also called gene expression.

Figure III.2: Gene expression. A gene is first transcribed to a mRNA. Based on the genetic code,
each codon of the mRNA is then translated to one amino acid in the protein sequence.

Beside genes, which encode for proteins, further information is encoded on the genome.

Regulatory RNA like, for example, antisense RNA and small RNA as well as the specialized

RNA types, ribosomal RNA (rRNA) and transport RNA (tRNA). rRNAs build the ribosomes

which translate mRNA to proteins. tRNA transports amino acids to the ribosom to synthesize

proteins.

Please note that I have simplified the biological background information. It is also important

to mention here that the described scenario applies for bacteria only. Higher organisms have

more complicated mechanisms and gene candidates cannot be determined in a straight forward

way in higher organisms.

Determination and Annotation of Genes

As the structure of genes is clearly defined by start and stop codons in bacteria, ORFs are

straightforward to determine. Different methods are applied to determine which of these ORFs
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are genes (protein coding). First several computational gene prediction algorithms exist like

GLIMMER [Salzberg et al., 1998, Delcher et al., 1999, Delcher et al., 2007], the GeneMark

[Borodovsky and McIninch, 1993], [Lukashin and Borodovsky, 1998], [Besemer et al., 2001],

[Besemer and Borodovsky, 2005], or Prodigal [Hyatt et al., 2010]. Most of these algorithms are

part of comprehensive annotation pipelines. Madupu et al. [Madupu et al., 2010] and Angiuoli

et al. [Angiuoli et al., 2008] provide an overview over several annotation pipelines.

Besides gene prediction itself, which assesses the coding potential of a sequence, predictions

of further features (promoter predictions [Jacques et al., 2006, Rangannan and Bansal, 2007,

Wang and Benham, 2006, Ozoline and Deev, 2006, Shavkunov et al., 2009], terminator predic-

tions [de Hoon et al., 2005, Kingsford et al., 2007, Lesnik et al., 2001, Silby et al., 2004] and

predictions for translation initiation signals [Hu et al., 2009, Hyatt et al., 2010] and

[Saeys et al., 2007]) are used in annotation pipelines. However, often manual curation is applied

to get high quality annotations.

A further branch of prediction is based in sequence similarity. Some genes are essential for

the survival capability of bacteria and they exist in all bacteria. Based on sequence similarity,

which is interpretable as similarity due to a common ancestor, the function of known genes

can be transferred to the ORF of a newly sequenced bacteria species. Beside essential genes,

many other genes exist in at least one branch of related bacteria species which can be detected

by similarity searches. If a function can be assigned, the gene is annotated with a function.

However, often all ORFs that are considered as genes are tagged as annotated, even if no

function is annotated based on experimental evidence but just a computational prediction exist.

However, for some genes no related annotated gene exist. In these cases, similarity search is

not helpful. These can be genes that have been overlooked in all species so far. Either these

sequences do appear not “gene-like”, are of short length, or they overlap with an annotated

gene. Furthermore, so called orphan genes exist. Orphan genes exist just in one species and are

expected to be important for the adaption to an ecological niche, leading to the emergence of

new biological species.

Besides, computational predictions and sequence similarity, experimental methods exist

which allow determining genes. The final evidence is given by detecting the existence of

the protein encoded by the gene. In order to detect proteins mass spectrometry is applied,

however, mass spectrometry is not sensitive enough to detect proteins which are produced in low

concentrations. An alternative is to sequence the RNA (indirectly). RNAseq by next-generation-

sequencing (NGS) has opened up the possibility to sequence in a high throughput fashion with

falling costs. As RNAseq measures all RNA transcripts in a cell, also so far unknown genes

can be detected. However, as all RNA transcripts are sequenced, some transcripts might not

be protein coding mRNA but regulatory RNA. The translatome can be determined to account
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for this. Therefore, active ribosomes are isolated which translate mRNA to proteins. After a

digestion of mRNA, just the mRNAs covered by a ribosome remain. This RNA fragments are

protein coding.

It is important to note that, beside the advantages of high-throughput sequencing, only active

genes can be detected. As many genes are just active under specific conditions, the detection of

all genes is still challenging.

Finally annotating a determined gene with a function is a further challenging and time

consuming step. For this purpose, for instance, gene knock-outs are used. In order to knock

out a gene of interest, for instance, a stop codon can be introduced in the gene sequence. The

bacteria without an active version of the gene can then be tested under different conditions and

compared to the wild type bacteria to identify the function of the gene. RNAseq is another

possibility which can at least give hints for the function of the gene. Therefore, the RNA is

measured under different conditions. If the production of a gene differs between two conditions

a function related to this condition is likely. Furthermore, the gene can be compared to other

genes. If a gene of interest behaves similarly to a gene with a known function, the gene of

interest might belong to the same functional category. This analysis is called gene expression

analysis or differential gene expression analysis if data from different experimental conditions

is compared.

Overlapping Genes

Determining genes can become even more complex since reading frames can overlap. Six

reading frames are possible - three in each direction (see Figure III.3). For viruses many cases

of overlapping genes (OLGs) are known. In contrast, for bacteria only a few instances are

known by now (less than one hundred; in comparison: in bacteria several million genes are

known). For examples of overlapping genes, see e.g., [Wang et al., 1999, Behrens et al., 2002,

McVeigh et al., 2000]. Furthermore, a new overlapping gene pair [7] was described in the

course of the FOG-Project.

Due to the small number of known overlapping genes in bacteria and information content

constraints the consensus in biology is that overlapping genes are an exception in bacteria and

exist in viruses just because of a selection pressure owing to space limitations of the viral capsid

[Chirico et al., 2010].

Therefore, gene prediction discards overlapping genes. For each locus, the ORF with the

best prediction value is selected. All overlapping ORFs are discarded, even if the prediction

value is also high [Delcher et al., 2007]. As ORFs overlapping a gene are overlooked in the

shadow of the annotated genes, they are named shadow ORFs (sORFs).
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Figure III.3: In frame +1 a gene is annotated. At the same locus five other ORFs exist. As they
overlap with the gene they are not annotated and named shadow ORFs (sORFs).

III-2.2 RNAseq Using Next-Generation-Sequencing

Next-generation-sequencing (NGS) is an umbrella term for high throughput sequencing methods

which sequence DNA by synthesis. Competing methods of this basic principle have been

developed by several companies but the most common used are 454 sequencing (now owned by

Roche Diagnostics), Solexa sequencing (now owned by Illumina), and SOLiD sequencing (from

life technologies, formerly Applied Biosystems). Common to all is a limited sequencing read

length of a few hundred nucleotides. Often reads have just a length form 20-100 nucleotides.

These short reads have to be puzzled into genomes (when sequencing de novo) or mapped onto

an existing genome sequence, e.g., in the case of RNA Sequencing (RNAseq). RNAseq uses

NGS to indirectly sequence RNA of cells. This allows to determine which genes are active

under a specific condition and with which strength. As RNAseq is faster and not restricted to

known genes, RNAseq replaces DNA micro-arrays.

In order to point out biases which are introduced in the experimental pipeline for next-

generation-sequencing1 I explain all steps. RNAseq data suffers from quality issues due to these

biases and necessities a visual inspections to assess the trustworthiness (see Assessment of the

Trustworthiness of RNAseq Measurements (p. 47)). Background for the aspects influencing the

trustworthiness, needed to be addressed in the visual representation, is given in the following.

Experimental Protocol for Sequencing Library Preparation

The set of experimental procedures for sequencing is called protocol. The final nucleotide

sequence fragments of an experiment, ready for the actual sequencing, are called a library.

Depending on the NGS method used, the protocols for RNAseq library preparation differ to

some extent but the main steps are similar (see also Figure III.4). In order to highlight data

quality issues, bias sources are named for all steps.

1This thesis covers strand specific single read sequencing only. Note that also paired-end sequencing exist which
sequences fragments from both sides and links the resulting reads.
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Figure III.4: Steps of the library preparation.
From RNA to sequenced reads.

RNA extraxtion. The total RNA inventory of

a sample is extracted. In the case of bacteria, it

might originate from around 1010 cells.

mRNA enrichment. Next, ribosomal RNA

(rRNA) is depleted since it does not code for a

protein (see Section III-2.1) but constitute about

90 to 95 % of the cells RNA.

Bias Sources. If depletion of rRNA does

not work sufficiently, large amounts of the se-

quencing capacity are used to sequence rRNA.

Thus, the probability to sequence a transcript with

a low concentration is reduced.

Fragmentation. Because only short pieces of

nucleotide sequences can be sequenced, the re-

maining RNA is fragmented. Fragmentation can

be obtained chemically due to autocatalytic frag-

mentation, physically by sonication or nebuliza-

tion, or enzymatically by different RNases.

Bias Sources. In RNAseq data it is often

observed that the shapes of a read coverage above

a gene from different experiments are quite simi-

lar (given the same experimental protocol). Thus,

high and low read coverage is observed at the

same position within a gene for different experiments. This was also observed for the data of the

FOG-Project (Fig. III.5). For our data the most likely explanation is a fragmentation bias due to

the use of RNase III which is usually used for enzymatic fragmentation. This enzyme cleaves

only double stranded RNA, releasing 3’ overhangs with 2 to 3 nucleotides. Thus, enzymatic

degradation requires the mRNA to fold into secondary structures that are non-random but depend

on the actual sequence patterns of a given mRNA [Zuker, 2003]. Actually all fragmentation

methods are biased since the local physical property of a nucleotide strand depends on its actual

sequence causing the strands to brake non-random at preferential sites. Consequently, for all

current fragmentation methods, unequal fragmentation patterns can be expected and are ob-

34



III-2 Biological Background

served [Quail et al., 2008, Fisher et al., 2011]. Therefore, it can summarized that fragmentation

is dependent on the actual sequence either directly or indirectly by the secondary structure.

Figure III.5: The line chart shows the read coverage (number of overlapping reads per position) for
twelve conditions of one gene. It highlights that peaks and valleys are located at the same positions
for all experiment conditions.

Ligation of adapters. The obtained RNA fragments are further ligated with adapters. For

strand specific sequencing, two different adapters are ligated to the 5’- and 3’-end strand

specifically. These adapters are necessary for, first, the reverse transcription, and later the

sequencing.

Bias Sources. The efficiency of adapter ligation might also be dependent on the sequence.

Reverse transcription. After adapter binding, the RNA is reverse transcribed, starting at the

3’-adapter, to copy DNA (cDNA) since only DNA can be sequenced.

Bias Sources. The efficiency of the reverse transcription might also be sequence-dependent.

Size selection. The cDNA is size selected by gel electrophoresis. Only cDNA of a certain size

class is to be sequenced.

Bias Sources. Size selection is dependent on the fragmentation (see Fragmentation (p. 34)).

This means, if fragmentation produces (with high probability) always the same fragments of

one gene, fragments might not be observed if they are too short or too long. Therefore, also the

length of a mRNA might influence if and which possible fragments are observed. If a short

mRNA is fragmented, the fragment length might be too short such that the fragments are always

filtered out. A long mRNA might result in long fragments that are filtered out as well.
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Amplification by Polymerase Chain Reaction. Finally, the selected fragments are amplified

by Polymerase Chain Reaction (PCR) using the adapter sequences. PCR allows an exponential

multiplication of the fragments in the library. This is needed since, during the library preparation,

many fragments are lost due to the inefficiency of enzymes (e.g., reads without adapters), Size

selection steps (p. 35), or Subset selection (p. 36) or random loss in purification steps (mRNA

enrichment (p. 34)). The PCR amplification is, therefore, indispensable to obtain a sufficient

amount of fragments for sequencing. Usually between 11 and 18 PCR cycles are completed,

depending on the specific protocol and the amount of fragments before amplification. It should

be noted that in some protocols PCR amplification is performed before size selection.

Bias Sources. Theoretically, each PCR cycle duplicates the number of fragments. Thus,

after 11 cycles a single cDNA strand is multiplied about 1000-times (2(cycles−1)). However, the ef-

ficiency of the amplification is not constant during the PCR as Karlen et al. [Karlen et al., 2007]

showed. They describe three phases, where the first phase is not treated as it is suboptimal. The

second phase is the exponential phase, where most molecules are doubled. In phase three, the

reaction saturates due to too many target molecules, degradation of necessary ingredients and an

increase in waste products. In this phase, only a linear amplification might be observed, if at all.

Since the efficiency of the amplification is not constant during the PCR, the PCR increases the

variance in the data and, therefore, enhances any previous bias of the preceding steps.

Thus, visualizing read coverage above a genome might show regions with high read coverage

implying a highly expressed gene which is actually based on a low number of different reads

(see Figure III.6). Furthermore, the total number of reads overlapping a gene (read counts) can

be influenced which hampers a comparison of read counts between genes. This phenomenon

is illustrated in Figure III.7. Even though cDNA1 was present in a higher concentration, reads

from cDNA2 are amplified with a higher rate. Please note that all previously described biases

sources also influence the read counts of genes differently since they are sequence dependent.

Subset selection. During the complete protocol, often only a fraction of the output from a

previous step is used as input for the next step. Of the total amount of RNA isolated in the

beginning, only a defined amount is used for rRNA depletion. Thereof about half of it is further

processed in RNA fragmentation. Neglecting questions about fragmentation efficiency, a yet

smaller amount of RNA is used for adapter ligation and reverse transcription. Next, depending

on the protocol, the complete or partial amount of the adapter ligated cDNA is used for size

selection and final PCR. At last, only a part of the finished library resulting from the PCR is

used for sequencing since, after PCR, the amount of sequences is too large to be sequenced.
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Figure III.6: Read coverage of the gene alr0402 (data: [Flaherty et al., 2011]). The number of
reads overlapping each nucleotide is shown on the y axis. Colors represent the read positions (Dark
colors encode positions at the front, red the first position). Most of the coverage is due to a high
number of reads starting at one position.

Figure III.7: Apated from Fig. 1A in [Shiroguchi et al., 2012]. Two different cDNAs are shown
which are all marked with a unique adapter in the first step. In the second step all cDNA fragments
are amplified by PCR.

Sequencing and Mapping

Sequencing. After library preparation, as outlined above, the library is sequenced. The

fragments contained in the library are physically separated and each fragment is amplified

locally using PCR-like reactions (e.g., bridge-amplification, emulsion-PCR). Thus, at a given

location, only one clonal PCR-product is found which is than sequenced. The multitude

of fragments in one spot is necessary to obtain signals above detection background noise.

Sequencing by synthesis is a synchronized chemical reaction that needs several rounds of

blocking and de-blocking of the free DNA-ends which are sequenced. The final output from

sequencing are called reads.

37



III. REQUIREMENT ANALYSIS AND PROBLEM ABSTRACTION

Bias Sources. Since the efficiency of the used enzymes is not 100%, free DNA-ends might

not be blocked or de-blocked in time. This causes a decay in the signal as synchronization drops.

Thus, the first part of a given sequence is generally more reliable than later parts (see Fig. III.8).

However, other technical issues might cause an error any time. Therefore, a quality value for

every sequenced nucleotide is given. These quality values are given as Phred quality scores Q.

Q =−10∗ log10(p). p is the base-calling error probability. Thus, high values of Q represent a

high sequencing quality and low values represent a high amount of uncertainty in this nucleotide.

E.g., 50 stands for a 0.01% error probability, 10 for 10%, and 1 for around 80%.

Figure III.8: Distribution of
the nucleotide quality val-
ues above the read positions
of all mapped reads. The
Phred quality scores are di-
vided into nine classes and
transformed to the base er-
ror probability as shown in
the legend. It is obvious that
the amount of bases with low
quality increases at the end of
the reads.

Mapping. For RNAseq, the reads are mapped to an existing genome of the respective

organism (see Fig. III.9). Common alignment tools (e.g., BLAST [Altschul et al., 1990],

[Altschul et al., 1997]) are not designed for this task, in which huge amounts of short reads

should be reliably matched to an existing sequence. Therefore, several new mapping algorithms

have been proposed (for a review see [Schbath et al., 2012]).

Bias Sources. Due to errors in sequencing some reads cannot be mapped at all or the

mapping is not unambiguous (see also Assessing Mapping Quality (p. 48)).

Visualization of RNAseq Data

Most common genome browsers can display RNAseq data. Furthermore, specialized genome

browsers with respect to NGS and RNAseq data have been developed (see Section IV-3). A
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Figure III.9: Reads are sketched in the
upper left part of the figure (often sev-
eral million). The sequence itself and a
Phred quality score for every position is
given (see Sequencing). Lines sketches
the mapping of reads to the genome.
Reads might be mapped to one, several
or no positions in the genome. Some
mapping algorithms also give a map-
ping quality in Phred format (label on
the arcs). Note: Parameter settings of
mapping algorithms allow to skip reads
which map at different positions or to
map a read only to the "best" position
(with respect to given parameters).

common way to visualize reads is to represent them as lines above the genome position they map

to and to stack them (see Figure III.10). For strand specific reads a plot in two directions (up and

down) is used. Alterntive representations use color or arrows to encode the strand information.

The stacked representation of reads is called scaffold view. They have the disadvantage that

due to the stacking, visual gaps emerge. Another way to represent the reads is to represent the

read coverage with line or bar charts. The height represents the number of reads overlapping a

position in this representations (see Figure III.5 and Figure III.6 ). Both charts can be drawn

strand specifically (up and down) but do not represent read start positions.

Figure III.10: Screenshot from the Artemis
genome browser [Rutherford et al., 2000,
Carver et al., 2012] which shows the read
coverage as stacked reads and as a filled line
chart.
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Without any bias the read coverage would be distributed according to the relative tran-

script amounts found originally in the cells and the read coverage of a given gene would be

uniformly distributed over the whole transcript length. Therefore, the read distribution could

be approximated by a Poisson process with rate λ [Mortazavi et al., 2008, Marioni et al., 2008].

The assumption also leads to the introduction of the RPKM value, giving the value of reads

mapping per kilobase genome per million mapped reads [Mortazavi et al., 2008]. A RPKM

value, therefore, represents the normalized produced amount of a gene transcript.

However, the observed read coverage deviates from a uniform distribution (see Figure III.10).

This is due to biases that are inherent in some of the steps listed in section III-2.2, the introduced

biases lead to an uncertainty in the observed read coverage. Therefore, data trustworthiness

should be considered in the analysis.

III-3 Data

In the following, the data related to RNAseq analysis will be described to provide the background

for the visualization of this data. The aim of RNAseq is to measure genes, therefore, first a

description of genomic data is given before RNAseq data sets are introduced. Genomic data

comprises annotation data and, thus, the locations and functions of genes and open reading

frames (ORFs), as well as meta data. RNAseq data sets imply the sequenced reads and

sequencing quality information as well as the mapping of the reads to the genome sequence.

III-3.1 Genomic Data

Annotation Data

Known functional genetic elements are annotated for each organism. They are described by their

location on the genome: by strand, start and stop, as well as by an identifier and annotation data

like name (synonym), function and functional COG category [Galperin et al., 2015]. Beside

genes, which encode for proteins, further genetic elements are annotated, e.g., rRNA and tRNA

genes but also the family of so-called non-coding RNA (ncRNA). Non-coding refers to non-

protein coding, ncRNA has other regulatory functions and comprises different sub-groups, e.g.,

anti-sense RNA, small RNA and others (see also Determination and Annotation of Genes (p. 30)).

Beside annotated genetic elements, the FOG-Project1 addressed potential new overlapping

genes (OLGs), so-called shadow ORF (sORF). As ORFs are clearly defined in bacteria, by

1FOG-Project: “Finding new overlapping genes and their theory (FOG-Theory)”, part of the priority programme
“Information and Communication Theory in Molecular Biology” (InKoMBio SPP 1395) of the German Research
Foundation (DFG), 2010-2015.
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a start and a stop codon in the same reading frame, the determination of all ORFs is straight

forward. By matching ORFs against annotated genes, all not-annotated ORFs (naORFs) can be

determined. Based on the definition, that a shadow ORF has to overlap at least 93 bp with a

gene, all sORFs of an organism can be determined.

I summarize all genetic elements, inducing ORFs as Annotation Data in the following. The

data can be represented as a table, with the attributes ID, name, start, stop, strand, product,

COG, type and sequence. Type denotes gene, RNA, naORF, sORF and so on. The connection

of genetic elements, e.g., which sORFs overlap a gene, can be represented in a second linked

table, with the two IDs of the overlapping ORFs and the attributes overlapping length, direction,

and frame. Direction is a boolean attribute with the conditions same-strand and opposite-strand.

Frames are defined as in Figure III.11.

Figure III.11: Frame +1 is the reference frame.
The frame of an ORF is always given with re-
spect to a reference. Frame +2 is shifted one posi-
tion compared to the reference on the same strand.
Frame +3 shifted two positions compared to the
reference on the same strand. Frame -1 is not
shifted compared to the reference but is located
on the opposite strand. Frame -2 and -3 are also
located on the opposite strand but are shifted one
resp. two positions in the opposite direction of the
reference.

Meta Data

Additionally, meta data could exist for all genetic elements. This can be a set of scalar features per

genetic element, for instance, molecular weight or number of polar amino acids; or more complex

meta data, for instance, BLAST result tables [Altschul et al., 1990, Altschul et al., 1997].

BLAST Result Tables compromise all similar sequences (hits) to a query sequence as well

as attributes describing the similarity. The most important is the expected value which describes

the probability that a hit with such a score could have occurred by chance. The further important

attributes are orgnismID, organism name, taxonomicalID, proteinID, protein name, protein

function, expect value, score, hit start, hit stop, query start, query stop, alignment length, number

gaps, number identities. Phylogenetic distance is a derived attribute from the whole taxonomy,

based on the taxonomicalID of the query and the BLAST hit.
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III-3.2 RNAseq Data

A sequencing run results in a set of sequence fragments, so called reads. The information of a

read includes its sequence as well as the qualities of each sequenced nucleotides.1

Mapping algorithms are used to map reads to a reference genome sequence (see Figure III.9).

Based on (quality) parameters, reads can either be mapped with a certain quality or cannot be

mapped at all2. Some reads can be mapped to several positions, either due to repetitive genome

sequences or poor mapping quality (see also Mapping (p. 38)). From the mapping of reads

several data abstractions can be derived (see also Figure III.12):

For each read mapping position, mapping quality and mismatched positions.

For each genome position reference nucleotide, number of overlapping reads, number of

starting reads, set of sequenced nucleotides, set of sequence qualities, set of mapping qualities.

For each open reading frame (ORF) number of overlapping reads (counts), gene activ-

ity level, vector with the numbers of overlapping reads per ORF position (read coverage). As

well as derived attributes like coverage (the percentage of the ORF covered with reads) and fit.

Fit describes how well the read coverage fits to the ORF (see Section IV-5.3 for more details).

A gene activity level can be determined from the reads overlapping a gene. Mortazavi et

al. suggested the value Reads Per Kilobase per Million mapped reads (RPKM), which is

normalized for the gene length as well as the sequencing depth, that differ between experi-

ments [Mortazavi et al., 2008]. RPKM values can, therefore, be compared between experiments

and theoretically also between genes in one experiment. However, due to sequence-dependent

biases3, RPKM values might not be accurately between genes in one experiment (see Section

III-2.2). For comparison of genes between experiments often the counts are considered without

normalizing for the gene length, as just the same genes are compared. The ratios (fold-change)

between conditions are then comparable between genes, as the strength of a bias for one gene

is expected to be the same for different conditions. This analysis is called differential gene

expression analysis.

1In case of paired-end sequencing additionally, an ID links to the paired read. However, in this thesis just single,
strand specific sequencing in considered.

2Some reads do not resemble any position in the genome, most likely due to many sequencing errors, or since
they do not originate from this genome but from an unknown plasmid. These reads are not mapped and discarded.

3Bias which is dependent on the nucleotide sequence of the DNA. See, for instance, Fragmentation (p. 34).
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Figure III.12: This graphic illustrates the data complexity and structure of RNAseq data. Se-
quencing data is generated by next-generation-sequencing with sequencing machines. Sequencing
machines generate nucleotide sequences as well as a quality value for each nucleotide. Genome
sequence data is provided by public data bases like NCBI [Coordinators, 2013], as well as gene
annotation data. Here genome annotation also includes not annotated open reading frames (e.g.
sORFs). Sequencing reads are mapped by state-of-the-art short read mapping algorithms to the
genome reference sequence. Mapping algorithms provide the position of the mapping and may
provide a quality of the mapping. From the read sequence and the reference sequences, mismatches
can be determined. Combining the data from the previous steps leads to a set of attributes available
for each genome position. For each entity of the genome annotation (ORFs) further aggregation
values can be calculated.

Differential Gene Expression Data

Differential gene expression analysis considers the relative comparisons between gene activity

levels of the same gene under different experiment conditions (see Figure V.1). A gene (ORF) is

called differentially expressed in two conditions: If the gene activity level (or counts of reads)

of the gene (ORF) differs significantly between these conditions.

Rapaport et al. [Rapaport et al., 2013] provide a discussion of different approaches to

determine differentially expressed genes. In this thesis, edgeR [Robinson et al., 2010] is used to

determine differentially expressed genes, which determines the log2 fold-change1 between the

counts of different conditions, as well as the p-value of the statistical test. The fold-change is

denoted as gene activity ratio (GAR) in this thesis and the set of GARs resulting from a pairwise

comparison of several conditions is denoted as the gene activity ratio (GAR) pattern of a gene

(short GAR pattern). All pair-wise comparisons (n:n) are considered which is in contrast to

many studies. Mostly a (1:n) comparison is considered, i.e., several conditions are compared

against one reference condition.

1The logarithm of the fold-change makes up- and down-regulation comparable since |log2(
a
b )|= |log2(

b
a )|.
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The non-uniform read coverage over genes [Li et al., 2010] influences the fold-change

calculations. Therefore, a measure is provided to estimate the fold-change variance over the

gene to indicate the quality of the fold-change estimation. The quality can be understood as the

trustworthiness of the correctness of the fold-change (GAR).

The fold-change is calculated in a sliding-window fashion over the gene. The variance and

mean are calculated from the fold-changes of the slices. The coefficient of variation expresses the

quality of the fold change. Also other measures can be applied, e.g. the statistical significance

(p-value of the statistical test) of fold-changes. Or, furthermore, a measure of the gene activity

levels could act as a quality measure as low activity levels influence the assessment of the

trustworthiness by the biologists.

III-4 Problem Abstraction

This thesis will cover the tasks for RNA Sequencing (RNAseq) data raised in the FOG-Project.In

this project the aim was to use RNAseq data to verify new overlapping genes (OLGs), as well as

to detect relations and/or similarities to annotated genes (with a known function) in bacteria.

However, for a broader applicability, I will cover genes in general in this thesis, i.e., new

overlapping genes but also new genes (open reading frames (ORFs) not recognized as genes

yet) and genes without an annotated function.

A better understanding of bacteria genes and proteins leads to a better understanding of

cellular mechanisms and gene networks. Comprehension of these is necessary to clarify human

pathogenicity and to develop new medical treatments (medicines) on the one side. On the

other side, many bacteria are used in biotechnology to produce substances and medicines

like insulin. A better understanding will allow improving the production yield and can open

up possibilities for the industrial production of new substances. In this respect, especially a

detection and consideration of new genes, is of high importance. Concluding new genes might

have direct effects on human pathogenicity, antibiotic resistance or might be missing entities in

gene networks which hamper a comprehensive understanding of annotated genes.

Regarding the aim to discover and describe genes with the support of visual analytics, I

identified the following two research problems:

Assessment of the trustworthiness of RNAseq measurement. The RNAseq measure-

ments of new gene candidates as well as of annotated genes needs to be verified by an expert

as the process of RNASeq is error-prone (see Section III-2.2). Thus, experts must be provided

with tools to capture these uncertainties in order to assess the trustworthiness of RNAseq mea-

surements and to verify a (new) gene as active. See Chapter IV for the NGS overlap searcher, a
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system that addresses this problem with visual analytics and further identifies and fills research

gaps. Section III-4.2 discusses tasks and Section IV-2 derives requirements based on these tasks.

Comparison of gene activity levels between different experiment conditions. The re-

action of genes in different experiment conditions and a comparison between conditions allows

to relate genes with a function. Since this data is high-dimensional, complex, and large, and

the task is of exploratory nature, solutions must provide a guided analysis and handle the large

volumes of data. See Chapter V for VisExpress, a system that addresses this problem with visual

analytics and further identifies and fills research gaps. Section III-4.3 states tasks and Section

V-2 derives requirements based on theses tasks.

In the next section, a task taxonomy is introduced which is used to describe the tasks related

to the aforementioned research gaps in a formal and abstracted manner (III-4.2 and III-4.3).

III-4.1 Task Taxonomy

The problem and task abstraction in the next section is based on “A Multi-Level Typology of

Abstract Visualization Tasks” of Brehmer and Munzner [Brehmer and Munzner, 2013] and the

“Visualization Analysis and Design.” book of Tamara Munzner [Munzner, 2014]. See Figure

III.13 for an overview to explain Why? and for which user goals visualizations are used. This

taxonomy distinguishes between Actions and Targets. Actions define users goals and Targets

describe which data aspects are of interest to the user.

The user goal with a visualizations is either to consume information or to produce informa-

tion. On the consume side the goals to discover new information and to present information can

distinguished, for instance, to communicate the result of a data analysis in a graphic. Lastly,

the goal can be to enjoy, for example, a infographic in a newspaper or a blog. On the produce

side, users might have the goal to annotate a graphic, for instance, with labels. Users might also

want to record, for example, users can record findings with screenshots, or record their analysis

with a graphical history of actions for reproducibility. Lastly, users may want to derive new data

based on the original data in a visually guided fashion.

All goals aim at a set of elements of interest which are searched for. Here it can be

distinguished if the location and/or the targets are know or unknown (see Figure III.13 for

the definition of Lookup, Locate, Browse and Explore). I changed this definition slightly and

extended it with the data characteristics. See Figure III.14 for the definition I use in this thesis.

In the context of genes, the target would be a gene of interest. Users might either search for a

specific target, gene x, for instance, or they search for a gene with a specific characteristic, e.g.,
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Figure III.13: This figure appeared as Figure 3.1 in “Visualization Analysis and Design. Tamara Munzner,
with illustrations by Eamonn Maguire. A K Peters Visualization Series, CRC Press, 2014.” [Munzner, 2014].
The figure is released under the Creative Commons Attribution 4.0 International license (CC BY 4.0)
[Creative Commons, 4].

Figure III.14: This graphic explains the search component to accomplish user goals (see Figure
III.13). Three influencing factors are distinguished. If the location is known, if the target (ID) is
known and if the characteristics of the element of interest are known. Depending on these three
aspects the search is named lookup, locate, browse or explore (see also Section III-4.1).
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a gene with a specific gene activity level. The location of an element of interest is either known

or unknown. In genome browser presentations the location of genes is known and, thus, users

can lookup the characteristics of the gene (e.g., the gene activity level). If genes are represented

in an unordered list or spreadsheet, users need to locate the gene of interest first. The element

of interest can also be described by specific characteristics only and the locations is known

all the same. If, for instance, a list is ordered with respect to a specified characteristic, the

element of interest is the first in the list and the user can lookup the target (e.g., the gene name).

If the location is not known, users need to browse to find a target (gene) with the specified

characteristics. If neither the target is known nor the location, and the user is just looking for

unexpected characteristics, the user needs to explore the whole data set. As unexpectedness is

not definable (otherwise characteristics could be defined), the location can never be known for

this case of search.

The actions performed on identified elements are classified as identify, compare and summa-

rize (query). Identify, addresses one element, compare two or more elements and summarize

addresses all elements of interest. Users can, e.g., identify the annotation data of a gene, or

compare the gene activity level of two genes. To summarize all genes requires data overviews.

Data aspects (targets), that can be of interest for a user, are (high-level) trends or patterns,

outliers, and other data features defined by the application. On the attribute level (low-level),

the distribution of one attribute (including extremes) might be of interest, or the dependency,

correlation and similarity between many attributes. For specific data types like networks, more

specific data aspects might be or interest, e.g, the topology of a network.

III-4.2 Assessment of the Trustworthiness of RNAseq Measurements

As explained in section III-2.2, the whole data preparation process, the sequencing process

and the read mapping are error prone. Therefore, one task is to assess the trustworthiness of

RNAseq measurements. The term “measurement” is defined as the reads that are mapped to one

open reading frame (ORF). I use the word “trustworthiness” here to emphasize the aim of the

task. Due to missing generally accepted measures or thresholds, domain experts have to trust in

the results to claim findings in publications or run further time and cost intensive verification

experiments. The main tasks are (T-I) to assess the trustworthiness of RNASeq measurements

and (T-II) to identify interesting ORF candidates worthwhile a further inspection. I will describe

these tasks in detail in the following.
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T-I

Assessing the trustworthiness of RNAseq measurements is the main task. As the trustworthiness

is dependent on many aspects, the data representation has to incorporate these. In the following,

I discuss the different aspects influencing the trustworthiness of RNAseq measurement. First I

will assess the mapping quality and conclude with further reasons for a low trustworthiness.

Assessing Mapping Quality. One point that potentially influences the trustworthiness is the

mapping. Reads might be mapped to a wrong location in the genome. This might happen due to

many sequencing errors, a sequence may not be covered in the reference genome (e.g., from a

so far unknown plasmid), or by repetitive sequences in the genome. In the first two cases, many

mismatches in the mapping can be expected (low mapping quality), in the last case the read can

be mapped to several genome locations (see also Mapping(p. 38)).

In order to asses the mapping quality, I visualized the mapping quality as error probability

for selected genes (see Figure III.15). Therefore, I considered the mapping information for each

genome position (see For each genome position (p. 42)). In order to represent the quality

distribution, I binned the mapping qualities per position based on the given Phred Score

(see Table III.1). Phred quality scores Q, with the error probability P are defined as: Q =

−10∗ log10 ∗P

Table III.1: Thresholds for mapping quality bins applied for Fig. III.15. Thresholds are meant as
upper bounds, lower bounds are given by the next bin. Phred Score Q =−10∗ log10 ∗P

Bin Number Phred Score Error Probability
1 > 40 < 0.01%
2 ≤ 40 ≥ 0.01%
3 ≤ 30 ≥ 0.1%
4 ≤ 20 ≥ 1%
5 ≤ 13.0103 ≥ 5%
6 ≤ 10 ≥ 10%
7 ≤ 6.0206 ≥ 25%
8 ≤ 3.0103 ≥ 50%
9 ≤ 1.249387 ≥ 75%

Data inspections revealed that the mapping error probabilities are low. Landstorfer et

al. [9] showed, furthermore, that mis-mappings are unlikely. Out of 7 million reads of the

EHEC genome just one mapped to the mouse Y-chromosome. Therefore, mapping errors were

neglected in this thesis (see Fig. III.15).

Further Reasons for a low Trustworthiness. Further reasons for wrong measurements of

an ORF are leaking transcription from a neighboring gene and background transcription.
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Figure III.15: Shown is a stacked bar chart, representing the number of overlapping reads per
position of the gene alr0022 (data: [Flaherty et al., 2011]) by bar height. Color represents the
distribution of reads belonging to an error probability bin (see Tab. III.1 for the thresholds). Dark
blue represents low mapping error probability. Obliviously the mapping quality is very high for the
whole gene.

This means the untranslated region (UTR) of a neighbor ORF might cover adjacent ORFs.

Thus, an ORF might be covered at the beginning with reads actually belonging to the upstream

gene. The signal “leaks out” in the following ORF or starts in the preceding ORF (see Fig.

III.16(a) and III.16(b)). The positions of read starts can be helpful to assess if the majority of

reads overlapping an ORF actually start before the ORF and might, therefore, originate from the

preceding ORF.

Background transcription is an other reason for wrong measurements and has been re-

ported for prokaryotes and eukaryotes (see e.g., [Clark et al., 2011, Bruno et al., 2010] and

[Vivancos et al., 2010]. However, due to the small probability, the abundance of background

transcription is expected to be low overall. Even though amplification bias could still lead to

high counts for some locations (see Amplification by Polymerase Chain Reaction (p. 36)). This

could be due to amplification (PCR) duplicates or other biases (see Fig. III.16(c)).

Furthermore, weak transcription signals can occur. This means either even but low, or

sparse and scattered (see Fig. III.16(b)). Users might also discard such candidates.
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(a) In the middle a short gene
(ST M14_2238) is shown. The
read coverage is low at the begin-
ning and increases at the end of
the gene. It is likely that this in-
crease is due to the following gene
since this region could be the UTR
of STM14_2239. Therefore, it is
doubtful if STM14_2238 is active.

(b) In the middle a short gene
(ST M14_0432) is shown, the tran-
scription is in a very low range
over the whole gene but higher at
the beginning and end. Therefore,
it is likely that the gene signal is
not valid but belongs mostly to
the preceding and following gene
ST M1_0431 and ST M14_0433.

(c) Here a gene with one distinct
peak is shown which indicates that
a high number or reads start at the
same position. This might indicate
a PCR artifact.

Figure III.16: The upper panel shows the transcriptional signal (coverage curve) of a gene +- 200nt
as a line chart, the data is normalized for the library size and multiplied with the mean library size.
The differentially expressed conditions are shown in blue and red, the further four conditions are
shown in gray to keep the context. The panel in the middle shows the location of the gene of interest
and the neighboring genes in part. The lower panel shows the log scaled data.

In order to solve the task T-I, the challenge is to design an expressive and effective visual

representation of the read coverage to support the assessment of the different reasons for

untrustworthy measurements. The visualization is the basis for domain experts assessing the

trustworthiness of ragged measurements. Here, to discover the data is the main user goal and

users need to verify open reading frames (ORFs) of interest. Either users verify all or specific

ORFs (by lookup) and identify their characteristics (gene neighborhood, read coverage of the

ORF (RNAseq measurement) and Annotation Data). The data aspects of interest (targets) are,

in this case, the distribution of the read coverage (leaking transcription, weak transcription) and

extrema (possible amplification bias). Furthermore, users might aim to explore the whole data

set with the aim to compare genes and to get an overview of gene measurements. Besides, the

aforementioned high level data aspects, correlation and dependency between ORFs (possible

operon) and similarity between ORFs are of interest, as well as overall data patterns (trends and

outliers), e.g., “Is there a weaker RNAseq measurment signal at the end of all ORFs?”. See

Figure III.17(a) for the actions and targets, and Section Task Taxonomy for more details about

the used terms to abstract domain experts’ tasks.
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T-II

Identify ORFs worthwhile a further inspection. The number of sORFs is in the range of tens of

thousands for many bacteria species. Thus, a detailed visual assessment of all is not feasible and

a limitation of the analysis time is needed.

(a) T-I - Assess the trustworthiness of RNAseq measure-
ments.

(b) T-IIb - Identify ORFs worthwhile a further inspection
by filtering out discardable candidates.

Figure III.17: These figures are build upon the material which appeared in Figure 3.1 in “Visualization
Analysis and Design. Tamara Munzner, with illustrations by Eamonn Maguire. A K Peters Visualization
Series, CRC Press, 2014.” [Munzner, 2014]. The figure is released under the Creative Commons Attribution
4.0 International license (CC BY 4.0) [Creative Commons, 4].

T-IIa Identify ORFs worthwhile a further inspection by increasing the scalability. One option

is to provide a more scalable visualization which allows to quickly assess if an ORF is worthwhile

a further inspection. This option has the advantage that all ORFs are still visualized.

T-IIb Identify ORFs worthwhile a further inspection by filtering out discardable candidates.

Alternatively, users can produce a reduced data set by deriving a binning in reasonable candidates

and discardable candidates. This can be achieved by setting a threshold to distinguish reasonable

and discardable candidates. Discardable candidates are filtered out. As explained in Section T-I

to assess the trustworthiness of an ORF measurement, different aspects need to be considered.

All these aspects need to be considered simultaneously and, thus, a definition of a single threshold

is not possible and a combination of thresholds is not straightforward. This is especially the case

as thresholds might vary between species and experiments. As reasonable parameter settings

are not known, users need to adjust parameters. Therefore, users need to explore the resulting

binning and summarize the data to steer the effects of parameter changes. Data aspects of interest

are thereby, the distribution of gene attributes (see For each open reading frame (ORF) (p. 42)),
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as well as the dependency, correlation and similarity of gene attributes. See Figure III.17(b) for

the actions and targets and Section Task Taxonomy for more details on used terms.

III-4.3 Comparison of Gene Activity Levels between Different Conditions

Note

This section is based on the following publication and parts of this section will appear in

this publication [13]1:

[13]: Svenja Simon, Sebastian Mittelstädt, BC Kwon, Andread Stoffel, Richard Landstor-

fer, Klaus Neuhaus, Anna Mühlig, Siegfried Scherer, and Daniel A. Keim. “VisExpress -

Visual Exploration of Differential Gene Expression Data.” Information Visualization, 1-26,

DOI: 10.1177/1473871615612883, Published online before print December 14, 2015.2

1For the division of responsibilities and work, as well as a statement of contributions in this publication,
see VisExpress - Visual Exploration of Differential Gene Expression Data (p. 11).

2I own (with the co-authors) the copyright of this publication. The SAGE Publications Ltd holds the sole
and exclusive right and license for publishing ([13]). The definitive version is available at http://ivi.sagepub.com/
Direct link to the published article: http://dx.doi.org/10.1177/1473871615612883

The overall aim to apply RNAseq in the course of the FOG-project2 was to discover and

describe new overlapping genes (OLGs). Many (new) genes are expected to be active under

non-standard laboratory conditions only, whereby these genes have been overlooked under

standard laboratory conditions so far. The analysis of a number of different non-standard

conditions is, therefore, the mean of choice to discover new genes. Beside the screening for

RNAseq measurements for each single open reading frame (ORF) to assess the trustworthiness

of the measurements (see Section III-4.2), several experiment conditions also allow to compare

the gene activity levels of ORFs between conditions. In order to fully exploit the RNAseq data

set with several experiment conditions we, therefore, decided to use differential gene expression

data as derived data from the gene activity levels. Differential gene expression data opens up

new analysis possibilities. If the measurements between two conditions differ significantly, it

can not only be inferred that the ORF is indeed transcribed and active but also that its function

is related to the changed conditions. A comparison to genes, which react similar to the changed

conditions, but for which the function is known, allows generating further hypotheses about the

function of the ORF and to draw further conclusions.

2FOG-Project: “Finding new overlapping genes and their theory (FOG-Theory)”, part of the priority programme
“Information and Communication Theory in Molecular Biology” (InKoMBio SPP 1395) of the German Research
Foundation (DFG), 2010-2015.

52

http://dx.doi.org/10.1177/1473871615612883
http://ivi.sagepub.com/
http://dx.doi.org/10.1177/1473871615612883


III-4 Problem Abstraction

For this thesis, I extend the task of discovering and describing new overlapping genes to

discovering and describing genes in general. Description denotes here to learn more about the

function of genes in the long run and to generate and test hypotheses about gene functions or

their correlation with certain other genes or conditions, in the short run. The last sentences

describe the more specific aims and tasks of domain experts, when analyzing and comparing the

RNAseq data from different experimental conditions. Thereby the challenges are to handle the

large data volume and to allow an expressive exploration of the data. Thus, patterns need to be

interpretable for domain experts, similar patterns need to be grouped and to be related to known

gene functions. Additionally, the trustworthiness needs to be considered, regarding RNAseq

measurements (see also Section III-4.2), as well as regarding differential gene expression. The

following set of tasks can be summarized which all have the goal to discover the data set (see

Section Task Taxonomy for more information on the used terms):

T1 Generate hypotheses about the function of genes. In this exploration task, biologists want

to find new hypotheses about genes and their potential functions. In order to generate these

hypotheses, they explore the data set for genes1 with an unexpected function in a set of genes

with similar gene activity ratio (GAR) patterns. Unexpected is interpreted here with respect to

the meaning of the examined conditions and the interpretation of the GAR pattern. The first part

of this task is to build a subset of similar genes which is also relevant for other tasks (see Figure

III.18(a)). Therefore, gene characteristics2 need to be identified, genes need to be compared

and similar ones need to be summarized. Important data aspects are, thereby, the GAR patterns

(trend).

The second part of this task is browsing for genes with an unexpected function (see Figure

III.18(b)). Their data characteristics need to be identified and interpreted with respect to the

involved conditions. Furthermore, these genes should be compared to other genes in the subset

with an expected function and summarized to reveal common features, e.g., the same unexpected

function. Thereby, the GAR patterns (trend) and the distribution of functions assigned to the

genes in the subset are important.

T2 Test hypotheses about the function and reaction of genes. In this task, biologists make an

assumption about the reaction of genes to the experimental conditions. Through differential

gene expression analysis, they can confirm or reject their hypotheses, if genes with particular

functions have an expected or unexpected gene activity ratio (GAR) pattern. Here, biologists

have a data characteristic in mind they want to browse for (see Figure III.18(c)). Thereby, the

1genes or ORFs
2gene activity ratio (GAR) patterns and Annotation Data (p. 40)
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(a) Building a subset of similar genes. This task is important for all other tasks.

(b) Tasks T1. Generate hypotheses about the
function of genes.

(c) Tasks T2. Test hypotheses about the func-
tion and reaction of genes.

Figure III.18: These figures are built upon the material which appeared in Figure 3.1 in “Visualization
Analysis and Design. Tamara Munzner, with illustrations by Eamonn Maguire. A K Peters Visualization
Series, CRC Press, 2014.” [Munzner, 2014]. The figure is released under the Creative Commons Attribution
4.0 International license (CC BY 4.0) [Creative Commons, 4].

data aspects are the GAR patterns (trend) and the extremes of functions assigned to the gene

subset (most prominent function). In order to draw conclusions, biologists need to build sets of

similar genes (see Figure III.18(a)) again. However, in contrast to T1, where biologists need to

understand and interpret the GAR pattern, biologists have a GAR pattern in mind, they just want

to find. T2 also comprises hypotheses about experimental conditions. For instance: “Condition

1 and 2 should reveal the same GAR to the other conditions for most of the genes.” For this

54



III-4 Problem Abstraction

subtype of T2, data characteristics1 are partly known for which users can browse. Additionally,

they need to explore the whole data set for counter examples. The remaining actions and targets

are the same for this subtype of T2. Remark: For T2 a (1:n) comparison of conditions is not

sufficient since this involves the interrelation of all conditions. Therefore, a (n:n) comparison of

conditions is required (see Differential Gene Expression Data (p.43)).

(a) Tasks T3. Find genes related to a function. (b) Tasks T4. Explore genes with unexpected
gene activity ratio (GAR) patterns.

Figure III.19: These figures are built upon the material which appeared in Figure 3.1 in “Visualization
Analysis and Design. Tamara Munzner, with illustrations by Eamonn Maguire. A K Peters Visualization
Series, CRC Press, 2014.” [Munzner, 2014]. The figure is released under the Creative Commons Attribution
4.0 International license (CC BY 4.0) [Creative Commons, 4].

T3 Find genes related to a function. When biologists analyze a single function, they are

interested in identifying genes, yet unknown, to be related to this function. In order to find these

genes, they need to browse for genes with the characteristic of a specific function (see Figure

III.19(a)). For a further interpretation biologists first need to build sets of similar genes (see

Figure III.18(a)). Secondly, the need to compare the gene activity ratio (GAR) patterns of genes

not related to the specified function with genes that comprise this function. Genes with the most

similar GAR pattern will become potential candidates for further investigations, thereby, the
1gene activity ratio (GAR) pattern
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data characteristic are the GAR patterns (trend). In contrast to T2 biologists search for the data

attribute “function” and not for the data attribute “GAR pattern”.

T4 Explore genes with unexpected gene activity ratio (GAR) patterns. If unexpected GAR

patterns are explored in the data set, all genes with similar GAR patterns need to be identified

(see Figure III.18(a)). Genes with unexpected patterns then need to be identified and compared

in order to examine their similarities to other genes and their functions. Data aspects are here

the GAR pattern (trend) and the distribution of gene functions (see Figure III.19(b)). In contrast

to T1, where the focus is to generate hypotheses about gene functions based on the functions

of similar genes and the interpretation of the GAR pattern, the focus in T4 is on a higher level.

The aim of T4 is to get an overview (to summarize) how genes react to changed conditions. A

subsequent task would be T1 (see Figure III.18(b)).

Figure III.20: Tasks T5. Relate new
genes candidates to genes with known
functions. (This figure is built upon the ma-
terial which appeared in Figure 3.1 in “Visu-
alization Analysis and Design. Tamara Mun-
zner, with illustrations by Eamonn Maguire.
A K Peters Visualization Series, CRC Press,
2014.” [Munzner, 2014]. The figure is re-
leased under the Creative Commons Attribu-
tion 4.0 International license (CC BY 4.0)
[Creative Commons, 4].)

T5 Relate new gene candidates to genes with known functions. Open reading frames (ORFs)

that show a differential expression are likely to be genes. In order to understand their function

they need to be compared and related to genes which similar gene activity ratio (GAR) patterns

and known functions. This task is highly related to task T1 (see Figure III.18(b)). However, here

the targets are known and need to be located. Next a subset of similar genes needs to be built

(see Figure III.18(a)) and the gene candidate needs to be compared with the known genes in the

subset. This includes to summarize the functions of known genes in the subset. The important

data characteristics are again the GAR patterns (trend) and the distribution of functions assigned

to the genes in the subset (see Figure III.20).
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Chapter IV

Visual Analysis for the Trustworthiness
Assessment of RNAseq Measurements

Note

This chapter is mainly based on the following publications and parts of this chapter appeared

in these publications [14, 10]1:

[14]: Svenja Simon, Daniela Oelke, Richard Landstorfer, Klaus Neuhaus, and Daniel A.

Keim. “Visual Analysis of Next-Generation Sequencing Data to Detect Overlapping Genes

in Bacterial Genomes.” 2011 IEEE Symposium on Biological Data Visualization, October

23 - 24, Providence, Rhode Island, USA, 47-54, IEEE, DOI: 10.1109/BioVis.2011.6094047,

2011.2

[10]: Oelke, Daniela, Halldór Janetzko, Svenja Simon, Klaus Neuhaus, and Daniel A.

Keim. “Visual Boosting in Pixel-Based Visualizations.’’ Computer Graphics Forum 30, no.

3: 871-80, DOI: 10.1111/j.1467-8659.2011.01936.x, 2011.3

Please note that I will use “we” throughout this chapter instead of “I”, as this chapter is

based on publications1.
1For the division of responsibilities and work, as well as a statement of contributions in

these publications, see Visual Analysis of Next-Generation Sequencing Data to Detect Overlapping Genes
in Bacterial Genomes (p. 10) and Visual Boosting in Pixel-based Visualizations (p. 12).

2The Institute of Electrical and Electronics Engineers (IEEE) is the copyright owner of
this work [14] but, as an author, I am permitted to re-use the work of this publication
(vertabim and derivative) for my personal use. Link to the published article in IEEE Xplore:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6094047

3I own (with the co-authors) the copyright of this publication, EUROGRAPHICS and Blackwell Publishing,
hold the exclusive license for publishing ([10]). The definitive version is available at http://diglib.eg.org/ and
www.blackwell-synergy.com.
Direct link to the published article: http://diglib.eg.org/handle/10.1111/v30i3pp0871-0880
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IV. VISUAL ANALYSIS FOR THE TRUSTWORTHINESS ASSESSMENT OF
RNASEQ MEASUREMENTS

IV-1 Introduction

RNA Sequencing (RNAseq) by next-generation-sequencing (NGS) allows measuring (indirectly)

all RNA sequences in a high-throughput fashion. The sequencing of all transcribed genetic

elements allows not only to analyze known genes but also to discover new genes as well as

regulatory (non-coding) RNA. However, analyzing the large amounts of data generated in NGS

is a serious challenge which requires novel data analysis and visualization methods to support

the discovery new genes. Current genome browsers do not follow the visualization design

guidelines and hamper an expressive and effective reading of the visual design. The exploration

in genome browsers is, furthermore, restricted to time consuming and non-targeted browsing in

the genome. Users cannot filter directly for all genes of interest based on filtering parameters.

Due to uncertainty issues in the generation of RNAseq data, (see Section III-2.2), RNAseq

measurements need to be verified before it can be concluded that an open reading frame (ORF)

is, indeed, transcribed and active. For known genes, it is generally assumed that a measurement

indicates the activity of the gene but in the case of gene candidates, the trustworthiness of

measurements needs to be verified. Due to the large number of new gene candidates - in the

range of tens of thousands - a visual inspection of all candidates by an expert is not feasible.

Therefore, we provide a visual analysis solution that overcomes the shortcomings of genome

browsers and addresses the issues of “visual design” and “filtering” in this chapter. Filtering

is complex since RNAseq data suffers under many biases sources. Thus, no strict thresholds

can be defined for the activity of an ORF (see also Section III-4.2) and an expert judgment is

required to adjust parameters.

After stating the requirements derived from the task descriptions in Section III-4.2, we

will discuss a Pixel-based Representation of RNAseq Reads Coverage and introduce The NGS

Overlap Searcher - An Enhanced Genome Browser as a system to assess the trustworthiness of

RNAseq measurements.

The contributions of the NGS Overlap Searcher are:

• An effective and efficient representation of read coverage without introducing artifacts.

• A visualization of RNAseq measurements in the open reading frames (ORFs) representa-

tion allowing to determine how well the region of read coverage fits to the ORF.

• A filter functionality to focus on interesting ORFs to handle the large volumes of data.

• An overview representation to adapt filter parameters based on visual feedback as well as

to navigate to ORFs of interest.

The usefulness of the NGS Overlap Searcher is demonstrated with a case study in the area of

overlapping gene detection.
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IV-2 Requirements

The tasks regarding the aim to assess the trustworthiness of RNAseq measurements are:

• T-I: Visual assessment of the trustworthiness of RNAseq measurements.

• T-II: Identification of open reading frames (ORFs) worthwhile a further inspection.

• T-IIa: ... by increasing the scalability.

• T-IIb: ... by filtering out discardable candidates.

Based on these tasks we have derived the following requirements (see III-4.2 for more details

about the tasks).

R-I System should resemble state-of-the-art tools for RNAseq data. In order to reduce initial

training, a solution should resemble state-of-the-art tools for RNAseq sequencing data that

biologists are already acquainted to.

R-II Expressive & effective visualization of the read coverage. The visualization of read cov-

erage has to support the assessment of the trustworthiness of RNAseq measurements effectively

(T-I). Especially the representation of the trend is important here.

R-III Visualizing the surround. In order to assess where the RNA transcript of an ORF

possibly starts and ends, not only read coverage of the ORF location but also of its surround

needs to be visualized. Thus, at least the untranslated region (UTR) need to be covered. In

order to asses if the read coverage of one ORF might originate form an adjacent ORF, a larger

surround might be needed, which includes adjacent genes (T-I).

R-IV Visualizing contextual information of ORF locations. When the surround of an ORF is

visualized, the representation of the ORF location and adjacent genes are needed as contextual

information. This includes an effective assignment of RNAseq measurements to the ORF

location, i.e., to assess how well the RNAseq measurement fits to the ORF region (T-I).

R-V Visualizing read start positions. In order to assess the distribution and number of reads at

one location, the start position of mapping reads is important (T-I).

R-VI Providing filtering capabilities. Interesting sites need to be automatically determined

according to a user-defined interestingness function, based on several parameters, to help users

to deal with the large amount of data (T-II).

R-VII Steering of the effects of parameter changes. Several parameters need to be combined

to define ORFs of interest. In order to adjust parameters users need to steer parameter changes

(T-II).
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R-VIII Strand specific data representation. In order to identify new genes and especially

overlapping genes a strand specific representation of the read data is needed (T-I).

IV-3 State of the Art and Related Work

In general RNAseq data is visualized with so-called genome browsers. Genome browsers repre-

sent the whole genome in a linear fashion and align meta information and further information

(e.g. measurements) to the genomic coordinates as so-called tracks which are vertically stacked

(see Figure IV.1). Due to the large size of the genome, the current view of a genome browser

always shows a segment of the genome. For navigation, users can zoom and browse in up- and

down-stream direction. In order to inspect a gene of interest, users can search for the gene

name. Examples for popular genome browsers are: the UCSC browser [Karolchik et al., 2014],

the Integrative Genomics Viewer (IGV) [Thorvaldsdóttir et al., 2013], the Integrated Genome

Browser (IGB) [Nicol et al., 2009] and Artemis [Rutherford et al., 2000, Carver et al., 2012].

Besides, there are genome browsers whose graphical representations aim at supporting

special tasks. LookSeq [Manske and Kwiatkowski, 2009], for instance, uses a stack view

which enables the identification of deletions and insertions by using paired-end reads. The

Integrative Genomics Viewer (IGV) [Thorvaldsdóttir et al., 2013] integrates different data types

and supports array-based and next-generation sequencing data as well as clinical and phenotypic

data. The UCSC browser [Karolchik et al., 2014] is a web-based genome browser which also

provides access to many publicly available data sets. In order to analyze SNPs, genome browsers

typically visualize the differences compared to the reference genome. However, application

specific genome browsers like the IBrowser [Aflitos et al., 2015] have also been designed for

SNP visualization. For further readings see Nielsen et. al. [Nielsen et al., 2010] who discuss

techniques and challenges of visualizing genomes.

RNAseq measurements are shown in genome browsers either as stacked reads which repre-

sent each reads. Or the number of reads that overlap each genome position (read coverage) is

represented either as line charts or bar charts. See Figure IV.3 for an example of visual represen-

tations of reads in the Artemis genome browser [Rutherford et al., 2000, Carver et al., 2012].

The advantage of the stacked read view is that not only the coverage at a specific position is

visible but also the position of a specific read sequence. However, an issue are artificial gaps

that emerge as artifacts between stacks. Thus, boundaries between genes cannot be determined

accurately (see top of Figure IV.2). Further, the stacked read view is not scalable. If the number

of reads mapping to one gene is large, not all reads can be represented (see Figure IV.3(a)). This

can even happen if identical reads are aggregated as in Figure IV.3(a). In this case identical

reads are aggregated to one green read. However, it is not clear how many reads are merged.
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Figure IV.1: Screenshot of the genome browser Artemis [Rutherford et al., 2000,
Carver et al., 2012]. Four tracks are shown. At the top the RNAseq data track is shown.
Reads mapping to the reverse strand are drawn upside down below the middle line. The red region
highlights a selected gene. Below the RNAseq data track the linked annotation track with annotated
genes (cyan and white rectangles) in this gene segment is shown. The gene with the red border
is selected. Arrows indicate the strand (right: forward strand, left: reverse strand). Below the
annotation track, the zoomed-in part of the selected gene, is shown. This track shows the DNA
sequence as well as its six-frame translation to amino acids. The track at the bottom shows the gene
annotation information of the genes in the view. The selected gene is highlighted in black.

Line and bar charts have a better scalability, as they can be normalized for the available

screen space (see Fig. IV.3(c)). However, genes can have diverse coverages with reads. Thus,

a scaling to the gene with the highest coverage in the genome would suppress the visibility

of line charts for many genes. An alternative is to scale the current view, like in the Artemis

genome browser [Rutherford et al., 2000, Carver et al., 2012]. However, a gene with a low

coverage might still be overlooked next to a highly covered gene. The change of the scaling

is, furthermore, confusing and can lead to the wrong impression that two genes have a similar

expression strength.

One issue with all genome browsers is that exploration is restricted to time consuming and

non-targeted browsing in the genome. Users cannot directly filter for all genes of interest based

on filtering parameters.
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Figure IV.2: Stack view in the Artemis
tool [Rutherford et al., 2000]. An anno-
tated gene (rpsT) is irregularly covered by
read stacks. Identical reads are merged
to a single green read. Due to the stack
representation artificial gaps emerge as ar-
tifacts between stacks. The corresponding
coverage is displayed by the blue graph
but not strand specific. Overlapping ORFs
of ≥ 93 bp are displayed by yellow bars.
This graphic appeared in [14] c©IEEE.

(a) Stacked Reads. Six conditions are shown at the
same time. Identical reads are collapsed to one green
read. Reads mapping to the forward strand are drawn
above the middle line, reads mapping to the reverse
strand are drawn below the middle line (see right cor-
ner).

(b) Stacked Reads. Identical reads are not collapsed.
Color codes for the condition. The view is truncated
and shows only part of the data compared to IV.3(c).
Reads mapping to the reverse strand are drawn below
the middle line (see right corner).

(c) Line Charts for each of the six conditions. View
is scaled to the highest data value in the view. The
height encodes the number of the overlapping reads
on this strand. For the reads mapping to the reverse
strand, the line chart is drawn bottom up below the
middle line (see right corner).

(d) The annotation track shows the location of genes
(white, green or cyan rectangels) as well as stop
codons (vertical black lines). Above the middle line
the forward strand is shown, below the reverse strand.

Figure IV.3: This graphic shows different visualization options of the genome browser Artemis
[Rutherford et al., 2000, Carver et al., 2012] to represent the reads mapped to the genome (subfig-
ures IV.3(a)-IV.3(c)). Subfigure IV.3(d) shows the annotation track.
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IV-4 Pixel-based Representation of RNAseq Reads Coverage
Note

This section is based on the following publication and parts of this section appeared in this

publication [10]1:

[10]: Oelke, Daniela, Halldór Janetzko, Svenja Simon, Klaus Neuhaus, and Daniel A.

Keim. “Visual Boosting in Pixel-Based Visualizations.’’ Computer Graphics Forum 30, no.

3: 871-80, DOI: 10.1111/j.1467-8659.2011.01936.x, 2011.2

Please note that I will use “we” throughout this chapter instead of “I”, as this chapter is

based on a publication1.
1For the division of responsibilities and work, as well as a statement of contributions in this publication,

see Visual Boosting in Pixel-based Visualizations (p. 12).
2I own (with the co-authors) the copyright of this publication, EUROGRAPHICS and Blackwell Publishing,

hold the exclusive license for publishing ([10]). The definitive version is available at http://diglib.eg.org/ and
www.blackwell-synergy.com.
Direct link to the published article: http://diglib.eg.org/handle/10.1111/v30i3pp0871-0880

An important point in the visualization of RNAseq measurements is the scalability. Task T-II

requires identifying open reading frames (ORFs) worthwhile a further inspection. A possible

option to achieve this is to provide a scalable data representation which allows to quickly assess

if an ORF is worthwhile a further inspection (T-IIa). In this section, we will address task T-II

with scalable pixel-based visualizations.

Note that this work was preceding the NGS Overlap Searcher discussed in the next section.

The prototype presented here was implemented with the focus on highly scalable visualizations

to overcome the scalability issues of genome browsers. We came to the conclusion that the

solution is a valuable extension to genome browsers in general, however, it is not sufficient

for our specific task to visually assess the trustworthiness of RNASeq data. Therefore, we

abstracted the shortcomings and lessons learned from this prototype to redefine the requirements

and designed the NGS Overlap Searcher that is successfully applied for this domain problem.

The common representation in genome browsers uses a linear display. This leads to a high

aggregation on zoom-out or a focus on a small fraction of the genome in the current view.

The reads are either shown as stacked bars, line charts, bar charts or heatmaps (see Figure

IV.3). Heatmaps can also be understood as pixel-based visualizations1. The read coverage is

represented by colored rectangles (see Figure IV.4).

1Pixel-based visualizations refer to the use of a colored rectangle (mostly quadratic) as the unit of representation
rather than a screen-pixel.
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(a) Below the heatmap representation, the read coverage is shown as a line chart.

(b) Clipping of the heatmap.

Figure IV.4: These graphics show the heatmap representation of the read coverage in gray scales.
Artemis genome browser [Rutherford et al., 2000, Carver et al., 2012].

The advantage of heatmaps is their high scalability in the y-axis direction compared to line

charts and especially stacked bars (see Figure IV.4(b)). A disadvantage of color is the fact that

the number of values which can be distinguished is limited. However, also the accuracy of line

charts is limited by the available y-axis space. Due to the high value ranges of read coverage,

genome browsers often normalize the data in the view to the data maximum of the view. A

logarithmic scaling is an alternative which still allows a comparison of different regions.

In order to exploit the screen space efficiently, heatmaps are advantageous compared to line

charts due to their higher scalability (see Figure IV.4(b)). Without taking genome annotation

data into account, which needs a lot of space, screen-filling layout alternatives are possible.

However, when ignoring the gene locations, a representation of read coverage loses context. We

identify the gene location as the minimum information which is needed to interpret the data. In

the following, we refer to pixel-based visualization instead of heatmaps.

In the paper Visual Boosting in Pixel-based Visualizations [10], we discuss several alter-

natives to use boosting in pixel-based visualizations to enhance relevant information and gave

guidance when to use which technique1.

We identified the following methods to boost information in pixel-based visualizations:

• halos: add a colored surround to a pixel to highlight it.

1The main research idea, to address the question how to boost interesting and important information in pixel-
based visualizations and to provide a guideline, was identified by Daniela Oelke. Daniela Oelke contributed the text
application scenarios, Halldór Janetzko contributed the geospatial use case and I contributed the biological usage
scenario. Possible boosting techniques were collected in discussions. The guidance, which technique works best
in which usage context, is also based on discussions. I suggested thereby the distinction between image-driven
and data-driven boosting for the comparison of boosting techniques. Klaus Neuhaus and Daniel Keim helped with
fruitful discussions and advises. See also work distribution in Visual Boosting in Pixel-based Visualizations (p. 12).
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• color: an appropriate color map highlights values of interest, e.g., high values.

• distortion: pixels of important resp. unimportant values are widened resp. narrowed.

• hatching: important pixels are highlighted with a hatching.

• shapes: important pixels are marked with a shape, e.g., an arrow.

All boosting techniques have pros and cons depending on the data (sparse or dense) and the

definition of interestingness (image-driven or data-driven). Either a specific data range is of

interest, for instance, the highest data values, then the information is already given in the image.

Or the interestingness is defined by meta information, for example, the information where a

gene starts and ends. In this case the information is not given in the image. See [10] for a

discussion of boosting techniques and usage guidelines.

Read coverage data is an example where data-driven boosting is needed. Color cannot be

applied in this case as the read coverage needs to be encoded with color already. As a whole

passage needs to be boosted, also halos are no option, as they necessitate surrounding blank

pixels which is per definition not given for a passage. The same holds for shapes which extend

the size of the pixel. The passage should be perceived as a continuity, therefore, only shapes

fulfilling this requirement would be possible. However, to overlay the pixels as little as possible,

we decided to use hatching with one dash as well as distortion. As scalability is important for

visualizing read coverage, we narrowed unimportant nucleotides which we define as nucleotides

in intergenic regions without read coverage.

See Figure IV.6 for a boosting of gene regions with a horizontal dash “-”. Figure IV.6(a)

without distortion and Figure IV.6(b) with distortion. Pixel borders are drawn in a light gray

here, leading to a continuous impression of read coverage values (a closer look is needed to

perceive pixel borders). Figure IV.5 shows a boosting with a tilted dash - a backslash “\”. Figure

IV.5(a) without distortion and Figure IV.5(b) with distortion and a diverging color scale. The

diverging color scale highlights additionally the gene region with read coverage (red). Pixel

borders are drawn in a darker gray here. Thus, pixels are easier to distinguish. In Figure IV.6(b),

the distorted regions appear gray leading to a less pronounced pop-out effect of the gene without

read coverage compared to the design in Figure IV.5(b). The examples in Figures IV.6 and IV.5

demonstrate the applicability of the boosting techniques hatching and distortion to highlight

genes in a screen-filling pixel-based representation of read coverage data. Due to the good

scalability R-III is given, and the hatching provides the contextual information (R-IV). However,

even though the read coverage is well represented with color, the line breaks due to the limited

number of nucleotides per line, hamper a coherent impression of the read coverage of genes.

This contradicts with the expressiveness and effectiveness requirement (R-II).

Requirement R-V to visualize read starts could be fulfilled by applying using a 2D color

map to represent read coverage and reads starts simultaneously or by visualizing the difference
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or ratio of both values instead. A strand specific data representation (R-VIII) could also be

achieved with a 2D colormapping. The challenge with other representations of both strands is

the feasibility of a mental mapping. In case of separate juxtaposed views for both strands, it

would be hard to map locations. In case of paired lines of pixels for forward and revers strand

line breaks would hamper to keep track of the strands.

Due to all these reasons, this design alternative was discarded leading to a redesigned system

that satisfies all these requirements: the NGS Overlap Searcher discussed in the next section.

(a) Without distortion.

(b) Pixels of nucleotides, which are neither transcribed nor part of a gene, are distorted (reduced rectangle
width).

Figure IV.5: Each nucleotide is represented by one pixel (rectangles with gray boarder). Nucleotides
are arranged per line. (a) The continuous color scale encodes the read coverage (dark blue: high read
coverage, white: no read coverage). (b) Two continuous color scales encode the read coverage (dark
red: high read coverage within a gene, dark blue: high read coverage outside of genes, white: no
read coverage). The regions of genes are marked with “\”. Two genes are shown. The upper one has
read coverage, i.e., the gene is transcribed (red color). The lower one is not transcribed (white color).
Between both genes some nucleotides are covered with reads. These graphics appeared in [10].
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(a) Without distortion.

(b) The pixels representing nucleotides, which are neither transcribed nor part of a gene, are distorted (reduced width
of the rectangles).

Figure IV.6: Each nucleotide is represented by one pixel (rectangles with light gray boarder).
Nucleotides are arranged per line. The continuous color scale encodes the read coverage (dark blue:
high read coverage, white: no read coverage). The regions of genes are marked with “-”. Two genes
are shown. The upper one has read coverage, i.e., the gene is transcribed (blue color). The lower
one is not transcribed (white color). Between both genes some nucleotides are covered with reads.
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IV-5 The NGS Overlap Searcher - An Enhanced Genome Browser
Note

This section is based on the following publication and parts of this section appeared in this

publication [14]1:

[14]: Svenja Simon, Daniela Oelke, Richard Landstorfer, Klaus Neuhaus, and Daniel A.

Keim. “Visual Analysis of Next-Generation Sequencing Data to Detect Overlapping Genes

in Bacterial Genomes.” 2011 IEEE Symposium on Biological Data Visualization, October

23 - 24, Providence, Rhode Island, USA, 47-54, IEEE DOI: 10.1109/BioVis.2011.6094047,

2011.2

Please note that I will use “we” throughout this chapter instead of “I”, as this chapter is

based on a publication1.
1For the division of responsibilities and work, as well as a statement of contributions

in this publication, see Visual Analysis of Next-Generation Sequencing Data to Detect Overlapping Genes
in Bacterial Genomes (p. 10).

2The Institute of Electrical and Electronics Engineers (IEEE) is the copyright owner of
this work [14] but, as an author, I am permitted to re-use the work of this publication
(vertabim and derivative) for my personal use. Link to the published article in IEEE Xplore:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6094047

IV-5.1 System Architecture

Requirement R-I requires designing a system which resembles state-of-the-art tools for RNAseq

sequencing data. The state-of-the-art tools are genome browsers. In order to fulfill R-I, our

system will resemble standard genome browsers and depict the genome as a linear sequence.

This design also fulfills, in general, the requirements R-III to visualize the surround and

R-IV to visualize contextual information. However, as genome browsers are not designed

for specific tasks, but for a board applicability, the design is not tailored for the requirements

stated in Section IV-2. Furthermore, the visual design choices of genome browsers do not

follow information visualization design guidelines. See Section IV-3 for a discussion of the

disadvantages of the stacked read view. A further disadvantage is the high spatial distance

between read data and ORF representations (see Figure IV.1).

The issue of the spatial distance violates R-IV as read coverage cannot be assigned to ORF

locations efficiently. We, therefore, decided to represent the read coverage between the three

reading frames of the forward and the three reading frames of the reverse strand. Read coverage

is represented for the forward and reverse strand separately to fulfill R-VIII. Open reading

frames are depicted as boxes and positioned in the corresponding reading frame. In contrast

68

http://dx.doi.org/10.1109/BioVis.2011.6094047
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6094047


IV-5 The NGS Overlap Searcher - An Enhanced Genome Browser

Figure IV.7: A shows the Genome Overview Bar. Every open reading frame (ORF) (here only
annotated ORFs (genes)) is represented by a column. Each line represents one parameter of the
interestingness function and the coloring of the cells encodes whether the given threshold was
exceeded or not (see Fig. IV.9 for the color legend). Distortion is used to highlight interesting
regions. In B the interestingness measure can be parameterized. Furthermore, the search may be
restricted to genes or not-annotated ORFs only. The genome view C consists of a plot for the
read coverage in the middle, plus the six reading frames of the sense and antisense strand. ORFs
with a transcription value that does not allow them to exceed the transcription thresholds are faded
out. D shows the color scale for the read coverage plot in the ORFs. In the plot, a gene is shown
which can be considered as active since nearly its whole region is covered with reads. There are
only two small gaps which decrease the coverage value (percentage of ORF covered with reads).
This graphic appeared in [14] c©IEEE.

to most sequence viewers, our task requires depicting all ORFs (in our example with at least

93bp in length) and not just already annotated genes. In order to distinguish annotated from

not-annotated, the former are shown with a red frame. See Figure IV.7 for a screenshot of the

system.

In the following section, we will discuss how to visualize read coverage.

IV-5.2 Visualization of RNAseq Read Coverage

As described in Section IV-3, the stacked read view has several disadvantages, making it

ineffective to represent RNAseq measurements (read coverage) (R-II). Line and bar charts
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have a normalization issues. However, beside these issues, they are much more effective. As

mentioned before, logarithmic scaling can be applied to solve the normalization issue. With a

logarithmic scaling, the application of different scales between genome segments can be avoided

and genes with a low read coverage can still be represented. Although reading the data values is

more difficult with logarithmic scales than with (different) linear scales, the trends of the data

can be efficiently compared (according to a single common scale) which allows to intuitively

detect interesting patterns such as correlation between genome segments. Thus, line or bar

charts with a logarithmic scaling fulfill R-II.

Following these considerations, we use a bar chart to represent the complete genome

coverage and the coverage values are logarithmically scaled with a consistent scale for the whole

genome (see Figure IV.7 C). As the information of the start of reads are, furthermore, important,

we plot in orange the start positions of the reads in the bar chart to fulfill R-V. Highlighting the

end of a read is not necessary in this case since all reads have the same length1.

Considering R-IV and the required effective assignment of the read coverage to open reading

frame (ORF) locations, we decided to additionally map the read coverage values directly to the

ORF representations (rectangles above the read coverage bar chart in Figure IV.7 C).

From the perspective of visualization, the challenge is to find a representation that permits

fitting the read coverage line chart (that reveals if an ORF is active) directly into the rectangles

that represent the ORFs. Coloring the whole rectangle according to gene activity level of the

ORF would cause a loss of necessary information, e.g., if the complete ORF is covered with

reads or not. Standard line charts do not work as well because the space in the y-direction of the

graph is too limited to depict the read coverage fluctuations truthfully.

The solution to this is two-tone coloring [Saito et al., 2005, Heer et al., 2009], in which each

value is represented by two discrete colors (see color map in Fig. IV.7 D). Using this technique,

values can be read quite precisely even if not much space is available for drawing. By directly

showing the read coverage color coded within the ORF rectangles (see Figure IV.7 D), we are

able to reduce the mental effort to determine if an ORF fits to the region with read coverage

or not. Since we are specifically interested in overlapping genes (OLGs), that are typically

not annotated (without a red border in Figure IV.7 C), it is not only the question if an ORF

fits to a region with read coverage but also to which of a few ORFs the read coverage fits best.

Therefore, correct data interpretation is critical. Because the read coverage is rugged and uneven,

inspection by an expert is mandatory.

Only the combination of the ORF rectangles and the read coverage bar chart can satisfy the

requirement R-IV. The bar chart alone would not ease the mental load of mapping the data to the

1Depending on the experimental protocol (see Section III-2.2) reads can also have variable length. However, in
the FOG-Project, reads have always the same length.
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rectangles. Otherwise, coloring only the ORF rectangles would camouflage the fact that often

not only the area of a specific ORF is transcribed but part of the sequence before and after it as

well (UTR). We also considered coloring the background of the chart instead of using bar charts

to encode this information. However, this would have interfered with the two-tone coloring that

is used in the ORF representation. Furthermore, the bar chart comes with the advantage that it is

a common way of visualizing sequencing data.

IV-5.3 Providing an Interestingness Function

NGS experiments provide vast amounts of data which complicates data analysis. Due to

technical (random sampling of reads) and biological reasons (background transcription, multiple

promoter sites, etc.) the read coverage always appears in rugged course of values (see also

Section III-2.2). For genes with low expression and rare RNA transcripts, it is difficult to tell

whether a gene is or is not transcribed and active. In order to differentiate the following criteria

are taken into account by experts:

• Coverage: Percentage of bases of an ORF with a count of at least one. A low value

means either coverage by only a few reads (background transcription) or overlap with a

read coverage from the untranslated region (UTR) of an adjacent ORF. A high coverage

value indicates a good fit of a certain ORF to the region with a read coverage.

• Transcription: Average number of counts of the bases of an ORF. In order to ensure that

the numbers for different experimental conditions are comparable, this value has to be

normalized1. The higher the transcription value2, the more likely it is that the ORF was

indeed transcribed to RNA and, therefore, active.

• Fit: Absolute value of the difference of the transcript length (region with read coverage)

and the ORF length. In case of annotated ORFs (genes), a high fit value indicates that this

gene is part of an operon; in case of not-annotated ORFs, which overlap a gene on the

same strand, this is an indication that the coverage is only due to the untranslated region

(UTR) of the gene (which, in turn, would decrease coverage).

All three criteria can be parameterized and thresholds can be adaptively defined by an expert

(Fig. IV.7 B). Combining these three criteria, we set up an interestingness function to highlight

interesting ORFs (R-VI). Any other ORF, that does not satisfy the thresholds, is faded out.

Alternatively, we may also restrict the analysis to regions with annotated or not-annotated ORFs.

Furthermore, we distinguish between the two reading directions because the read coverage is

available for both strands separately (R-VIII).

1Normalized by the total number of counts: sum of counts over all genome positions, less rRNA reads.
2A type of a gene activity level
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IV-5.3.1 Genome Overview

Having a flexible and expressive interestingness function is beneficial since the automatic filter

focuses on interesting areas that need further inspection (all other regions are filtered out). Still,

scrolling through the whole genome sequence would be necessary. Displaying only regions of

interest would reduce the amount of data but with the expense of losing context information

(violating R-IV).

Our overview representation of the genome reveals for all open reading frames (ORFs) all

values of the interestingness function (see Figure IV.7 A). In this tabular view each horizontal

line represents a single parameter of the interestingness function (coverage, transcription, and fit).

Each column represents an interesting ORF (only annotated ORFs (genes), only not-annotated

ORFs or both) of the genome. A cell is colored in a range of green to purple . The more

saturated the green is, the more the threshold was exceeded. Similarly, intensifying shades of

purple encode increased fail of a threshold (see Figure IV.9(a)).

A summary line below reduces this information to a single cell to enable an extremely quick

overview and a steering of the effects of parameter changes. Again, sections failing one or more

thresholds are shown in shades of purple. Regions exceeding all thresholds are displayed in

yellow (see Fig. IV.9(b)). Additionally, bars are distorted such that columns which satisfy more

criteria are assigned more space. Because the length of the different ORFs in each column varies

significantly and longer ORFs are often considered as more interesting, the length of each region

is encoded in a gray scale below. Alternatively, length could also be used as the variable that

determines the distortion factor of a column or as a further filtering parameter. By clicking on a

column in the overview bar the corresponding ORF is centered in the genome view. Thus, the

overview bar allows to browse the genome faster and in a more focused and task specific way.

IV-5.3.2 Genome Overview Bar to Steer Effects of Parameter Changes.

Because random sampling is involved in the sequencing process, the resulting read coverage

is inevitably rugged. For the same reason also gaps have to be expected, even in regions of

clearly active and transcribed genes. The probability of gaps depends on the sequencing depth

in general and the gene activity level in particular. The latter depends on the experimental

conditions. Consequently, it is not possible to specify default threshold for filtering. Thus, every

analysis process starts with the challenge of choosing meaningful parameter values. This is an

interactive process that imperatively needs an expert analyst with some experience in evaluating

next generation sequencing data. Our genome overview representation supports this task.

Figure IV.8(a) shows part of the resulting display when the expected coverage is set to 100%

and the threshold for the transcription value is 10. Furthermore, the threshold value for the fit is

72



IV-5 The NGS Overlap Searcher - An Enhanced Genome Browser

(a) Overview for a stringent parameter setting: Only two genes in this subsection of the Genome Overview Bar
exceeded all three thresholds (shown in light yellow in the summary row). Some of the cells in the first line are colored
in bright purple. This suggests that these regions are only slightly below the threshold for this criterion. Similarly, for
the ones in bright purple in the summary row, only a single criterion was below the threshold, hindering them to get
through.

(b) Overview of a relaxed parameter setting not using the fit criterion. The majority of genes exceed these thresholds.

Figure IV.8: Genome Overview Bar for different parameter settings. Only genes are shown and
distortion is not applied. These graphics appeared in [14] c©IEEE.

(a) The distance of each ORF attribute in the Genome
Overview Bar to the corresponding threshold is visualized
according to this color map.

(b) Color map for the summary line in the
Genome Overview Bar.

Figure IV.9: Color Legend of the Genome Overview Bar (see Fig. IV.8) in the NGS overlap
searcher (see Fig. IV.7).

set to 45 nucleotides. Overall these are quite stringent settings. Consequently, only few regions

in the genome are able to exceed all three thresholds.

However, through the coloring (many cells in this line are in light purple) it becomes

apparent that slightly lowering the coverage threshold would let quite a couple of more regions

exceed this threshold. On the other hand, it might be more advisable to obtain a couple of very

good hits that can be tested in wet lab experiments which are time consuming. Thus, depending

on the goals, the rate of false positive or false negative hits can be adjusted. E.g., it might be

of interest to get an impression of the amount of not-annotated ORFs which are transcribed

and active. This could be achieved by lowering the thresholds to not miss too many interesting

ORFs. In order to further support this task not-annotated ORFs can be ignored. This way,

adequate parameters can be assessed according to genome regions already better researched.
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The influence of adjusted parameter settings can be viewed in the genome overview bar. By

clicking on a column in the genome overview bar, the genome view jumps to the corresponding

ORF. In this way promising ORFs can be investigated but also columns representing ORFs that

have not exceeded the thresholds can be inspected for a better understanding of the parameter

settings.

It is also possible to exclude parameters from the search. In Figure IV.8(b) the minimum

coverage was set to 60% and ’transcription’ to 0.5. The parameter ’fit’ could be excluded as

bacteria can have genes that are located very close to each other. For those cases, the fit value is

not meaningful anymore. On the one hand, to find transcribed not-annotated ORFs that overlap

with a known gene, the fit value is very helpful. On the other hand, cases in which the read

coverage of an ORF is actually part of the gene it overlaps, would lead to many false positive

hits.

IV-5.4 Evaluation

We have evaluated the NGS Overlap Searcher with a case study searching for overlapping genes

(OLGs). Many not-annotated open reading frames (ORFs) overlap with a known gene in a

different frame. How many of them encode proteins is debated but surely more than anticipated

before (see also Overlapping Genes (p. 32)). Our goal is to find such incidences by analyzing

the RNAseq measurements of a genome under different experimental conditions. Thus, we are

searching for transcribed ORFs1 that are overlapping with annotated genes 2.

With the help of the interestingness measure, it is easy to locate such regions in the genome.

However, false positives appear as well. In most of all cases where the read coverage covers a

“same strand overlapping ORF”, the read cobergae belongs to the gene (annotated ORF) and

not the overlapping “same strand ORF” (see Figure IV.10 for an example). Thus, “same strand

overlapping ORFs” are excluded.

For the analysis, the thresholds were set as follows: Coverage = 80%, Transcription =

0.5, Fit = 120 (see Figure IV.13). It can easily be seen in the summary line of the Genome

Overview Bar that only few regions in the genome are able to exceed all thresholds. Next, the

highlighted regions can be inspected one-by-one by clicking on them, to assess if they are indeed

meaningful.

The example in Figure IV.11 shows an ORF that does meet all the criteria. It is located in the

shadow of a large gene that did not exceed all the thresholds and, thus, was classified as inactive

by our algorithm. A closer inspection reveals that there are many islands of read coverage which

1An ORF is transcribed if it has a read coverage which is trustworthy.
2Note that not every transcribed ORF necessarily also encodes a protein but it provides some evidence that this

might be the case.
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are separated by regions without read coverage (gaps). However, the total trend of the read

coverage suggests that the gene is actually active and not one of the overlapping ORFs. It is due

to the gaps in the read coverage that the ORF was also not filtered out by the fit criterion.

Figure IV.13 shows an example for a region that might indeed contain an overlapping gene.

Three not-annotated ORFs that are encoded in the sense strand do meet the specified criteria.

One of them, which would then overlap with the already known gene of the antisense strand,

could indeed encode a protein. Further evidence can be gained by comparing the specific region

for different experimental conditions tested, taking additional meta-data into account, and finally

by testing the assumption in wet lab experiments. Figure IV.12 shows two further examples for

promising findings.

Figure IV.10: The read coverage clearly belongs to the gene (red bordered rectangle) and not to the
overlapping ORFs (reading frame −1). This graphic appeared in [14] c©IEEE.

Figure IV.11: Example in which the read coverage on the sense strand belongs to a long gene
(rectangle with the red border in reading frame +2) and not to the overlapping ORFs (reading frames
+1 and +3). The gene did not exceed the thresholds due to many gaps in the read coverage.

IV-6 Discussion & Lessons Learned

Through our experiences in cooperating with biologists using the system, we have gained the

following insights.
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Figure IV.12: A On the sense strand two ORFs are shown which may be promising overlapping
gene candidates for future wet lab experiments (in reading frames +1 and +3). The longer ORF in
reading frame +1 might be the better candidate but the sloping coverage and the gap at the end of
the ORF is indicative for the smaller ORF in reading frame +3. B On the antisense strand in reading
frame −2 an ORF is shown which is completely covered with reads. Since this ORF is located
opposite to a gene (in reading frame +1), this is also a promising candidate for future examination
by wet lab experiments. This graphic appeared in [14] c©IEEE.

Comparison between different experimental conditions Beside the assessment of the trust-

worthiness of measurements, a comparison of different experimental conditions would be

important to judge if an transcribed ORF is protein-coding or not. An overlapping gene might

be found weakly expressed under one condition but highly expressed under another condition.

A differential expression analysis of multiple RNA-seq experiments would be beneficial. Based

on the gained insights, we developed the VisExpress System (see next Chapter V).

Evaluation When working with biologists in the course of the NGS overlap searcher, it turned

out that it is difficult for them to describe their course of action when deciding on whether an

ORF should be considered as transcribed or not. Some important criteria only became clear,

when working together with them and discussing their analysis results. These experiences led to

the definition of the Liaison role (see Chapter II). Subsequent and additional evaluations and

tasks analysis lead to the VisExpress System (see next Chapter V).

IV-7 Limitations & Future Work

Finding appropriate thresholds Setting the right thresholds in the interestingness function

is difficult but critical for the analysis. Few NGS transcriptional studies have been published so

far and general thresholds have not been established. Future wet lab confirmations might form a

feedback-loop which helps to determine meaningful thresholds.
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Figure IV.13: The region of the ORF in reading frame +3 is almost completely covered with
reads. There are no genes on the same strand which could potentially be responsible for this read
coverage. On the antisense strand we can see a gene (red bordered rectangle) which overlaps this
ORF. Thus, this ORF would be a promising candidate (potential overlapping genes (OLGs)) for
future examination by wet lab experiments. This graphic appeared in [14] c©IEEE.

Scalability Finally, the scalability of the tool is an important issue. In all genome analysis

projects, long linear sequences have to be processed which are difficult to display. In our

research, we address this problem by an overview representation which also eases navigation.

However, the genome overview bar still can not display all genes at once. A data aggregation of

ORFs with similar values might lead to an improvement here.

Including additional data sources Additional meta data will support the analysis. If some

regions are found to carry more overlapping gene transcripts than others, it would be important

to see, for example, if these regions belong to genome-integrated bacterial viruses (prophages) or

“normal" genome regions. Furthermore, ORFs that have a significant BLAST hit, are more likely

to indeed encode a functional protein. Other protein identifying features, such as Shine-Dalgarno
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sequence, promoters, terminators, regions with signal peptides or a good secondary structure

prediction would also support the hypothesis of a new gene.
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Chapter V

Visual Analysis of Differential Gene
Expression

Note

Parts of this chapter will appear in the following publication [13]1:

[13]: Svenja Simon, Sebastian Mittelstädt, BC Kwon, Andread Stoffel, Richard Landstor-

fer, Klaus Neuhaus, Anna Mühlig, Siegfried Scherer, and Daniel A. Keim. “VisExpress -

Visual Exploration of Differential Gene Expression Data.” Information Visualization, 1-26,

DOI: 10.1177/1473871615612883, Published online before print December 14, 2015.2

Please note that I will use “we” throughout this chapter instead of “I”, as this chapter is

based on a publication1. “I” will only be used to refer to my role as an experimenter in the

pair analytics study or my role as a Liaison.
1For the division of responsibilities and work, as well as a statement of contributions in this publication,

see VisExpress - Visual Exploration of Differential Gene Expression Data (p. 11).
2I own (with the co-authors) the copyright of this publication. The SAGE Publications Ltd holds the sole

and exclusive right and license for publishing ([13]). The definitive version is available at http://ivi.sagepub.com/
Direct link to the published article: http://dx.doi.org/10.1177/1473871615612883

V-1 Introduction

Biologists are keen to understand the processes in bacteria in detail and how these processes

react to environmental changes. Bacteria react to their environment, such as temperature, light,

or food sources, by producing a variety of proteins. An understanding of proteins and cell

processes supports, for instance, the understanding the pathogenicity of EHEC and is, therefore,

of major interest. However, the functions of many proteins are still unknown and it is suspected

that several protein-coding genes have been overlooked so far, for instance, overlapping genes

but also short genes in inter-genetic regions.

RNA Sequencing (RNAseq) by next-generation-sequencing (NGS) has opened up the

possibility to measure the whole transcription in a high-throughput fashion and to (indirectly)

measure the protein activity level in cells under specific experimental conditions in parallel (see
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Figure V.1). Measuring the whole transcription is an advantage over DNA mirco-arrays which

can only measure known genes. Thus, RNAseq can also be used to identify new genes which

have been overlooked so far.

In the last chapter, we discussed visualization and visual analysis techniques to analyze

RNAseq from one experiment at a time. In this chapter, we address the combined analysis

of several RNAseq experiments. Such an analysis has the advantage that first, a significant

difference in the transcription of gene candidates is a strong indicator for functionality. Second,

the relation of known genes to a specific condition allows inferences about the functional

classification of genes. This analysis and comparison of RNAseq measurements from different

experiments is named differential gene expression analysis.

Beside the possibilities of differential gene expression analysis, the analysis is also chal-

lenging. First, quality is an issue since the whole data generation process is error prune and

introduces biases and uncertainties in the measurements (see Section III-2.2). A quality aware

analysis to reduce false positive findings is, therefore, desirable. Second, scalability issues arise.

The large number of genes and gene candidates is even further increased by the experiment

comparisons. Third, a data perspective that focuses on all pairwise condition comparisons (n:n)

instead of a condition to reference comparison (1:n), requires new visualization metaphors to

allow a comprehensive view on the data. This involves an expressive overview and cognitively

effortless recognition & interpretability of patterns. This last point is specific for the FOG-

Project questions and is not covered in state-of-the-art visual analysis systems for differential

gene expression data which focus on (1:n) comparisons (different conditions against a reference)

only. In order to identify new genes, a set of non-standard conditions was analyzed in the

FOG-project. Exploiting the full potential of the data set regarding the identification of new

genes, also comparisons between these non-standard conditions are of interest, leading to (n:n)

comparisons (each condition against all other conditions). Beyond the identification of new

genes, (n:n) comparisons are of interest as, so far unknown, functional involvements can be

revealed. Biologists can test, for example, the hypothesis that membrane proteins react similar

to acid and nitrate stress.

After applying state-of-the-art analysis tools and performing a comprehensive literature

search, we detected that currently no system meets the (n:n) comparison and quality awareness

requirement. We, therefore, conducted a design study to build an interactive visualization system

that covers these points, as well as the scalability issue. As a proof-of-concept the system was

designed for known genes only. Extensions to incorporate gene candidates will be discussed in

Section V-5.2. During the design study a VIS team of four visualization experts collaborated

with three domain experts via a Liaison [12] to characterize the problem and to evaluate the

system with a pair analytics [Arias-Hernandez et al., 2011] study on a real world data set (see
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also Chapter II). From the visualization perspective, this problem domain provides an interesting

and complex data exploration and hypotheses generation problem since expert hypotheses

and background knowledge need to be integrated in the analysis process. The challenges for

information visualization and visual analytics [Keim et al., 2012] are scalability due to the large

amount of complex data and the challenge of uncertainty due to quality issues of the underlying

data (see also Section I-4).

As the result of the design study, this chapter presents VisExpress. VisExpress uses a

gene fingerprint visualization which allows a recognition & interpretability of patterns by (n:n)

comparisons of experiments with low cognitive effort. Further, it integrates the data quality in

the visual representation to address the uncertainty challenge. An expressive treemap-based

overview supports the user to identify patterns, revealing connections, and generating new

hypotheses in an overview and, thereby, reduces the analysis complexity by a divide–and–

conquer approach which addresses the scalability challenge of the large volumes of differential

gene expression data.

The three participants of the pair analytics study mentioned that the analysis of the real

world data set would have required several days with the systems of their current use. With

VisExpress, the domain experts got a comprehensive overview of the whole data set within an

hour. Furthermore, they detected interesting findings and generated hypotheses for patterns that

are easily overlooked by state-of-the-art systems. They identified the intuitive, comprehensive

and quality aware overview as major improvements over the state-of-the-art.

In summary the contributions of the VisExpress are:

• The validated visualization design of VisExpress, based on an overview to detail visualiza-

tion approach and gene fingerprints to explore differential gene expression data.

• A pair analytics study to validate the design of VisExpress.

• A discussion of the resulting biological findings.

This chapter is structured in the following way. First, we state the requirements derived from

the tasks for differential gene expression analysis stated in Section III-4.3. Based on these

requirements, we will discuss related work in the bioinformatics and biological visualization

literature. In the following sections, we describe the design process, introduce the architecture

of VisExpress and discuss the visual and interaction design decisions. The chapter is concluded

with the evaluation, discussion and lessons learned, as well as limitations and future work.
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Figure V.1: Gene Expression is the production of proteins. Depending on the experimental
condition, a larger or lower amount of specific proteins is needed. (a) Next-generation-sequencing is
a method used to indirectly measure the amount of proteins in cells, by measuring the intermediate
step (mRNA). Due to biases, the measured signal (read coverage) of a gene is ragged. (b) For further
analysis steps the read coverage is expressed by a single normalized gene activity level. (c) The
comparison of the gene gene activity levels is called differential gene expression and is expressed as
the ratio (fold change) between conditions. Biologist use differential gene expression to relate genes
with unknown functions with potential functions. See also Section Biological Background (p. 28).

V-2 Requirements

The tasks in the visual analysis of differential gene expression are:

• T1: Generate hypotheses about the function of genes.

• T2: Test hypotheses about the function and reaction of genes.

• T3: Find genes related to a function.

• T4: Explore genes with unexpected gene activity ratio (GAR) patterns.

• T5: Relate new gene candidates to genes with known functions.

Based on these tasks, we have derived the following requirements (see III-4.3 for more details

about the tasks).

R0 Interpret GAR patterns of genes. Users need to identify the characteristics of the target

gene which are expressed by gene activity ratio (GAR) patterns. A GAR pattern is the change

of the activity levels of a gene under different experimental conditions. The representation of

the activity ratios of a gene needs to allow the identification of each pairwise (n:n) comparison

between conditions to interpret the GAR pattern (T1, T2, T4).

R1 Compare GAR patterns of genes. The tasks (T1, T2, T3, T4) require the ability to compare

the GAR patterns of genes. Comparisons between single genes, between groups of genes, and

between a single gene and a group of genes must be possible.

R2 Summarize the functions of genes. The system should be able to summarize the functions

associated with a gene or a group of genes. When users identify an interesting gene or find a

82



V-3 State of the Art and Related Work

group of genes with a similar GAR pattern, they need to know which functions are associated

with them (T1, T2, T3, T4).

R3 Explore genes according to GAR patterns. The system should allow exploring the data to

enable users to generate new hypotheses about genes (T1, T3, T4). The exploration should be

guided by the GAR patterns to easily spot genes with similar behavior.

R4 Support different comparison measures. Different measures can be used to compare the

activity level of genes that are based on different properties. The analysis results are more

trustworthy if different measures produce similar analysis results.

R5 Assess the trustworthiness of (automatic) results. Automatic analysis results are useful

to get an overview and to quickly come up with hypotheses but biologists do not trust them

unconditionally. When they find an answer through the automatic evaluation, they want to

assess the trustworthiness by analyzing the raw sequencing output and meta data by themselves,

leading to several sub requirements (see Detail: Gene Board (p. 98)).

R6 Highlight the quality of activity ratios. According to our study, biologists do not trust

automatic analysis results on the one hand; on the other hand they also want to reduce exploration

space without loss of information. Therefore, they want to assess the quality of GAR patterns.

R7 Highlight new gene candidates. Genes candidates need to be highlighted to determine new

genes and to set them in context with known genes with an annotated function.

VisExpress was designed according to R1-R6, as a proof-of-concept for genes only. We will

discuss possible extensions to incorporate gene candidates and to fulfill R7 in Section V-5.2.

V-3 State of the Art and Related Work

Gehlenborg et al. [Gehlenborg et al., 2010] provide a broad discussion of visualization systems

for gene expression data. Many systems were established for (differential) gene expression

data from DNA micro-arrays, e.g. TM4 and Mayday [Saeed et al., 2003, Battke et al., 2010].

DNA micro-arrays used to be the state-of-the-art for gene expression before the rise of next-

generation-sequencing (NGS) technologies and the possibility to sequence DNA in a cheap and

high-throughput fashion without any pre-knowledge.

The state-of-the-art visualizations of (differential) gene expression data are heatmap-based

visualizations (see Fig. V.2). Rows represent genes and columns encode experimental con-

dition comparisons or the experiment data. Interactive heatmaps provide the possibility to

select parts of the heatmap for further analysis (e.g., in INVEX [Xia et al., 2013]). Mayday
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Figure V.2: State-of-the-art heatmap
of the differential gene expression
data used in this study (created
with the R function heapmap.2
[Warnes et al., 2014]). Genes are
depicted by means of the rows and
experimental conditions are illustrated
by the columns. The clustering of rows
is indicated by a dendrogram. All genes
are included (around 5000). Two large
clusters at the top and at bottom stand
out. However, no clear pattern that
separates the clusters or conditions
stands out which increases the efforts
of visual analysis. The colormap
was adapted from ColorBrewer.org
[Harrower and Brewer, 2003] (satura-
tion: high gene expression ratio; white:
low ratio; hue: direction).

[Battke et al., 2010] uses an enhanced heatmap which integrates metadata to emphasize relevant

genes by, e.g., scaling of matrix rows and an additional color gradient [Gehlenborg et al., 2005].

Heatmaps are an appropriate and reasonable visualization for pure experiment data or

if a set of conditions is compared to one reference (1:n comparison) which is the focus of

many biological studies. However, pairwise comparisons of all experimental conditions (n:n

comparison) are not well supported (see Section Design rationale on page 88). However, NGS

technology advancements and falling costs lead to more and more complex experiment designs

with (n:n) comparisons of different conditions. Furthermore, quality of the underlying data

is not addressed sufficiently, if covered at all. Thus, a pre-processing or post-processing has

to ensure quality. In our study, the analysis focuses on a quality aware (n:n) comparison and,

therefore, the systems mentioned above cannot satisfy our requirements.

For gene expression time series data, parallel coordinates (profile plots) are often used to

represent the changes over time. In order to analyze differences between clusters, these can be

indicated by color-coding in one chart or by small multiples of parallel coordinates, such as in

BiGGEsTS [Gonçalves et al., 2009] and Mayday [Battke et al., 2010]. MulteeSum supports the

inspection of gene expression data not only over time but also in conjunction with the spatial

cell location within an organism [Meyer et al., 2010a].

Clusterings are typically used in differential gene expression analysis to group genes with similar

patterns (e.g., in [Saeed et al., 2003, Battke et al., 2010, Xia et al., 2013]). Different clustering
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methods have been used and proposed on that account. In heatmaps the clustering is mostly

indicated by an ordering of the genes based on clustering results and along with a dendrogram

next to the heatmap (see Figure V.2). BicOverlapper [Santamaría et al., 2008] focuses on the

visualization of biclustering results from gene expression matrices. Biclusters are represented as

undirected complete subgraphs. Differential expression analysis and functional enrichments are

added in BicOverlapper 2.0 [Santamaría et al., 2014].

Functional enrichment (or gene set enrichment) analysis is often a subsequent step after the

identification of a set of potentially relevant genes (see [Hung et al., 2012] for an overview). An

enrichment search refers to finding pathways or networks where a set of genes is significantly

over-represented. BicOverlapper 2.0 [Santamaría et al., 2014] visualizes functional annotations

of groups of genes as word clouds. Systems such as GENeVis [Westenberg et al., 2008] map

gene expression data directly to networks. Gene expression is represented as bars inside

network nodes (for an overview and alternatives see Gehlenborg et al. [Gehlenborg et al., 2010]).

Pathline combines visualizations of multiple genes, time points, species, and pathways by

introducing a linearized metabolic pathway representation and curve-maps representing the

temporal expression data [Meyer et al., 2010b]. The data and focus of Pathline is different to

our problem definition as we only analyze one bacteria species.

The pure visualization of a functional enrichment analysis or pathway analysis is not

the focus of VisExpress. We focus on the visual exploration of differential gene expression

patterns in relation to gene functions, providing quality awareness and (n:n) comparisons with

expressive overviews and visual representations that allow a cognitively effortless recognition

& interpretability of patterns. An integration of functional enrichment analysis will be part of

future work.

V-4 The VisExpress System

V-4.1 Design Process

Deploying visualizations for real-world problems is problem-driven research. The aim of design

studies is to abstract and/or generalize domain problems as well as designing visualization

systems that are validated with real experts and real data. In this process, a collaboration with

domain experts (real users) is vital. However, performing problem-driven research and working

with domain experts can lead to many pitfalls. In order to avoid them, as well as to structure

our design study project, we followed the nine-stage design study methodology framework of

Sedlmair et al. [Sedlmair et al., 2012b] (see references therein for alternativ approaches and a

comparison of methodologies) which also lists 32 common pitfalls.
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Precondition phase.
This design study was conducted in the settings of a well-established, long-term cooperation

between me and a group of biologists from the FOG-Project. The whole design study team

consisted of a BIO (three front-line analysts) and a VIS team (four VIS experts; including me).

I acted as a Liaison between the BIO and the rest of the VIS team (see Chapter II). Just the

Liaison had contact with the BIO team to keep the rest of the VIS team independent.

Core phase.
Discover stage - problem characterization & abstraction. Starting with interviews and

observations of the current workflows of the BIO team, I subsequently collected relevant state-

of-the art systems based on my professional expertise as a bioinformatician and VIS expert. In

the second step, the drawbacks of these systems were discussed and the problem characterization

was refined. In the third step, the VIS team discussed these, concretized tasks and requirements,

and improved the problem abstraction. The Liaison ensured in the whole process that the

problem abstraction was still valid from the domain users’ perspectives.

Initial prototyping and expert feedback. We created a low-resolution prototype to receive

feedback from the BIO team. This initial design enabled the BIO team to precisely point out

important aspects that the system should cover which were translated and merged with the

identified requirements.

Design refinements. Based on experts’ feedback, we stepped back to the design phase. In order

to fully exploit the expertise of the four VIS team members, we took the following approach to

create and implement design ideas: 1) every team member created a set of alternative solutions as

paper mock-ups; 2) these solutions were selected, merged and refined in a critique-and-creation

round; 3) we discarded or refined ideas by evaluating them against tasks and requirements. This

entire process iterated until all VIS team members were satisfied.

Formative assessment and final design implementation. In this process, the VIS team im-

proved design details based upon formative assessment conducted by the Liaison with one

member of the BIO team. Functionalities of the system were explained and demonstrated. The

constructive feedback led to design improvements and an optimized user interface to resolve

some usability issues.

Summative assessment and design refinement. For validation of our design, the Liaison

performed a pair analytics study [Arias-Hernandez et al., 2011] with the BIO team in order to
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verify our design decisions for target tasks. Based upon the evaluation results, we refined our

system designs and reflected our findings.

V-4.2 Architecture of VisExpress

Figure V.3: Schematic work flow of the three views in VisExpress (based on the visual information
seeking mantra of Shneiderman [Shneiderman, 1996] ’Overview first, zoom and filter, then details-
on-demand’). A user can overview the whole data in the first level with a treemap that reveals the
clusters in the data (Cluster View). By selecting a cluster in the treemap the user can zoom to the
second level which overviews all gene fingerprints in one cluster (Gene Fingerprint View). Users
can further filter out genes of interest and open them in a new Gene Fingerprint View. The third
level gives details-on-demand about selected genes (Gene Board). Further, the user can extract
interesting genes to a remember list for later analysis. In order to relate the gene fingerprints with
gene functions the user can open a word cloud of gene functions as a further details–on–demand
view. The user is also able to switch between different designs that support different analysis foci in
the control GUI (see Figure V.10).

VisExpress is designed following the classical visual information seeking mantra of Shneider-

man [Shneiderman, 1996] ’Overview first, zoom and filter, then details-on-demand’ in order to

support a divide and conquer approach for exploration of multiple genes but also for detailed

investigations of genes of interest.

VisExpress uses matrix fingerprints to provide a visual summary of a gene in order to make

gene activity ratio (GAR) patterns interpretable (R0; see Figure V.3). The matrix layout enables

to visualize conditions as rows and columns and, therefore, reveals the activity of genes in

different experimental conditions (n:n comparisons). The first-level of VisExpress (Cluster View)

uses these fingerprints and word clouds to overview all clusters of similar genes in a treemap.

This reveals common characteristics of the clusters (R1: comparison) as well as their biological

functions (R2). The second-level (Gene Fingerprint View) visualizes all genes of a selected

cluster in a scalable space filling layout for visual exploration of large amounts of genes (R3).
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The third-level (Gene Board) provides details–on–demand for single interesting genes. This

view reveals detailed information related to the gene’s functions as well as gene activity level

trends and allows manual assessment of findings (R5). The intended work-flow of VisExpress is

illustrated in Figure V.3.

The three levels are seamlessly connected for smooth transition of analysis via a multiple

view system. Each level can also be instanced multiple times with different data and settings.

All instances are linked to a central instance which synchronizes the configuration of the designs

and handles interactions between instances and levels (see also Figure V.10). The system’s

visual components were implemented with JAVA Swing Components. An interface to R and

Bioconductor [R Core Team, 2013, Gentleman et al., 2004] is used for preprocessing, statistical

analysis, and machine learning algorithms.

The next sections will describe the following in detail: why and how we visualize gene

activity ratio (GAR) patterns (Section V-4.3); the system components of VisExpress (Section

V-4.4); and the user interaction design (Section V-4.5)).

V-4.3 Visualizing GAR Patterns

Biologists aim to generate and verify hypotheses about the behavior of genes. The main

information units are, thereby, the gene activity ratio (GAR) patterns (focus of the tasks T1-

T4). Heatmaps are the state-of-the-art for visualizing differential gene expression data (see

[Gehlenborg et al., 2010] for an overview). Thereby, GAR patterns are represented as rows

in heatmaps (see Figure V.2). Gene activity ratios are represented as color-coded pixels. All

comparisons are shown next to each other and all genes are stacked horizontally. However, this

representation supports requirements R0 (interpretability of GAR patterns) and R1 (comparison

of GAR patterns) only partially:

1. A linear representation of GARs does not allow to directly identify the involved condi-

tions (R0; see Fig. V.4 A1 & A2).

2. A linear representation of GARs does not sufficiently capture salient patterns (compare

A1 & A2 with D2 in Fig. V.4).

3. It is hard to compare and explore genes (see Figure V.2) since single genes are hard to identify

in a simultaneous representation of several thousand genes (R1, R3).

Fingerprinting

Based on these considerations, we decided to represent the gene activity ratio (GAR) patterns

of each gene as a single entity (glyph) which we will name gene fingerprint. Our design goal

88



V-4 The VisExpress System

Figure V.4: Design alternatives for gene fingerprints. All sub-figures illustrate the same gene
activity ratio (GAR) pattern of the pairwise comparison of six conditions (black: low value, green:
high value). (1) shows all 15 unique comparisons and (2) all 36 comparisons with 6 conditions. (A)
shows a linear ordering similar to a heatmap (see Figure V.2), (B) a circular layout, (C) a ring layout
and (D) a matrix layout. In the illustrated data, condition 4 is different to all other conditions (which
would be an important finding since this indicates that this gene and its function is related to this
condition). This is hardly readable from (A), (B) and (C). Even though (B1) and (C2) show a pattern
(black-green-black-green), the pattern is not interpretable and not salient. The pattern (condition 4
is different to all other conditions) is most salient in (D2).

of gene fingerprints is to provide a visual summary of a gene which can be used to compare

the GAR patterns effectively (R1). The idea of fingerprinting is based upon the work of Keim

and Oelke of literature fingerprinting [Keim and Oelke, 2007]. Each gene consists of a tuple of

a gene activity ratio rk,l(gi) and a quality qk,l(gi) as well as functional description (plain text)

for contextual information. Gene fingerprints should support identification and comparison of

GAR patterns (R0, R1), and the assessment of quality (R6). Therefore, we discussed dividing

the tuple into measure and quality in order to focus the visualization on the GAR measure.

The quality could be handled by threshold-filtering and/or details-on-demand such that

only GAR patterns with a high quality are visualized. However, the BIO team preferred to see

all genes and to perform quality-aware analysis (R6). Even patterns with low quality can be

interesting and there is no fixed threshold that can define interestingness which rejects the idea

of threshold-filtering. The challenge is to find visual metaphors that can encode both GAR value
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and quality and also satisfy R0, R1, R3 (interpret, compare and explore GAR patterns). In the

following, we discuss design alternatives for gene fingerprints.

Design of Gene Fingerprints

Figure V.5: Design alternatives for matrix visualizations of gene fingerprints. Four different
measures to characterize a gene are illustrated for each design (see (c)). (a) Two triangular portions
in a matrix representing the value (bottom left) and the quality (upper right) of a gene. (b) and
(c) Stacked Matrices with inner and outer rectangles encoding value and quality, respectively. (d)
and (e) Two dimensional color maps for normal and dichromatic visions, respectively. The color
mapping in (c) highlights high values and low quality.

Due to the exploration requirement (R3), the visualization design has to be scalable. Highly

scalable techniques are pixel-based visualizations such as Recursive Patterns [Keim et al., 1995]

or Pixel Bar Charts [Keim et al., 2001]. Therefore, the VIS team discussed several alternatives to

visualize GAR patterns with pixel-based or pixel-cell-based techniques such as circular, ring, or

matrix representations. As in the linear arrangement of a heatmap, identification of the involved

comparisons is not effective for circular or ring representations which violates the interpretability

requirement (R0) (see Figure V.4 and Figure V.2). Matrices support the identification of the

involved conditions since the matrix element at row x and column y indicates the activity ratio

value of the x-th condition and the y-th condition (see Figure V.4 and Figure V.5). Biologists

can, therefore, interpret the GAR pattern between conditions within a single gene by inspecting

elements of a matrix (R0). Subsequently, they can compare the GAR patterns between multiple

genes by inspecting the distribution of patterns across multiple matrices (R1).

Design alternatives for gene fingerprint matrices Each matrix has to represent a summary

of a single gene’s activity ratio values and their qualities for different experimental conditions.

Since there are several variants to encode the data with the visual metaphor of a matrix, the VIS
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team came up with several design alternatives (see Figure V.5) which will be discussed in detail

in the following paragraphs.

Two symmetric or triangular matrices for value and quality. One solution is to visu-

alize the quality of each metric as an additional matrix juxtaposed to the corresponding value

matrix. Though this design may ensure more accurate perception of both values, there are some

significant drawbacks: 1) it wastes valuable display space and 2) it is hard to visually align

value-quality pairs. Therefore, this design does not guarantee effective inspection on the gene

activity ratio (GAR) and the quality (R6) by burdening biologists with cognitive efforts to find

and check two locations for a single comparison. The VIS team, therefore, excluded this design.

Value & quality triangles. Similar to the aforementioned design, Figure V.5 (a)

shows a design where each of two triangular portions represents the activity ratio and

its quality, respectively. This solution was discussed among the VIS team and with the

BIO team as well. We concluded that the cognitive efforts to find and check two locations for a

single comparison is still a burden for the analysis.

Resizing matrix. A further possibility to encode the quality would be to encode the GAR

ratio with color and quality with the size of matrix cells. However, this solution is not scalable

and the saliency of patterns is highly dependent on the size and, thereby, on quality which might

suppress important patterns in the data. The VIS team, therefore, excluded this design.

Stacked matrix. Another approach is to use a Stacked Matrix. This approach is

inspired by work of Oelke et al. [Oelke et al., 2009], here a stacked resizing matrix is

used to represent user opinions on printers. The Stacked Matrices in Figure V.5 b) and

c) use the outer rectangle for encoding the quality and the inner rectangle for encoding the

value. The size of the inner rectangle is fixed. The Stacked Matrix with two different color maps

perceptually separates the inner and outer rectangles. This design is different from Oelke et al.

since the inner and the outer rectangle do not represent the same measure in our design and the

size is fixed. The proximity between two values enables biologists to read the activity ratio and

its quality accurately and, thus, it supports the interpretability (R0) and quality requirement (R6).

However, this design may suffer when many fingerprints are shown in a small space. Thus,

zooming and panning interactions should be used when the task requires exploration of many

genes (T1-T4).
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One might also consider using the same color map for the activity ratios and quality (see

Figure V.5(c) upper matrices). Due to the Gestalt Laws of Similarity and Pragnanz, we

perceive regions of similar color as a whole large rectangle, instead of several stacked

rectangles with different shades of green (see Figure V.5(c)). This supports the detection of row

and column patterns (R3) which are important in the tasks of building and associating groups

(T1-T4). This design alternative of a Stacked Matrix has a higher scalability and can, therefore,

be used in overviews with larger amounts of fingerprints.

“In addition to the matrix structure, color maps should be carefully selected because they

encode the activity ratios and qualities in our design. The selection of color maps impacts upon

the performance of all tasks (T1-T4) because our visual cognition system is steered by several

attention effects. Our vision tends to focus on strong contrasts especially when colors are fully

saturated and intense on dark backgrounds. Warm colors will suppress cold ones if they are

spatially close. Therefore, lightness, saturation, and temperature of colors must be considered

[Wang et al., 2008]. We suggest using a perceptually uniform color map that varies from black

to green. In this way, values are perceived more prominently in comparison to the qualities

which are encoded with a perceptually uniform gray scale.”1

2D colormap matrix “Two dimensional color maps can also be used as il-

lustrated in Figure V.5 (d) and (e). Two dimensional color maps are not suited

for accurate value perception [Wainer and Francolini, 1980] but these color maps

support the quick assessment of quality differences between different genes (R6) in data explo-

ration (R3). Thus, it is recommended to use this where biologists want to quickly estimate values

of multiple genes with a reasonable accuracy (R3).”1

“Furthermore, one should note that two dimensional color maps fail to function

as intended for people with color vision deficiencies. Addressing this issue, we

used opponent chromatic channels to encode the dimensions (normal: red-green,

dichromatic: blue-yellow). As illustrated in Figure V.5 (d) and (e), the lower left matrix is

clearly different from the other matrices. This is extremely useful to compare GAR patterns with

the quality in mind (R6) which is only partially supported by other designs. Furthermore, this

design is highly scalable in overviews of vast amounts of fingerprints (see Figure V.12).”1

Triangle vs. symmetric matrices and reordering. The Stacked-Matrix and the 2D Col-

ormap Matrix designs can be used with a full (symmetric) matrix or even a triangle matrix since

half of the matrix comparisons is redundant. The advantage of a triangle matrix would be to

1[13], written by Sebastian Mittelstädt (see also work distribution in
VisExpress - Visual Exploration of Differential Gene Expression Data)
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save the space of redundant information. However, after a series of discussions among the VIS

team and a consultation of the BIO team, we concluded that a symmetric matrix strengthens the

visual saliency of patterns. The BIO team perceived the pattern in Figure V.6 A2, for example,

less salient than that in A1 even though the two figures show the same pattern. Further, some

patterns might appear more interesting than others with the symmetric layout (e.g., the cross in

A1 appeared more interesting than in B1 for the biologists on the first sight). However, the BIO

team always reflected the meaning of a pattern and had no concern to realize that B1 reflects the

same pattern as A1 (one condition is different to all others; condition 1 for B1 and condition

4 for A1). Rows and columns represent specific experimental conditions which need to be

maintained as references in order to assess other matrices. Therefore, the idea of the VIS team to

use ordering emphasizing interesting patterns was rejected. Inconsistent ordering may confuse

biologists to interpret the comparison of results between multiple genes (R0, R1).

Figure V.6: The Figure il-
lustrates the perceptual dif-
ferences between (1) a sym-
metric gene fingerprint ma-
trix and (2) a triangular gene
fingerprint matrix. A) shows
an example where the fourth
condition is different from
the rest; B) shows an exam-
ple where the first condition
is different from all the oth-
ers.

Support of different comparison measures One requirement (R4) is to ‘sup-

port different comparison measures’ because multiple measures can increase the

level of trust in findings and provide different views on the data set. Reasonable

measures are the fold-change and the significance of the fold-change since they are the state-

of-the-art for differential gene expression data. Further useful measures are, for example,

the euclidean distance (indicating the difference of activity levels) and dynamic time warp-

ing [Berndt and Clifford, 1994] (indicating the similarity of activity levels) adapted from time

series analysis. We use a small-multiples design and, thus, each matrix of a gene fingerprint

represents one measure (see Figure V.5 (c)). This allows easy comparison within and between

genes and, therefore, also satisfies (R0, R1, and R4).
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V-4.4 Components of VisExpress

VisExpress provides an overview of gene expression data with a Cluster View. The second

level visualizes gene clusters with gene fingerprints (Gene Fingerprint View), whose design

alternatives were discussed in the previous section. The Gene Board provides a detailed view of

a selected gene (see Section Architecture of VisExpress and Figure V.3). In the following, we

will introduce and discuss the design of the components of VisExpress.

Overview: Cluster View

Our overview aims to provide a snapshot of genes grouped with similar gene activity ratio

(GAR) pattern so that users can immediately grasp the pattern distribution across genes, select

interesting group of genes, and delve into details. Therefore, the system must provide a

visualization that allows an overview of the clusters (GAR patterns) in the data set, thereby,

fulfilling R0, R1 and R3 (interpretability, comparison and exploration). In order to account for

R2, the overview should also show a summary of the gene functions of the clusters.

Alternatives for cluster overviews In order to build sets of genes with similar GAR patterns

heatmap-based approaches such as [Battke et al., 2010, Saeed et al., 2003, Xia et al., 2013] use

clustering. Genes naturally form hierarchical clusters if the genes operate with the same

regulatory mechanism (regulon). In heatmap-based visualizations, the hierarchical clustering is

used to order rows and a dendrogram is visualized next to the heatmap to represent the clustering

(see Figure V.2). However, this representation does not clearly show which different clusters

exist in the data set since: 1) clustering is ill-defined and, therefore, clusters are often not visually

separable and 2) small clusters might be overlooked. Thus, these approaches do not fulfill the

comparison and exploration requirements (R1,R3).

There are space-filling visualization techniques such as self-organizing maps (SOM) or

treemaps that can be used to overview gene clusters. However, SOM clustering does not preserve

the natural hierarchy. Large clusters will span over large parts of the map, whereas small clusters

are suppressed. Further, the creation of cluster centroids will refine the centroids of big clusters

but suppress centroids of small clusters such that interesting GAR patterns of small clusters are

consumed. This violates R0, R1 and R3 (interpretability, comparison and exploration).

Treemap Overview We choose to visualize groups of genes with a squarified treemap

[Bruls et al., 2000] showing the hierarchical clusters. The number of cluster items is encoded

by its node size. This enables to assess the importance of clusters but also small clusters are

preserved. Inside the treemap either a centroid gene fingerprint of the corresponding cluster
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Figure V.7: Treemap visualization for
representing the hierarchical clusters
of the genes. The clusters are ei-
ther characterized by the centroid
fingerprint or a word cloud of the
functional categories of the genes
(“noCOG”: no functional categories as-
signed [Galperin et al., 2015]). The sat-
uration of the cluster colors encodes
how much variation exists within the
cluster. Users can interactively drill
down the hierarchy or open the Gene
Fingerprint View to explore one cluster.

is shown or a textual representation of the gene functions in this cluster (see Figure V.7). The

representation of centroid gene fingerprints allows an overview of GAR patterns as well as their

comparison (R1). The textual representation allows relating the GAR patterns with the gene

functions (R2) and to relate clusters with hypotheses (T2).

A straightforward solution to visualize gene functions would be a list of words ranked

by frequency. However, there is a large number of different functions in gene clusters which

need to be summarized (R2). Therefore, a scalable approach is required. Word clouds are

frequently used as visualization technique to aggregate and visualize textual data (e.g., see

Wordle [Viegas et al., 2009] or Bateman et al. [Bateman et al., 2008] for guidelines). Further-

more, word clouds have already found their way in the biology domain [Santamaría et al., 2014,

Baroukh et al., 2011]. We use the R package wordcloud [Fellows, 2013]. The BIO team pre-

ferred the encoding of the word frequency by size in word clouds, as they could easily spot the

most prominent words (functions), as well as get an overview of the distribution of functions

(including outliers) which is important to derive a conclusion (R2).

The clusters and hierarchies are separated with categorical colors that share equal lightness

and saturation based on guidelines of Healey and Brewer to prevent any attentional steering

effects [Healey, 1996, Harrower and Brewer, 2003]. We also provide a linear blend around

borders to offer cushions to guide users’ attention through the hierarchy according to van Wijk

and van de Wetering [van Wijk and van de Wetering, 1999]. In order to indicate the quality

of the current clustering, we encode the variance within the clusters with saturation of the

categorical colors. Saturated colors indicate high quality (low variance) and gray colors indicate

low quality (high variance) which implies that these clusters should be refined. We enable the

user to drill-down the cluster hierarchy interactively (see Section V-4.5).
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Explore: Gene Fingerprint View

The comparison and exploration of genes according to GAR patterns (R1,R3) requires inspecting

sets of genes with similar GAR patterns (R0) and their functions (R2). Sets of genes with similar

GAR patterns are given by the clusters in the treemap. The layout of the Gene Fingerprint View

has to represent large volumes of gene fingerprints. Furthermore, to effectively scan through

GAR patterns of a cluster to compare and explore genes (R1, R3), the cognition load needs to

be minimized. Therefore, the layout has to use the display space effectively and also provide a

structured view on the GAR patterns. Furthermore, quality issues need to be highlighted (R6).

Alternative layouts for gene fingerprint overviews One way to structure the view is a sort-

ing by interestingness function: For instance, by sorting gene fingerprints by their GAR values

and/or their qualities, or by the similarity of GAR patterns. The selection of the interestingness

function depends on the analysis task and can be changed by the user on-the-fly (see Section

V-4.5).

Using an interestingness function allows several alternatives for a structured layout. The

most straightforward alternative is, for instance, to layout fingerprints line by line according to

the interestingness. However, this does not preserve local proximity (e.g., the two first objects

of the first and second row are spatially close but very distant in the interestingness or data

similarity). Hilbert curves [Hilbert, 1891] preserve local proximity but cannot guarantee a

globally ordered layout since curves might start and also end at the top depending on the number

of objects. This violates intuition because intuitively all interesting genes are on the top and the

least interesting ones are on the bottom.

Layout of gene fingerprints We used the recursive pattern algorithm of Keim et al.

[Keim et al., 1995] that is particularly suitable to arrange sorted data points in dense pixel

displays. This algorithm lays out the pixels with recursive levels of arrangements (hierarchical

“Z”-arrangements) that have specific widths and heights. Thereby, recursive patterns can preserve

local proximity and global (intuitive) interpretation. Recursive patterns can guarantee to show

the interesting GAR patterns on the top area and similar patterns in proximity.

As shown in Figure V.8, the system arranges the fingerprints on the first level by 4 columns

to the right, one row down, 4 columns left, one row down, and 4 columns right to complete

the “Z”. This pattern is then repeated 4 times to the right and then 4 times to the left in the

lower row. In each level the ordering of the interestingness is preserved which preserves local

proximity and (intuitive) interpretation of the whole layout (top: the most interesting ones

(green); bottom: the least interesting ones (red)). A disadvantage of the technique is that
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Figure V.8: Overview of gene fingerprints. Matrices are sorted according to the interest of the user
and layouted in recursive patterns [Keim et al., 1995].

parameters of the algorithm have to be selected in advance. The problem is to find a good

combination of widths and heights (e.g., four steps in the example above) for each recursive

level. Keim et al. [Keim et al., 1995] suggest determining the arrangements by interaction.

However, this would disturb the exploration process and we decided to determine the parameters

automatically by applying an optimization algorithm to this combinatorial problem.

Optimization details of the recursive pattern layout “Here we describe our combina-

torial optimization process. The optimization goal is to find a combination that 1) layouts all

fingerprints; 2) uses as much of display space as possible; and 3) assigns quadratic size to

the fingerprint matrices. A combination can be evaluated with multi objective cost functions

with: f1 being the number of elements that cannot be visualized with the combination; f2 is the

number of unused pixels; f3 is the maximum ratio of the width and height of the fingerprints.

The cost functions are computationally cheap which led us to choose ant colony optimiza-

tion [Dorigo et al., 2006] that tests stochastically selected solutions and converges against the

global optimum by the power of randomness. The “ant workers” randomly select the widths

and heights for the hierarchy levels. As soon as all fingerprints can be visualized ( f1 = 0), the

“ant worker” stops and evaluates its solution with f2 and f3. Good solutions will influence other

“ants” and the algorithm converges.”1

1[13], written by Sebastian Mittelstädt (see also work distribution in
VisExpress - Visual Exploration of Differential Gene Expression Data
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Detail: Gene Board

Figure V.9: An example of a Gene Board is shown. (A) shows the trend of the gene activity levels
for the gene (red arrow in (A2)) and gene neighbors (black arrows in (A2)). (B) shows the trend
of the gene activity levels for the gene region with horizon graphs. (C) shows the normalized
gene activity levels. (D) shows the GAR pattern and (E) summarizes gene descriptions and gene
functions. (B), (C) and (D) are closely arranged to set their data into context. In detail: (C) shows
that condition 2 has the highest normalized activity level. Compared to other genes, this value is in a
medium range (see color legend). (B) The activity level drops before the end of the gene (probably
due to a technical artifact). (D) The horizontal green line indicates that condition 2 is up-regulated
in comparison to the other conditions. However, (B) and (C) show that the gene is active in all
conditions.

This level supports detailed information about a single gene for the manual assessment of the

trustworthiness and a detailed inspection (R5). The design of the Gene Board was not the

focus of this paper but was highly tailored by the given application specific specifications (sub-

requirements of R5, see also Chapter IV) and closely coordinated with the BIO team (see

Figure V.9).

The baseline for the design was a gene activity level view with genome annotations (A1),

floowing the style of genome browsers, we use line charts which are a common representation

of gene activity level trends in genome browsers. A focus on ratios in the data representation

improves the interpretability as the BIO team is mainly interested in the gene activity ratio

(GAR)s between conditions (achieved by a log scaling). Position of the gene (red) and neigh-

boring genes are indicated with arrows (A2). As the strengths of the activity levels and their
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trend over the gene are a major assessment criterion, we decided to additionally show the trend

of the activity levels as horizon graphs (B). Horizon graphs are a visualization for sequential

data that enables easy comparison between multiple conditions [Heer et al., 2009]. This enables

the biologists to see at a glance which conditions have a high activity level and to easily assess

the trend over the gene. Next to the horizon graphs, the normalized gene activity level (Reads

Per Kilobase per Million mapped reads (RPKM) values) are represented as color-coded pixels

(C). We use a global color-coding to allow a comparison between genes. In this way, the trend

of activity levels (horizon graphs (B)) can be set directly in context with the normalized gene

activity levels (pixel-column (C)). The gene activity ratio (GAR) patterns are shown as a matrix

representation (D) next to the normalized gene activity levels. Thereby, biologists can easily

set the GARs in context with the strength of the gene activity levels. Gene descriptions and

functions are shown as plain text (E).

V-4.5 Interaction Design of VisExpress

Figure V.10: This figure summarizes the interaction possibilities with the three different views
Cluster View (blue), Gene Fingerprint View (orange), Gene Board (green) and the control GUI (grey),
as well as the details-on-demand word cloud view (yellow). Interactions are indicated by arrows.
Interactions are classified according to Brehmer and Munzner [Brehmer and Munzner, 2013]. See
Section Interaction Design of VisExpress for explanations of the interactions (numbers are mentioned
in the text).

In this section, we explain how we have implemented the requirements with interactions, classi-

fied according to the multi-level task typology of Brehmer and Munzner

[Brehmer and Munzner, 2013]. See Figure V.10 for an overview of interactions. The numbers

in brackets, in the following sections, correspond to the interactions in the figure, interactions

according to [Brehmer and Munzner, 2013] are set in italics.
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Interactions of the Cluster View

The Cluster View provides an overview of the data set by showing the gene activity

ratio (GAR) pattern of the cluster representative per default (see Figure V.11 A). In

order to summarize the gene functions (R2) within a cluster and to compare these

with the GAR pattern representative of one cluster, the user can navigate (details-on-demand)

by mouse over to the corresponding word cloud (1) (see Figure V.11).

The quality of the cluster representative is encoded by the saturation

of the colored surround to indicate if a cluster should be refined. For

identifying the corresponding subclusters and, thereby, to explore

the data set for interesting clusters (R3), VisExpress enables the user to drill-down (navigate)

the cluster hierarchy by right clicking on the cluster representative (2). In order to support the

exploration of genes (R3) and to compare or identify interesting genes users can navigate (zoom)

to the Gene Fingerpint View showing all GAR patterns of genes by left-clicking on the cluster

representative (3). Finally we allow the user to call up Gene Fingerpint Views of several clusters

in order to support a comparison between clusters and GAR patterns (R1) by arranging the

Gene Fingerpint Views next to each other (4).

Interactions of the Gene Fingerprint View

The Gene Fingerprint View visualizes all gene gene activity ratio (GAR) patterns of the selected

cluster (see Figure V.11 C). See Figure V.10 for an overview, number in brackets are numbers

from the figure. In order to identify a gene of interest and to relate the GAR pattern of the gene

with its function, details-on-demand (navigate) showing the gene name and function in a tool-tip

(R3) are provided by mouse over (5). Right clicking on the gene will record it on a remember

list in the control GUI, where the gene fingerprint of the corresponding gene is saved with a

thumbnail (6).

Users can also select a set of genes to summarize and relate the func-

tions of the selected genes by navigating (details-on-demand) to the

corresponding word cloud (see Figure V.12) (R2) (7).

Furthermore, users can filter to a set of selected genes by opening

a new Gene Fingerprint View to compare and identify interesting

genes in the selection (R3) (8). Allowing the assessment of the

trustworthiness (R5) users can navigate to the Gene Board showing details of the read coverage

and further summarized information about the selected gene (9). Finally we allow the user

to call up several Gene Boards. By arranging the windows next to each other a comparison

between GAR patterns (R1) and the underlying data is supported (10).
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Interactions of the Gene Board

So far no interactions are implemented for the Gene Board which can be interpreted as a static

Dash Board. However, the user evaluation revealed a set of useful interactions. This includes

browsing and zooming in the line chart representation as well as the possibility to call up Gene

Boards of neighboring genes, by clicking on the arrows indicating the gene locations. As

neighboring genes are of special interest users also requested to show the location of clicked

neighboring genes in the Gene Fingerprint View. Furthermore, the BIO team requested a direct

link to the gene database entries at, e.g., NCBI [Coordinators, 2013].

Control GUI interface

Since the BIO team had no issues with the different designs and

understood their advantages and disadvantages, we decided to

let the user freely configure the system to the analyst’s needs.

All these adjustment possibilities give users the flexibility to

adaptively test powerful combinations as they encounter different

types of tasks. Additionally, visualizations can be further cus-

tomized, for instance, by hiding specific conditions or enabling

or disabling symmetric matrices (see Fig. V.12 D).

Allowing a comparison of gene functions between clusters, the Cluster View can be changed

to a treemap showing word clouds (see Figure V.7) (R2) (11). In order to identify and compare

interesting genes (R6, R1) users can change the visual design of the Gene Fingerprint View to

best fit their current analysis task (12). This includes changing the color mapping as well as

the design of the gene fingerprints (see Figure V.5). Additionally, the gene fingerprints can be

arranged (ordered) by different interestingness functions to sort the layout of gene fingerprints

for different analysis interests (13).

In the left Figure a 2D color map is used, the ordering is ’Value and

Quality high’. The recursive pattern algorithm layouts the genes in a way

that high value and high quality genes are shown at the top left and genes

with low value and low quality are shown at the bottom right. The 2D

color map is well suited to separate ’good’ (blue) from ’bad’ (yellow)

genes (Notice: we also provide a 2D colormap for people with color vision deficiencies). In

order to get a different perspective on the data, users can also add further measures to the Gene

Fingerprint View (R4) (14). Users can import pre-calculated measures and add them to the Gene

Fingerprint View (see Figure V.5 and V.8).
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Allowing the user to re-check genes, saved to the remember list,

and to assess the trustworthiness (R5), users can navigate to the

Gene Board showing details of the read coverage and further

summarized information about the selected gene (15). The gene

is always saved with the design that was active at the selection

which allows the user to relate the gene to the reasons for the

selection (see Figure at the left). The remember list allows the

externalization of findings which supports the exploration and verification loop of the knowledge

generation model of Sacha et al. [Sacha et al., 2014].

V-4.6 Evaluation

User assessment

We conducted a qualitative evaluation with three professional molecular biologists. As VisEx-

press is intended to support a visual exploration of differential gene expression data, we decided

to conduct an open-ended exploratory study and to evaluate VisExpress with a Pair Analyt-

ics [Arias-Hernandez et al., 2011] study. Thus, a domain expert (biologist) and a visualization

expert collaboratively explore a complex real-world data set and generate conversation about

the domain experts’ analytic activities.

For the whole study we captured screen activities and verbal reports using Camtasia Studio

[Camtasia, ] and also filmed the screen to capture when participants pointed on the screen.

We performed the study with the three participants B1, B2, and B3 (domain experts; molec-

ular biologists) and myself as the experimenter (visualization expert with a bioinformatical

background).

Participants The three participants (B1, B2, and B3) were molecular biologists working with

bacteria in the same institute. Richard Landstorfer (B1, 30, end of PhD studies), Klaus Neuhaus

(B2, 45, PostDoc) and Anna Mühlig (B3, 28, end of PhD studies), working at the ZIEL institute,

Technische Universität München. They have been working in the field of molecular biology

for 5, 18 and 3 years, respectively. They analyzed NGS (RNAseq) data collected from their

own experiments regularly for their research in the last 2 (B3) respectively 4 (B1 & B2) years,

either for gene expression or differential gene expression between conditions. Both B1 and

B2 are my cooperation partners in the FOG-Project. In addition, the managing director of the

institute (Prof. Siegfried Scherer), who is a professor for microbial ecology for over ten years,

gave feedback about the VisExpress system (B4).
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Data The data set consists of 6 different conditions and over 5000 genes are annotated for

the used Salmonella Typhimurium strain. The data set was already analyzed by B3 but was

unknown by B1 & B2. We have chosen this data set to evaluate how well VisExpress is suited

for an exploration of an unknown real world data set (B1 & B2) as well as to evaluate if B3

could rediscover findings from her previous analyses.

Condition 1 is a standard condition, in condition 2 supplement A (a nutrition source) is

added; in condition 3 supplements A and B (a food additive) are added, condition 4 is the same

as condition 3 at a later point in time (stationary state), in condition 5 supplement C (an acid) is

added, in condition 6 supplement B and C are added. The conditions 3-6 are different stress

conditions.

Study procedure The study was conducted according to following procedure:

Instruction. Each participant entered the user study room separately which was reserved within

experts’ workplace. The participant sat down next to the experimenter with a notebook and one

monitor (24” LCD). The experimenter provided detailed instructions on the system through a

slideshow presentation. Details such as visual representations, underlying data, measures, and

interaction capabilities were covered so that participants could use the functions later on.

Introductory Tasks of the Paired Analytics Study After the introduction the participants

were asked to perform a set of tasks. These tasks required them to conduct a series of analytic

activities and system operations. We intended to demonstrate work patterns to explore data with

our system showing interaction and adjustment possibilities of our design. The participants had

to solve the following set of evaluation tasks:

ET1 Click on a cluster where only the conditions 1, 5 & 6 are different. (R0)

ET2 Which matrix shows a different pattern? What is different? (R1, R3)

ET3 Try out different designs to test if another one is better suited for finding matrices with

high quality. (R6)

ET4 Look at the word cloud of the open cluster. (R2, T1)

ET5 Save some interesting genes to your remember list and call up the Gene Board for one.

ET6 Could the signal come from a neighboring gene? (R5)

ET7 Has the gene a good activity level in the conditions that show differential gene expression.

(R5) Explain your procedure.

In this step of the study, the experimenter operated the system and participants were allowed to

ask questions to clarify any uncertain areas.
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Table V.1 shows the time spent for each part of the study per participant.

B1 B2 B3 B4
Instruction 0:22 0:22 0:22 0:00
Introduction to the system 0:21 0:28 0:14 0:00
Exploration 2:01 1:30 1:04 0:00
System demonstration 0:00 0:00 0:00 0:22
Informal Feedback 0:00 0:00 0:00 0:25
Sum 2:44 2:20 1:40 0:57

Table V.1: Total time spent of each participant for the different parts of the study. B4 is a senior
researcher who gave informal feedback after an introduction and demonstration.

Open-ended exploratory part. After participants had completed all given tasks, we asked

them to freely explore the data set which was the main part of the study. The participants were

asked to verbally formulate, confirm, or reject hypotheses during the analysis process and to

report interesting or unexpected findings along the way. As the experimenter, I encouraged the

domain experts also to focus on patterns which appeared interesting to me as a bioinformatician

to facilitate a more collaboratively exploration of the given data and to generate deeper conver-

sation about the biologists’ analytic activities, their reasons, and intentions. However, I made

sure not to unduly influence the analysis by only suggesting a deeper look in a few cases and,

otherwise, only acting as an active listener who did not initiate conversation unless I wanted to

clarify uncertain motivation or action (e.g., ‘why?’ or ‘how?’). As participants had no issues

using VisExpress and since user interaction was quite high, I decided to let the domain experts

operate the system themselves.

Coding procedure. We adopted a top-down and a bottom-up approach. Our goals were 1) to

reveal the domain expert’s workflows with the VisExpress system, 2) to clarify expert tasks,

and 3) to specify areas for improvements. As the experimenter of the study, I first formulated

findings from study impressions and verified them with corresponding clips of the video material.

A second author checked against these findings with the corresponding clips. Second, I coded

the whole video material. The video material was first annotated and split into clips according

to the different used views (Cluster View, Gene Fingerprint View, Gene Board). For each clip, I

coded the participants’ analytic and visualization activities. In particular, the attempt was to

reveal the reason behind new participant’s actions and workflows that lead to findings. From

this analysis, I formulated further findings. The findings were verified with the clips by a second

author.
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Results

Three domain experts (B1-B3) participated in this study. In addition, the managing director of

the institute (professor for microbial ecology) gave feedback about the VisExpress system (B4).

In total, 7 hours and 41 minutes were recorded (see Table V.1). We formulated the following

findings from the study and verified them with video clips.

Study findings The used data set was new for B1 and B2. They remarked that they just got

an overview during the study and would need more time to deeply analyze the whole data.

Nevertheless, B1 and B2 and also B3 were impressed how fast they got an overview. B3 redis-

covered several findings, regarding groups of genes and single genes as well. We concluded the

following points which also distinguish VisExpress from state-of-the-art systems (all participants

agreed on the quotes stated here):

• The system is in-line with the mental model of the biologists and easy to learn. Actually,

we observed no learning curve at all for all participants. All participants answered the

introductory tasks correctly and without much reflection. B2: ’The system is straightforward.’;

B4: ’I have not heard of these word clouds before but they are immediately comprehensible.’

(fts - free translation(s))

• VisExpress helps biologists to get a fast overview of the data. B2: ’I was astonished how fast I

got an overview of this [bacteria] project’. ; B1: ’It is a very nice tool since I got an overview

of B3s data set very quickly.’ [The dataset was not known to B1 & B2] (fts)

• Biologists integrated data quality in their workflow. B1: ’I liked that I could skip many genes

since their quality was low.’ (ft)

• VisExpress facilitates to generate hypotheses and to bring things into question. B2: ’Based

on the patterns, it is easy to generate hypotheses and it is quite fast.’; ’One can click on a

certain [cluster] pattern and look which [genes] belong to that cluster and in no time one

can generate a hypothesis.’ (fts) See also next Section Biological findings.

General workflow of participants We observed the same general workflow among the three

participants. They started from the Cluster View and selected a cluster to analyze further. The

cluster representatives were inspected as well as the corresponding word clouds to decide on a

cluster. In the Gene Fingerprint View, participants selected genes to analyze in detail with the

Gene Board. Genes were selected according to their gene activity ratio (GAR) patterns, their

quality and their functional category provided by tooltips. With the Gene Board, participants
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assessed the trustworthiness of the GAR pattern. E.g., if the pattern is surprising for the function,

a closer look can reveal that the strength of the gene activity levels is too low to trust the GAR

pattern. After the inspection of all interesting genes in the Gene Fingerprint View, participants

switched to the Cluster View and looked for the next cluster for further exploration. The outcome

of an analysis session is a list of genes of interest which can be checked with literature research

and database comparisons. B2 states about next steps: ’I would look up the genes at NCBI,

Uniprot, perform a similarity search with BLAST and do a literature research.’(ft). Consolidated

hypotheses could than be verified by further experiments.

All participants used the quality to reduce the search space. They did not pay much attention

to genes where all GARs had low quality after they were convinced that the quality is really an

indicator for trustworthiness (checked with the Gene Board). However, they still inspected low

quality genes later on if the pattern was of interest.

Individual analysis processes and findings The following paragraphs quote and describe

different examples of the analysis processes and findings of each participant in details.

B1 said: ’I will successively look at all clusters.’ The word clouds were used to get an idea

about the included functional categories in a cluster. E.g., B1 said: ’In this cluster should be

[supplement A] depended genes.’ and for the corresponding word cloud: ’Energy production

and conversion stands out. This is reasonable. [Supplement A] is an energy supplier.’ (fts).

B1 also systematically checked gene functions by hovering over at least the first lines of gene

fingerprints in each cluster (high quality ones). B1 explained: ’I am looking for the gene

functions. It is striking that most genes have a functional annotation, this was not the case for

some other clusters.’ (ft). Genes with interesting functions were inspected with the Gene Board.

B1 tried to gather findings for each cluster and explained whether he had expected them. E.g.,

B1 said: ’Many genes are related to the cell membrane. I interpret this as extrinsic stress. I am

surprised that condition 1 and condition 5 & 6 are similar.’ (ft, remark conditions 5 & 6 are

stress conditions but condition 1 is not a stress condition).

B2 built a hypothesis about the data set at the beginning and looked for the respective

patterns. However, B2 had to reject some hypotheses in the end. A hypothesis about, e.g.,

only small differences between condition 1 & 2 was rejected: ’It is a surprising finding, that

[supplement A] has an effect on quite a number of genes. [...] I have not expected this.’ The

word clouds were less frequently used by B2. After he had checked a few hypotheses, he

checked random clusters with interesting patterns and or interesting word clouds. B2 also

compared similar clusters, by arranging the Gene Fingerprint Views of two clusters next to
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each other. In the Gene Fingerprint View B2 randomly hovered over genes to get the functional

categories, he tended to focus more on varying patterns. E.g., B2 said: ’These are the acid genes.

However, this gene stands out. This is obviously a gene reacting on acid and [supplement B]

stress only’. Genes with interesting patterns or functions were inspected with the Gene Board.

B2 gathered findings for some inspected clusters and explained if they confirm or reject his

hypothesis. E.g., B2 said: ’I have no explanation for this pattern. Standard condition and a

condition in stationary state [1 & 4] behave similar. I have no idea what these genes should have

in common.’ and about the corresponding word cloud: ’Ah...mostly no functional prediction.

Thus, also others could not classify these genes.’(ft; see Figure V.11).

B3 had analyzed the data set before. One the one hand, she tried to rediscover her findings

and on the other hand, she inspected clusters with an interesting pattern or an interesting word

cloud. E.g., B3 said for one cluster: ’Here we have no difference between conditions 4 & 5 but

between most others. I also realized that in my former analysis.’ and for one gene in this cluster:

’I found exactly this gene in my own analysis. A database and literature analysis revealed that

this function has not yet been experimentally verified for this organism. The annotation is only

based on a low sequence similarity.’ B3 also looked more systematically at the genes in the

Gene Fingerprint View and hovered over at least the first part of the genes in each cluster (high

quality ones) to check the functional categories.

Biological findings - Use case In the following, we provide examples for some biological

findings our BIO team made while using VisExpress in the Pair Analytics study with a real

world data set:

B1 discovered that membrane proteins are disseminated between different clus-
ters. Participant B1 observed many membrane proteins in cluster ‘condition 4 high’

and cluster ‘condition 1, 5 & 6 high’ (see graphic). Such patterns (relations of different

conditions) are strikingly visible with our gene fingerprints which are easily overlooked in

state-of-the-art representations since just (1:n) comparisons are shown. After looking for the

gene product names, he concluded that in the cluster ‘condition 4 high’ more transporter genes

are present which are located in the membrane to transport nutrients into the cell. This is

reasonable since condition 4 is a stationary state condition and, thus, nutrients are reduced in

the medium run and it would be important for the bacteria to increase membrane transporters

to get a better yield. In the cluster ‘condition 1, 5 & 6 high’, B1 observed more membrane

proteins related to stress. This is an unexpected finding since condition 1 is the control/reference
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condition. B1 had no explanation why these membrane proteins should react as in conditions 5

and 6 but mentioned that it would be interesting to analyze this surprising fact in detail.

Figure V.11: Annotated screenshot of VisExpress on Level 1 (Cluster View) and Level 2 (Gene
Fingerprint View). A) Treemap, showing all gene clusters with centroids represented by their
fingerprints. B) Hovering over a cluster shows a word cloud with functional categories of the
genes in the cluster. In this example, no functional annotation is given for most genes (no COG
[Galperin et al., 2015] & unknown). C) A left click on the cluster in the treemap calls up the Gene
Fingerprint View. In this cluster, condition 1 and 4 are prominent. Hovering over a gene fingerprints
shows the gene product and the functional category in a tool tip (top-left). Multiple gene fingerprints
can be selected (orange boarded). For selected genes the detailed Gene Board can be called up, users
can also zoom to selected genes, create a word cloud for a selection, or add them to a remember list.
See also Fig. V.12 for another screenshot and Fig. V.10 for interaction possibilities.

B2 quickly discovered low pH responding genes. Several genes were found to be similarly

regulated in low pH (acidic) conditions but showed no or negligible differences between

other conditions. By concentrating on this pattern, B2 discovered several genes annotated as

‘hypothetical’ which he would like to examine for their low pH (acidic) response. To B2 the

regulation of the acid responsive genes appeared to be more significant than expected in today’s

literature. The advantage of VisExpress was here that the world clouds allowed an easy and

intuitive relation of the cluster to the gene functions. The word cloud allowed identifying that

some genes in the cluster are annotated as ‘hypothetical’.
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Figure V.12: Annotated screenshot of VisExpress on Level 2 (Gene Fingerprint View) and level 3
(Gene Board). A) Gene Fingerprint View, ordered according to high GAR value and high quality
is shown in the overview with the 2D color map (green: high value, high quality; red: low quality,
low value). Green genes are selected and a word cloud is called up for the selection. B) In the word
cloud, 50S is the most prominent word. 50S and 30S are prefixes of ribosomal RNA which builds
an important function of this cluster. C) displays the detailed Gene Board for one of the genes. It
shows that this gene is down-regulated in condition 4. D) represents the control GUI. It is used to
switch between the design of the gene fingerprints and the color maps, as well as interestingness
functions. See Fig. V.10 for interaction possibilities.

B3 rediscovered that there is a relation between experimental conditions 5 & 6 and iron.
Condition 6 is a stress condition which affects iron-sulfur cluster containing proteins. A relation

to iron related genes is reasonable. B2 also discovered a specific gene that is responsible for

iron-sulfur centers.

Ribosomal genes are enriched in a cluster with down-regulated GAR values in
condition 4. This enrichment was observed by all participants. This finding is not

surprising because condition 4 is a stationary state (see Figure V.12). Bacteria move into

stationary state if their habitat does not allow a further increase of the population size, due to

space and low nutrient availability. In this state, bacteria slow their metabolisms to conserve

energy. Consequently less ribosomes are needed which produce proteins (encoded by genes).

This cluster of down regulated ribosomal genes could be excluded from now on, reducing the

data set to more interesting and biologically relevant functions (other than growth speed).
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Participants found several patterns they could not explain. B1 observed that several

genes with the same function occurred in a cluster where condition 1, 2 and 5 stand

out. Detailed analyses with the Gene Board revealed that condition 5 is up-regulated,

conditions 1 and 6 are slightly up-regulated, and condition 2 is down-regulated. The gene

is related with a substance which is added in condition 3, 4 and 6. The reaction pattern

was, therefore, not explainable and surprising for B1. Such complex patterns were intuitively

perceived by our experts due to the gene fingerprint design. Furthermore, VisExpress enables

to inspect the functions of genes by demanding word clouds or the detailed Gene Board. The

experts can query for a comprehensive view of such unexpected patterns more efficiently than

in state-of-the-art tools which would require the analyst to perform additional workflows. Such

findings are especially interesting in an open-ended/ hypotheses free data exploration because

they are starting points for new hypotheses and further research.

V-5 Discussion & Lessons Learned

The problem driven nature of design studies with real domain users generates synergy effects as

stated by Brooks [Brooks, 1996]: ’Hitching our research to someone else’s driving problems,

and solving those problems on the owners’ terms, leads us to richer computer science research.’

In this section, we will share our lessons learned and discuss the limitations and future challenges

that we identified during our design process of VisExress.

V-5.1 Interrelations between BIO & VIS Experts

Synergy effects. The specific needs and requirements of our domain experts revealed an open

gap and research challenges leading to this design study and our contributions to the information

visualization domain. Further, I gained a deep understanding on the NGS data preparation

process and was able to estimate and formulate sources of errors from the computer science

point of view. This led to a new project proposal and is now funded1. Furthermore, the VIS team

questioned the common practice to calculate gene activity and gene expression values instead of

analyzing the read coverage data directly (see Figure V.1(b)). Here, for example, methods for

comparing time series could be applied which is again an interesting topic for VIS experts.

Do not underestimate biologists. Visualization experts often suggest fancy visualizations in

the first place and have to realize in the end that a combination of state-of-the-art techniques

is sufficient and gain a better acceptance by domain experts. However, a first refusal of
1Funded in the third funding period of the priority programme “Information and Communication Theory in

Molecular Biology” (InKoMBio SPP 1395) of the German Research Foundation (DFG).

110



V-5 Discussion & Lessons Learned

sophisticated visualizations does not mean per se that everything should be simple. Domain

experts can often surprise how well they also understand complex concepts. In a series of

discussions, I realized, for example, that the BIO team had no issue with understanding the

cluster hierarchy in treemaps; they even wanted to interactively drill-down in the cluster hierarchy

and explicitly suggested splitting clusters on demand to identify interesting GAR patterns deeper

in the cluster hierarchy (R3) (see section V-4.4). This was surprising since even VIS students

have often problems to understand the hierarchy in treemaps in the beginning. Further, the

experts demanded to sketch a GAR pattern to search for similar patterns. I had suggested a

search by sketch functionality in another context. B2 remembered this and remarked he would

like to look for patters that match his (sketched) hypothesis. B1 & B3 agreed that this would be

a helpful functionality.

V-5.2 VisExpress to identify new overlapping genes

VisExpress is designed as a proof-of-concept for genes only. Thus, requirement V-2 (’Highlight

new gene candidates’) is only partially fulfilled by VisExpress (see section V-2) in this current

version. However, the necessary extensions to completely satisfy V-2 and to incorporate

the detection of overlapping genes (OLGs) with VisExpress, requires only straightforward

engineering efforts discussed below.

First, considering new gene candidates increases the number of gene fingerprints up to

the 10 fold which requires a highly scalable solution. Our approach allows handling large

volumes of data by the clustering and the interactive treemap visualization that create a scalable

symmetrization of the data. However, the treemap visualization in combination with gene

fingerprints has a limitation in the number of clusters and also in the number of hierarchy levels

that are visualized. Therefore, a further interaction must be implemented that allows the user to

call up a second treemap view for a selected cluster. Thereby, the full display can be used to

visualize all sub-clusters and further levels of cluster hierarchies. In the case that the number of

gene fingerprints per Gene Fingerprint View exceed the display space, the same approach can

be applied. A second treemap is called up for the selected cluster before visualizing the Gene

Fingerprint View, representing the lower cluster hierarchy and, thereby, splitting up the number

of genes for per Gene Fingerprint View. Furthermore, genes with highly similar patterns and

the same functional COG category can be aggregated in the Gene Fingerprint View. This is

especially of interest for genes with no functional COG category [Galperin et al., 2015], as they

do not contribute direct information. The number of aggregated genes could be indicated by size,

colored bounding boxes (in combination with tool-tips). Switching views is also a possibility:
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E.g., showing a Gene Fingerprint View without indication of aggregations and switching with a

smooth transition to a size-encoded view through user actions.

Second, new gene candidates need to be highlighted. Similar to the orange bounding box,

indicating selected gene fingerprints, gene candidates would be highlighted with a bounding box.

An alternative would be to split the Gene Fingerprint View, showing genes and gene candidates

in the left and right part of the Gene Fingerprint View.

Third, meta data of gene candidates need to be represented. The main meta information of

gene candidates are BLAST hits. One way to represent this information would be to create word

clouds of the functional description of the BLAST top hits (and/or COG category). The word

clouds can be compared with the word cloud of the known genes in the cluster. Gene candidates

with highly similar patterns and COG categories form the BLAST hits can be aggregated as

described for genes.

V-6 Limitations & Future Work

Dimensionality. We have applied VisExpress on a data set with a maximum of six experimental

conditions resulting in six rows and columns in the matrices. This is a reasonable number but

also data sets of experiments with a higher number of conditions exist. We argue that the gene

fingerprints scale with the number of dimensions since the most interesting patterns, such as

crosses and blocks, remain visible. However, due to the high number of rows and columns, it

will be harder for the analyst to determine which conditions form these patterns. Therefore,

we plan to integrate details on demand revealing the involved conditions in the analyst’s focus.

Nonetheless, we expect that a number of more than 12 conditions is not feasible. On the one

side due to visual scalability issues. Large gene fingerprints poses not only issues for the

identification but also limit the number of gene fingerprints which can be overviewed on the

screen. On the other hand users can not easily manage a high number of different conditions. 12

conditions would lead to 66 pairwise condition comparisons which is already hardly assessable.

Support for bottom-up analysis. Our design specifies a top-down analysis for exploration.

Analysts start with a cluster hierarchy and narrow down the subject of analysis. Participants

stated that they would also like to have the opportunity to start an analysis with a set of interesting

genes, e.g., genes known to respond on acid. The system should import a list of genes with

similar reactions (provided by the analysts) and expand this set of genes with new similar

candidates. A similar approach is presented by Bertini et al. [Bertini et al., 2011] to explore

large chemical libraries and v.d. Elzen and v. Wijk [van den Elzen and van Wijk, 2014] to

explore multivariate networks.
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Concluding Remarks and Perspectives
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VI. CONCLUDING REMARKS AND PERSPECTIVES

This chapter concludes the thesis by setting this work in the broader context of interdisciplinary

problem-driven visualization research. I will summarize the development process of this thesis

as a comprehensive piece of interdisciplinary problem-driven visualization research and seize

the idea to foster interdisciplinary communication with a Liaison, an idea that came up in the

course of this thesis. Furthermore, I will summarize “where we are today” with respect to visual

analysis of RNAseq data to discover and describe genes, and state open issues, as well as future

lines of research1. In this context, I will also name the biological publications and manuscripts

the work of my thesis has contributed to. Finally I will close with some further challenges in

biological data visualization.

VI-1 Experiences and Lessons Learned as an Interdisciplinary
Problem-Driven Visualization Researcher

I started this thesis without major background knowledge in visualization and next-generation-

sequencing (NGS). However, with a major in bioinformatics, I had grounded background

knowledge in genetics and molecular biology. Therefore, when starting with my PhD, I had to

learn the basics of visualization and the context of the FOG-Project. Basically I had to learn:

“What is required, what is needed, what is feasible, and what is a Vis contribution?”

Find a good level of abstraction.

Chapter III (Requirement Analysis and Problem Abstraction) summarizes the problem under-

standing and abstraction I reached in this topic. However, in a complex application domain

like molecular biology, the first hurdle is to identify a self-contained but still meaningful and

essential problem, for which a visual solution is reasonable and a contribution in itself (see also

Awareness of the problem complexity contradicts with a practical solution (p. 24)).

After the development of the NGS Overlap Searcher (see Chapter IV), the next step was

not clear from the beginning, even though the direction was given by “Comparison of gene

activity levels between different experiment conditions” (see Section III-4). A first prototype

turned away from the common genomic coordinates of genome browsers. I discovered that the

biologists needed the surround of genes and contextual information (R-III and R-IV) but not

necessarily fixed on the genome or in the genomic order. Therefore, a solution was implemented,

in which each open reading frame (ORF) was treated (with its surround) as one entity and its

1Note that the future work which specially relates to the developed systems was already discussed in the
respective sections (IV-6 and V-5).
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read coverage was visualized with a line chart. Further, all ORFs were visualized as small

multiples in a grid (see Figure III.16 I (p.50)). Even though the design helped to concentrate

on ORFs of interest, I encountered two issues: First, a visual comparison of read coverage of

different experiments was not well supported by line charts alone. Secondly, the design did not

help to correlate genes with a similar behavior.

Based on the experiences with the described prototype, the most important tasks became

apparent (see Section III-4.3) which were first camouflaged by the pressing issue to deal with the

massive data amount. One further important point was to identify differential gene expression

analysis as a method to address theses tasks.

This is a further important point, beside the challenge to identify the real and important

tasks, abstractions are needed to tackle complex problems. This includes to select methods like

gene expression analysis to generate derived data which is appropriate to support these tasks.

Furthermore, data as well as tasks need to be further abstracted to a visualization language in

order to derive requirements from them (see Figures III.18, III.19 and III.20 and the derived

requirements in Section III-4.3).

However, it is often hard to find a good level of abstraction. In the VisExpress design

study, for instance, gene activity ratio (GAR) values are visualized with a green color scale.

However, one biologist mentioned in the evaluation study that a binary representation (green:

any value, black: no value) would also be sufficient for some tasks. This would ease some

analysis processes. However, after an explanation of the bias of automatic thresholding, the

domain expert saw the danger of this approach and withdrew the request.

It is, therefore, important to work closely with domain experts to determine a good level

of abstraction. A visualization researcher should scrutinize for all parts whether a further

abstraction is reasonable. However, a visualization researcher should also scrutinize abstraction

requests for their meaningfulness since domain experts sometimes tend to abstract too much.

Furthermore, one should keep in mind that a reasonable abstraction level might also depend on

tasks in mind.

A visualization expert with application domain knowledge helps to bridge the gap.

During my PhD, I encountered the issue that the visualization colleagues I collaborated with,

had issues to understand the domain problems and the issues stated above. First, because

the language between biology and VIS domain differs strongly. Secondly, because certain

basic knowledge is required to understand biological problems. Therefore, misunderstandings

occurred frequently. However, by applying my domain knowledge, I could reduce learning time

by directly abstracting and translating application problems to visualization terms. Based on
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the insight that this approach was not only beneficial for the team-work with my Vis colleagues

but also beneficial in general for problem-driven visualization research endeavors, I introduced

the Liaison role [12]. This role is described in Chapter (II) and was utilized in the VisExpress

project [13] where the advantages of the Liaison role were demonstrated (see section II-5.1 and

II-5.2, as well as Chapter V).

Open challenges. In [12] the interdisciplinary communication issue was defined and

introduced to the visualization community. Discussions and an exchange of ideas about currently

applied and alternative approaches for this issue are promoted, as well as follow up research

in the visualization community. In design study papers, a description of how visualization

researchers bridged the knowledge gap and how they reached a problem characterization is

often not available. However, such descriptions are valuable to foster discussions on how to

address the Bridging the Gap-challenge (see also Bridging the gap* (p. 4)). I argue that the

Liaison overcomes the issue sufficiently if the role is appropriately integrated and deployed.

One important point here is to have an independent VIS team of several visualization experts to

span a broad Design Space and to avoid that the VIS team is biased by detailed domain issues

that may hamper the development of ideas. However, I also see a high potential in brainstorming

sessions and/or other creativity techniques with the domain and visualization experts to reveal

visualization experts insights in the domain problem which might lead to out-of-the-box ideas.

An interesting research challenge is, thereby, to integrate all team and project members in the

creativity discussion to take the advantage of the expertise in both fields mediated by the Liaison

but, at the same time, preserving the independence and creativity of the VIS team.

VI-2 Were Are We Today?

Visual Analysis of RNAseq Data to Discover and Describe Genes

In this thesis, I contribute a problem characterization of the visual analysis of RNAseq data to

discover and describe genes (see Chapter III). Thereby, I identify two research gaps that state-

of-the-art systems do not support. First, to assess the trustworthiness of RNAseq measurements

and, second, to discover and relate genes to identify their functions. For both research gaps I

contribute a visual analysis solutions.

State-of-the-art systems to visualize RNAseq data are genome browsers. However, genome

browsers do not follow visualization design guidelines. The stacked reads representation,

for instance, introduces visual artifacts and the change of the scaling to the current view

hampers a comparison of measurements. Furthermore, the high spatial distance between data
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representations and gene annotations hampers the assessment of measurements. Finally, genome

browsers do not support filter capabilities to reduce the search space. Systems related to the

second research gap, are systems for gene expression data analysis. However, these systems do

not incorporate quality issues and do not well support pair-wise (n:n) comparison of experiments.

The NGS overlap searcher (IV) supports the assessment of the trustworthiness of RNAseq

measurements to address the issues of genome browsers. In order to tackle the large volume of

data, the NGS overlap searcher provides filter capabilities to define open reading frames (ORFs)

of interest. For visualizing the effects of parameter changes and to adjust them the NGS overlap

searcher comprises a Genome Overview Bar which summarizes the status of genes with respect

to the parameter settings. In order to allow an effective and efficient assessment of RNAseq

measures, the NGS overlap searcher resembles the design of genome browsers but overcomes

their weaknesses. The RNAseq measures are represented as bar charts between the genome

strands to reduce the mental load to map measurements to ORF representations. Furthermore,

RNAseq measurements are mapped to the ORF representation itself with two-tone pseudo

coloring to visually fit the measurements to the exact ORF position. The NGS overlap searcher

was already applied in several studies to inspect the read coverage of genes (see Applications

(p. 118)).

The VisExpress-system (V) addresses the second research gap and supports the exploration

of RNAseq data to discover and relate genes to identify their functions. In order to structure the

large data volume, genes are clustered in VisExpress based on similarity of gene activity ratio

(GAR) patterns. Cluster representatives are represented in a treemap to provide an overview.

Gene function word clouds can be called up on demand to relate GAR patterns with gene

functions. For a further exploration of the data set, users can switch to the Gene Fingerprint

View and analyze genes in detail with the Gene Board. Gene fingerprints are used to represent the

GAR patterns of genes, as well as their quality. The applicability of VisExpress was demonstrated

in a pair analytics study (see Section V-4.6).

Open Issues and Challenges

Analysis of RNAseq bias sources. In Section III-2.2 the bias sources in the sequencing

protocol are discussed. The awareness of the uncertainty issues led, in the course of FOG-

Project, to the idea to adapt an experimental protocol to label each sequence fragment with an

individual so-called index before PCR amplification. Sequencing data from these experiments

is now available and opens up the possibility to study the reasons and strengths of biases in

more detail, as PCR bias can be subtracted. This analysis might also lead to the development of

automatic methods to compensate for biases.
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Analysis of gene function enrichments. The VisExpress design study focuses on the visual

exploration of differential gene expression patterns. The relation of gene activity ratio (GAR)

patterns to the functions of genes is revealed in VisExpress by word clouds. For further

enhancements the analysis of gene functions, functional and gene set enrichment analysis

could be integrated (see [Hung et al., 2012] for an overview). Beside, statistical analysis of

“unexpectedness” of gene functions, this also requires a tightly integrated expert for justification

with visual analysis systems since “expectedness” depends also on implicit domain expert

knowledge and is, therefore, ill-defined. A similar problem and solution was presented by

Mittelstädt et al. [Mittelstädt et al., 2014] that requires a tightly integrated physician for adverse

drug event detection.

Applications

The NGS Overlap Searcher [14] was applied in several studies to inspect read coverage of genes

to exclude false positives:

Richard Landstorfer, Svenja Simon, Steffen Schober, Daniel Keim, Siegfried Scherer, and

Klaus Neuhaus. “Comparison of Strand-Specific Transcriptomes of Enterohemorrhagic Es-

cherichia Coli O157:H7 EDL933 (EHEC) under Eleven Different Environmental Conditions

Including Radish Sprouts and Cattle Feces.” BMC Genomics 15, no. 1 (May 9, 2014): 353.

DOI: 10.1186/1471-2164-15-353. [9]

Richard Landstorfer, Svenja Simon, Steffen Schober, Daniel A. Keim, Siegfried Scherer,

and Klaus Neuhaus. “Differentiation of true ncRNAs from translated ’non-coding’ RNAs in

Escherichia coli O157:H7 EDL933 by ribosomal footprinting.” Nucleic Acids Res under

review:NAR-02924-Y-02014.

Klaus Neuhaus, Richard Landstorfer, Lea Fellner, Svenja Simon, Harald Marx, Olga N.

Ozoline, Andrea Schafferhans, Bernhard Küster, Daniel A. Keim, and Siegfried Scherer. “Trans-

latomics reveals novel, evolutionarily young orphan genes in Escherichia coli O157:H7 (EHEC).”

(in prepreration)

Klaus Neuhaus, Richard Landstorfer, Svenja Simon, Harald Marx, Bernhard Küster, Daniel

A. Keim, and Siegfried Scherer. “Translatome data derived by ribosomal footprinting are more

sensitive and can substitute proteome data obtained by mass spectrometry, indicating gene
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expression of about 2/3 of the genes in EHEC in one condition.” (in preperation)

Klaus Neuhaus, Richard Landstorfer, Katharina Mir, Svenja Simon, Steffen Schober, Daniela

Oelke , Daniel A. Keim, Martin Bossert, Siegfried Scherer. “Hundreds of novel overlapping

protein-coding genes in enterohemorrhagic Escherichia coli O157:H7 revealed by ribosomal

footprinting and strand-specific transcriptomes.” (in preparation)

The VisExpress-system has been developed recently, therefore, no studies using VisExpress have

been applied yet. However, VisExpress was used in a pair analytic study on a real data set. See

section Biological findings - Use case (p. 107) for the biological findings revealed in this study.

VI-3 Further Challenges in Biological Data Visualization

Based on my experiences during my PhD, I identified further specific biological characteristics

for some visualization and visual analytics challenges which I have not covered in Section I-4

and which are not addressed in this thesis.

Leveraging Interactions

Interactions are the means to analyze and explore large data sets, for instance, by switching

between views, different levels of detail or by calling up details-on-demand. However, seamless

and intuitive interactions are needed to support the user, instead of overwhelming the user.

Furthermore, interactions need to be designed and incorporated to support the generation of

knowledge [Sacha et al., 2014]. However, how to support the exploration, verification and

knowledge generation loop, is still an open research challenge.

Specific biological interaction characteristics. Biological tasks are often ill-defined and

data sets are complex. This makes it hard for visualization experts to abstract tasks and map

the mental model with the visual and interaction design of a visual analysis system. However,

especially interactions are essential to allow an exploration of complex data set and to support

knowledge generation.

As biologists normally have no training in visualizations, interactions need to be absolutely

intuitive for the target users. However, intuitive does not necessarily mean “easy”, it rather

means that the interactive analysis must be in-line with the mental model of biologists. Therefore,

visualization experts should not underestimate biologists (see Do not underestimate biologists

(p. 110) for an example). Furthermore, dedicated trainings could also be helpful to teach

biologists new interaction concepts.

119



VI. CONCLUDING REMARKS AND PERSPECTIVES

Exploiting Collaboration

Collaboration refers to the collaboration between several domain experts. I see two sub-

directions here. First, to support direct collaborative analyses of domain experts. Thus, two

analysts work directly together. For some applications, a distinction of independent sub-tasks

might be possible. In other cases, the work with different devices is an interesting direction.

The second direction is a successive data analysis, e.g., if one analyst wants to double check the

results of a colleague or wants to continue the analysis of a colleague. In my opinion, methods

to support collaborative analyses have the potential to support knowledge generation with visual

analytics systems. Annotated insights, for instance, could have the potential to be starting points

for new insights for a subsequent analyst. See also “The Science of Analytical Reasoning

(Chapter 2)” in [Thomas and Cook, 2005].

Specific biological collaboration characteristics. Biological data sets are often very

complex and information dense and the gaining of insights is often dependent on background

knowledge and the point of view. In the pair analytics study of the VisExpress-system, I observed

that some findings were interpreted and judged differently by the domain experts. A possibility

to facilitate the individual differences is to capture, present, and communicate analysis results

among the colleagues. This would also support the verification loop of the knowledge generation

model for visual analytics [Sacha et al., 2014]. Notes, for instance, could save time to rediscover

findings already known and also provide starting points for new insights.

Minimizing Hardware constraints and exploiting Hardware possibilities

Real-time interactions with visualizations and data are an important aspect for visualization

systems. This includes the pure data rendering but also underlining computational methods. A

comparison of the influences of different parameter settings is cumbersome, if each calculation

needs hours of runtime. On the other side, new visualization and computing devices like touch-

tables, tablets and large scale high-resolution displays are emerging. How to effectively use

these, also in combination, is an open challenge.

Specific biological hardware characteristics. High-throughput technologies like next-

generation-sequencing produce massive amounts of data which need to be processed before the

data analysis and visualization. Pre-processings like read mapping (see Mapping (p. 38)) can

last hours, making a comparison between different mapping algorithms ineffective. Furthermore,

I see a high potential for using different devices in collaborative analysis of biologists.

120



VI-3 Further Challenges in Biological Data Visualization

Building an Infrastructure

Many visual analytics solutions use their own infrastructures. Often very specific problems are

addressed which are not abstracted to a higher level. Therefore, it can often not be assessed

whether a system could be applied to another use case in another domain. Furthermore, visual

analytics infrastructures and common components are often developed over and over again

which hampers rapid prototyping and the development of reusable and adaptable systems.

Specific biological infrastructure characteristics. For biological applications many

bioinformatics systems have been developed. However, a consideration of these as related

work is often cumbersome, as the visual and interaction design is not documented efficiently

and tasks that can be addressed with the systems are not defined. Thus, often each system needs

to be installed and tested to assess its relevance. A better documentation and benchmark data

sets would help to improve this.
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