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Abstract

The goal of this thesis is to provide researchers and practitioners with guidance in designing data
glyphs for temporal and multi-dimensional data. Therefore, the term ”glyph” in the context of
information visualization has to be introduced and defined first, to establish a common under-
standing of the overall topic and motivate the need for additional support in selecting or creating
data glyphs. This definition is the basis for reviewing literature about data glyph experiments,
for conducting further controlled user studies, and finally for introducing new data glyph de-
signs. In summary, the computer science contributions in the area of information visualization
are threefold.

First, literature about quantitative experiments on data glyphs from the past 70 years is sys-
tematically reviewed. By sampling and tabulating the literature on data glyph studies, listing
their designs, questions, data, and tasks an overview about study goals and results is provided
and open research gaps are revealed. Based on this meta analysis of all results a catalog of design
considerations is created, which will be further extended throughout this thesis.

Second, the previously identified research gaps are used as a motivation for conducting con-
trolled user studies, which are introduced in this thesis. Since variations of star glyphs and radial
color encodings have not received much research attention, these designs will be subject to quan-
titative experiments. Results indicate that, against intuition, the whisker glyph which is hardly
used in practice outperforms the alternative star glyph variations. Additionally, further study
outcomes suggest that radial glyph layouts making use of the visual variable orientation to sep-
arate different dimensions are the best choice for detecting specific points in time. This finding
contradicts the ranking of visual variables from Cleveland and McGill where position encodings
outperform orientation encodings. Based on these results the set of design considerations col-
lected in the initial survey is extended and summarized to facilitate the guidance in creating and
selecting data glyph designs.

Third, the design space of data glyphs is enriched with two new metaphoric designs tai-
lored towards specific domains and evaluated with use cases and controlled user studies to show
their applicability to real-world scenarios. The clock glyph representation, for example, supports
the analyst in detecting specific points in time by arranging the temporal dimensions in a ra-
dial fashion. Results from quantitative experiments indicate the usefulness of this metaphoric
approach outperforming well-established alternative representations like line glyphs. The leaf
glyph technique on the other hand makes use of environmental cues to encode multi-dimensional
data controlling main leaf properties like leaf morphology, leaf venation, and leaf boundary. The
design is motivated by the human ability to visually discriminate natural shapes like trees in a
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forest, single flowers in a flowerbed, or leaves at shrubs. Due to its aesthetically pleasing ap-
pearance, this design is suitable for being used in mass media and data journalism. A use case
scenario with forest fire data reveals the strengths of this design being effectively interpretable
for storytelling in environmental data analysis.



Zusammenfassung

Die vorliegende Dissertation stellt Richtlinien zur Verfügung, welche Designer und Forscher
bei der Wahl anwendungsspezifischer Datenglyphen unterstützen. Zu Beginn wird der Begriff
”Glyph” im Zusammenhang mit der Datenvisualisierung näher beleuchtet, um die Thematik
einzuführen und die bestehende Problematik zu motivieren. Darüber hinaus bildet diese Defini-
tion die Grundlage um Studien über Datenglyphen in der Literatur zu finden, eigene Experimente
durchzuführen und neue Datenglyphen einzuführen. Zusammenfassend bereichert diese Arbeit
die Wissenschaft im Gebiet Datenvisualisierung durch drei Beiträge.

Zuallererst werden sämtliche Benutzerstudien über Datenglyphen der letzten 70 Jahre unter-
sucht. Aufgrund der systematischen Vorgehensweise können Fragen, Datentypen, Glyphende-
signs und Aufgaben extrahiert und eine Übersicht erstellt werden. Dabei werden die Ziele und
Ergebnisse unterschiedlicher Studien sinngemäß zusammengefasst und offene Forschungslücken
aufgedeckt. Das Resultat dieser Metaanalyse fließt anschließend in einen Katalog von Design-
richtlinien ein, welcher später noch weiter ausgearbeitet wird.

Als Nächstes werden die zuvor enthüllten Forschungslücken als Ausgangspunkt genommen,
um weitere Studien durchzuführen. Da Variationen von Star Glyphen und Designs mit einer
zirkulären Farbkodierung wenig erforscht wurden, werden diesbezüglich weitere Experimente
durchgeführt. Entgegen aller Erwartungen schneiden sogenannte Whisker Glyphen besser ab als
die weiter verbreiteten gewöhnlichen Star Glyphen. Darüber hinaus sind die zirkulären Farb-
kodierungen bestens geeignet um einzelne Dimensionen in einer Zeitserie zu erkennen. Dieses
Ergebnis ist überraschend, da es dem bereits etablierten Ranking von Cleveland und McGill
in Bezug auf visuelle Variablen widerspricht. Die Positionskodierung ist in diesem speziellen
Fall nämlich weniger effektiv als Kodierungen mit Hilfe der Orientierung. Basierend auf diesen
Ergebnissen werden weitere Richtlinien für das Design von Glyphen aufgestellt und die Liste an
bereits bestehenden erweitert.

Abschließend wird der Glyphengestaltungsraum mit zwei neuen auf Metaphern basierenden
Designs erweitert und mittels anwendungsspezifischer Szenarien und Benutzerstudien evaluiert.
Der clock glyph beispielsweise unterstützt Analysten aufgrund der zirkulären Dimensionsanord-
nung dabei bestimmte Zeitpunkte in einer Zeitserie zu finden. Die Ergebnisse quantitativer
Studien unterstreichen den Nutzen dieser Uhrmetapher, da alternative Repräsentationen wie
beispielsweise kleine Liniendiagramme schlechter abschneiden. Der leaf glyph hingegen ver-
wendet natürliche Formen aus der Umwelt um multidimensionale Daten darzustellen. Dies
geschieht, indem die Gestalt von Blättern, deren Aderung, sowie deren Blattrand aufgrund der
Daten angepasst werden. Die Fähigkeit des Menschen visuell natürliche Formen wie beispiel-
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sweise Bäume in Wäldern, einzelne Blumen im Blumenbeet, oder Blätter an Büschen zu un-
terscheiden ist die Motivation dieses Designs. Aufgrund der künstlerischen Darstellung des
Blattes ist diese Visualisierungsart auch für das breite Publikum oder in Medien geeignet. Ein
Anwendungsszenario auf Basis von Waldbranddaten zeigt die Stärken des Designs durch ein
erzählerisches Analysieren der Daten.
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Chapter 1

Introduction

Glyph-based data visualization has a long tradition in information visualization. A lot of research
has already been conducted in developing new designs, combining them with other visualization
techniques, improving layout algorithms, or comparing alternative representations. However,
there is only little guidance for the usage and design of data glyphs. Which glyph design is best
for analyzing specific datasets? Are there changes in performance when switching to a different
analysis task? Do guidelines exist for positioning data glyphs on the screen [75]? Researchers
are aware of this lack in guidance. As Matthew Ward stated:

“Glyphs are a popular, but insufficiently studied, class of techniques
for the visualization of data.”1

Since data glyphs consist of multiple different visual features and can be flexibly arranged on
the screen the resulting design space is nearly endless. During the years many different designs
have been introduced in literature and probably more are about to be developed. Without any
structure and guidance this flexibility in design will be overwhelming. By providing design con-
siderations and evaluating alternative glyph representations practitioners as well as researchers
can be supported in selecting the most appropriate data glyph for specific tasks and datasets.

However, as a first step, a common understanding of the overall topic by discussing the term
”glyph” in the context of information visualization needs to be established. In literature the term
is used in various ways and a general definition does not exist, yet. By investigating the historic
background of the term and additionally discussing definitions used in todays literature a more
general definition can be contributed.

Historic background and definition: Most people may associate the term “glyph” with the
Egyptian “hieroglyph”, which is a sacred (hierós) character of the ancient Egyptian writing sys-
tem (4000 BCE) engraved (glýphõ) in papyrus and wood. It was commonly used in a religious
context to communicate god’s words [5]. However, glyphs are as old as 40000 years and originate
from the term “petroglyphs”. Like hieroglyphs, petroglyphs were used as a means for communi-
cation. Pictograms, or logogram images were engraved in stone (petro) as a form of pre-writing
[187]. Although, hieroglyphs and petroglyphs seem to be entirely different from nowadays data

1[192], page 191.
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glyph visualizations they share some interesting characteristics. They are all trying to visually
communicate information in a rather abstract way or by means of metaphors. Therefore, people
have to first learn how to read these glyphs in order to understand their meaning. These fun-
damental similarities are the reason for the term glyph being eponymous for data glyph based
visualizations [17].

In the area of information visualization glyph-based data visualization has a long tradition in
research and application. The basic idea is to map data properties to visual properties of some
appropriately designed visual structure. By the interplay of the different visual properties, each
glyph then represents a data record. Many data records can be compared by appropriately laid
out glyph displays. One of the first glyph designs used in information visualization was the
metroglyph introduced by Anderson in 1957 [8]. His idea was to represent multi-dimensional
data in a two-dimensional scatterplot using single complex representations for each individual
data point. The single marks in the scatterplot, which are usually used to depict the position of the
data points have, therefore, been exchanged with a composition of a circle and multiple data lines.
The data lines were attached to the circle using different angles with their lengths corresponding
to the value of the respective dimensions. Analysts were then able to compare different data
points by looking at their overall appearance or investigating the lengths of individual data lines.

Although alternative glyph designs have been introduced in the past [7] it is interesting to
note that in literature from the 60s the term ”glyph” was used as a synonym for the metroglyph
[52, 91]. However, with the introduction of several alternative glyph representations like star
glyphs [168], or Chernoff faces [35] in the early 70s this definition changed. From this point
on researchers referred to the term “glyph” in a more general way including multiple designs.
As a consequence, different definitions emerged based on the current state-of-the art in glyph
design and based on the subjective preference of the researchers. An objective view including
the characterizing properties of a glyph visualization has not established in literature, yet. To
quote from Munzner:

“There is no strict dividing line between a region, a view, and a glyph. [...] the word glyph is
used very ambiguously in the vis literature.”2.

To start organizing important characteristics of data glyphs, definitions and keywords were
extracted from books on visualization, from papers in the literature that used the term “glyph”,
and from interviews with visualizations experts about their understanding of the term. The col-
lected results can be found in Table 1.1. While Table 1.1 is certainly not exhaustive, it serves
to show the wide variety of ways researchers think of, and define, data glyphs. The following
discussion will contribute to a sophisticated basis for phrasing the definition, which helps to
understand how the term ”glyph” is used throughout this thesis.

2[134], page 280.
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References Data glyph characteristics

small, or
compact

encodes different at-
tribute dimensions

uses different visual
channels

is also called: sym-
bol, icon, or sign

[17] X X X disagree
[73] X X - X
[121] X X - -
[22] - X X -
[41] - X X sometimes
[112] - X X X
[115] - X X -
[134] - X X -
[157] - X X X
[195] - X X a symbol encoding

quantities
[192] - X - -
[40] - - X X
[153] - - X -

Table 1.1: Overview of defining glyph characteristics mentioned in the literature.

Most researchers agree on the fact that data glyphs encode multiple attribute dimensions
using different visual channels. Since data glyphs are basically a composition of different visual
variables this definition seems to perfectly fit. Designs using e.g., a color encoding make use of
a different visual channel as designs using e.g., size to represent data values.

However, there seems to be a conflict when considering simple data marks as glyphs. Ward
states that “glyphs are dictated by one or more attributes of a data record”3. However, this
contradicts the definition of Munzner saying that “a glyph is made of multiple marks”4, thus,
excluding single simple data marks. This notion of a data glyph as a multi-dimensional encoding
also aligns with the majority of historical data glyph definitions. Therefore, I stick with this
definition and discard the idea of single marks being equivalent to data glyphs.

Another controversial aspect is the size of a data glyph. Some researchers think that a fun-
damental characteristic of glyphs is their small and compact size. However, is this criteria really
mandatory for defining data glyphs? In my opinion the notion of size highly depends on the
context a glyph is presented in. On smaller displays like tablets, or mobile phones glyphs are
perceived bigger compared to wall-sized displays or high resolution projections. Additionally, to
the best of my knowledge, there exists no threshold for objects being categorized as small or big.
I think more important as a certain threshold for the maximum size of a data glyph is its context
information and information carrying embellishments. Data glyphs are always embedded in a
context giving environment. This can either be a basic visualization like scatterplots, treemaps,
node-link diagrams, geographic maps etc. or just a grid-based layout with some sort of order-
ing. In contrast to charts or other visualization techniques does the position of a glyph always
convey a meaning. Ward refers to such kind of arrangements as data-driven or structure-driven
layouts [191]. Additionally, glyph designs do not contain detailed axes or labels since they are

3[192], page 179.
4[134], page 280.
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primarily designed to show multiple attributes in a compact way [195]. As a result less ink is
necessary to plot the glyph, which will lead to smaller representations and less visual clutter or
reduced overplotting. In summary, I would argue that data glyphs need not necessarily be small.
However, removing labels, axes, or other detailed descriptions from the design already reduces
their overall size to a minimum without the need of identifying an exact threshold for data glyphs
being considered “small”.

In information visualization other terms are also used as synonyms for “glyphs”. Ropinski et
al. say that symbols or iconic representations are considered glyphs [157]. However, Borgo et al.
offer a detailed derivation of the individual terms showing that these expressions have a different
meaning and should not be used as synonyms [17]. They clarify that icons are always metaphoric
representations, symbols often take the form of characters or mathematical symbols, and signs
are considered an umbrella term for all visual representations (for a more detailed explanation I
refer the interested reader to Borgo’s STAR report [17]). Therefore, other terms in literature like
symbols, or icons should not be mixed up with the definition of data glyphs.

As can be seen, various ideas of what a data glyph comprises exist. In this initial introduction
I tried to reveal similarities and contradictions to sensitize the reader for this problem. To avoid
any further confusion I, therefore, contribute my own definition of a data glyph, which is used
throughout the whole thesis. As already stated, most parts of this definition were collected in
interviews with visualization experts or derived from literature.

Data glyphs are data-driven visual entities, which make use of different visual channels to
encode multiple attribute dimensions. They can be arranged independently on the screen and

can vary in size. Their position is always associated with a meaning. Icons, symbols, and signs
are no synonyms to data glyphs. Simple single marks such as points in a scatterplot (e.g.,

[127, 128]) are also no data glyphs because they cannot encode multiple attribute dimensions at
once [134].

Design considerations and evaluations: Over the years various glyph designs were intro-
duced. Star glyphs [168] and Chernoff faces [35] are just two examples of well-known glyph
representations. Since star glyphs and metroglyphs use a similar visual mapping to represent the
data values their overall appearance is similar. Chernoff faces on the other hand look entirely dif-
ferent because the data is mapped to various face characteristics using different visual variables
like the angle of the eyebrows or the size of the ears. This simple example illustrates the nearly
endless mapping possibilities of data dimensions to visual glyph encodings [134] and many more
designs are certainly imaginable. This flexibility allows designers to come up with new and in-
novative glyph representations for specific datasets, tasks, or contexts. However, without any
guidance, this freedom and large design space can become overwhelming.

Ward distinguishes between three different mapping strategies to better structure this nearly
endless design space [192]. One-to-one mappings are designs, which visualize each dimension
with a different visual variable. The aforementioned Chernoff faces fit into this category, since
they encode each data value with different face characteristics. Star glyphs are an example for
many-to-one mappings because they represent all data values with the same visual variable (i.e.,
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length of the data line). The last category is the one-to-many mapping, where each data value
is visualized redundantly by more than one visual variable. A possible example are colored star
glyphs [103], which use the length and the color of a data line to represent the dimension value.
This classification helps to better understand the visual encodings of different glyph designs,
however, an indication, which category should be preferred and why is not given.

Knowledge of when and which types of designs work best or are preferred by viewers, could
aid designers and practitioners in creating new designs or in selecting among existing ones.
Several studies in various settings have been conducted investigating changes in performance
when switching between different glyph designs. Such experiments help to identify the most
suitable glyph representation for specific settings. Since many studies about glyph designs have
been conducted over the years it is difficult to keep track of the results and possible implications
for design choices. Till now a systematic review of this literature is missing, which would allow
practitioners and researchers to find related experiments more efficiently. Additionally, such a
survey would shed more light on open research gaps and reveal, which glyph designs need to be
studied in more detail or which setting has not been investigated at all.

By introducing such a literature review I will provide an overview about all conducted quan-
titative experiments comparing different data glyphs and see how they perform according to cer-
tain tasks or datasets. Researchers interested in the performance of a specific data glyph design
will be guided towards the relevant literature. Additionally, guidelines for designing data glyphs
are extracted summarizing the overall outcome of all conducted experiments. The research gaps
identified in this survey are the motivation for two quantitative experiments introduced later in
this thesis. These user studies shed more light on the performance of different glyph designs and,
therefore, contribute further design considerations.

Structure of the thesis: Based on the definition of data glyphs in the introduction, I will
present a systematic review of quantitative user studies about data glyph designs in chapter 2.
This survey provides the reader with an overview of study outcomes and settings and additionally
identifies open research gaps. In chapter 3, I will introduce a new data glyph design for time-
series data and show its applicability in the area of network security. This design will also be
evaluated in a controlled experiment to compare its performance against well-known glyph alter-
natives and also to close some previously identified research gaps. In chapter 4 I will contribute
the leaf glyph technique, which is a metaphoric glyph representation for multi-dimensional data
using environmental cues. Additionally, the influence of contour lines for the well-known star
glyph is evaluated to close another previously identified research gap. The design considera-
tions found in the initial survey, as well as the guidelines retrieved from the experiments will be
summarized in chapter 5. Chapter 6 concludes this work and discusses future research directions.
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Chapter 2

Systematic Review of Experimental Studies
on Data Glyphs

Parts of this chapter appear in the following publication:

• J. Fuchs, P. Isenberg, A. Bezerianos, and D. Keim. A systematic review of experimen-
tal studies on data glyphs. IEEE Transactions on Visualization and Computer Graphics,
PP(99):1–1, 20161

As already indicated in the introduction many different data glyph designs have been intro-
duced during the last 50 years with some of them being subjected to perceptual or comparative
evaluations. Such evaluations are necessary to allow for a better understanding about changes
in performance when using different glyph designs. Some researchers such as Cleveland and
McGill proposed a ranking of visual variables according to their performance for different data
types [43]. However, these suggestions need not necessarily be true for smaller glyph designs.
Controlled user studies are, therefore, mandatory to propose design guidelines based on the re-
sults or even suggest the most suitable glyph designs for a given task or dataset. Since many
different glyph designs exist it is not possible to compare all of them in a single study or paper.
A survey of all studies conducted about data glyph designs helps to collect and summarize all
experiments and provide researchers with an overview about the results.

In this chapter 2, I will focus on such a systematic review of the user-study literature on data
glyphs focusing on quantitative controlled studies. In contrast to their qualitative counterpart,
controlled experiments are more easily comparable and summarizable, as they test concrete hy-
potheses regarding design choices and isolate factors in the glyph designs [45]. The studies are

1The responsibilities for this joint publication were divided as follows: I did the literature search, categorized
and characterized the papers, and spearheaded the writing. Petra Isenberg and Anastasia Bezerianos gave advice and
feedback on the categorization and organization of papers, were involved in the writing and proofreading. Daniel
Keim supervised the work.
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categorized according to a number of criteria that are meant to help researchers and practition-
ers in choosing amongst the most relevant literature to read, and ultimately to make informed
choices about glyph use, design, and potential future studies. These criteria include glyph types
(see Figure 2.1), presentation settings, datasets, tasks, and study goals. A summary of study
outcomes is extending this characterization to help practitioners select the most appropriate data
glyphs according to different criteria like visual design, data density, or task. The discussion
section additionally pinpoints to open research areas, some of them being tackled throughout my
thesis.

Profile	   Line	  Glyph	  

Whisker	  

Star	  Glyph	   Polygon	  

Stripe	   Calendar	   Clock	  S9ck	  Figure	  

Kabulov	  Flury	  Chernoff	   Car	   Flower	  

Weathervane	   MILSTD2525	   Superquadric	   Superquadric	  Surface	  

Profile	  

Data	  Glyph	  Designs	  

Figure 2.1: Data glyphs: This is a selection of the different data glyph designs used in the
quantitative experiments.

The chapter is structured as follows: First, related surveys about data glyphs will be presented
followed by sampling and categorization methods of the collected literature. The next section
provides a summary of the collected study characteristics and outcomes and leads over to a
discussion about open research gaps. The last section concludes the work and motivates the next
main chapters.
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2.1 Related Work

Many attempts have already been taken to structure existing data glyphs according to various
criteria. Since a large number of glyph designs have been proposed in the past, a tabulation of
existing individual designs is beyond the scope of this systematic review. This section focuses
only on survey- or meta-papers. However, chapter 3 and chapter 4 will add additional design
study papers to the related work.

Ward [191, 192] was one of the first to provide a structure of the glyph design space by
classifying different layout possibilities into data-driven and structure-driven layouts. In a data-
driven arrangement spatial position is determined by data: this can either be the raw data used as
in a scatterplot, or a projection-based approach such as PCA. A structure-driven layout makes use
of relations between the data points to calculate a layout. For example, hierarchical information
can be used to lay out glyphs in a tree structure. Ward extended this work with a categorization
of the visual characteristics of data glyphs. He structured data glyphs based on their mapping
of data to visual attributes into three different classes: a many-to-one mapping where each data
dimension is mapped to the same visual variable (e.g., profile glyph [52]); a one-to-one mapping
showing each data attribute with a different visual variable (e. g., Chernoff faces [35]); and a
one-to-many mapping representing the data dimensions redundantly with many different visual
attributes (e. g., compound glyph [147]). In this survey, we2 use this categorization to structure
our own categorization of data glyph user-studies.

In contract, Chung et al. [42] proposed a categorization based on the visual channels used
to represent the data and the spatial dimensionality of the glyph (2D, 2.5D, and 3D). The au-
thors also discussed critical design aspects and guidelines for glyph visualizations, such as the
normalization of data input for each dimension, the use of redundant mappings, and the visual
orthogonality of different glyph components to ensure best performance. Since some of these
guidelines cannot be followed for a high number of dimensions, designers have to choose be-
tween few single complex glyph designs, or many simple designs. Additionally, they suggested
using halos to limit the negative effect of overplotting. In our survey we extend this list of guide-
lines based on our review of experimental results and provide further open research questions.

An extensive survey about data glyphs was presented by Borgo et al. [17]. The authors
cover different glyph representations and propose guidelines for designing data glyphs based
on a collection of design principles in the literature. While Borgo et al. also include several
empirical studies in their survey, their focus is on design study papers showing the applicability
of data glyphs to different data sets and tasks. In contrast to this work, we provide an overview
of performance assessments from quantitative user studies.

A more data-specific survey on glyphs in the medical domain was presented by Ropinski et
al. [157]. The authors classified glyph-based visualizations for medical data into two groups:
pre-attentively and attentively identifiable glyph designs. Based on this grouping the authors
further derive design guidelines for developing glyphs for this domain, but provide no additional
empirical results from user studies.

While there is no systematic assessment of glyph user-studies that we know of, some re-

2In this chapter 2 the term ”we” comprises Petra Isenberg, Anastasia Bezerianos, Daniel Keim and me.
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searchers have categorized subsets of the study design space. Nelson [137], for example, dis-
cusses the history of Chernoff faces [35] with its many variations such as the Flury-Rydwiel [65]
or Kabulov faces [96]. She also discusses studies investigating performance changes for differ-
ent data types or visual variations. We took this work as inspiration, but provide a much more
comprehensive view on the study design space. Ware’s [Ch. 5][195] discussion on “Glyphs and
Multivariate Discrete Data” is related to our work in that he categorizes two types of user study
tasks for glyphs. He focuses on tasks designed to find out which display dimensions are per-
ceived holistically (integral) or perceived separately (separable): restricted classification tasks
and speeded classification tasks. Among others, we include both types of tasks in our discus-
sion based on slightly different terminology [10]: similarity search tasks (related to restricted
classification) and lookup tasks (similar to speeded classification).

2.2 Methodology

This systematic review highlights only user studies in which participants performed controlled,
quantitatively measured tasks with data glyphs. These quantitative measurements could (but did
not have to) be accompanied by a subjective assessment of the tested glyphs (e.g., according
to aesthetics, confidence, etc.) The categorization of the found studies is done according to the
criteria discussed in the following.

2.2.1 Paper Sampling and Collection

To find relevant papers for our review we used a snowball sampling technique in which we
first searched for the keyword “glyph” in the title, abstract, and keywords in the ACM digital
library (leading to 80 potential results), the IEEE Xplore digital library (leading to 255 potential
results), the EG digital library (leading to 66 potential results), and the DBLP computer science
bibliography (leading to 134 potential results). In a next step we excluded papers that did not
include at least one user study with quantitative measures or did not study glyphs that fit our
definition. This filtering step removed 505 of the 535 candidate papers, leaving 30 relevant papers
for our survey. From this initial set of papers we recursively scanned references for further user
studies about data glyphs. Using this approach we collected 64 papers from the visualization
literature as well as work from statistics and psychology.

2.2.2 Analyzed Study Characteristics

In the design of any quantitative user study several characteristics are important: the tasks to be
performed, the collected measures, the presentation of the stimuli (glyphs), the size and type of
data visualized, the general presentation setting, and the study goals (or main research questions)
[45]. We categorized the 64 study papers using these characteristics as explained in more detail
next.
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Glyph Types and Data Encoding

We used Ward’s data mapping taxonomy [192] to distinguish between glyphs using many-to-
one and one-to-one mappings (see section 2.1). The rows and columns of Figure 2.3 give an
overview of this categorization. We only found two occurrences of Ward’s third group: one-to-
many mappings. Thus, we do not highlight this group as a category in our result table. The two
studies we found ([49] and [103]) are, however, discussed throughout this chapter.

Since the many-to-one group encodes multiple data point dimensions using the same vi-
sual variable, we further split this group into categories based on the visual variables used: po-
sition/length, color saturation, and orientation/angle (see Figure 2.3). We also distinguished
whether or not a linear or circular layout was chosen to lay out the dimensions.

The category of one-to-one mapping was structured slightly differently as it includes a wide
variety of design choices. As we mostly found facial glyph representations or three-dimensional
designs, the result table includes these two categories: Faces and 3D Glyphs. A third category
on car glyphs was added, since in one paper [170] faces were compared against unique car glyph
representations. Car glyphs are abstract two dimensional representations of vehicles, which use
unique characteristics (size of the trunk or hood) to encode data.

We additionally found twelve studies that tested unique glyph designs that were not compared
to alternative representations: PlanningLines [3], weather vanes [123, 151], shapes [84, 206],
roses [114], themes [31], arrows [200], Motifs [30, 53], flowers [33], and MILSTD2525 glyphs
[172]. Rather they were either compared against textual information, tested on varying back-
grounds (changes in the topological level of detail), or against different types of visualizations.
Since they were not compared to other designs in the table, we positioned them slightly apart in
the “One-to-One Mapping” category.

Glyph Presentation Setting

For the examined studies, we categorized how many glyphs were presented to a viewer on the
screen: individual glyphs, multiple glyphs of fixed number, or multiple glyphs of varying num-
bers. In the category of multiple glyphs we further noted how the glyphs were arranged on the
screen, as grids, scatterplots, node-link diagrams, on geographic maps, or other layouts.

Datasets

The glyphs used in the studies all encoded either multi-dimensional data of a general nature, or
time-series data. Additionally, we noted how many dimensions a glyph encoded. The number of
dimensions is related to the visual complexity of a glyph. Independent of data type and density
we further recorded whether the data was synthetically created, or if real data was used in the
study.

Tasks and Measures

Important for understanding any study results is the nature of the task participants had to perform.
We group tasks in broad categories, differentiating between tasks involving the glyph as a whole
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(synoptic tasks [10]) and tasks where participants had to focus on single specific characteristics
of a glyph (elementary tasks [10]). An elementary task is typically a lookup task during which
participants focus on single dimensions of a glyph and read individual values.

We further subdivided synoptic tasks into three categories: 1) visual search where partici-
pants had to find a glyph differing from others, or tell whether a specific glyph is present or not;
2) similarity search where participants had to compare the overall structure of glyphs and group
similar representations; and 3) trend detection tasks where participants had to keep track of the
development of data values across dimensions.

Study Goals

We found three different general study goals: 1) a comparison of various glyph designs according
to their performance and a ranking of designs based on it; 2) a comparison of different variations
of a single glyph, to detect visual features improving a specific glyph design; and 3) a com-
parison of single glyphs vs. data tables, to motivate the use of these visual objects over textual
representations.

Study Results

We summarized study outcomes on a high level, reporting findings on the impact of presentation
settings, number of data points and dimensions on the tested glyphs. We further report overall
ranking of different glyph types, offering explanations to seemingly contradictory results across
studies. We do not enter into detail on findings regarding variations of a single glyph type. Our
goal is to provide researchers and practitioners with a better grasp of the overall picture of the
performance of different glyphs, and to point to individual papers for detailed study results.

2.3 Results: State-of-the-Art in Glyph Evaluation

In this section we discuss the findings from our systematic review based on the characteristics
discussed in the previous section. A summary of the results is presented in individual tables and
in highlighted paragraphs throughout the section. Many study descriptions did not include all
information needed for our characterization and subsequently our counts do not always add up
to 64–the total number of papers examined.

2.3.1 Study Goals
We found three higher-level study goals—all related to different types of comparisons: a) com-
parison of glyph designs, b) comparison of glyph variations, and c) comparison of glyphs with
data tables or text. As can be seen in the diagonal of Figure 2.33, the majority of studies (39/64,
60.94%) tested case b) or c). Design variations within a glyph category were more frequently

3The flower [33] and theme [31] glyphs also fit into this category, however, due to their visual encoding they
are not represented on the diagonal
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Figure 2.2: Statistics: Ratio of papers evaluating different visual encodings (distinguished by
color). Low saturation indicates experiments evaluating design variations of this encoding, and
high saturation other experiments (e.g. comparisons to other encodings).

tested against each other (32/39, 82.05%) than glyphs vs. a common data table or text description
(7/39, 17.95%). The latter group was most often used to motivate the use of visuals over text
descriptions or data tables [20, 91, 131, 163, 178].

To measure participant performance all studies but one [30] recorded accuracy scores, addi-
tionally 65.63% measured completion time (42/64), and 29.69% collected qualitative feedback
(19/64) as well. It is interesting to note that participants’ preferences did not always match with
their performance [26, 61, 74, 197]. Therefore, a preferred design was not always a guarantee
for a good user performance.

Summary: We found similar study goals across many experiments, yet varied were factors
like number of data points and dimensions, task, or glyph design. These variations make individ-
ual study outcomes hard to compare. Thus, we will discuss the individual factors in the following
sections before discussing the study outcomes in subsection 2.3.6.

2.3.2 Glyph Types and Data Encoding
Figure 2.3 summarizes evaluated glyph types and their encodings based on Ward’s data mapping
taxonomy outlined in section 2.2. The table is meant to be read like a matrix. The intersections
of rows and columns show which glyph types and encodings a particular study compared against
each other. The diagonal (top left to bottom right) of the table contains references to studies
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173][91]* [131]*
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[206]
[84]
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[31] [172]

[33][53]
[30]
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[3]

Figure 2.3: Glyph Design Table: Columns represent the different categories of glyph encod-
ings, replicated in rows with glyph examples for each category. Additionally, color is used to
visually separate the different categories. References refer to articles in our study bibliography
that compare glyph variations from the respective row and column. Studies placed in the diag-
onal evaluate either variations of the same glyph type, or comparisons of the glyph with data
tables (starred *). Note that papers can fall in multiple cells. Since PlanningLines [3], weather
vanes [123, 151], shapes [84, 206], roses [114], themes [31], arrows [200], Motifs [30, 53], flow-
ers [33], and MILSTD2525 glyphs [172] use a unique encoding and are not compared to other
glyphs, we positioned them slightly apart in the ”One-to-One Mapping” category.
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that tested design variations of the same glyph category, or an evaluation of one specific design
against plain text or data tables (marked with a * in the table). Empty cells indicate new research
possibilities.

Figure 2.2 shows that face glyphs were evaluated most frequently (39.06%), followed by
glyphs with position/length encodings (linear: 17.19%, circular: 18.75%), and 3D glyph designs
(14.06%). We note that from the studies involving position/length encodings or 3D glyphs (27
in total), 8 were in fact compared to faces (Figure 2.3). Color (linear: 9.38%, circular: 3.13%)
and orientation encodings (linear: 3.13%, circular: 0%) have received little research attention.

The high number–28.13%–of user studies on face variations , stands out compared to studies
that only focus on other variations, e.g., circular position/length encodings (14.06%), 3D glyphs
(7.81%), linear color (6.25%), or linear orientation encoding (1.56%). A possible reason for this
imbalance are the many ways one can design faces and their data mappings (e.g., Chernoff faces
[35], Rydwiel-Flury faces [65], Kabulov faces [96]).

We found only two studies [4, 80] that compared different linear position/length design vari-
ations. This is an interesting research gap given that profile glyphs that use this encoding are
well established in practice (i. e., sparklines [185], profiles [52]).

In general, we only found three main categories of visual variables used to encode data in
glyphs with many-to-one mappings (Position/Length, Color, Orientation). Almost all glyph de-
signs in these studies mapped quantitative information to visual variables. The only exception
was Lee et al.’s work [111] which compares star glyphs, faces, and 2D projected data points
using bivariate data. Here bivariate information, however, was still mapped either to the length
of the whiskers (star glyph) or to different face characteristics.

Summary: Faces and circular profiles have been investigated in detail, in contrast to color
value and orientation encodings on glyphs that only few studies investigated. Surprisingly, we
found only two studies comparing different variations of linear profiles.

2.3.3 Glyph Presentation Settings
Presentation settings can be characterized by the number of glyphs presented to viewers, as well
as by how the glyphs are layed out in space. We identified three types of studies when considering
the number of glyphs presented (Table 2.2): those that presented only individual glyphs to the
viewers (7/64, 10.94%), those that presented a fixed number of more than one glyph at a time
(46/64, 71.88%), and those in which the number of presented glyphs varied but was always higher
than one (11/64, 17.19%). Seven papers did not report the exact number of glyphs represented
on the screen: [3, 26, 30, 31, 33, 53, 151].

For the 46 studies that tested a fixed number of multiple glyphs at a time, we found five
types of layouts. The most frequent was a common small-multiples grid (65.22%), followed by
geographic maps (17.39%), scatterplots (6.52%), node-link diagrams (4.35%), and other layouts
(6.52%) like different 3D environments (see Figure 2.4).

The goal of most of the studies with varying number of glyphs was to investigate changes in
performance when increasing the number of visible data points in grid layouts [132, 171, 173],
geographic maps [138, 200], and node-link diagrams [201]. The amount of glyphs visible to
participants changed from 5–50 [132]; 5–15 [171, 173]; 6–18 [172]; 9–23 [138]; 4–300 [200];
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Figure 2.4: Statistics: Ratio of papers evaluating different glyph layouts (distinguished by color).
Low saturation indicates experiments evaluating a varying number of data glyphs, and high sat-
uration a fixed number of data glyphs.

and 30–48 [201]. In all seven studies participants were affected negatively by an increasing
number of data points, as we discuss in subsection 2.3.6. In the studies conducted by Aigner et
al. [3], Dunne et al. [53], Cayli et al. [30], and Zhang et al. [207] the varying number of data
points was not treated as a factor in the analysis.

In seven studies (10.94%) a single data point was shown to participants at a time [4, 20, 29,
80, 94, 95, 120]. These studies tried to control all parameters and avoid possible confounding
factors, so as to better reason about changes in performance when modifying specific aspects of
the same design [94], or when comparing it with other representations [4, 20, 29, 95, 120], or
layouts [80].

Regardless of whether a fixed or changing number of glyphs was tested, the vast major-
ity of studies (56.25%) arranged glyphs in a grid layout, followed by geographic arrangements
(15.63%), node-link diagrams (7.81%), and scatterplots (4.69%) (see Figure 2.4). The choice
of a grid layout for quantitative studies is understandable. Grids can help to avoid confound-
ing factors in visual search, comparison, or classification tasks. For example, the information
provided by a background, e.g., an underlying geographic map, may influence the perception of
glyphs. The background color, for example may influence the perception color hues [180], while
topology (e.g., rivers, mountains, land borders) may act as grouping enclosures or as reference
structures for reading data values of glyphs. We only found a single study [123] that examined
the influence of reading data glyphs with different geographic backgrounds; and one [84] that
studied how the reading of a glyph is affected by the presence of other glyphs around it. We
discuss their results in subsection 2.3.6.

Summary: Only a small number of user studies varied the amount of data glyphs as a study
factor. Most studies were conducted with a fixed number of glyphs arranged in a grid layout.
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Surprisingly, only four papers investigated the influence of different background information
and layout on reading data glyphs [70, 80, 84, 123].

2.3.4 Datasets & Number of Dimensions

The number of data dimensions tested can help us compare results across studies, and inform
us of the imagined use-case setting for data glyphs. Only four studies (6.25%) used the number
of dimensions itself as a study factor and thus varied between glyphs with different dimension
counts [73, 74, 199, 201]. The remaining 60 studies tested glyphs with various fixed numbers of
dimensions. Of these, 44 tested less than 10 dimensions. An overview of different dimensionality
settings is provided in Table 2.3. Three papers did not report about the number of dimensions
encoded by the glyph designs [53, 70, 80].

In the vast majority of studies (54/64, 84.38%) glyphs encoded general multi-dimensional
data, both real and synthetic. Eight studies tested glyphs encoding time-series data (8/64, 12.5%)
and in two experiments [30, 53] glyphs were used to represent network topologies.

Only a small number of studies (24/64, 37.5%) used real data to investigate the performance
of different glyph designs. The respective papers and real datasets can be found in Table 2.1. For
the other experiments (41/64, 64.06%) the data was created synthetically.

Summary: Overall, most studies used synthetically created multi-dimensional data (41/64,
64.06%). The majority (44/64, 68.75%) of studies used glyphs encoding less than 10 dimensions.

2.3.5 Task Space

We used the Andrienko & Andrienko task taxonomy [10] to distinguish between two higher-
level tasks as discussed in section 2.2. Synoptic tasks (i.e., similarity search, visual search, trend
detection) were the most common type of task used in the studies (44/64, 68.75%). This is
perhaps not surprising as glyphs are often meant to provide quick overviews over a large number
of varying multi-dimensional data points—and the use of synoptic tasks may reflect the authors’
desire to test glyphs in a realistic use context.

As shown in Table 2.4, we found the following classes of synoptic tasks: similarity search
(23/44, 52.27%), followed by visual search (14/44, 31.82%), and trend detection tasks (7/44,
15.91%). An example of a similarity search task can be found in two studies by Klippel et al.:
Using a visualization tool showing 81 glyphs each representing one car, participants had to group
these glyphs into different categories based on their attributes [103, 104].

In contrast to these synoptic tasks, 26/64 studies (40.63%) used elementary tasks, i.e., lookup
(25/26, 96.15%) and 3D distance calculation (1/26, 3.85%). These studies focused on more
perception-related questions such as the reading accuracy for visual variables used to encode a
data value. In these studies, participants did not focus on reading the entire shape of the glyph,
but on single glyph characteristics. For example in the user study conducted by MacGregor
and Slovic [120] participants had to read the completion time of 48 marathon runners from bar
chart glyphs, faces, and star glyphs. Faces performed best, followed by bar chart glyphs and star
glyphs.
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Dataset Availability

Anthropometrical data about twins [65, 81] [188]

Patients rated by psychiatrists [91] Minnesota Multiphasic Personality Inventory

Medical data [49] unknown

Medical images [26] unknown
Cars dataset [170] http://davis.wpi.edu/xmdv/datasets/cars.html

Project plans [3] unknown

MM5 weather information [123] unknown

Weather information [151] NCEP forecast model

Weather information [200] Operational Regional Atmospheric Prediction System

Modified U.S. census data [206] unknown

Financial data [114] Investment in education USA (2008)

Financial data [131] Wall Street Journal Index (1974 and 1975)

Financial data [178] Standard and Poor’s firm list (1974 and 1975)

Classical music data [31] unknown

Network data [53] Lostpedia wiki edits

Network data [30] 10 best ranked movies (IMDb)

Google search results [33] http://www.google.de

Marathon runners [120] unknown

Power plant statistics [149] unknown

Audio information [70] One laptop per child sound library

Biological data [162] unknown

Economic variables [89] U.S. Department of commerce & labor

Tensor data [207] DTI dataset

Table 2.1: Datasets: This table illustrates detailed information about the real datasets used in the
experiments.

Summary: Most studies used a similarity search or a direct lookup task to measure the per-
formance of glyph designs.

2.3.6 Study Outcomes

While we cannot discuss the study results individually for all 64 papers, we collected higher-level
observations on study outcomes. Results on the study of factors such as number of dimensions
and datapoints tested, is consistent across experiments. Nevertheless, when it comes to a general
ranking, experimental results apply to a study’s specific setting and should be generalized with
caution. We discuss these results next.



2.3 Results: State-of-the-Art in Glyph Evaluation 19

Layout References

Si
ng

le [29][95][120][4][20][94]
Text [80]

M
ul

tip
le

G
ly

ph
s

Grid [65][91][73][103][84][33][199][28][126][149]
[16][74][104][93][111][68][67][117][36][46]
[47][81][89][92][135][131][178][163][24][167]

Geo map [123][151][206][114][197][139][116][118]
Scatterplot [170][37][61]
Other [49][3][26]
Node-link [31][162]

Va
ry

in
g Grid [172][70][132][171][173][207]

Node-link [53][30][201]
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Table 2.2: Presentation Setting: This table distinguishes between the number of data points
shown to the participants during the studies and the used layout. Color is used to better distin-
guish between the different categories.

Influence of Background Information and Layout

Understanding the influence of layout strategies or additional context information is crucial since
data glyphs can be arranged in various different ways and settings. Four studies investigated the
influence of positioning or background information on the performance of data glyphs [70, 80,
84, 123].

A common setting for data glyphs was the positioning in scatterplots, or projections from a
high dimensional dataset to a two dimensional space. Frisson et al. used a visual search task to
examine the benefits of a two dimensional projection compared to a grid layout used in small
multiple settings [70]. Performance was lower for the two dimensional projection, since after
projection, some data glyphs ended up overlapping each other, which caused a loss of information
making it difficult to detect the stimulus. In a follow-up study, the authors added a proximity grid
[155] as an additional layout to the study setting. Results indicated that participants performed
best in a visual search task when using the proximity grid.

Glyphs were also used in textual documents to communicate statistical data not only with
words but visually. Sparklines are a famous example of such small visual representations [185],
which are usually positioned in the reading direction next to the statistics (e. g., on the right hand
side). To backup this design decision, Goffin et al. conducted a user study to compare different
layout possibilities of glyphs within sentences [80]. Surprisingly, there was no significant effect
on accuracy or reading performance for the different layouts. However, participants preferred
the glyph being positioned above the words.

The influence of reading data glyphs with different geographic backgrounds was investigated
in only one study conducted by Martin [123]. He measured the performance of participants
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Number of Dimensions References

2 & 3 Dimensions [49][3][123][151][206][84][114][30][29]
[28][197][68][67][167][94][207][54]

4 & 5 Dimensions [91][31][200][33][172][95][120][20][139]
[116][118][117][135][138][171][173][37][61]

6 & 7 Dimensions [89][178]
8 & 9 Dimensions [103][170][149][104][93][36][132]
10 - 15 Dimensions [4][111][162][47][131][24]
17 - 20 Dimensions [65][126][16][46][81][92][163]
Varying [73][199][74][201]

Table 2.3: Number of Dimensions: This table illustrates the different data dimension densities
used in the studies. Color is used to better distinguish between the different categories.

working with weather vane glyphs while varying the underlying geographic map. Surprisingly,
his results indicated the background had no influence on the performance of reading data-glyphs.
However, the glyphs in his study were arranged in a grid on top of a map, and not according to
their geographic position. Using different glyph designs or an irregular layout may, nevertheless,
influence their performance.

Healey and Enns conducted an experiment to compare the interaction of different visual
features in the surroundings of the glyph stimulus for a visual search task [84]. Results indicated
that color variations due to the presence of other glyphs in the neighborhood of the stimulus
glyph, caused a significant interference effect when participants had to judge heights of glyphs
or density patterns. However, different densities in the surroundings of the stimulus or heights of
neighboring glyphs had no effect on the detection of colored glyphs.

Summary: The influence of background and layout on reading data glyphs has so far received
little research attention. The limited evidence from this work suggests that the background and
neighborhood of a glyph did not affect glyph readability. Nevertheless more work is needed
to determine the perceptual difficulties of reading glyphs depending on their background and
layout.

Influence of Number of Data Points

Seven studies varied the number of visible data points as a factor. The glyphs used in these
experiments were either faces [132, 138, 171, 173], unique glyph designs (i.e., MILSTD2525
[172], arrow glyphs [200]), or star glyphs [201].

For the studies involving face glyphs, participants had to perform visual search tasks and find
a certain stimulus in a growing set of data points. The researchers tested whether pre-attentive
identification was possible, in which case search time would not have been seriously impacted by
increasing the number of glyphs. Yet, in all studies the performance dropped with an increasing
number of data points independent from the mapping of data to face characteristics. Based on this
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Data Type Task Description
Elementary Task Synoptic Task

Lookup 3D Navigation
(distance

calculation)

Trend
Detection

Similarity
Search

Visual Search

Multi-
dimensional

[28, 29, 33, 37,
61, 91, 94, 95,
114, 117, 120,
123, 132, 139,
149, 151, 170,
172, 197, 200,

206]

[49] [131, 178,
206]

[16, 20, 24, 33,
36, 46, 47, 65,
74, 81, 89, 92,
93, 103, 104,

111, 126, 135,
163, 167, 199,

201, 207]

[26, 67, 68, 84,
114, 138, 139,
151, 171, 173]

Time-series
data

[3, 4, 73, 80] [73, 80, 116,
118]

[4, 70, 162]

Table 2.4: Data and Tasks: Most studies were conducted using a lookup or similarity search
task with multi-dimensional data.

outcome Siva and co-authors concluded that participants performed a serial search and were not
able to pre-attentively identify the stimulus [171, 173]. Therefore, the perception of abstract data
glyph faces compared to human faces was shown to be different. This is an interesting finding,
which lessens the basic motivation for using abstract faces. However, researchers could also
show that a redundant visual mapping of data to face characteristics improved the performance
[132].

Summary: Increasing the number of data points negatively affects search within a set of data
glyphs, indicating that they— even face glyphs—cannot be read pre-attentively.

Influence of Number of Dimensions

The results of studies varying the number of dimensions as a factor showed that different designs
were impacted to different extents. In a study by Fuchs et al., for example, the performance of
star glyphs dropped significantly in a lookup task when increasing the number of dimensions
from 24 to 96, whereas the performance of line glyphs stayed stable [73].

Wilkinson also varied the number of dimensions to investigate changes in performance for
different glyph representations. His results indicated that increasing the number of dimensions
had no significant effect on the ranking of tested glyph designs [199], although there was a drop
in performance overall.

However, it is interesting to note that even slight variations of a glyph design can be affected
differently by the number of dimensions. Fuchs et al. tested the effect of increasing the number
of dimensions on whisker glyphs (star glyphs without a contour line), traditional star glyphs and
polygon variations. Although the performance dropped for all variations, whisker glyphs were
affected the least [74].

Summary: Increasing the number of dimensions negatively affects the performance of data
glyphs [73, 74, 199, 201].
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Elementary Task Synoptic Task

[29] [93, 126, 199]

[139] [139]

[120] [111]

Table 2.5: Studies and their result rankings: faces vs. circular profiles.

Influence of Tasks and Visual Encoding

The outcome of individual user studies often involved a ranking of data glyphs based on their
performance in the study. These rankings were not always consistent for the same designs tested,
and they changed, for example, based on tasks and details of the visual encoding. Table 2.5–
Table 2.8 summarize the outcomes of the different experiments. The “¿” symbol indicates that
the glyph on the left outperforms the design on the right (either in terms of completion time or
accuracy).

Seven studies compared faces against circular position/length encodings [29, 93, 111, 120,
126, 139, 199] (Table 2.5). In four, faces performed best [93, 120, 126, 199], while circular
position/length encodings performed best in the remaining three [29, 111, 139]. These seemingly
contradictory results are reconciled when we consider the tasks participants had to perform and
how the glyphs were designed. In five of these studies the participants performed a synoptic task
[93, 111, 126, 139, 199], in the other three a lookup task [29, 120, 139]. From the five synoptic
task studies, in the three where faces performed best, the circular position/length encoding was
a polygon (i.e., star glyph without whiskers, but only a contour) [93, 126, 199], while in the
remaining two where faces performed worst the circular encoding was a star glyph with [111]
and without contour line (i.e., whisker glyph) [139]. The remaining three studies with lookup
tasks also compared faces against polygons (with polygons performing best [29]), faces against
star glyphs (with faces performing best [120]), and faces against whisker glyphs (with whisker
glyphs performing best [139]). It seems that star glyphs compared to faces are more suitable
for synoptic tasks. However, the whiskers glyph had the best performance independent from the
underlying task. This finding has partially been confirmed for a similarity search [74] but not for
lookup tasks.

Another example where glyph rankings change based on study characteristics can be found
when comparing faces against linear profiles (Table 2.6). In three studies faces performed best
[120, 126, 199], in the fourth study, profiles [29]. Again, the four studies used different tasks:
lookup tasks [29, 120] and a similarity search task [126, 199]. When comparing the two lookup
tasks the ranking of the two glyph designs is still different although they use a similar number of
dimensions (4 [120] and 5 [29] dimensions), and just show one data point at a time. Yet, a major
difference can be found when reading the task description more carefully. Although both tasks
are a lookup task, participants had to either read a one-dimensional value [120] or detect when
one dimension changes significantly compared to the other dimensions for a single data point
[29].
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Elementary Task Synoptic Task
> [120] [126, 199]
> [29]

Table 2.6: Studies and their result rankings: faces vs. linear profiles. Conflicting results are
marked with orange color.

Elementary Task Synoptic Task
> [29] [126]
> [28, 95]
> [73, 120, 149] [73]
> [73]

Table 2.7: Studies and their result rankings: linear vs. circular profiles. Conflicting results are
marked with orange color.

When comparing linear and circular position/length encodings, we found glyph ranking dif-
ferences in 8 studies [28, 29, 73, 95, 120, 126, 149, 199] (Table 2.7). In four, the linear design
outperformed the radial [29, 120, 126, 149], while in two, circular designs were better [28, 95],
and in the last one performance varied according to the underlying task [73]. However, only 3
out of these 7 had a similar experimental setting with respect to design variations, presentation
setting, number of dimensions and task [28, 29, 95]. These three all compare bar charts with
polygons in a lookup task, using low dimensional data and presenting only one data point at a
time. Surprisingly, the performance was still different : polygons ranked best in two of them
[28, 95] and bar charts performed best in the third [29]. Again, we have to look at the studies
more carefully to come to a conclusion. In the two studies where polygons performed best, the
bars in the bar charts were shown without a common baseline. This was not true for the third
study were bar charts outperformed the polygons. We assume that a common baseline increases
the performance of the linear profiles, a finding which is proposed as a design guideline from a
study by Fuchs et al. [73]. However, a user study comparing linear profiles with and without a
common baseline has, to the best of our knowledge, not yet been conducted.

Additionally, it is interesting to note that there were changes in performance depending on the
kind of elementary task. For reading exact data values linear profiles outperformed star glyphs,
however, when reading the position of an attribute dimension (e.g., a certain point in time for
time-series data) star glyphs ranked first. [73]

Data glyph designs using color saturation to encode data values have not received much
attention. We only found two papers, which report on results from quantitative experiments
comparing these glyphs against alternative representations [73, 139] (Table 2.8).

For overview visualizations focusing on the overall appearance of a glyph, color value en-
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Elementary Task Synoptic Task

[73] [73]

[4, 73] > [4, 73]
> [4]

[139] [139]

[139] [139]

[73]

Table 2.8: Studies and their result rankings: color saturation vs. profiles. Conflicting results are
marked with orange color.

codings were not found to be effective. In three out of four user studies participants performed
better using a position encoding (i. e., linear and circular profiles) in synoptic tasks. In the fourth
experiment the color encodings were visually enhanced to help participants solve certain tasks
and outperformed linear profiles. Only faces performed worse. However, it is more difficult to
draw conclusions for elementary tasks. When pursuing a direct lookup task (e.g., reading data
values) radial color value encodings have outperformed star glyphs and faces [73, 139]. Whisker
glyphs on the other hand have been shown to be as accurate as color value encodings but more
efficient [139]. However, linear profiles were most accurate and, therefore, the best choice for
direct lookup tasks [73].

Summary: Study results differed based on individual factors like number of dimensions, task,
number of data points, or slight variations to the designs. Our summary tables can be considered
as a performance overview pinpointing to relevant literature.

Influence of Metaphoric Glyph Design

One goal of information visualization is to present the underlying data in a way that can be
easily understood by users. Thus, researchers have tried to improve intuitive understandability
of visualizations, by using metaphors when mapping data to visual representations. One such
example can be found for weather forecasts. In such a scenario weather status is communicated
with small icons on top of a geographic map. These icons are metaphoric representations of the
real environment to facilitate their understanding. Small cloud icons represent cloudy areas, rain
drops encode rainy areas, and little suns illustrate sunshine in specific regions.

While data glyphs are different from icons [17], the general concept of representing the un-
derlying data using metaphors can also be applied here. Since the visual representation of a glyph
is data driven the idea is not to use a different glyph design for each individual data point (like in
the weather forecast example), but to use certain glyph characteristics to display the data while
being consistent with the metaphor.

However, it is not clear whether such metaphor-based representations are better than more ab-
stract ones. Siirtola has attempted to provide an answer to this problem by introducing metaphoric
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glyph designs and comparing them with more abstract ones [170]. In his experiment he visual-
ized car related data with abstract face representations, and with metaphoric car glyphs [170]. Car
glyphs were created by mapping data to parts of the glyph with related meaning. For example
the attribute horsepower was mapped to the size of the engine of the car, which is metaphorically
reflected in a bigger hood. In his user study participants had to answer car related questions when
working with either faces or car glyphs. The metaphor helped the participants in understanding
the data. As a result, they performed better when working with car glyphs compared to faces.

Li et al. [114] provided another example where metaphors were used. In their quantita-
tive experiment they compared RoseShape glyphs against abstract polygons to visualize multi-
dimensional data about the education level in the US. The glyphs were positioned on top of a
geographic map and participants had to either read data values or search for certain characteris-
tics. Results suggest that participants were more accurate and more confident of their answers
when working with the metaphoric designs.

In a study conducted by Flury and Riedwyl, data collected about monozygotic and dizygotic
twins, such as their height or weight was mapped to two types of face glyphs [65]. Using abstract
face representations (i. e., Chernoff faces) or more realistic faces (i. e., Flury Riedwyl faces)
participants had to look at a glyph for each twin and rate whether or not the two glyphs showed
data about monozygotic twins. The results indicated that participants were more accurate when
working with the more realistic faces.

Jacob [91] gave another example where he tested the performance of a single metaphoric
glyph design. He displayed data from patients having a certain psychological condition (e.g.,
depression, paranoia etc.) using faces. The abstract faces were created to show facial expressions
resembling those of the human faces of the patients. Participants in his study had to judge which
face corresponds to which behavior without being trained or knowing the patients. The results
indicated that people were able to name the correct psychological illness without knowing the
mapping criteria of data to face representations.

Metaphors may help to explain the results obtained in a study conducted by Fuchs et al. [73].
The researchers ran a quantitative study using time-series data. Participants had to locate specific
points in time using glyphs with either a linear dimension layout (e.g., sparklines) or a radial
arrangement (e.g., star glyphs). Surprisingly, participants were more accurate when working
with circular glyphs. This is interesting since the visual variable position (used in linear layouts)
is considered more accurate compared to orientation (used in circular glyphs) [43]. However,
participants argued that they were reminded of a clock when working with radial glyph designs,
which facilitated locating certain points in time.

Summary: A small number of previous studies suggest that metaphors may help to better
understand the underlying data.

Summary

While we found and reported on 64 papers, the vast design space of data glyphs and the possibil-
ity to test only a limited set of factors in a controlled user study makes it difficult to recommend
a single best-of glyph design. Glyph performance depends on many different factors, such as the
task used, the number of data points, or slight variations to the designs used across studies. Our
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analysis in subsection 2.3.6 presents a summary of rankings from the articles we analyzed, and
discusses how these factors can explain seemingly contradictory results.

We were able to draw general conclusions when it comes to number of dimensions and
glyphs. Some study results indicate that increasing the number of data dimensions affects the
performance of glyph designs negatively [73, 74, 199, 201] with position encodings (linear and
circular profiles) being more robust compared to color encodings in high-density situations [73].
As with the number of dimensions, there is evidence that performance drops with increasing the
amount of visible glyphs on the screen [132, 138, 171–173, 200, 201]. This seems like a logical
conclusion due to the required additional effort in visual search involving a higher number of en-
tities. In addition, a small number of past studies indicate that metaphoric glyph designs increase
performance.

Finally, it has to be noted that our analysis was made difficult by a lack of standard for re-
porting study details on glyphs. For example specific information (e.g., stimuli size, viewing
distance, number of visible data points, etc.), that could shed light on differences across experi-
ments, were often missing.

2.4 Discussion and Open Research Areas

In this section we identify and discuss directions for future research based on our analysis. The
proposed research directions are ordered roughly according to their scope.
Types of User Studies:
Even though we focused on user studies with quantitative components for this survey, we found
only a few qualitative studies that considered how glyphs are used in practice within real applica-
tions. One such exception is the experiment conducted by Sreng et al. [174] where participants
used a 3D automotive assembly tool and answered questions about the perceived usefulness of
the embedded glyphs. Although this study provided qualitative observations in the form of ques-
tionnaires, we can envision more elaborate field experiments and observational studies on real
use of glyphs. Observers could thus gather information on how people use glyph-based visu-
alizations in real contexts, for which tasks, and with what kind of results. Such studies could
inform our understanding of how glyph-based applications are adopted and used in practice and
could, thus, provide new insights on which to base design choices.

Summary: Adding qualitative evaluations observing analysts working with different glyph
designs, datasets, and tasks, would help to better understand the glyphs design space. In par-
ticular, information about subjective preferences and the applicability of specific glyph designs
in practice would be useful. It would be interesting to capture which design analysts choose to
solve which analysis task.

Data to be Tested:
There are several pros and cons for choosing real vs. synthetic datasets for a study. On the one
hand, real data has the advantage that it can demonstrate which visual representation performs
best in realistic situations, providing valuable results for analysts of this data. However, real data
often contains unique characteristics (e.g., size, structure, number of dimensions), that make the
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results noisy and hard to generalize.
On the other hand, one may argue that synthetic data does not always represent a real world

scenario or problem well (ecological validity), making results again hard to generalize. However,
artificial data can be easily controlled and focused on answering specific questions. Additionally,
possible confounding factors due to the underlying data are excluded (e.g., visual search time
according to the number of data points).

Given the above pros and cons, it seems an interesting open research question to see how
glyphs behave when they undergo study using both synthetic and real data, similar to the ap-
proach taken by Caban [26].

Summary: Running quantitative experiments, using both datasets from synthetic to real world
and vice versa will enhance our knowledge on the behavior of data glyphs in different situations.

Study Tasks and Measures:
In the majority of studies participants had to perform synoptic tasks (Table 2.4). This is not
surprising given that glyphs are often used to provide quick overviews over a large number of
multi-dimensional data points. Nevertheless, there are glyph designs (e.g., some 3D glyphs) that
have not or rarely been looked at for synoptic tasks, an interesting topic for further study.

Although results from specific tasks, such as these synoptic ones, are valuable, a common vi-
sualization task is free exploration, insight generation and hypothesis forming. Inspired by recent
work on insight based evaluation [161], it would be worthwhile to investigate the performance
of different glyph designs in such contexts.

Summary: Adding exploration tasks or extracting insights from an unknown dataset are re-
alistic real-world analysis tasks. They should, therefore, be added to the repertoire of user study
tasks in glyph evaluation to further reason about the practical applicability of data glyphs.

Glyph Presentation Setting:
A large number of studies presented glyphs as small multiples using a grid layout. There were
no studies on glyphs nested inside treemaps, or other types of representations apart from maps,
scatterplots, node-link diagrams, and two 3D representations in the medical domain. This is
interesting, as it is not clear that grid layouts present the most commonly assumed usage context
for glyphs. For example, in the area of scientific visualization, glyphs are often used on 3D
volumetric surfaces or to represent 2D flow fields in order to indicate data at specific sampling
points. These glyphs are approximately uniformly spaced apart, but this relative spacing changes
depending on the view’s magnification factor, making them appear more or less densely packed
together. There is very little to no guidance from controlled user studies on how this apparent
density affects their performance.

Moreover, we know little about the influence of the background information on the per-
formance of glyphs. Only one study investigated performance changes for glyph designs when
placed on top of different geographic maps [123], and one other their performance close to neigh-
boring glyphs [84]. Many questions remain unanswered, for example, we do not know if glyphs
are perceived differently when arranged in uniform grids compared to other arrangements, such
as treemaps, that vary their relative distance.

It is also unclear what effect the glyphs have on the understanding of the underlying visual-
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ization itself: for example, it would be interesting to investigate if rectangular treemaps are more
effective compared to circular treemaps when adding glyph designs; or if people are distracted by
the additional context information in the form of glyphs in 3D environments. There is certainly
much space for further research.

Summary: Since data glyphs cannot only be positioned in small multiple grids, evaluating
different arrangements of more complex layouts (i. e., treemaps, etc.), would help to better un-
derstand the influence of specific data glyph designs on the context and vice versa.

Glyph Types and Data Encodings:
Understand redundant encodings: Using Ward’s glyph design categorization [192], we found
only two studies that used glyphs with a one-to-many mapping (i.e., a redundant encoding).
Ware [195], however, discusses interesting perceptual study approaches to learn how dimension
encodings can be separable or integral. A better understanding of how redundant encodings work
together, and could enforce data reading, would prove beneficial to glyph design.
Study missing mappings: In Figure 2.3 we refer to 50 of the 64 studies examined, having left out
the two one-to-many mappings [49, 103] and the twelve that were not compared to other designs
[3, 30, 31, 33, 53, 84, 114, 123, 151, 172, 200, 206]. Looking at the table there is still clearly
an imbalance in what kind of data encodings have been comparatively tested. Many cells remain
empty, and there are several sparsely populated ones. One of the first things to notice is that
there is no single study on circular orientation encodings, although they are used in visualization
applications: representatives of this category are the compound glyph used in network graphs
[147], pie chart glyphs for analyzing multi-dimensional data (e.g., global material composition
[6], or biological binding properties [145] ), or as provided in visualization toolkits (e.g., JIT4).
Perhaps this type of encoding is a-priori deemed inferior based on Cleveland and McGill’s [43]
work that ranks orientation low for quantitative data representation. Given past use of these
encodings however, it is certainly worthwhile to confirm that Cleveland and McGill’s ranking
does hold for circular-orientation encodings in glyphs, in particular in the context of real multi-
dimensional data.

Similarly, several other cells of Figure 2.3 are empty or populated by studies from a single
paper. As discussed in subsection 2.3.6, the ranking of glyph designs or their variations often
depends on tasks and encodings, and as such more studies are needed to be able to provide
reliable guidance for general glyph use and design. Especially glyph designs, which have not
received much research attention but are used in practice (i.e., pie chart glyphs, or variations of
linear profiles) should be prioritized in future studies.
Replicate studies on face glyphs: Many studies have been conducted investigating the perfor-
mance of faces. Most of these studies were conducted in the 70s, and 80s when faces were newly
introduced. In recent years face glyphs have been considered inferior but there are no recent
studies or replications of earlier studies to confirm this. Given that some past studies showed
good performance, it may be worthwhile to try and reproduce some earlier studies to confirm
that they are indeed not as good as their current reputation in the community suggests.
Test larger number of dimensions: In addition to the data encoding, the number of glyph dimen-

4JavaScript InfoVis Toolkit http://philogb.github.io/jit/

http://philogb.github.io/jit/
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sions may highly influence performance. As we saw in Table 2.3 the vast majority of studies only
examined glyphs under a fixed number of dimensions, often less than 10 data dimensions. Only
four varied the number of dimensions systematically in their studies. To reliably understand how
glyph performance scales, we need to further explore how glyph designs fare under different
dimensions.

Summary: Quantitative user studies should be conducted to compare data glyph designs
which have not yet received much research attention (i.e., pie chart glyphs). The number of
dimensions should be varied during the experiment and considered as a factor for analysis, to
better understand glyph scalability.

Summary:
This section motivated promising open research directions for future experiments on data glyphs.
In this summary, we revisit the most important gaps we identified and most promising research
directions. Firstly, we need to give priority to experiments investigating glyph designs, which
have not received much research attention, yet. For example, there is only little knowledge about
the performance of radial layouts, such as pie chart glyphs. Having more evaluations about data
glyph designs will help to better generalize the outcomes and argue about the performance of
visual variables.

Additionally, different presentation settings need to be tested in more detail, since a big ad-
vantage of data glyphs is their flexible arrangement on the screen. In most experiments the data
glyphs were positioned in a regular grid layout, however, data glyphs can also be arranged in
more complex layouts like treemaps. Currently, there is only little guidance whether the perfor-
mance of data glyphs will change according to context information or layout.

A wider variety of experimental factors should be considered such as: multiple datasets (i. e.,
synthetic data and real world data), different analysis tasks (e. g., exploration or insight genera-
tion), and different study types (i. e., qualitative and quantitative) to get a deeper understanding
of the utility and performance of data glyphs.

2.5 Summary

This systematic review of research papers was focusing on the evaluation of data glyphs in quan-
titative user studies. We organized this work using several criteria, such as glyph types, study
presentation settings, datasets and tasks used. Our goal was to: first, help researchers and prac-
titioners identify relevant previous studies that give insights into glyph design tradeoffs, and get
inspired by previous study setups; second, provide a meta analysis of the study outcomes; and
third, pinpoint open research directions for the study of data glyphs.

Faces and their variations were the most studied glyphs, followed by circular position encod-
ing glyphs (e.g., star glyphs), which were often also compared to faces. Our analysis showed that
at first glance performance rankings may differ across studies. Yet, we discussed how some of
these seemingly contradictory results can be explained by differences in the study criteria, such
as the tasks, density and variations of glyphs tested. Our categorization provides readers with
references to studies with similar setups, and argues for caution when conducting a meta-analysis
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of past results.
Our work also aims to highlight gaps in the literature on data glyph evaluation. Few papers

have evaluated variations of glyphs using color encoding, even though such glyphs are used in
practice [203]. Moreover, only a few studies have compared design variations of glyphs using
linear position or length encodings, that are well established in practice (i.e., sparklines [185] or
profiles [52])—although some have at least been compared to faces. We were also unable to find
any study on circular orientation/angle encodings as already used in applications (e.g., [147]).
The visualization community cannot at this stage form general guidelines for glyphs, as existing
studies do not cover the entire space—a fact that is compounded if we consider the many criteria
used in our categorization, such as datasets and tasks, that can further influence the possible
relationships. We see a large number of opportunities for design and evaluation and hope this
work encourages researchers in pursuing them.5

The systematic review revealed some interesting research gaps, which are the motivation for
the following chapter 3 and chapter 4. Since only a few experiments were conducted comparing
linear and radial color saturation encodings I will close this gap by introducing a new glyph
design called the clock glyph and evaluate its performance in a controlled user study described
in section 3.3.

5Please, note that the evaluations [73, 74] introduced in chapter 3 and chapter 4 are already part of this survey.



Chapter 3

Data Glyph Designs for Time-Series Data

Parts of this chapter appear in the following publications:

• Christopher Kintzel, Johannes Fuchs, and Florian Mansmann. Monitoring Large IP Spaces
with ClockView. In Proc. of the 8th International Symposium on Visualization for Cyber
Security, VizSec ’11, pages 2:1–2:10. ACM, 20111

• Fabian Fischer, Johannes Fuchs, and Florian Mansmann. ClockMap: Enhancing Circular
Treemaps with Temporal Glyphs for Time-Series Data. In Proc. EuroVis Short Papers,
pages 97–101. Eurographics, 20122

• Fabian Fischer, Johannes Fuchs, Pierre-Antoine Vervier, Florian Mansmann, and Olivier
Thonnard. VisTracer: A Visual Analytics Tool to Investigate Routing Anomalies in Tracer-
outes. In Proc. of the 9th International Symposium on Visualization for Cyber Security,
VizSec ’12, pages 80–87. ACM, 20123

• Johannes Fuchs, Fabian Fischer, Florian Mansmann, Enrico Bertini, and Petra Isenberg.
Evaluation of Alternative Glyph Designs for Time Series Data in a Small Multiple Setting.
In Proc. CHI, pages 3237–3246. ACM, 20134

1The responsibilities for this joint publication were divided as follows: I did the writing and gave advice,
Christopher Kintzel did the programming, and Florian Mansmann did some proofreading and supervised the work.

2The responsibilities for this joint publication were divided as follows: Fabian Fischer did the programming and
the writing. Florian Mansmann and I did the proofreading and gave advice.

3The responsibilities for this joint publication were divided as follows: Fabian Fischer and I did the program-
ming and the writing. Pierre-Antoine Vervier provided the data and was also involved in the writing. Florian
Mansmann and Olivier Thonnard did the proofreading and gave advice.

4The responsibilities for this joint publication were divided as follows: Petra Isenberg and I designed the user
study. Fabian Fischer and I conducted the experiment. I was also responsible for analyzing the results and writing
the paper. Petra Isenberg, Florian Mansmann and Enrico Bertini gave advice and did the proofreading.
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Time-series data is similar to multi-dimensional data, where each dimension corresponds to
one point in time. The main difference between these two data types is the relationship between
the dimensions and, therefore, the analysis task. The attributes in multi-dimensional data are
most often independent from each other. Therefore, trend detection tasks across dimensions are
not performed by analysts. In case of time-series data the interplay of different points in time
are important and of high interest. This distinction between the two data types is mandatory
since it influences the design of the visualization. An important aspect is the comparison of
dimensions within one glyph design. Using a one-to-one mapping (e.g., Chernoff faces [35]) for
time-series data is, therefore, not recommended because different kinds of visual variables have
to be compared (e.g., angle of eyebrows, size of the nose, height of the ears, etc.).

In the following section 3.1, I will review the literature according to glyph designs for time-
series data and motivate the necessity for introducing an additional glyph design namely the
clock glyph. The development and the design choices made will be explained in section 3.2
together with use cases from the network security domain. A thorough quantitative evaluation
in section 3.3 compares the clock glyph against well-known alternatives and proves the fact that
this design is the best choice for specific analysis tasks.

3.1 Related Work

As can be seen in chapter 2 only 3 papers investigate the performance of data glyph designs
for time-series data in a controlled experiment [73, 116, 118].5 This is surprising since many
different glyph designs for time-series data do exist. This related work section tries to cover
application and design study papers making use of temporal glyphs. It is important to note that
the focus is on data glyphs encoding temporal data with its design and not with the position-
ing/comparison of multiple glyphs etc. A more general time series review can be found in the
survey contributed by Aigner et al. [2]. The review will be structured according to the different
visualizations temporal data glyphs are combined with. It is important to note that most of the
glyph designs are flexible in the way they can be arranged on the screen. Therefore, multiple
layout options for data glyphs are certainly possible. The categorization is solely based on the
arrangement intended by the authors of the respective research paper.

3.1.1 Geographic Maps

Whenever spatial data is included plotting data glyphs on top of geographic maps is a common
technique. The “Value Flow Map” visualization [9] plots a linear profile glyph [52] on top of
each country to convey changes in country characteristics over time. Since the authors did not
adjust the size of the glyphs overplotting in dense areas may occur. This problem is solved in the
“Icons on Maps” [71] visualization. The simple idea is to reduce the size of the glyphs in smaller
country areas. Although, the problem of overplotting is solved the comparison between several
glyphs is more difficult since data values with different scales have to be compared.

5The evaluation introduced in section 3.3 is already included in this listing.
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The TimeWheel [184] is a circular glyph design for multi-variate temporal information. The
time axis for each dimension is shown on the circumference of a polygon. Data values are en-
coded with a line connecting each point in time with a data line to the center of the polygon
showing normalized data values for all attributes. This encoding is similar to a parallel coordi-
nate plot with only 2-axis simplifying simple pattern detection like visual correlation analysis.
However, based on the amount of data lines, this glyph design is not robust against occlusion.

The linear profile glyph can also be used in three dimensional spatial visualizations to con-
vey multi-variate data, as well. Wakame [66] is a visualization, which arranges multiple linear
profiles in three dimensional space by aligning their baseline at the center point of a radar chart.
Each of these radar chart glyphs is then arranged on top of a geographic map to investigate
multi-variate time series data for specific regions. Of course, simple navigation techniques like
rotating, panning and zooming are necessary to be able to investigate all attributes over time.
This is not the case for the “Data vases” visualization [182], which abstracts the linear profile
glyph by using a disc metaphor for single points in time. For each timestamp a disc is drawn,
which size and color encodes the underlying data value. The discs are then stacked according to
their position on a geographic map. Since each disc shows only one dimension, a navigation in
three dimensional space is not necessary. Profile flags [129] plot small line charts on a three di-
mensional banner, which can then be put on top of different basic visualizations showing spatial
information. Overplotting in dense areas can be avoided by using various lengths for the flagstaff
positioning the banner at different heights.

Circular profile glyphs can also be transfered to three dimensional space. Helix icons [183]
for example show periodic information for spatial temporal data by plotting cylinder like glyphs
on top of geographic maps. The z-axis is used to represent the time dimension and color to
display the underlying data value. In order to perceive the whole display and, therefore, data
space, interactively changing the perspective on the cylinder is mandatory. Same thing is true
for the pencil icons [183] visualization. Their design is similar to the helix icons, however, they
encode multi-variate time-series data. The z-axis illustrates the time dimension and the different
planes of the pencil represent various dimensions with a color encoding for the respective data
value. Perceiving all dimensions is only possible by rotating the whole view or just the three
dimensional glyphs.

3.1.2 Node-link Diagrams
Visualizations like MOSAN [186] show simulation data in a node-link diagram enriched with
linear profiles. The simple nodes are exchanged with more complex glyph designs to convey
additional information. The graph layout displays the model structure whereas the data glyphs
are used to illustrate the temporal development of an attribute over multiple runs. The linear
profile glyph is also used in other network visualizations with different contexts [198, 202]. Xu
et al. visualize the development of social network data using the last.fm dataset [27, 202]. Two
connected glyphs indicate a friendship connection whereas the glyph itself shows the amount
of interest overlap over time. Westenberg et al. introduce the expression glyph to show DNA
microarrays for four points in time in a gene regularity network [198]. Since there are only four
time points visible a bar chart is shown with the bars colored according to the interaction type



34 3. Data Glyph Designs for Time-Series Data

(i.e., green =̂ activation, and red =̂ inhibition).
The cluster glyph [14] is slightly related to the sticky figure visualization [150], however,

tailored towards showing changes over time. Human movement is captured and visualized using
small sticky figures. The variation in motion is displayed using snapshots of the animated limbs.
The opacity of each limb displays the positions, which are traversed more often. The result is a
blurry picture of a sticky figure showing the degree of movement.

3.1.3 Grid Layouts, Matrix Visualizations
A straightforward arrangement of data glyphs is a common grid or matrix layout where the
columns and rows refer to different attributes. An example is the “Pathline” visualization [125]
showing evolutionary changes of genes in a matrix layout. Each cell encodes temporal informa-
tion in a linear profile glyph with the columns representing different genes and the rows various
species. Comparisons across genes and species can be easily done by scanning through the rows
or columns respectively. Im et al. propose a generalized scatterplot matrix (i.e., GPLOM) [90]
for continuous and categorical data by exchanging the cells with small glyph representations. For
time-series data in combination with numeric data, the tool displays small bar chart glyphs using
one bar for each point in time. A colored stripe glyph with a linear layout is used for temporal
categorical information.

A similar color encoded glyph was used by Oelke et al. [98, 144] for displaying visual
document fingerprints. Single rectangles represent different sections of the document. The fill
color of each rectangle is used to encode the number of occurrences of a specific term within a
section. Of course, text documents cannot be considered time-series data, however, the progress
in text is somehow related to a progress in time. Borgo et al. experimented with different block
sizes for the inner rectangles and how they influence the performance of the analysts [18]. Their
study suggest that the size does not affect the effectiveness of the analysis significantly.

A more unique glyph visualization is the InfoBug [40]. Multiple attributes are mapped to the
torso of an abstract bug representation. The wings of the bug are shaped like small line charts
with the time dimension progressing from top to bottom. Therefore, symmetric wings indicate a
correlation of the two attributes mapped to the individual line charts.

Gestaltlines [21, 22] are similar to sparklines [185], however, they make use of an orientation
encoding to show temporal changes. For each point in time a data line is drawn. The angle of
the data line corresponds to the underlying data value. The lines are stacked according to the
timestamps. The temporal axis can also be arranged horizontally to deal with longer time-series
making this visualization also suitable to be included in textual documents.

The timeWheel [39, 40] should not be confused with the TimeWheel [184] introduced earlier.
Although, both designs encode time-series data the mapping is different. In the timeWheel vi-
sualization different temporal attribute dimensions are represented by single line charts arranged
on the circumference of a circle. The single line charts are rotated according to their position
with the reference point in the middle of the circle. The color and the height of the line charts
encode the respective data value. This timeWheel visualization can also be extended to a three
dimensional glyph design shaped as a cylinder [39]. This cylinder is, therefore, divided into
slices according to the number of attribute dimensions. Each slice shows the time dimension
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from the center point of the cylinder to its circumference. The height of each slice encodes the
corresponding data value, which may change over time resulting in a bent surface.

The response glyph [97] also uses multiple data lines to encode multi-dimensional temporal
data. Each line corresponds to one attribute, which is progressing according to their data value
over time. The final glyph looks like many line charts plotted on top of each other.

3.1.4 Text Visualizations
SparkCloud [110] is a text visualization combining tag clouds with linear profiles to show the de-
velopment of a term over time. By adding small data glyphs the static representation is enriched
with temporal information showing trends in data without using animation.

Sparklines [185] can be added to documents and add temporal information to textual contents
by plotting small line charts close to the respective text section. Instead of writing single numbers
for e.g., stock prices, the sparkline technique uses the space more efficiently by showing the trend
of stocks in small visual representations.

3.1.5 Hierarchical Visualizations
The “SolarPlot + Aggregated TreeMap” technique [38] enriches hierarchical information with
time-series data by extending a sunburst visualization with linear profiles. Each bin in the sun-
burst is represented by a data glyph showing temporal information. Such line chart glyphs are
also embedded in treemaps to show hierarchical time-series data [164]. However, due to the
varying aspect ratio of the rectangles it is difficult to compare different time-series.

In the work of Dinkla et al. [50] linear color encoded glyphs are embedded in a hierarchi-
cal tree visualization. The tree structure is used to show the semantic hierarchy of terms in a
document. The color indicates the frequency of a certain term in specific text sections.

3.1.6 Flow Visualizations
Flow visualizations can also be enriched with glyphs to convey temporal information. Flow
radar glyphs [86] use color and a polar coordinate system to show the development over time.
The jitter of the data line along the time axis encodes the underlying data value. The technique
can also be extended to three dimensional space. AmniVis [140] is a visualization bundling
multiple streamlines in a widget arrow glyph to show time steps of various lengths. The glyph
can be used as an overview displaying the overall trend of many streamlines in a specific region.

3.1.7 Projection to 2D Space
Steiger et al. use linear profiles to visualize power consumption for multiple sensors over time
[177]. The data points are projected to two dimensional space with similar temporal patterns be-
ing combined in one data glyph prototype. Interesting events like the drop in power consumption
during daytimes for certain regions can be easily spotted.
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Ward and Guo project linear and circular profile glyphs to two dimensional space using a
PCA [193]. According to the underlying task the user can switch between the two designs. For
analyzing the shape of a time-series the authors switch to linear profiles whereas for a more
compact representation circular representations are preferred.

Yang et al. arrange pixel glyphs with an MDS projection on the screen [203]. The pixels in
the data glyphs correspond to single points in time with a color coding for the underlying data
value. The pixel arrangement can be done in various ways. For time-series data preserving the
natural temporal order in a linear layout is convenient and easy to achieve.

Summary

As can be seen in this related work section many different data glyph designs for time-series data
do exist. However, it is interesting to note that there are nearly no data glyph designs making use
of a clock metaphor to show temporal information. Since some quantitative evaluations [65, 91,
170] have shown that data related metaphors help to better analyze the underlying data, a new
glyph design using a clock metaphor is worth pursuing. SpiraClock [51] or the spiral graph [196]
are two visualization systems making use of such a metaphor to display temporal information.
The idea is to convert these visualizations to small data glyph designs and investigate whether
such a metaphor really works for time-series data. In the next section 3.2 I will introduce the new
glyph design namely the clock glyph and show its applicability to the network security domain
using time-series data.

3.2 Clock Glyph - A Data Glyph Design to Visualize Time-
Series Data

In the following, I will introduce a new data glyph for visualizing time-series data. As explained
in section 3.1 a metaphoric data glyph design is still missing. Based on the performance of other
metaphoric data glyphs such an approach seems promising. After explaining the design choices
made I will show the applicability of the clock glyph with a network security use case. A quan-
titative experiment conducted in section 3.3 compares the clock glyph against well-established
data glyph designs and proves the usefulness of this metaphoric representation.

3.2.1 Design Space for Temporal Glyphs
The design space for a basic temporal glyph can be characterized by the visual variables that
are used to encode two attributes of temporal data: a) the position of a timepoint on the plane
and b) the data value associated with this timepoint. Different visual variables can be used
to encode these two attributes. Ward [192] describes several categories of glyphs. To narrow
down the design space we6 only discuss temporal glyphs with many-to-one mappings where
several or all data attributes map to a common type of graphical attribute. This is important in

6In this section 3.2 the term ”we” comprises Christopher Kintzel, Florian Mansmann, and me
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order not to promote certain temporal dimensions and to enable easier intra-record and inter-
record comparison, which is fundamental for many tasks involving time series. While many
more different glyph designs exist (see section 3.1) we focus on two main types of glyphs here:
profiles and stars (see [192]). Both types have the advantage that relationships between adjacent
data points are easier to see than for other glyphs [192].

The focus of the design was to be able to read high data values, spot and name interesting
points in time, and be able to detect positive or negative trends. To best capture the time compo-
nent of the data we thought about a metaphoric design for the data glyph, thus, excluding linear
profiles. Context related metaphors help to better understand the underlying data; a finding sup-
ported by a study conducted by Siirtola in 2005 [170]. Participants working with a data glyph
designed to communicate the context of the underlying data performed significantly more accu-
rate in analysis tasks compared to non related data glyphs. Therefore, we assume that arranging
the time in a circular way will help analysts to better understand temporal aspects by preserving
the natural order of time.

To represent the data value for each point in time we have to keep two constraints in mind.
First, the clock metaphor must be preserved. The pointer for each time slot should have the same
size and an equal angle to strengthen this fact. Second, dimensions must be represented with
an identical visual variable. This design choice is mandatory because the analyst must be able
to easily compare different dimensions against each other. As a result, we used a many-to-one
mapping for the design [192].

Because of these constraints, there is only a limited set of visual variables which could be
used to encode the respective data value. The length, the saturation/brightness, the texture, or the
orientation of the pointer. Texture should not be used for numeric information because a natural
order can hardly be perceived [195]. Different orientations of pointers would result in many
crossing segments making it hard to read exact data values. Length, being the most accurate
visual variable, seems like a reasonable choice. However, the different lengths of the pointers
could harm the regular structure of a clock. Time segments with no data value would result
in gaps between the pointers (see Figure 3.1). Reading the exact position of a time-slot could,
therefore, be more difficult. That is why we decided to use color saturation to encode the data
value (Figure 3.2).
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Figure 3.1: Star glyph: data lines are radiating from the center. The length of the lines encode
the data value for different points in time. Low data values result in gaps within the design. Left:
12 points in time; right: 24 points in time.



38 3. Data Glyph Designs for Time-Series Data

12

3

6

9

24

6

12

18

Figure 3.2: Clock glyph: visualizing time-series data with a clock metaphor. Slices arranged in
a circular layout correspond to the time dimension. Color saturation is used to communicate the
respective data value. Left: 12 points in time; right: 24 points in time.

Of course, the selection of the current encoding is only based on observations of individu-
als. A proper evaluation of the design choices made is still missing. In the following sections
real world data from the network security domain will be used to show the applicability of the
clock glyph. ClockView [100], ClockMap [63], and VisTracer [64] are three tools making use
of the clock glyph to monitor network traffic and increase the situational awareness. For a more
generalized evaluation of the clock glyph a controlled user study was conducted (section 3.3) to
get additional information about the performance compared to other design alternatives (i.e., line
glyphs, star glyphs, and stripe glyphs). Our results show that depending on tasks and data den-
sity, the chosen glyphs performed differently. Line glyphs are generally a good choice for peak
and trend detection tasks but radial encodings (i.e., clock glyph, and star glyph) are more effec-
tive for finding specific temporal locations. The additional qualitative analysis also contributes
implications for designing temporal glyphs for small multiple settings.

3.2.2 Application-Oriented Evaluation in the Network Security Domain

Detecting anomalous traffic in an entire company network is difficult because of two reasons.
First, since the number of machines in a network grows at a rapid pace, many different hosts
have to be monitored over time. Second, the amount of traffic leaving or entering the network
grows relative to the number of new hosts. Thus, there is a need for network security tools help-
ing the administrator to analyze the traffic. This massive amount of data cannot be effectively
investigated by sequentially reading textual log files. Researchers and practitioners are aware
of this fact and developed many different tools and concepts to apply filtering and visualization
methods to this kind of data in the last few years. The goal is to support the administrator in deal-
ing with this massive amount of data and in exploring anomalous traffic. Besides operationally
monitoring real-time traffic to supervise a network, forensic analysis becomes an important as-
pect to reveal attack patterns and develop defense mechanisms against future attacks through
diversifying malware aimed at circumventing traditional defense mechanisms.

To show the applicability of our data glyph design we used the clock glyph within a net-
work security domain. This domain seems promising since temporal data is most often used in
combination with other data types like hierarchies, or networks. Therefore, detecting anomalous
traffic in an entire company network is difficult and a great research challenge. Like most data



3.2 Clock Glyph - A Data Glyph Design to Visualize Time-Series Data 39

glyph designs, the introduced clock glyph has the advantage of being flexible in the way it can
be arranged on the screen. Combinations with other visualizations like e.g., node-link diagrams
to show relationships between devices, treemaps to illustrate the hierarchical order, or common
matrices to understand network structures within companies, are possible. To put high demands
on the design three different data sets including combinations of multiple data types are used.
For each data set a different visualization system making use of clock glyphs is presented.

Use Case I: Monitoring NetFlows with the ClockView Application

In our ClockView application [100] we7 would like to enhance the overview visualization of al-
ready existing tools to show more details about individual hosts at the same time. NVisionIP
[109] for example is a software showing an entire network of hosts in a 2D matrix divided into
different subnets and host IP addresses. Every host is represented as a four pixel rectangle. The
color of each rectangle encodes the traffic of the host on different ports. Unfortunately, the vi-
sualization only shows one state of time at a glance. Anomalous behavior over time cannot be
discovered on one sight. A more detailed perspective of the network is provided by the Small
Multiple View, which uses two bar charts to visualize further information about the hosts. How-
ever, the overview is lost because only a limited amount of hosts can be displayed on the screen
in this detailed way. To obtain more information, the analyst can dig deeper and investigate a
single host by looking at its raw traffic data in the Machine View.

NVisionIP was inspiring because of the way the network is monitored in a matrix visual-
ization using small representations for every single host with the possibility to get details on
demand. However, the way in which the hosts were displayed was not satisfying. With the
aforementioned representation it was only possible to code a single parameter within each host
(e.g. number of ports used). Therefore, the clock glyph would be a better way to display single
machines in the network to have the possibility to code more parameters without loosing the
overview. As a consequence, we embed our clock glyph in a matrix visualization to show the
network hierarchy as well as the amount of traffic for each individual device over time. Analysts
are able to monitor thousands of hosts with our ClockView prototype.

To get a global picture of the servers and workstations used in the network, it is useful to
visually encode each host individually in a network overview. The hosts are represented in a
way the user can easily notice, if a specific machine’s behavior matches more a server with 24
hours of traffic or a client with traffic only on the working hours. Therefore, we want to show all
internal hosts with their traffic at a granularity of one hour for a timespan of one day. For this
purpose we need to display up to 65536 (256*256 possible IP addresses for a /16 network) time
series, each with 24 (one per hour) data values. This leads to a maximum of 1572864 data points.

Each host is represented as a clock glyph, which is subdivided into 24 segments, each of them
showing the traffic of one hour of the day encoded with color saturation. 0:00 o’clock is at the
top, 6:00 o’clock at the right side, 12:00 o’clock at the bottom and 18:00 o’clock at the left side
(Figure 3.2 (right)). As a clock metaphor is used here, this segmentation is more intuitive as
the segmentation into rectangles, even if the clock is transformed from 12 to 24 hours. Also the

7In this subsection 3.2.2 the term ”we” comprises Christopher Kintzel, Florian Mansmann, and me
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natural order of time is better preserved, since there are no line breaks between the data points.
The time representing segments are not only at the same position for every host, but also have the
same orientation. Corresponding hours of different hosts are displayed in parallel and thus at a
glance can be recognized as group. Since the separation between the glyphs is already achieved
due to the circular shape, no additional spacing has to be added. Because of this, the glyph is
more space-efficient on smaller screen resolutions.

The amount of traffic is represented by a fixed diverging color scale from blue (negative, only
used for comparison showing a decrease in traffic) over white (0) to red (positive). Due to the
fixed color scale hosts remain comparable on different days. Otherwise a host with the same
amount of traffic on different days could be perceived entirely different.

Figure 3.3 shows the ClockView application run on a Powerwall display with a resolution
of 5224 x 2160 pixels.8 Without changing the setting (i.e., level of detail), analysts can get an
overview picture of many time series when looking at the visualization as a whole to spot interest-
ing patterns. However, when moving closer to the display individual glyphs can be investigated
in more detail to really compare the amount of traffic for specific points in time.

Figure 3.3: ClockView: The application is used on a Powerwall display with 8 HD projectors.
Clock glyphs are arranged in a matrix layout showing all network devices of one big company.
The position of each glyph is based on its IP address in the network.

To evaluate the ClockView visualization and show its operational usage we apply it to our
university’s network. To spot suspicious behavior the traffic of a whole day for all network

8http://www.vis.uni-konstanz.de/en/powerwall/, retrieved 02.02.2015.
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devices is monitored and displayed using clock glyphs. To better identify abnormal behavior we
color the glyphs according to the change in traffic from the current day compared to the previous
five days.

As expected, most of the glyphs are colored white thus signalizing nearly no change, except
for a partial red pattern in one single subnet (Figure 3.4). To take a closer look at the single
glyphs we enlarge the visual representations by zooming in this exact area. With the additional
space for each circle the traffic distribution over time is getting more obvious. Basically on the
second half of the day the amount of traffic rises. It seems that some new machines have been
added to the network causing extra traffic. This is suspicious because the monitored dataset
was a Sunday where there is no regular daily work in the university. After investigation, we
discovered that the corresponding subnet of the university is assigned to the vpn connections. A
computer connecting to the university from an external network gets an IP address in this specific
subnet. With this additional information the suspicious pattern can be explained as a common
occurrence.

Figure 3.4: Suspicious behavior: The amount of traffic for all network devices is compared over
multiple days. The change of traffic for each single time slot is mapped to color (i.e., white =̂ low
change, red =̂ high change). Most devices have a similar behavior, however, several hosts in one
particular subnet show a quite diverse behavior compared to the previous days (i.e., artificially
highlighted).



42 3. Data Glyph Designs for Time-Series Data

Use Case II: Exploring Network Traffic with the ClockMap Application

The general idea of the ClockMap application [63] is to show hierarchical time-series data with
nested circles and glyphs. A circular treemap is used to convey the hierarchical structure of the
network, whereas, each time-series is represented with clock glyphs (see Figure 3.5).

Figure 3.5: ClockMap without aggregation: The data glyphs are embedded in a circular treemap.
Each device in the network corresponds to one time-series and is, therefore, represented by one
clock glyph. The nested circles convey the hierarchy information of the underlying network
structure.

Of course, a rectangular treemap would be more space efficient, however, the radial layout
of the data glyphs perfectly fits into the circles of the circular treemap. This is true for each
level in the hierarchy since the radial layout of the glyphs scales with the circular design of
the treemap. This flexibility enables a highly interactive exploration process with panning and
zooming possibilities. In the ClockMap application each hierarchy level is represented by one
clock glyph showing the aggregated network traffic of all children in a specific branch. On the



3.2 Clock Glyph - A Data Glyph Design to Visualize Time-Series Data 43

highest level of the hierarchy ClockMap displays only a single clock glyph (i.e., root node), which
visualizes the aggregated time-series of all underlying nodes. However, analysts can switch
between different levels of hierarchies by zooming into this information space. After passing a
certain threshold the root node is split into multiple clock glyphs each representing one branch
of the current hierarchy level. Again, each clock glyph shows the aggregated time-series of all
its children. The size of each glyph encodes the number of children for this specific branch.
This recursive behavior can be repeated until the analyst reaches the lowest level of the hierarchy
where each leaf is represented by one clock glyph. Figure 3.6 illustrates the aggregation of
the underlying hierarchies in a static screenshot. The dashed rectangle is artificially included
showing the next hierarchy level in the circular treemap after the threshold is passed.

Figure 3.6: ClockMap with aggregation: The time-series of different hierarchy levels are aggre-
gated in one clock glyph per branch. After zooming into certain areas the visualization switches
and shows all underlying children again represented with data glyphs.

People may argue that rectangular treemaps could be enriched with linear profiles, too, to
visualize the same information. This may be true, however, I would like to stress that the clock
metaphor of the glyph design would then be violated.
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As already shown in the ClockView application network data contains an inherent hierar-
chical structure with temporal information. Since ClockView’s matrix overview can only show
the relation between two different levels of hierarchies (i.e., x-axis, and y-axis) the ClockMap
application is able to reveal network traffic patterns for multiple hierarchy levels.

Like in the previous use case we9 consider NetFlow data of 24 hours. The data set contains
6048 hosts belonging to the same /16 IPv4 address block. On the first hierarchy level several
different clock glyphs are visible each encoding a single branch, which corresponds to the second
block of the IP address space (Figure 3.7). Besides the big clock representation one smaller glyph
caught our attention because it is entirely colored in red, thus, signalizing a high amount of traffic.
To get additional information about this subnet we zoom into this region to trigger the semantic
zoom. Consequently, the clock glyphs are replaced by multiple smaller clock representations,
which belong to the respective subnet. Interestingly, the branch with the small red clock glyph
contains a further entirely red clock glyph. This means that only this address space is responsible
for the high amount of traffic. Another zoom into this region reveals three network devices,
which have a high amount of traffic especially in the night hours. Since their behavior seems to
be entirely different compared to the other devices in this address space these three hosts should
be investigated in more detail.

Figure 3.7: Suspicious hosts: A semantic zoom is used to investigate a smaller subnet with high
traffic (i.e., entirely red) in more detail (left). Only one branch of this subnet seems responsible
for this high amount of traffic (middle). Another semantic zoom reveals three hosts having high
traffic especially in the night times (right).

Use Case III: Analyzing Temporal Network Changes with the VisTracer Application

The use cases I and II focus on the temporal and hierarchical aspect of the data not including
the communication between different devices. In the third use case the VisTracer application

9In this subsection the term ”we” comprises Fabian Fischer, Florian Mansmann, and me
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[64] considers network information like routing changes over time using traceroutes. The tool,
therefore, combines node-link diagrams with clock glyphs to detect anomalies during the com-
munication.

The graph layout of the node-link diagram reads as follows. The communication starts on the
left side of the screen and progresses to the right until it reaches the final destination. Whenever a
different route is taken a new layer is added on top of the actual route showing the new direction.
The nodes in the graph represent the different hops while the edges show the connections with
each other. The width of an edge depends on the amount of traces using this exact connection.
The nodes are exchanged with clock glyphs with equally sized slices and small flags reflecting
the country of the hop as can be seen in Figure 3.8.

Reaches final destination

Does NOT reach final destination

Figure 3.8: Routing anomaly: Two different paths are taken to reach the final destination in
Russia. After 4 traceroutes a different route is taken. It is interesting to note that only the route
displayed at the top reaches the destination.

Because of the aspect ratio, the circular glyphs can be directly integrated into the graph nodes
without wasting additional space for this temporal information or requiring animation. The num-
ber of slices depends on the amount of traceroutes shown in the graph. The clockwise arranged
slices represent the different traceroutes for one day. When a hop was used in a traceroute the
respective slice is colored in dark blue or gray, otherwise it is filled with white color. The color
(i.e., dark blue or gray) depends on whether the traceroute reaches its destination or not. This
encoding supports the analyst in detecting the main route (i.e., based on the path’s width), the
usage of hops (i.e., the proportion of colored slices), the reachability of the destination (i.e., the
hue of the colored slices) and the temporal development of the route (i.e., the partition of the
slices). Additionally, the geographic location of the corresponding country can be taken into
account by looking at the flag in the center of the clock glyphs. This additional information may
highlight possible route flappings between different countries along the route in the graph.
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Figure 3.8 shows an interesting use case scenario. Seven traceroutes have been initiated from
a computer located in France (node at the left) with the destination being somewhere in Russia
(node at the right). The single traceroutes are visualized with different slices in the clock glyph
and color is used to show whether the traceroutes successfully traverse the path to the destination
or not. It is interesting to note that the first three traceroutes are looping between hosts in the
US and Europe before reaching the final destination. This is an interesting finding since the
traceroutes do not to take the shortest path according to the geographic location. Additionally,
after the forth initiated traceroute command the path is changing entirely not traversing through
the US anymore but taking a more direct route through Russia. However, the gray slices in the
clock glyphs illustrate that this route is not reaching its destination. This may be an indication for
an attack rerouting network packages through hops in Russia never reaching the final destination.
Combining clock glyphs with node-link diagrams helps to better understand routing issues in
networks over time. Temporal changes can be investigated in a static view without the need of
additional timeline navigations or animations.

3.2.3 Conclusion
As shown in section 3.1 there exists a great variety of glyph designs for time-series data. Since
metaphor based designs for temporal data were missing the clock glyph was introduced as a
suitable alternative. To show its applicability to real world scenarios the data glyph was embed-
ded in three network security tools (i.e.,ClockView, ClockMap, and VisTracer) showing network
data over time. The familiar clock design helped analysts to identify temporal patterns and spot
suspicious behavior as shown in the use cases.

To investigate the performance of this glyph in more detail we10 further conducted a con-
trolled user study with well-known design alternatives. Based on quantitative (e.g., the effec-
tiveness and efficiency) and qualitative (e.g., confidence) results we were able to rank all design
alternatives for different tasks and data densities. In the following section (section 3.3)I will de-
scribe this experiment in more detail and finally come up with design considerations for glyphs
encoding time-series data.

3.3 Evaluation of Alternative Glyph Designs for Time-Series
Data in a Small Multiple Setting

The following section contributes to two research areas. First, as mentioned in chapter 2 there
are open research gaps when investigating the performance of different glyph designs (see Fig-
ure 2.3). For some alternative representations no quantitative experiments have been conducted.
Thus, practitioners as well as researchers cannot rank these designs or refer to design consid-
erations. Second, the clock glyph, which was introduced in section 3.2 was not evaluated in a
controlled user study. Measuring its performance and comparing it to alternative representations

10In section 3.3 the term ”we” comprises Petra Isenberg, Fabian Fischer, Florian Mansmann, Enrico Bertini, and
me
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helps to better understand the influence of different visual variables in glyph designs, to propose
design guidelines for glyph representations showing time-series data, and to confirm that a clock
metaphor works for time-series data.

As shown in subsection 3.2.2 analyzing many time series at once is a common yet difficult
task. This is not only true in the network security domain. Time-series data is the basis for
decision making in many different application domains, as well–such as finance, or traffic man-
agement. Detecting trends, spotting peaks, or investigating single points in time from a visual
representation are daily analysis tasks of vital importance [2, 100, 108, 147].

Since different visual variables such as length, color, or position can be used to encode two
aspects of temporal data in one glyph: a) the location of a data point in time, and b) the quanti-
tative data value, a multitude of designs have been proposed (see section 3.1). When confronted
with the task of choosing an appropriate glyph design, a visualization designer or practitioner
currently has little guidance on which encodings would be most appropriate for which tasks and
on which visual features and factors influence people’s perception of data encoded in glyphs.
While one could follow Cleveland and McGill’s ranking of elementary perceptual tasks [43] and
try to predict the performance of glyphs based on these results, it is not clear whether their results
will hold. Temporal glyphs include dual encodings, are used in specific temporal analysis tasks,
and come in many different sizes and densities.

In order to address this lack of guidance on the use of temporal glyphs, we ran a controlled
experiment to compare four carefully selected glyphs using two different data densities.

As a starting point we took the clock glyph [100] and the sparklines [185] technique as famous
representatives for time-series data. Additionally, we extended the design space to a total of
four glyph designs including a stripe glyph [108] and the well-known star glyph [168]. These
alternatives were chosen for their use of different combinations of visual variables to encode
temporal position and quantitative value of a data point. We evaluated all glyph designs in a
small multiple setting as small multiple is the most common usage scenario for temporal glyphs
and the regular layout reduces confounding factors due to the positioning.

3.3.1 Experiment Design
The purpose of our experiment was to compare the performance of different, potentially power-
ful, temporal glyphs in a small multiple setting. Our three tasks are inspired from our work with
network analysts but generalize to other domains in which temporal data has to be compared and
analyzed.

Experiment Factors

Our experimental factors were glyph, task, and data density.

Glyphs: Since we wanted to compare our clock glyph against the sparklines technique we
thought about additional alternative representations to bridge the gap between the two designs.
Our clock glyph (CLO) uses a radial layout and a color saturation encoding to visualize time-
series data. The sparklines technique (LIN) has a linear layout for the time dimension and a
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position/length encoding for the data value. To be able to better reason about changes in per-
formance we included a stripe glyph (STR) with linear layout and a color saturation encoding,
and a star glyph (STA) with a circular layout and a position/length encoding. We chose to test
STA for its similar value encoding to LIN and STR for its similar value encoding to CLO. When
comparing glyphs visually, the distance between the representations matters. We chose to keep
the distance for the different designs identical and, therefore, to have the same uniform small
multiple layout. As a consequence it was important to set a fixed aspect ratio for each glyph.
To maximize display space for circular glyphs for a fairer comparison we chose a square aspect
ratio for each glyph.

For the color encoded glyphs (CLO and STR) we chose a heatmap colorscale, which was
motivated by the yellow to red colorscale from ColorBrewer [23]. This scale takes advantage
of the fact that the human visual system has maximum sensitivity to luminance changes for the
orange-yellow hue [113] and it is also suitable for color blind people.

For each trial, the same type of glyph—but showing different data—was drawn on the screen
in a small multiple layout of 8× 6 = 48 glyphs in total (Figure 3.9). Each glyph was drawn at a
resolution of 96 × 96 pixel.

Tasks: Many different tasks exist that can be performed on time-oriented data [2, 10, 119].
We chose our tasks taking two criteria into account: (1) their ecological validity, i. e. how com-
monly they are performed in environments where the quick comparison of multiple time series is
needed. (2) their heterogeneity in terms of the elementary perceptual tasks, i. e. we picked tasks
that involve the comparison of visual variables for encoding data values, investigating different
layouts for time and the combination of the two. In terms of ecological validity our tasks were
inspired by our work with network security analysts from a large university computer center who
had to monitor large amounts of network devices. The analysts had to be able to efficiently detect
anomalous traffic patterns (e.g., peak values in none working hours) to be able to quickly react
on the possible threat. Our three tasks were:

Task 1—Peak Detection: Amongst all small multiple glyphs, participants had to select the
glyph that contained the highest data value (Figure 3.9). This task, thus, involved scanning all
glyphs for its highest value and comparing across glyphs using length (LIN, STA) or saturation
(STR, CLO) judgements.

Task 2—Temporal Location: Among all small multiples, participants were asked to select
the glyph with the highest value at a predefined time-point. This time-point was textually shown
to the participant in advance (e.g. “3am”). This task, thus, involved first identifying the location
of a time-point by making positional (LIN, STR) or angular judgements (STA, CLO) and then
comparing the peaks as in Task 1.

Task 3—Trend Detection: Among all small multiples, participants had to select the glyph
with the highest value decrease over the whole displayed time period (Figure 3.10). This task,
thus, involved first detecting all decreasing trends and then comparing the first and the last value.

Data Density: In order to test the scalability of each glyph in terms of the number of datapoints
it can encode, we tested two data densities. The smaller density consisted of 24 data values (1
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STA LIN

CLO STR

Figure 3.9: Peak detection: Illustration of the different glyphs with one high data value at a
random point in time. For a better understanding the correct glyph is artificially highlighted.

for each hour), and the larger of 96 data values (1 for each 15 minutes). The rendered size of the
glyphs holding these data points was not varied between each density (Figure 3.11).

Hypotheses

We previously conducted two exploratory pilot studies with similar glyphs and tasks. From these
and the related literature [43, 192] we derive the following hypotheses:

H1: For tasks involving primarily a value judgement LIN & STA (position/length encodings)
are more accurate and efficient than CLO & STR (color encodings). This effect is strongest
for LIN. This hypothesis is based on Cleveland and McGill’s experiments [43] on the per-
ception of position, length, and color. We expect the results to hold for both data densities.

H2: For tasks involving primarily a value judgement, CLO & STR (color enc.) are more im-
pacted by higher data density than LIN & STA (position/length enc.). Color perception



50 3. Data Glyph Designs for Time-Series Data

ba c d

Figure 3.10: Trend detection: The four glyphs demonstrate different kinds of trends. From left to
right: (a) visualizes a positive trend; (b) contains a positive and negative value development but
for the whole displayed time interval there is no clear trend visible; (c and d) picture a negative
trend over the whole displayed time period with (d) having the higher decrease. The glyph with
the highest decrease over the whole displayed time period is artificially highlighted.

LIN STA CLO STR

Dataset 1

Dataset 2

Figure 3.11: Data density: Differences between the two datasets for each glyph design.

may change drastically with varying context colors and size of the object being viewed
[179, 195]. We expect color perception to be more impacted than visual acuity on dense
line and position encodings.

H3: When detecting temporal positions, STA & CLO (angular enc.) outperform LIN & STR
(position enc.). Using the familiar clock metaphor, we expect that circular glyphs allow the
perception of specific points in time to be more accurate. This effect is stronger for CLO
than STA as the clock shape is more clearly retained.

H4: When detecting temporal positions, increasing data density will negatively impact perfor-
mance with each glyph.. This is because color judgements are impacted by the size of the
object being viewed [179] and angular as well as positional judgements by visual acuity. We
expect CLO & STA to perform best as they spread out values towards the circumference of
the circle giving additional space for perceiving color and position.

H5: For trend detection, LIN & STA (position and length enc.) are most effective. In trend
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detection, two mental sub-tasks have to be integrated by the participant: a) analysis of data
development over time (characterized by the slope) and, b) comparison of the first and last
data value (trend steepness). We expect the first sub-task to be performed equally well with
all glyphs but expect that the comparison of distances between two data values is more
difficult with color compared to position/length.

H6: For trend detection tasks, the participants’ performance for each design is not influenced
by data density. For detecting a trend comparing the overall shape rather than single data
values is necessary. We expect that increasing the data density will not influence the trend
shape and, thus, has no effect on task performance.

Experiment Design

We used a mixed repeated-measures design with the between-subjects variable task and the
within-subjects independent variables glyph and data density. The dependent variables were
error, time and confidence. Each participant conducted one task with all four glyphs, two densi-
ties, and four trial repetitions.

Data: To control the data values and their resulting visual representations, we created synthetic
data for the experiment. In total, we created 48 data instances (glyphs) for each repetition,
task, and data density. The data was created such that just one glyph represented the correct
answer. The glyphs with smaller density held 24, the ones with large density 96 data values. In
previous pilot experiments these two values were established as being sufficiently different from
one another. Data for each task was created as follows:

Task 1: Each glyph was filled with random noise to a threshold of 80% of its value range
according to our experience from pilot studies. For the target glyph a peak value at 100% of
the value range was added to the dataset at a random point in time.

Task 2: Each glyph was filled with random noise as in Task 1. A peak value at 100% of the
value range was added to the target glyph at a predefined point in time. For the distractor
glyphs, peak values of the same value were integrated but at wrong temporal positions.

Task 3: We designed different decreasing trends by varying the values of the first (0–25% of
value range) and last data point (75–100% of value range). The target trend decreased 75%
of the value range from first to last data value while the distractor glyphs included a decrease
of 55%. Along the trend line each data point was varied by zero, one, or two values using a
probabilistic function.

Participants: We recruited 24 participants (12 male, 12 female) mainly from the local student
population. All participants had normal or corrected-to-normal vision and did not report color
blindness. Their age ranged from 19–56 years (median age 24). Each participant had at least
finished high school, eight held a Bachelor’s, two a Master’s degree, and one a Ph. D. The aca-
demic background of the participants was quite diverse with no one having a computer science
background. 34% of the participants reported to use the computer for more than 30 hours per
week and 50% less than 20 hours.
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Procedure: The experiment took place in a quiet closed room at our university. In addition to
the study participant, the experimenter was the only person present. The participant sat in front
of a table at a distance of approx. 50cm from a 24in screen set to a resolution of 1920 × 1200.
Participants interacted with the study software using only a mouse.

The experimenter began by explaining the data, the single task, and the design of the different
glyphs. The data was presented as financial stock data to provide context.

Only when the participant was familiar with the current glyph design and task, he/she was
allowed to proceed. For each glyph and density tested, the participant stepped through four
practice trials followed by the four actual study trials. After each trial, the participant entered a
confidence score for their answer on a 5-step Likert scale.

The task question was visible on the screen at all times. The presentation order of each glyph
was randomized in a Latin square fashion between participants. The glyphs were presented in
a 6 × 8 matrix layout (Figure 3.9). Each participant saw the same glyphs per trial in different
random configurations.

3.3.2 Results

We report on significant results (p < .05) from our quantitative analysis in this section and refer
to the qualitative feedback in the discussion section afterwards.

Data Analysis

Task completion time, error rate, and confidence score were recorded for the analysis. We used
a repeated-measures ANOVA for the analysis of completion time. Time in our experiment was
log-transformed where it did not follow a normal distribution. For the error rate as well as for
the confidence score, a non-parametric Friedman’s test was used.

Except for the second task we did not observe a strong learning effect between trials. There-
fore, we analyzed all four trials for the first and third task, glyph and dataset for each participant.
For the second task we analyzed the results of the last three trials. In addition, single answers
were marked as outliers when each metric (time, error) was beyond two standard deviations from
the mean for a given task and glyph per participant. Outliers were replaced with the closest value
two standard deviations from the mean for each participant according to standard procedure. The
tasks used in the study differed in their characteristics, so we analyzed the results of each task
and dataset independently. Finally, we analyzed the feedback and subjective preference from the
post-session interview for a qualitative analysis.

Task 1: Peak Detection

Task 1 consisted of four training repetitions and 2 densities × 4 repetitions with an increasing
difficulty for each repetition block. This setting was used for each glyph design. For the analysis
we only considered the more difficult repetition block since the results reveal more interesting
insights (see Figure 3.12).
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Figure 3.12: Bar charts with mean and standard deviation showing the results for the peak detec-
tion task and factor. The x-axis represents the different dependent variables.

Accuracy: There was a significant effect of glyph on error for both the low density (χ2(3, N =
32) = 11.62, p < .01) and the high density condition (χ2(3, N = 32) = 17.59, p < .001). In the
low density condition pair-wise comparisons showed that errors in judgement were significantly
worse for STA (46.9%) than all other designs (p < .05). LIN (96.5%) and STR (93.6%) both
showed high accuracy with LIN nearly at 100% accuracy. In the high density condition LIN
(96.9%) significantly outperformed the other designs by staying at nearly 100% accuracy (all
p < .05). In addition, CLO (59.4%) performed significantly better than STR (25%) and STA
(21.9%) with p < .01 in each case. With an increasing data density, STR (from 93.6% to 25%)
and STA (from 46.9% to 21.9%) significantly lost accuracy (all p < .05).

Efficiency: There was an overall effect of glyph on time in the low density (F3,21 = 12.1, p <
.0001) and the high density (F3,21 = 11.5, p < .001) condition. Post-hoc comparisons showed
that completion time was significantly higher for STA (34.1 sec.) compared to STR (13.1 sec)
and LIN (8 sec.) for the low densities (all p < .01). For the higher densities LIN had the fastest
completion time (9.3 sec.) compared to the other designs (nearly 30s per repetition on average)
(p < .05). There was also a significant effect of glyph across densities (F3,21 = 4.7, p < .05).
From low to high densities STR (from 13.1 sec. to 29.4 sec.) and CLO (from 24.1 sec. to 30.4
sec.) worsened (p < .05), whereas the mean for LIN stayed relatively stable (from 8 sec. to 9.3
sec.).

Confidence: There was an overall effect of glyph on confidence for both the low density
(χ2(3, N = 32) = 15.47, p < .01) and the high density (χ2(3, N = 32) = 16.28, p < .001)
condition. In the low density condition participants using STA (56.3%) reported a significantly
lower confidence score with their answers than for all other designs (all p < .01). LIN (96.3%)
received the highest confidence with significantly better ratings compared to CLO (80%, p < .05)
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and STA (56%, p < .001). In the high density condition LIN (92.5%) is significantly better than
the other designs (p < .001) and STA (56.3%) better than STR (48.1%) (p < .05). From low
to high densities STR (from 80% to 48.1%, p < .05) and CLO (from 80% to 56.3%, p < .001)
worsened.

Task 2: Temporal Location

Task 2 consisted of four training repetitions and four real trials for both densities. After the
initial training trials we asked participants to detect a different temporal location for the peak
value. Therefore, the first real trial was discarded due to the mental recalibration necessary by
the participants (see Figure 3.13).
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Figure 3.13: Bar charts with mean and standard deviation showing the results for the temporal
location task and factor. The x-axis represents the different dependent variables.

Accuracy: There was a significant effect of glyph on error for both the low density (χ2(3, N =
32) = 17, p < .001) and the high density condition (χ2(3, N = 32) = 7.81, p = .05). In the
low density condition pair-wise comparisons showed that errors in judgement were significantly
worse for LIN (33.3%) compared to CLO (100%) and STA (100%) (both p < 0.01) and STR
(75%) compared to CLO (100%) and STA (100%) (both p < 0.001). In the high density con-
dition STA (58.3%) significantly outperformed LIN (15.5%) and STR (10%) (both p < 0.05).
With an increasing data density, STA (from 100% to 58.3%), CLO (from 100% to 54.2%) and
STR (from 75% to 10%) significantly lost accuracy with p < .05 in each case.

Efficiency: For the completion time there was only an overall effect of glyph on time in the
low density (F3,21 = 9.1, p < .001) condition. Post-hoc comparisons showed that CLO (9.2
sec.) significantly outperformed LIN (31.8 sec.) (p < .01). There was another significant effect
of glyph across densities (F3,21 = 5.45, p < .01). From low to high densities CLO (from 9.2 sec.
to 20.8 sec.) deteriorated significantly (p < .05).
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Confidence: There was an overall effect of glyph on confidence for both the low density
(χ2(3, N = 32) = 13.78, p < .01) and the high density (χ2(3, N = 32) = 12.12, p < .01)
condition. For the low density condition the results showed a clear picture for the confidence of
the participants. The users were significantly more confident when using CLO (73.8%, p < .05),
and had least confidence with LIN (50%, p < .05). For the high density condition the sub-
jects were nearly equally confident using CLO (52.5%) or STA (54.4%), whereas LIN (44.4%,
p < 0.05) and STR (35%, p < 0.001) are ranked worst. From low to high densities STA (from
65.6% to 54.4%, p < .05), CLO (from 73.8% to 52.5%, p < .001) and STR (from 65.6% to
35%, p < .001) worsened.

Task 3: Trend Detection

Task 3 consisted of four training repetitions and four real trials for both densities. For the analysis
we discarded the training repetitions and focus only on the real trials (see Figure 3.14).
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Figure 3.14: Bar charts with mean and standard deviation showing the results for the trend
detection task and factor. The x-axis represents the different dependent variables.

Accuracy: There was a significant effect of glyph on error for both the low density (χ2(3, N =
32) = 7.43, p = .05) and the high density condition (χ2(3, N = 32) = 8.9, p < .05). In the
low density condition pair-wise comparisons showed that errors in judgement were significantly
better for LIN (78.1%) compared to STA (43.8%) and STR (46.9%) (p < .05). In the high
density condition LIN (46.9%) significantly outperformed CLO (14%, p < .05) and STR (3.5%,
p < .01). With an increasing data density, LIN (from 78.1% to 46.9%, p < .05), CLO (from
62.5% to 14%, p < .01) and STR (from 46.9% to 3.5%, p < .05) significantly lost accuracy (all
p < .05).

Efficiency: For both densities no significant differences can be shown. The participants needed
around 30 seconds on average. This was expected to be the maximal amount of time per repeti-
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tion.

Confidence: There was an overall effect of glyph on confidence for both the low density
(χ2(3, N = 32) = 8.06, p < .05) and the high density (χ2(3, N = 32) = 7.6, p = .05) condition.
For the low density condition STA (60%) had lower ratings compared to CLO (72.5%, p < 0.01)
and LIN (70.6%, p < 0.05). Same is true for the high density as well with STA (48.8%) being
worse compared to CLO (64.4%, p < 0.01) and LIN (61.3%, p < 0.05). With an increased data
density STA (from 60% to 48.8%, p < 0.01) and CLO (from 72.5% to 64.4%, p < 0.01) lost
significantly confidence.

3.3.3 Discussion
In this section we combine both quantitative and qualitative data collected in our study to explain
the varying performance of the different glyph designs according to our hypotheses. An overview
of the quantitative results for each task is given in Table 3.1 where values highlighted in orange
signify the best result compared to the other designs.

Task Measure LIN STA CLO STR
Peak Detection accuracy 96% 34% 69% 60%
(value comparison) efficiency 8s 28.2s 18.6s 16.9s
Temp. Location accuracy 24% 79% 77% 43%
(time comparison) efficiency 27.6s 17.7s 15s 25.5s

Trend Detection accuracy 63% 31% 39% 25%
efficiency 26.2s 25.5s 27.1s 23.7s

Table 3.1: Glyph performance for different tasks: This table illustrates the percentage of correct
answers (accuracy) and the average time needed (efficiency) for each of the tasks for both densi-
ties combined. The orange background signifies the best result compared to the other designs.

Peak Detection

In H1 we conjectured that LIN & STA would outperform CLO & STR due to their position and
length encodings for value. The analysis of error, however, revealed that nearly no mistakes
were made with LIN and only few with STR and that STA had the lowest accuracy followed by
CLO. Apparently, the participants had more problems reading value with the circular layouts.
This becomes obvious by comparing the most with the least accurate glyph design (i. e., LIN
with STA). Both use the same value encoding but differ in the layout of the time dimension. This
effect did not change across the two density conditions. STA and STR had a similarly high error
rate across densities, CLO deteriorated only slightly, whereas LIN still performed best.

We can, thus, only partially confirm H1. We conclude that polar coordinates must have an
effect on error for value judgements when the value is encoded with length. The same effect
seems not to take place when the value is encoded with color. This can perhaps be explained
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by the different baselines of the designs. Comparing position/length in a radial design perhaps
involves mental rotation to transfer the overall design to a comparable linear layout. This is not
true for color encodings, since color does not need an identical baseline.

Another notable effect is the one between CLO and STR: while accuracy was not significantly
different for low data density, CLO outperformed STR with high data density. This suggests that
CLO is more resilient with respect to data density than STR. We believe this to be due to the
fact that the slices in the circular design get more space near the circumference, wheras the slices
in the stripe get too small, making the comparison more difficult. This only partially confirms
H2: while STR is strongly affected by data density, LIN and CLO are either not affected by data
density or affected to a smaller extent (decrease CLO: 18.8%; decrease STR: 68.7%).

The confidence score of the participants for this task was unambiguous with LIN having the
highest ratings. In the final interview the participants had to rank the different glyph designs
according to their subjective preference. LIN was the most preferred glyph type which matches
the performance results of the quantitative analysis.

In the post-session interview, some participants argued that color was better than position/length
for data value comparison especially when the distance between the values was very large. Of
course, this depends on the color scale used, but seems plausible when the color value is entirely
different, which may lead to a preattentive recognition effect. With smaller distances most of
the participants commented that they would prefer the position/length encoding. When explain-
ing their performance with STA (i. e. angle/length encoding), participants argued that they had
problems comparing lengths with different orientation which further supports our hypothesis that
mental rotations may be necessary for comparison and make values harder to compare in these
glyphs. Especially in a small multiple setting this is an interesting finding and has to be further
tested and considered when arranging glyphs.

Temporal Location

Our results partially support H3. In terms of accuracy both polar designs (CLO and STR) out-
performed the linear designs when data density was low. To find an explanation for this result,
we looked at the selections made by our participants and discovered an interesting side effect.
The data sets corresponding to these wrongly answered questions were enriched with distractors
very similar to the correct data instances by showing the same high value but at a different point
in time. Participants seemed less likely to select such distractors when using the circular layouts
for the time dimension. Participants were significantly more confident and made significantly
less mistakes with the polar designs. The participants also reported to like the clock metaphor.
Some suggested, however, to visualize only 12 hours at a time for a more intuitive encoding.

When data density was high we observed the same trend, even though only STA showed
significant differences with respect to STR and LIN. The good performance of STA can be ex-
plained with the combination of the encodings. The length encoding for the data values makes it
possible to easily spot the highest value even with lots of datapoints. With the color encodings,
participants had problems spotting the peak value. The circular layout performed better than the
linear one and worked for estimating the correct point in time.

We saw almost no significant differences between the designs for efficiency (only CLO was
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better than LIN with low data density and STA better than STR with high data density). Nonethe-
less, we observed that the overall trend for efficiency did not contradict the trend we found in
terms of accuracy.

A significant decrease in performance between the two data densities can only be seen for
accuracy. All designs had an increased error rate except for LIN. However, LIN’s accuracy
had been very low for the low density, thus, a significant decrease was nearly not possible. In
terms of efficiency only CLO has a higher completion time, whereas, the other designs remained
stable. These investigations partially support our hypothesis H4 where we had conjectured that
the performance for detecting temporal positions would drop for an increased data density.

Trend Detection

In H5 we had conjectured that LIN & STA would be most effective for this task with the required
value judgement as the bottleneck of the two required subtasks. As we expected, in terms of
accuracy, the participants performed best using LIN independent from the data density. There
was no significant difference between STA, CLO and STR on error and no significant results for
time and, thus, H5 can only be partially confirmed. Independent from the designs, the participants
needed around 30 seconds to complete the task.

With an increased data density the accuracy of LIN, CLO and STR dropped significantly.
The completion time remained stable with no changes between the two density conditions. Our
hypothesis H6 stating that the performance will not change by increasing the data density can,
therefore, not be confirmed. Interestingly, participants commented that subjectively the task
difficulty was not impacted by higher data density. The qualitative feedback almost matched the
quantitative results. Nearly all participants reported to prefer LIN (i.e., position/length encoding)
for solving the task.

3.3.4 Design Considerations

With the results gained from the analysis and discussions we derive the following design consid-
erations.

• To improve value comparison, use a linear layout or switch to color encoding for
value:
As can be seen in the results for the first and third task, LIN and STA’s performance are
quite diverse although the value encoding is similar. The polar design has a strong effect
on the perception of the position/length encoding.

• For value encoding, position/length encodings should be preferred to a color encod-
ing:
As can be seen in the results gained from Task 1 and 3 where a value comparison was
necessary, LIN performs best. Even with an increased data density values could still be
compared.
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• Triangular shapes rather may be better than rectangular shapes for color encoding:
The slices used in CLO for encoding single data values form a triangular shape because
of the circular layout. As can be seen in the results for CLO compared to STR, having
more space near the circumference increased participants’ performance. Designers could
experiment with adding triangular shapes in a linear encoding.

• Color encodings for higher data densities should be used with caution:
The results from task 1 and 3 illustrate, that the performance of the color encoded designs
(CLO and STR) depends on the data density. Having a higher data density leads to a
decreased performance.

• Circular layouts rather than linear ones should be preferred for detecting temporal
locations:
Polar designs are better for detecting specific points in time. This guideline results from
the analysis of the second task. Participants performed significantly better using CLO
and STA compared to LIN and STR. The clock metaphor increases users’ chronological
orientation.

• For time-dependent tasks, sufficient space should be assigned to the designs:
Whereas, for solely value comparison tasks the performance of the best design (LIN) is
not affected, the accuracy for tasks including temporal information decreases. This is
independent from the combination of visual variables used as can be seen for task 2 (STA
and CLO) and 3 (LIN). The designs performing best for these tasks are encoded differently
but still show the same behavior.

3.3.5 Limitations
As stated at the beginning, we were inspired by time series data for a daily monitoring task.
Especially CLO and STA with their 24 hour clock metaphor profit from this data arrangement.
The performance may change with different lengths of time series.

The same is true for the aspect ratio and the size of the single glyphs. The aspect ratio was
chosen in order not to greatly disadvantage the circular designs in terms of display space used.
However, especially STR would profit from an aspect ratio with more horizontal space. With
varying sizes of glyphs, the performance of the designs could change. In our setting we used
the minimal space possible to be able to assign one pixel to one data value for the higher data
density.

3.3.6 Conclusion
The goal of this experiment was to compare the performance of the clock glyph against well-
established alternative data glyph designs. Therefore, we quantitatively measured accuracy and
efficiency, and qualitatively surveyed user confidence and preferences for four glyph types based
on three tasks important to our domain experts: peak detection, peak detection at a certain point in
time, and trend detection. The results show that depending on tasks and data density, the chosen
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glyphs performed differently. We show that the line glyph is generally a good choice for peak
and trend detection tasks but that radial encodings of time (star glyph and clock glyph) were more
effective when one had to find a particular temporal location. Participants’ subjective preferences
support these findings and underline the fact that the clock metaphor helped in detecting specific
temporal locations. Thus, our study shows that both accuracy and efficiency of tasks such as ours
can be boosted when carefully choosing the most appropriate design.

3.4 Summary
In this chapter 3, the literature about different data glyph designs has been carefully reviewed for
time-series data in various settings. Structuring the glyphs according to the basic visualization
techniques they were combined with illustrated the great flexibility in positioning them on the
screen.

Based on this related work I motivated the necessity for a metaphoric clock glyph design
to convey temporal information in an easy to understand way. This design was implemented
and applied to real world data in the network security domain. Three different prototypes were
introduced (i. e., ClockView, ClockMap, and Vistracer) using clock glyphs to visualize complex
temporal data structures. Each prototype was evaluated with a use case scenario to show the
applicability of the design especially in combination with different visualization techniques.

To generalize the findings and get more concrete information about the performance of the
clock glyph a controlled user study was conducted. Since there was a lack of quantitative ex-
periments for data glyph designs using color saturation to encode data values this evaluation
additionally closed some previously identified research gaps, which were revealed in chapter 2.
Based on the results of this experiment I further confirmed the usefulness of metaphoric designs
for information visualization.
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Multi-dimensional data can be considered as an n x m matrix with n being the different
data points and m the corresponding attribute dimensions. In contrast to time-series data the
relationship between the attributes may be dependent or independent from each other. This is
reflected in the analysis tasks. Since attributes need not necessarily be related trend detection
tasks across dimensions like in an intra-record comparison are not this likely. As can be seen in
the systematic review of user studies in chapter 2 participants performing a trend detection task
with multi-dimensional data compared single dimensions across different entities (inter-record
comparison) and not within a single design (intra-record comparison) like with time-series data.

The design of the data glyph is, therefore, more flexible. Restrictions like the comparabil-
ity of the different attribute dimensions like in time-series data are not necessarily given. The
possibility for mapping data values to visual variables is, therefore, much more flexible. Based
on Ward’s categorization [192] data glyph designs may comprise many-to-one, one-to-one, and
one-to-many mappings, which results in a much bigger design space compared to temporal data.
Of course, the data glyph designs can also be combined with different visualizations (e.g., geo-
graphic maps, node-link diagrams etc.), as well.

In the following section 4.1 I will review the literature about data glyphs for multi-dimensional
data. Motivated from the related work section I will introduce a new data glyph design namely
the leaf glyph making use of environmental cues to visualize multi-dimensional data. This design
will be evaluated in a use case analyzing the forest fire data set form the UCI machine learning
repository [44]. The dataset was carefully chosen to show the usefulness of the context related
design and, therefore, the benefit of a metaphoric representation. After introducing this new data
glyph I will focus on the well-known star glyph design with all its variations used in literature.
Since only little guidance exists, which star glyph variation works best for similarity search tasks
this research gap will be closed by conducting a controlled user study and additionally trying to
further improve on the design.

4.1 Related Work

Since data glyph designs for multi-dimensional data can be created in an entire flexible way, I
will structure this section according to Ward’s classification of data glyphs [192]. In his cate-
gorization he distinguishes between three different ways a data value can be mapped to a glyph
representation.

4.1.1 Many-To-One Mapping

All data dimensions and their respective values are mapped to a common visual variable. There-
fore, these designs can be systematically created by choosing the most effective visual variable
for a certain task. Additional guidance is given by Cleveland et al. with a ranking of visual
variables [43].
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Position/Size Encoding

A well-known example are linear profiles like small bar charts [52]. Each data point is repre-
sented by one data glyph and the different bars correspond to one attribute dimension. The height
of the bars reflect the respective data value. A similar encoding is used in dot plot glyphs[205]
exchanging the bars with simple dots. The vertical position of each dot communicates the un-
derlying data value. Depending on the number of dimensions these designs profit from a more
rectangular like aspect ratio to have enough space visualizing the single dimensions. These linear
profiles are also used in combination with different visualization techniques.

Dot$plot$glyph$Bar$chart$glyph$

Linear$profiles$

Figure 4.1: Linear profiles: Whereas bar chart glyphs use a length encoding to represent the
underlying data, dot plot glyphs use the visual variable position. Both designs make use of a
similar baseline to facilitate data comparison.

Bernard et al. enriches node-link diagrams with bar chart glyphs to visualize cancer data [15].
The patients are clustered according to their attribute values. Similar data points are connected
with an edge and positioned close to each other. Additionally color is used to make the cluster
membership more obvious.

Similar bar chart glyphs are also used in scatterplots to represent the cars dataset from UCI
machine learning repository [124]. Each data glyph represents one car. Two attributes of the
data are mapped to the x-and y-axis of the scatterplot to position the data points. The remaining
dimensions are represented in the data glyph as a colored bar chart. Because of many similar car
characteristics a lot of overplotting may occur in this visualization due to the data-driven layout.

For displaying a file system with additional file attributes McDonnel and Elmqvist embed bar
chart glyphs in treemaps [124]. Additional shaders help to better perceive the single hierarchy
levels. Color saturation is used to distinguish the different attribute dimensions like file size, or
last time modified etc.

Ward and Lipchak focused on radial layouts (e.g., spirals) to position linear and circular
profile glyphs [194]. These layouts are especially useful for communicating temporal periodic
information. A possible example is the comparison of different stock prices during the last years
and whether there are periodic specifics. Therefore, the glyphs are arranged in a spiral layout.
Each cycle in this spiral corresponds to one year. The year is further divided into months using
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12 equal distant anchor points for each cycle. On each anchor point a glyph is drawn showing
different stock prices for this specific point in time. Temporal patterns can be easily perceived
by either scanning along the spiral, or along the anchor points using the same angle.

Instead of comparing different lengths alternative glyph designs use the visual variable area to
encode the data value. Due to Cleveland and McGill’s ranking of visual variables, glyph designs
using length are more accurate compared to area [43]. However, area communicates smaller
changes between data values more effectively [195]. Fischer et al. [64] make use of such an area
encoding to show anomalous behaviour of BGP routes over time. Each rectangle correspondence
to one timestamp and incorporates four additional rectangles (one for each anomaly). The size
of each inner rectangle encodes the proportion of anomalous behavior. Using the visual variable
area helps in this case to perceive even slight differences between the single anomaly groups.
Volume encodings on the other hand are considered poor choices for communicating data values
[57, 195]. However, some glyph designs make use of them anyway [83].

Circular profiles also use a position/length encoding for visualizing data values and are, there-
fore, quite similar to linear profiles. These designs usually have a quadratic aspect ratio to make
sure to introduce no bias towards certain dimensions. A well-known representative is the star
glyph [168] with its variations whisker and fan plots [150, 195], and sensitivity star glyphs [32].
Star glyphs use data lines radiating from the center to display the different dimensions. The
length of the data line corresponds to the underlying data value. Finally, the end points of the
lines are connected to create a “star-like” shape. Whisker and fan plots use the very same en-
coding, however, the endpoints of the data lines are not connected. The sensitivity star glyph
only shows the contour line of the star glyph without the data lines. As part of my thesis, I will
evaluate these variations in a controlled user study for similarity search tasks.

Whisker$glyph$Star$glyph$

Circular$profiles$

Figure 4.2: Circular profiles: Star glyphs and whisker glyphs use a similar encoding to represent
multi-dimensional data. The only difference is the surrounding contour line.

Star glyphs and all its variations are used in various applications. Elmqvist et al., for example,
connect different star glyphs with directed edges to visualize data flows [60]. Dynamic queries
can be incrementally refined by adding more filters to the node-link diagram. The star glyphs are
then adjusted according to the filters set.
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Friendly used colored star glyphs to represent different characteristics for regions in France
[69]. Each region was represented by one data glyph, which were positioned on top of geographic
map. Areas with e.g., high crime rate can be easily detected by searching for star glyphs with
a peak value for this attribute. The color helped to distinguish between different regions within
France.

Since clutter is a major drawback of data glyphs Yang et al. and Peng et al. introduced auto-
matic algorithms to reduce these effects [148, 204]. Whereas Peng et al. focuses on dimension
reordering techniques with a grid based layout [148], Yang et al. used additional dimension spac-
ing and filtering techniques to position star glyphs in scatterplot matrices [204]. These filtering
steps help to reduce clutter for large numbers of dimensions. Additionally, the user can also be
involved in this optimization by steering certain parameter.

Besides these applications making use of star glyphs and its variations there are other radial
designs making use of a position/length encoding, as well. Metroglyphs [8] for example look
similar to whisker and fan plots and are used in scatterplots. Data lines are connected to a
circle with different angles and lengths. Again, the length of the data lines is used to encode the
respective data value. The different orientations help to better distinguish the single dimensions.

Clustnails [181] use a similar visual encoding as whisker glyphs. Each cluster is represented
by one data glyph. The data lines represent different sub-clusters. The length of the data lines
encodes the importance of each sub-cluster for the whole cluster according to a certain measure.
The different clustnails are arranged in a grid to facilitate the visual comparison between several
clusters.

Color Saturation Encoding

In comparison to the visual variables position and size, color saturation is considered less ac-
curate [43]. Of course, color cannot convey the data as accurate as a position/length encoding
[73], however, for certain tasks like spotting outliers the color saturation encoding is a reason-
able choice. Therefore, several glyph designs making use of color saturation to represent the data
value do exist.

The clock glyph introduced in section 3.2 and evaluated in section 3.3 can also be used with
multi-dimensional data like in the experiment conducted by Nelson and Gilmartin [139]. Instead
of representing time dimensions the single slices are used to communicate different attribute
dimensions. Still, color saturation is used to communicate the underlying data value. A slight
variation of this radial design are color icons [112] making use of a square instead of a circle to
arrange the slices. The dimensions are, therefore, represented as triangles positioned in a circular
fashion.

Linear designs, on the other hand, make use of small rectangles or stripes with a fill color
to represent data values. Several different variations and applications have been proposed in
literature. One example are calendar view like glyph designs. Each data point is represented by
one square or rectangle, which contains several smaller squares. The inner squares correspond
to the attribute dimensions of the respective data point. Their arrangement is done linearly and
they are colored according to the underlying data value. Beddow used such glyph designs to
communicate changes across thirteen parameters of magnetosphere and solar wind data over
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time [13]. Each glyph represents one point in time and the inner rectangles refer to the different
parameters. Single glyphs can be easily compared to get an overall idea of the temporal changes.
Additionally, the analyst can focus on only single inner rectangles to compare the development
of certain parameters over time.

Calendar$glyph$Stripe$glyph$

Color$Satura:on$

Figure 4.3: Color saturation: The stripe glyph and the calendar glyph both use a linear layout in
combination with a color saturation encoding for the data value.

A similar glyph design is used in the work of Abdul-Rahman et al. to better understand and
explore the tongue position in the mouth while speaking [1]. The authors divided the month
in nine regions using a 3 x 3 grid. The single grid cells correspond to a certain location in the
month. Colors are used to highlight regions within this grid where the tongue was located during
the articulation. Such a glyph is created for each vowel in a text. A comparison of different texts
based on the tongue position is, therefore, easily possible by scanning along the different colored
glyphs.

Orientation Encoding

Sticky figures [150] are prominent representatives of multi-dimensional data glyphs, where dif-
ferent data lines are representing the attribute dimensions. These data lines are then connected
to a common stem. To communicate the data value for each dimension the visual variable ori-
entation is used, which is considered not as accurate as position or size in communicating exact
data values [43]. However, in overview visualizations the single designs are perceived as a whole
approximating the underlying data points. The analyst does not necessarily need to check single
data lines but compare entire shapes.

Gestaltlines [22] consist of single data lines, each encoding one attribute dimension. The
slope of the lines conveys the underlying data value. Due to their linear layout, gestaltlines
are close related to sparklines [185] and can also be embedded in text sections but need not
necessarily communicate time-series data.

Pie chart glyphs are famous examples of radial orientation encodings [6, 194]. Pearlman and
Rheingans use a slight variation of these pie chart glyphs to visualize network traffic. Therefore,
they introduced the compound glyph, which is embedded in a node-link diagram [147]. The
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S:cky$figure$Pie$chart$glyph$
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Figure 4.4: Orientation: Pie chart glyphs and sticky figures are two well-known representatives
using an orientation encoding to visualize data values.

glyph uses the angle of different slices to encode the amount of traffic for the respective services.
Additionally, multiple compound glyphs can be stacked to visualize different points in time. The
graph layout helps to not only communicate the traffic of the different services but also to show,
which network devices are communicating with each other.

4.1.2 One-To-One Mapping
The one-to-one mapping category is the most flexible way on how to map attribute dimensions
to visual variables. There are basically no restrictions on how to do the mapping except that
redundancy is not allowed. This means that each dimension can be represented by different
visual variables creating a design space, which is nearly endless. Although, the mapping can be
done arbitrarily some data glyph designs have received more research attention than others.

Probably, the most well-known representation in this category are Chernoff faces [35]. As
already shown in chapter 2 this glyph design has been extensively studied in literature. The
whole design space is restricted to an abstract face representation. Each data value is mapped
to a specific face characteristic, like the height of the nose, the size of the ears, or the angle of
the eyebrows etc. Over the years different variations have been introduced. The most famous
examples are Flury-Riedwyl faces [65], which look more realistic and Kabulov faces [96], which
group the data into three or four different classes to improve the visual mapping. The face symbol
has been used in many different application areas like cartography [130, 190], multi-dimensional
comparison [25], or multi-variate trend development [25].

Another well-researched design space are data glyph designs for flow visualizations. Weather
vanes [208] are famous examples to visualize the different characteristics of wind data for ge-
ographic regions. Wind direction for example is mapped to the orientation of the data glyph,
whereas the wind magnitude is represented by the amount of small whiskers attached to the vane.
This glyph design has been established in literature and was used several times in the ”Monthly
Weather Review” in 2008 [165]. However, Ware argues that the small whiskers interfere with the
perception of wind direction making it difficult to read the wind speed [195].
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Other data glyph designs have been proposed to visualize multi-dimensional data in tensor
fields. Most of them use orientation, size and color to map multiple attribute dimensions to a
specific region [34, 160]. There are several three dimensional designs, which further enhance the
spatial perception by adding a third dimension [55, 56, 87, 99, 106, 136, 166, 167, 169, 209].

Other more exotic designs like bugs [40] (changing the shape, length or color of wings, tails
and spikes), or hedgehogs [101] (manipulating the spikes by changing the orientation, thickness
and taper) generally encode multi-dimensional data and can be used in various applications and
context. A metaphoric glyph design was developed to understand the influence of climate change
on the cultivation of maize. Nocke et al. designed a mosaic data glyph shaped like a corncob
and positioned the design on top of a geographic map [142]. By adjusting the visual appearance
of the glyph analysts can easily distinguish drought and fertile regions. A use case scenario has
shown that analyst were able to easily understand the underlying data because of the metaphoric
design.

However, there are also quite specific glyph designs, which are likely to be used in certain do-
mains. Maguire et al. introduced a taxonomy for data glyph designs to communicate workflows
[121, 122]. This taxonomy is based on the connection of the hierarchy of concept categorization
and the ranking of the visual channels with additional domain specific metaphors. In the area of
health monitoring the VIE-VISU glyph [88] helps to represent 15 health-related patient parame-
ters by changing the width, height, or color of different connected shapes. By plotting multiple
glyphs next to each other a temporal comparison of several parameters can be achieved. In sport
analytics MatchPad glyphs [41] can be used to visualize football events and additional meta in-
formation by adding circles and rectangles to a square, which contains an icon for each related
football event. As a result the analyst need not necessarily watch the entire game to extract useful
information about the match but can use the MatchPad software to gain insights. The respective
data glyphs are, therefore, positioned along a timeline to see how the match evolves over time.

The major drawback of these kinds of glyph representations is that they are often sensitive
to the order by which the data dimensions are mapped to visual variables. Changing the order
could significantly influence the final glyph representation and its visual perception by users
since some visual variables are more dominant than others. Additionally, measuring differences
between single dimension values within a data point is typically a difficult task, as the analyst has
to compare different kinds of visual variables with each other (e.g., compare length with color
saturation or orientation, etc.)

4.1.3 One-To-Many Mapping
Unlike the other two categories, the data attributes are mapped redundantly. Each dimension
is represented by a combination of at least two visual variables. This redundant mapping can
be useful to strengthen the perception of individual dimensions. Theoretically each data glyph
design can be changed to represent a one-to-many mapping.

Data glyph designs making use of a position or size encoding can be modified using color
saturation, as well, like the color encoded star glyph [103]. Of course, the other way round is
also possible. The clock glyph can make use of an additional length encoding for the single
colored slices to encode the underlying data values more accurately. Such a design would be
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highly related to the Nightingale chart [141]. The Nightingale glyph is, for example, used in
hierarchical node-link diagrams to convey the structure of file systems [124]. The position of
the glyphs is used to understand the relationships between the different files. Additionally, the
data glyph conveys information about file characteristics like time since created etc. Another
application area is the comparison of different countries and their characteristics. The OECD
Better Life index [143] shows flower like glyphs to visualize different countries. The petals are
used to represent the attribute dimensions making use of a size and color saturation encoding.
Big colorful flowers illustrate countries having high values throughout all dimensions.

Summary

In this related work section I have only focused on data glyph designs for multi-dimensional
data and grouped the glyphs according to Ward’s visual mapping categorization [192]. It is
interesting to note that data glyph designs for one-to-many mappings have only received little
research attention. This finding is also supported in chapter 2 based on the small number of
quantitative experiments conducted for one-to-many mappings.

In comparison to glyph designs for time-series data metaphors were used more often to com-
municate the underlying data [35, 142, 170, 208]. As already indicated in chapter 2 studies
have shown that glyph designs based on metaphors help to better understand the underlying data
[65, 73, 91, 170]. Since there is a lack of metaphoric glyph designs to communicate environmen-
tal data I will introduce the leaf glyph in the following section 4.2 as a new data glyph design
and show its applicability in a use case based on the forest fire data set from the UCI machine
learning repository [44].

Another research gap will be tackled in section 4.3. As the systematic review of user stud-
ies on data glyph designs has revealed (chapter 2) some more research on the performance of
different star glyph variations needs to be conducted. Till now no guidance exists whether the
surrounding contour line of star glyphs is really beneficial or not. Therefore, I will introduce
three quantitative user studies investigating changes in performance for similarity search tasks
when removing or adding the contour line.

4.2 Leaf Glyph - A Data Glyph Design to Visualize Multi-
Dimensional Data with Environmental Cues

The leaf glyph is a novel data glyph design for visualizing multi-dimensional data based on an
environmental metaphor. The rationale of introducing such a new design is threefold. First, as
can be seen in chapter 2 studies suggest that metaphors help to better understand the represented
data. Especially for multi-dimensional data many different metaphoric designs have been sug-
gested (see section 4.1 for more information) and evaluated in different use case scenarios. Such
designs seem to be highly suitable in communicating context specific information.

Second, the design space is large, giving ample opportunities for the visualization expert to
map data variables to visual variables. As will be discussed, the variable space amounts to more
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than 20 different visual variables that can be controlled. While we5 have not formally evaluated
the effectiveness of these variables or their combinations, we presume this is a large design space
from which appropriate effective selections can be found.

And third, there is reason to believe that the human visual sense, due to long evolutionary
processes, is highly trained in recognizing, distinguishing and comparing natural forms. Shapes
like trees in a forest, single flowers in a flower-bed, or leaves at shrubs can be easily discriminated
by humans. These visual recognition processes typically work well even in low illumination
conditions, or in presence of partial occlusion of natural objects. By background knowledge and
experience, humans are able to efficiently recognize natural shapes, also often in cases where
only parts of the shape or their boundary are visible.

A subset of the designs studied in information visualization to date make use of the aforemen-
tioned benefits and are inspired by nature. For example, tree structures have inspired hierarchical
node-link diagrams. Stefaner, for example, uses an abstract tree layout to show the editing his-
tory of Wikipedia entries represented as single branches [176]. The branches grow to the right
whenever people decided to delete an article or to the left in the other case. The resulting tree
nicely summarizes 100 articles with the longest discussion whether to keep them or not. A 3D
application is the botanical tree [102], which uses a 3D tree layout to represent hierarchical in-
formation. The single nodes are represented as fruits. The authors argue that people can more
easily identify single nodes in this visualization compared to a more abstract representation be-
cause they are used to detect fruits or leaves on shrubs or trees. A 2D visualization using a
botanical tree metaphor are so-called ContactTrees [159], which show relationships in data, e.g.,
contacts between persons. The branches consist of single lines representing an attribute in the
data, e.g., a longer line refers to an older tie between people. Finally, fruits or leaves are added to
the tree according to some data property, e.g., the kind of relation between people (friends, co-
workers etc.). However, the fruits and leaves are highly abstract representations (mainly colored
dots) and their shape does not change according to some data characteristics.

Also some environmental glyph designs have been introduced in literature. The OECD’s Bet-
ter Life Index visualization [143], for example, systematically changes the appearance of flower
glyphs to represent data. Stefaner uses these environmental cues to visualize multi-dimensional
data about country characteristics. Each country is represented by one flower. The petals encode
the different economic branches with varying sizes and lengths for the corresponding values. The
flowers are arranged according to their weighted rank across all dimensions. People can change
the layout by changing the weights of the dimensions or simply focusing on just one dimension.
Müller invented a leaf glyph to visualize poems in a more artistic way [133]. The branches of the
tree are invisible just dealing as an anchor point to arrange the glyphs. Each word in the poem
is represented with a leaf glyph and attached along the tree structure. The work is not eligible of
representing the text data accurately but tries to illustrate a creative unique picture or fingerprint
of the underlying poem.

As can be seen, literature also suggest that environmental designs work well in representing
data. However, we did not address research in the area of computer graphics, since this work

5In section 4.2 and all corresponding subsections the term ”we” comprises Niklas Weiler, Dominik Jäckle,
Tobias Schreck and me
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mainly focuses on photo-realistic representation of the environment. We refer the interested
reader to a summary work about this topic by Deussen and Lintermann [48].

In the following subsection 4.2.1, we investigate the design space for leaf shapes as natural
metaphors for data glyphs encoding multi-dimensional data. From observing leaves in nature, it
is clear that there is a large variability in the different types and forms of leaves that exist. Overall
leaf shape, shape boundary, and shape interior all comprise several visual parameters that can in
principle, be used to map data to generate glyphs.

4.2.1 Design Space for Environmental Data Glyphs

According to Biological literature, leaves may be categorized by their function or usage in the
environment [12]. For our purposes, we divide leaves according to their shape (or morphology).
The overall appearance of a leaf consists of the combination of (1) the overall shape type, (2)
the boundary details, and (3) the leaf venation. We consider these three aspects as the main
dimensions for controlling the leaf glyph by mapping data. As a result we come up with a design
space structured along the overall leaf shape.

Leaf Shape Design Space

Following Palmer who pointed out: “Shape allows a perceiver to predict more facts about an
object than any other property” [146], this visual variable should be used for the most important
data dimension. In the environment, there exists a nearly endless amount of different leaf shapes
since each leaf is unique. However, it is possible to distinguish leaves according to their overall
shape [48]. A first categorization can be done between conifer and deciduous leaves.

Conifer leaves can be found for example at fir or pine trees and have a thin long needle-like
shape. Therefore, they do not offer much space for a venation pattern, which we want to use later
for mapping additional attributes (e.g., Acicular leaves). Since the differences in shape are quite
small for the different kinds of this group and the provided area is limited due to the distorted
aspect ratio, we do not consider them in our design space.

Deciduous leaves cover a large group of different shapes and can again be further divided
into four sub-categories [48].

Pinnate and palmate compound leaves are shapes, which consist of several smaller leaflets
attached to a shared branch (e.g., Alternate, or Odd and Even Pinnate leaves etc.). In order to
avoid any misinterpretation between single leaflets at a branch and individual leaves, we discard
this group from our final design space. However, these kinds of leaves seem an appropriate
representation to visually summarize multiple data points where one leaflet corresponds to a
single leaf.

Lance-like leaves have a parallel venation and are thin and long, similar to conifer leaves.
Therefore, it is difficult to distinguish different kinds of these leaves since the differences in the
overall shape are limited. Like the conifer leaves, we do not keep them in our design space
because of the limited area to map a venation pattern, and because of possible confusion of
different lance-like shapes.
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Leaves with net veins or reticulate venation patterns encompass the largest group of decidu-
ous leaves with a big diversity in shape. We restrict ourselves to the most common leaf shapes
for this category to avoid misinterpretation of intermediate structures, which could not clearly be
distinguished. Additionally, we focus on leaves with a big surface to show venation patterns and
small stems to save space. Leaves similar to Flabellate, Unifoliate, etc. will, therefore, not be
considered.

The most important requirement for shapes in visualizations is that they should be easily
distinguishable. Therefore, our final design space covers wave-like (e.g., Pinnatisect), circular
(e.g., Orbicular), triangular (e.g., Deltoid), heart-like (e.g., Cordate, Deltoid etc.), arrow-like
(e.g., Hastate, Spear-shaped etc.), two variations of tear-drop like (e.g., Acuminate, Cuneate
etc.), elliptic (e.g., Ovate, Obtuse, Obcurdate etc.), and star-like (e.g., Pedate, etc.) shapes.
Figure 4.5 illustrates the nine different leaf shape categories covered by our design space. In
subsection 4.2.3 we will introduce a heuristic to map data points to leaf shapes, based on the idea
of representing outlying points by the more jagged leaf shapes; conversely, non-outlying points
will be represented by the more regular or smooth leaf shapes.

Ovate&Orbicular& Deltoid& Cordate& Acuminate& Cuneate& Pedate&Pinna5sect& Hastate&

Figure 4.5: Leaf shapes: Selected from our overall design space, these are the shapes used
in our final glyph design. From left to right: Wave-like shape, circular, triangular, heart-like,
arrow-like, tear drop up, tear drop down, elliptic, and star-like shape.

We take these categories as a starting point and further extend them by mapping additional
attribute dimensions to the width and the height of the glyph, scaling the overall shape. Therefore,
similar shapes according to a certain data characteristic can look different because of the varying
aspect ratio. However, the individual shape categories can still be distinguished (Figure 4.6).
Because of this decision, we will deviate from the precise environmental reference, where leaves
typically show a homogeneous aspect ratio. However, we thereby are able to encode additional
data dimensions. Note that we do not want to represent leaves as accurate as possible (or even
photo realistic), but use their expressiveness to visualize data.

Leaf Boundary Design Space

Basically, the boundary (or margin) of a leaf can be described as either serrated or unserrated.
Unserrated boundaries have a smooth contour adapting to the overall leaf shape. Serrated bound-
aries are toothed with slight variations depending on the size of teeth, their arrangement along
the boundary, and their frequency. Of course, there are more detailed differences and variations
in nature. However, especially in overview visualizations (the major domain of data glyphs),
distinguishing between small variations of the contour line of a leaf shape is nearly impossible.
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No#distor)on# Width#distorted# Height#distorted#

Figure 4.6: Leaf scaling: The Lobate leaf shape is scaled using either the width (middle), or the
height (right) of the glyph. Even after scaling, the glyph can still be recognized as a wave-like
leaf, although the precise environmental reference to the Lobate leaf is reduced.

We therefore focus on just the two main boundary categories of teethed or smooth (serrated or
unserrated). For mapping data values to the leaf boundary, we distinguish between a smooth and
a toothed contour line and vary the width, height, and frequency of the teeth according to the
underlying data value (Figure 4.7).

Leaf Venation Design Space

We also control the leaf venation pattern as to map additional data variables to the glyph. Several
main leaf venation patterns exist, which differ in their overall structure within the leaf. A rough
distinction can be made between single, not intersecting (e.g., Parallel), paired (e.g., Pinnate), or
net-like (e.g., Reticulate) veins. The venation is perceived as an additional texture for the glyph
and further increases the glyph expressiveness. Since it is hard to find a natural order within
this texture, we propose to use the venation type for visualizing qualitative (or categorical) data,
similar than the overal leaf shapes discussed in Section 4.2.1. Within a given venation type, we
may also encode numeric data. This works as follows. Generally, the leaf is split in the middle
by a main vein, with small veins growing from there in a given direction (angle). For mapping
numerical data, we may either control this angle of the veins branching out from the main vein.
An alternative is to control the number of veins shown on the surface Figure 4.8. As a result, we
come up with a venation texture able of encoding categorical and numerical data.

Summary

Besides modifying the leaf shape given by morphology, boundary and venation, further dimen-
sions can be assigned to the color hue or saturation of the glyph. Of course, the designer has to
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Figure 4.7: Leaf boundary: Modifying the boundary in our design is realized by changing the
frequency, the height, or the width of the boundary serration (teeths). Combinations of these
three variables are possible and increase the expressiveness of the glyph. The figure illustrates
all possible combinations for low, middle, and high data values for an elliptically shaped leaf
glyph.

pay attention to the contrast between the venation texture and the background color. Addition-
ally, orientation of the glyph in the display can be used to encode further numeric information.
We draw a short stem to each leaf shape, showing its orientation. Finally, it is also possible to
modify the stem’s width or height as well.

This represents a comprehensive design space for mapping data to leaf glyphs, controlled by
12 categorical and 14 numeric parameters, summing up to 26 variables altogether (see Table 4.1
for an overview of all variables.) We propose this design space as a toolbox from which the
designer may select visual variables as appropriate. The number of 26 parameters is considered
more a theoretical upper limit of data variables that we can show. We expect not all visual
parameters in this design space to be of the same expressiveness; but some variables may be more
effective than others, and may not all be orthogonal to each other. Careful choice should be done
in selected and prioritizing the variables. An option is of course always, to redundantly code data
variables to different glyph variables, to emphasize perception of important data variables. In
subsection 4.2.3, we will illustrate by practical examples, how glyph variables can be combined
to form data displays.
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Figure 4.8: Leaf venation: The texture for the venation system can either be created by mapping
data values to the angle or frequency of the veins separately, or by combining the two. The figure
illustrates all possible combinations for low, middle, and high data values for a wave-like leaf
shape.

Leaf Design Numeric Variables Categorical Variables
Shape 2 (x/y scale) 9 (selected morphologies)
Boundary 3 (frequency, width, height of teeth) –
Venation 2 (number, angle of child veins) 3 (parallel, paired, net)
Other 7 (hue, saturation, orientation, x/y position, stem width/height) –
Sum 14 12

Table 4.1: Summary of the parameters of our glyph design. It comprises 14 numeric and 12
categorical variables, which form the theoretic upper limit for the expressiveness of our glyph.
Note that in practice, these variables are expected to not all be orthogonal, and comprise different
perceptional performance, depending also on the data.

4.2.2 Leaf Glyph Aggregation
Leaf glyphs are prone to overlap since our design intention is to use big shapes for adding e.g.,
venation patterns. As a result analysts may not able to identify single leaf glyphs in dense areas.
Figure 4.9 exemplifies such a scenario.
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Without'Aggrega-on'

Figure 4.9: Overplotting: When multiple leaves overlap or coincide, we are not able to distin-
guish properly between their shapes and related characteristics.

The easiest solution for this problem is to apply transparency to the surface of the data glyphs.
This Alpha Compositing technique [152] can also been seen in nature. When looking at shrubs
or trees the single leafs or leaflets are not entirely opaque. At least the structure of some covered
leaf shapes can be perceived (see Figure 4.10). By applying this technique to our leaf glyph
design, we get a more realistic representation, which might help the analyst in pursuing his tasks.

However, this approach has its limits. In highly dense areas the opacity of all data glyphs
will sum up until the individual leaf shapes cannot be discerned anymore. Therefore, we use
another approach inspired by the environment. In our data glyph design space we discarded
palmate and pinnate compound leaves, since their overall structure of adding multiple leaflets
to a single branch might be confused with several individual leaves. This characteristic is useful
for a design specific visual aggregation method. The idea is to combine individual leaf glyphs
in highly dense areas to a combined compound leaf by reducing their size and attaching them
to a common branch. As a first step, a grid is applied to the information space to detect dense
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Grid6based'Aggrega-on'

Figure 4.10: Alpha Compositing: Transparency is used to make covered leaf shapes distinguish-
able. This is especially true for dense areas where many data points are located.

areas. When too many data glyphs are located in the same grid cell a single compound leaf is
created with its leaflets reflecting the aggregated data glyphs (see Figure 4.11). Of course, this
technique has its limitations. Since the prototype has just one single branch, it is only possible
to orient it towards one direction loosing the orientation of all the other leaves. Additionally,
the size of the data glyphs has to be reduced when combining all of them in a single prototype.
These compromises lead to a loss of information.

To avoid changing the size of the leaves we invented another grid based prototype. Again
inspired by the environment we propose a stacked bouquet for representing dense areas. The
method stacks all similar leaf shapes on top of each other and applies transparency to all data
points. Different leaf shapes are repositioned and arranged in a certain angle to make them distin-
guishable from the others. Again, this visual aggregation technique makes use of the orientation
of the data glyphs, however, the size of the leaves does not change (see Figure 4.12).

The previously introduced aggregation techniques are not only suitable to visualize dense
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Prototype'Abstrac-on'

Figure 4.11: Compound leaf: Data glyphs are abstracted by combining single shapes in one
compound leaf. This technique is especially useful in highly cluttered regions when transparency
cannot be used anymore.

areas in 2D projections. Another design alternative is to use hierarchical arrangements, which
can convey aggregate information and therefore, help with scalability. The relevant concept is
that of a dendrogram (see Figure 4.13). Each parent node in a dendrogram may be represented by
an aggregate prototype showing properties of the represented data partitions. Basic hierarchical
visualizations can, therefore, be enriched with additional information like the composition of
data points for individual clusters.

In Figure 4.13 we clustered the Iris dataset from the UCI Machine learning repository and
represented the hierarchical structure in a radial dendrogram. The class attribute is used to assign
different leaf shapes to the data. Other visual features like color, venation, and margin represent
different attribute dimensions of the dataset. In each level, the nodes have been replaced with
aggregated leaf glyphs using alpha composition together with a position bundling. The leaf
glyph positioned in the middle of the visualization (#1) aggregates the dimension values of all
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Prototype'Bouquet'

Figure 4.12: Bouquet: Leaf glyphs with an identical shape are stacked when they are located
in the same grid cell. Different leaf shapes are oriented towards another direction to make them
distinguishable from the other data points.

nodes in the diagram. It, therefore, contains many different sub-clusters as can be seen in Figure
4.13. When traversing the single branches to the lower levels (from inside out) the prototype
representations of lower aggregate levels are getting more homogeneous. For example, after
the first hierarchical split two main clusters are separated (a and b). The node labeled with b
shows only green ovate leaves thus representing a homogeneous group of data points. The other
aggregated prototype labeled with a seems to be more heterogeneous showing two different kinds
of leaf shapes (hastate leaves and maple leaves). However, after descending to the next hierarchy
level these two sub-clusters are separated. The inner node labeled with #2 represents only maple
leaves, whereas the other node labeled with #3 contains hastate leaves. By traversing along the
different branches the inner node is getting more and more homogeneous (e.g., similar colored
leaves). Step by step different sub-clusters are divided till the lowest level of the hierarchy is
reached.
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Figure 4.13: Enhanced dendrogram: A selection of data points from the iris dataset has been
hierarchically clustered and the structure represented in a radial dendrogram. Leaf glyphs are
used to visualize the groups and individual data points along the hierarchy. As can be seen, the
visual structure of the leaf glyph is getting more and more precise when approaching the leaf
nodes illustrating the homogeneity of the lower levels in the dendrogram.

For our visual aggregation we tried to keep a metaphorical approach in mind to help analysts
understanding the visual representation without any training or explanation. In the following
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subsection 4.2.3 we evaluate our design space and the introduced aggregation techniques by
applying the leaf glyph to a realistic data set from the environmental domain.

4.2.3 Use Case Scenarios
We defined an encompassing scheme to generate leaf glyph-based data visualizations for large
data sets. We implemented the above described designs in an interactive system. We here exem-
plify results we obtained with three data sets. These results aim to show the principle applicabil-
ity. Note that a thorough comparison against alternative glyph designs and user testing remain to
be done in future work.

Forest Fire

The forest fire data set is available in the UCI machine learning repository [44] and called forest
fire. It contains data about burned areas of forests in Portugal on a daily basis for one year. Addi-
tionally, weather information is included, e.g., temperature, humidity, rain and wind conditions
at respective points in time. This data set does not contain any categorical data which could be
mapped to the leaf shape. Therefore, we initially clustered the data points with the DBSCAN
algorithm [82] and assign local or global outliers to different glyph shapes (Figure 4.14). Our
idea is to map outliers to the more jagged leaf shapes, while non-outlier points get mapped to
more regular or smooth shapes, thereby providing a first visual assessment of the degree of out-
lyingness for the data. Our analysis task is to find similarities between burned areas to be able to
predict fires due to certain weather conditions.

Ovate	  Orbicular	  Hastate	   Acuminate	  Pedate	  
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Figure 4.14: Shape categories: Based on the results of the clustering we assign different leaf
shape templates according to the data characteristics.

First, we wanted to get an idea about the data distribution. We used one data glyph for each
data point and positioned the leaf glyphs in a common scatterplot layout. The x-axis is reflecting
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the temperature and the y-axis the humidity. By intention we swapped the y-axis showing low
data values at the top and high data values at the bottom. This reflects our background knowledge
that possible indicators for forest fires are a high temperature and a low humidity. Potentially
vulnerable areas are, therefore, positioned at the top right corner of the scatterplot. Figure 4.15
allows a first look on the data. At a first glance there seems to be a positive correlation between
temperature and humidity. However, because of the high number of data points a lot information
gets lost due to overplotting.
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Figure 4.15: Scatterplot layout: Leaf glyphs are positioned in a scatterplot according to their
temperature and humidity. Since no aggregation technique is applied on the data a lot of over-
plotting occurs.

As a next step, we applied transparency to the data points and also use color to show temporal
information and orientation to encode the wind speed. The alpha compositing technique helps
to detect some more leaf shapes, however, especially in the dense area on the diagonal still a
lot of overplotting exists. For the color encoding we decided to use a metaphoric approach to
help analyst understand the encoding without a color legend. We try to associate the seasons
(i.e., winter, spring, summer, autumn) with the leaves. During winter and autumn the leaves
in nature have a brownish or reddish color, whereas the color hue changes during spring and
summer getting more green. Therefore, we colored our leaf glyphs accordingly. As can be seen
in Figure 4.16 the data points are divided into 2 main clusters. Brown and red leaf glyphs are
located above the diagonal and the more greener leaves are positioned on the diagonal. It seems
as if humidity and temperature are both lower during autumn and winter times compared to
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spring or summer.
Another metaphoric approach was used to represent the magnitude of wind. The orientation

of the leaf glyphs is changing according to the wind speed. Data points with low speed are
oriented to the left. With an increasing wind speed the angle changes pointing right. The idea
was to simulate a blast blowing from left to right catching all leaves and changing their direction
accordingly. However, no additional visual pattern can be perceived. The leaf glyphs are pointing
to various directions showing no correlation between wind magnitude and temperature, humidity,
or time.
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Figure 4.16: Alpha Compositing: Transparency is used to better perceive the data in cluttered
areas. Since too many data points are located in the dense regions this aggregation technique
does not provide the best view on the data.

To find similarities between burned forest areas we map the size of the burned regions to the
size of the glyphs. Of course, this encoding is not a metaphoric representation, however, it helps
to associate the information with the respective visual dimension. When inspecting Figure 4.17
it seems as if all leaf glyphs were reduced in size, and differences according to size cannot be
perceived. This is surprising, since we would expect the size of burned forest areas to be different.
One possible explanation is that some data points with different size are located in the cluttered
area on the diagonal.

To get a different perspective on the data and to further reduce the overplotting, we switch to
an alternative aggregation technique to better understand the highly cluttered area (Figure 4.18).
Due to the design of the bouquet prototype generation, the visual attribute of orientation is lost,
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Figure 4.17: Forest fire data set: We applied alpha compositing as an aggregation technique
to get a first overview of the data set. We used the following mapping to represent the multi-
dimensional data: Shape =̂ local/global outlier, x-position =̂ temperature, and y-position =̂ hu-
midity, color hue/saturation =̂ time (i.e., month), size =̂ area of burned forests, orientation =̂
magnitude of wind.

and therefore, we cannot map the wind magnitude to this variable anymore. In the highly clut-
tered area in the middle of the plot, several different maple leaf shapes become apparent. These
refer to outliers detected by our previous clustering algorithm. However, more interesting are the
two big maple leaf shapes located at the top right corner. They represent huge areas of burned
forests during the summer time with high temperature and low humidity. When switching to
Figure 4.17 and keeping in mind the concrete location of these data points, we can further extract
the wind magnitude, which seems to be medium. With this understanding of the data, it is plau-
sible why the burned forest areas are large. High temperature, medium winds, and low humidity
all support the spread of a forest fires. However, since there are more smaller data points with
similar data characteristics these features are not necessarily an indication for large forest fires.
Perhaps, other factors, e.g., the area or the coverage of fire stations, which is not covered in the
data might be an additional factor.

Of course, these findings would need to be substantiated by additional data considerations.
Further information, e.g., the amount of firemen fighting the fire, the exact kind and amount of
trees, or the time until the fire was recognized are important side factors not covered within the
data. However, with our new glyph approach we were able to easily identify timely patterns,
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Figure 4.18: Forest fire data set: We applied a prototype aggregation technique to reveal insights
to the highly cluttered areas in the plot. Interesting to note are the relatively big outlier leaf
shapes, which were not visible beforehand.

outliers, and similar behavior of data points. Of course, other glyph designs (i.e., star glyphs
etc.) might also be suitable to represent the data, however, our leaf glyph technique helps to
easily associate the appearance of the data point with its attribute dimensions.

Iris and Seeds

Figure 4.19 and Figure 4.20 illustrate two well-known data sets (i.e., iris and seeds) from the
UCI machine learning repository as an infographic representation. For both data sets, an initial
k-means clustering is performed based on the number of classes within the data set. The clus-
ters are then mapped to unique leaf shapes and projected to 2D space by Principal Component
Analysis (PCA). As a last step the data dimensions are mapped to leaf glyph properties providing
insights of the data. Due to the projection, some classes can already be distinguished. However,
additionally assigning the clusters to different shapes helps to characterize the data more easily.

By mapping all data dimensions to glyph features, it is possible to extract more detailed
information. In the seeds data set, there is a visual correlation between orientation (length of
the grain) and venation frequency (width of the grain). The same thing is true for the color hue
(asymmetry coefficient) and the y-position (1st principal component). The size (compactness)
seems to slightly reflect the x-position (2nd principal component) (see Figure 4.19)

The iris data set is clearly divided into two different clusters by performing a PCA projection.
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Seeds'data'–'PCA'projected'

Figure 4.19: Infographic representation - seeds data: The well-known seeds dataset from the
UCI machine learning repository is visualized using a 2D projection, and an appropriate mapping
of data dimensions to leaf shape characteristics.

However, the data contains three classes, which are mapped to the shape by performing a k-
means clustering. The visualization clearly shows two classes within the single cluster on the
left. There seems to be a high correlation between the sepal height and length, which are mapped
to the height and length of the glyph respectively. Since no leaf shape gets rescaled, the ratio
between the two is read similar. Within the three classes, there is an almost equal distribution
of the petal length mapped to the color hue. Finally, the orientation represents the petal width,
which highly correlates to the x-position (2nd principal component) (see Figure 4.20).

4.2.4 Conclusion
Reviewing the literature has shown that metaphor based data glyph designs are suitable for con-
veying multi-dimensional data of a certain domain. Since no metaphor based glyph design for
environmental data existed we introduced the leaf glyph. The design is based on a naturally
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Iris'data'–'PCA'projected'

Figure 4.20: Infographic representation - iris data: The well-known iris dataset from the UCI
machine learning repository is visualized using a 2D projection, and an appropriate mapping of
data dimensions to leaf shape characteristics.

prominent shape, which should connect well to human perception, supposedly also under con-
ditions of partial overlap. To come up with a well defined visual mapping we systematically
structured the leaf glyph design space. Specifically, we mapped data to the main properties of
the leaf glyph: leaf morphology, leaf venation, and leaf boundary. Furthermore, we defined a
custom visual aggregation to scale the glyph for large numbers of data records with respect to its
counterpart in nature. The applicability and effectiveness of our approach is evaluated by explor-
ing three different multivariate datasets by expert users. A quantitative evaluation comparing the
design against well-established alternatives is missing, however, we believe that our approach is
aesthetically pleasing and may spark interest by a wider audience, for use, e.g., in mass media
communication. Possible application areas are infographics in newspapers or publicly available
websites communicating environmental information.

However, for lookup tasks including intra record comparisons the leaf glyph is certainly not
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the optimal choice. Same thing is true for similarity search tasks, where data similarity is most
important. For such a scenario many-to-one mappings like the well-known star glyph should be
preferred. Interestingly different variations of the star glyph are used quite often in literature and
only little advice exists, which one performs best. To shed more light on this topic I will introduce
in the following section 4.3 a controlled user study testing the star glyph and the influence of its
contour line on similarity perception.

4.3 The Influence of Contour on Similarity Perception of Star
Glyphs

In the related work section 4.1 several different data glyph designs have been introduced. One
of those techniques is the well-established star glyph [168], which is used in various applica-
tion domains: maps showing the geographical distribution of multi-dimensional objects (e.g.,
comparison of indicators such as crime rate or suicides for different regions of France [69]),
multi-dimensional scaling visualizations exposing relationships between scaling algorithms and
data distributions (e.g., election patterns to show political party proportions by region [175]),
data objects organized in a grid layout to show how multi-dimensional objects distribute across
sets of predefined categories (e.g., food nutrients in different food categories), or others [32, 60,
103, 104, 143, 168, 194, 195]

As can be seen in these examples, there exists a great variety of alternative designs for star
glyphs that differ in the amount of reference structures used, the use of additional visual vari-
ables on the “rays,” or whether or not the individual rays are connected to form a contour for
the glyph [191]. The version of the star glyph with unconnected rays is also sometimes called
whisker or fan plot, while the connected version also carries the name star plot [195]. Star glyphs
are frequently used but very little advice exists on how to choose between different star glyph
encodings. The question arises to what degree changes in the design of a star glyph influence its
perception and, thus, the effectiveness of the glyph in certain tasks.

Some researchers have studied the perception of glyphs in the context of similarity tasks—yet
with a variety of methodological approaches. For a more detailed overview I refer to chapter 2,
which reviews the literature in more detail. In the following only the most relevant work is
hightlighted.

Wilkinson [199] conducted a user study comparing star glyphs, castles, Chernoff faces and
blobs. Participants had to sort 8 glyphs of each type—varied by a variety of factors—according
to increasing dissimilarity. Their findings indicate that judgments on Chernoff faces were closer
to the actual factor distances, followed by star glyphs, castles and blobs.

A similar sorting-based task was used by Borg and Staufenbiel [16] in their comparison of
snowflakes (similar to star glyphs), suns, and factorial suns. Participants had to sort 3 ∗ 44
shuffled cards showing data points of one type of glyph into four categories according to their
similarity. Factorial suns—that make use of some preprocessing of the data—were most easily
discriminated and star glyph performed the worst in this respect.

Lee et al. [111] showed participants several datasets represented by one of: small-multiples
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Chernoff faces, star glyphs, and two plots produced with multi-dimensional scaling. For each
dataset participants were given eight questions to answer, some of which included similarity
judgments based on pairwise comparisons. The authors did not perform an analysis on the basis
of individual similarity questions. Instead, they found that participants performed best and were
most confident with one of the 2D spatial plots, in particular on global questions where the whole
set of data points has to be considered.

Klippel et al.’s study [104] is probably the most related to our evaluation as it also studied
the influence of shape on glyph perception based on similarity judgments. Yet, instead of the
influence of contour, as in our case, they varied shape by reordering the dimensions in a star
glyph with contour. The authors studied how shape changes influenced the interpretation of
data points in a similarity-based grouping task. They found that differences in shape influenced
cognitive processing of the data and that perceptually salient features (such as spikes) strongly
influenced how people thought about a data point.

One important task for glyphs in small-multiple settings is the comparison of the encoded
data points to one-another. Such a comparison task may be conducted to find data points that are
very close over all dimensions, very different, or similar in just a subset of dimensions. We focus
on the first task: finding data points encoded as star glyphs that are very similar to a target glyph.
We are interested in this task because if it is well supported, it should improve people’s ability
to perform the other two types of comparison tasks, too. We hypothesized that the ability to
perceive a star glyph as a coherent and closed shape would strongly influence the correctness of
data similarity detection tasks—as it would potentially be easier to compare a single shape than
having to compare individual rays. This hypothesis was motivated by prior research showing that
a closed contour has an influence on the perception of a coherent shape [58]. As Palmer noted:
“Shape allows a perceiver to predict more facts about an object than any other property” [146].

Contour closure is a phenomenon related to the Gestalt principle of closure [105] according
to which we6 perceive visual objects as grouped together if they seem to complete a visual entity.
Visual objects can, thus, have an “open contour” of unconnected marks (dots, lines, etc.) or
a completely “closed contour” that forms one continuous boundary. Several researchers have
tested open vs. closed contours and found that closed contours were perceptually superior to
open contours in a variety of different tasks:

Elder and Zucker [58] showed that the efficiency of visual search was better for shapes with
a closed contour. Similar to our studies, participants were shown a stimulus object, which had
to be found amongst a larger set of distracters. In later work [59], the authors found supporting
evidence that geometric region boundaries, such as contours, are processed much earlier by our
perceptual system than other surface features, such as a region’s texture.

Garrigan [79] investigated the recognition accuracy of stimuli with a closed contour com-
pared to those with an open contour. Participants had to learn a set of stimuli and later recall
whether a newly presented stimulus had been in the previously learned set of objects or not. The
experiment showed that the closed contour shapes were recognized more easily. The authors
argue that this is due to a better encoding of the stimuli in the human visual system. Finally,

6In this section 4.3 and all corresponding subsections the term ”we” comprises Petra Isenberg, Anastasia Beze-
rianos, Fabian Fischer, Enrico Bertini, and me
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Saarinen et al. [158] measured the precision of shape perception. Participants had to judge
whether the aspect ratio of the stimulus (i.e., a rectangle) was tall or wide. Their results showed
that for discrimination tasks, closed contour shapes were more effective than non-closed shapes.

In summary, a large body of literature exists on the effect of contours on shape perception.
We highlighted a few that have particularly inspired our hypotheses that the presence of contours
may be of particular importance to the effective use of glyphs in visual data analysis tasks.
We contribute a further study focused on a concrete application in visual data analysis, with
glyphs showing multi-dimensional data points. We examine in particular whether glyph shape,
emphasized by a closed contour, is an important predictor for the effectiveness of glyph designs
in a similarity detection task.

We are not aware of any previous studies on the importance of glyph contour on tasks with
multi-dimensional data. We contribute three studies, showing the differences in performance
when adding a contour structure to well-known glyph designs. In the first we investigate the
effect of contours on the perception of data similarity with data visualization experts and novices
on star glyphs. Our results indicate that contours influenced expert the most, whereas novices had
poor performance across the board. Nevertheless, we observed that some types of shape-related
similarities overpowered the participants’ ability to read data. Based on this result we conducted
a second study on the nature of similarity perception for a larger set of glyphs with and without
contours. We found that, even without any participant training, glyphs without contours led
to similarity judgments that are close to data reading, thus making them better candidates for
visualization. In our third and final study, we added simple reference structures—tick marks and
grids—to the designs, and examine how they affect similarity judgments. Our results show that
reference structures aid data similarity comparisons in star glyphs with contours, but have little
effect on ones without. Based on these results we present considerations for the design of more
effective glyphs for similarity detection tasks.

4.3.1 Experiment 1: Contours for Novices vs. Experts
In our first study we were interested in the fundamental question: does contour affect people’s
perception of data similarity with star glyphs? Data similarity judgments are cognitive tasks,
where the viewer has to judge the absolute difference in all dimension data values between two
data points. This differs from other types of similarity judgments, such as detecting shape simi-
larity e.g., under rotation or scale.

Detection of data similarity is a synoptic task according to the Andrienko & Andrienko [10]
task taxonomy. Synoptic tasks are very common and important for glyphs in small-multiple
settings. Analysts have to visually compare data points to detect outliers or to identify similar
groups of data points, by referring to the whole data set or a subset of the data (e.g., finding
countries with similar characteristics).

We were interested in the effect of contour, as we hypothesized—based on previous percep-
tion studies [58]—that a contour would impact the rapid perception of shapes and, thus, aid in
tasks that require the data point to be perceived in its entirety. Finally, we hypothesized that there
would be a difference between experts’ and novices’ ability to make accurate data similarity
judgments, and thus chose to conduct a between-subjects experiment with these two groups of
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participants.

Design and Procedure

Glyphs: We used three different variations of the star glyph (Figure 4.21). The first, also called
whiskers or fan plot [150, 195] uses “rays” to encode quantitative values for each dimension
through the length of each ray. We refer to this variation as “Data lines only (D)”. The second
variation, “Data lines + Contour (D + C)”, connects the end of each ray with a line to add a
closed contour [168]. In the third variation the radial rays are removed, and only the contour
line is presented [32]. We use the term “Contour only (C)” for this design variant. All three star
glyph contour variations have been used in real-world context and in the scientific literature, thus
adding external validity of our glyph choice.

Data	  (D)	   Data	  +	  
Contour(D+C)	   Contour	  (C)	  

Figure 4.21: Experiment 1 contour variations: (from left to right) star glyph with rays and no
contour (D); common star glyph (D + C); only the contour line of the star glyph (C).

Dimensionality: To investigate the effect of contours on different data densities we varied
the number of dimensions shown in the glyphs. The low dimension density consisted of three
data dimensions with corresponding data values, while the high density consisted of ten data
dimensions. We considered ten dimensions to be high, as glyphs used in the literature rarely
visualize more than ten dimensions; also to our knowledge there is no study investigating the
maximum number of perceivable dimensions in a single star glyph to use as a basis.

Task, Procedure and Apparatus: Participants were shown a highlighted stimulus glyph sur-
rounded by 8 more glyphs in a 3 ∗ 3 matrix configuration (Figure 4.22). One of these glyphs
was closest in data space (lowest absolute data distance) while the rest were distracters further
away in data space. The participant had to select the glyph closest to the stimulus in terms of
data value. For each contour variation, participants were given training explaining how data was
encoded and the notion of similarity in data space. They were then given four practice trials
where the correct answer was revealed to help learning. During the actual experiment the correct
answer was no longer provided.
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Figure 4.22: Experiment setting: The participant was seated in front of a 24” Screen with a
resolution of 1920x1200. The only input device was a computer mouse.

The three glyph variations were presented in an order randomized using a latin square. The
position of the correct answer as well as the different distracters was also randomized. Similarly,
the exact glyph values were randomized. Each participant repeated 4 training and 4 real trials for
each contour variation.

The study took place in a lab setting in the presence of an experimenter. The experiment was
conducted on a 24 inch screen with a resolution of 1920 ∗ 1200 and took around 25 minutes. The
only input device was a common computer mouse to make selections.

Participants: Twelve novices (7 female) and twelve experts (2 female) participated in our
study. The age of novice participants ranged from 18–23 years (mean & median age 20), and
from 26–38 years (mean 30.3 and median 29) for experts. All participants reported normal or
corrected-to-normal vision. All novice participants reported no experience in reading glyphs, but
were familiar with common chart visualizations seen in print (e.g., bar and pie charts). All 12
experts were visualization researchers and students who reported a strong background in data
visualization with at least basic knowledge of reading glyphs (1 Bachelor; 8 Master; 3 PhD).

Overall our experiment consisted of:

3 contour variations (D,D+C,C ) ∗
2 dimensionalities (high, low) ∗
4 repetitions =

24 trials per participant ∗
24 participants (12 per expertise) =

576 trials in total
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Expertise was the between-subjects factor.

Hypotheses

H1: Novices are less accurate in judging data similarity than experts.
H2: Both experts and novices make more accurate judgments in the low dimensional than the

high dimensional condition.
H3: For both experts and novices, contour variations (D + C,C) improve the accuracy of data

similarity judgments.
H4: This effect will be stronger in novices who have no prior glyph reading experience.
H5: Contour variations (D + C,C) lead to more accurate judgments mostly in the high dimen-

sional condition, while the low dimensional condition is be less affected overall.

Data Generation and Distracters

Our data was synthetically created: 3 dimension values for the low and 10 for the high dimen-
sional case. For each dimension we consider data values ranging from 0 to 5, partitioned in three
value categories: low [0,1], middle [2, 3], high [4, 5]. We avoided larger value ranges as we were
not interested in studying visual acuity.

The stimulus (i.e., central highlighted glyph) was created randomly by assigning either a
middle or a high data value to the different dimensions with an equal chance of 25% (i.e., 50%
for each value categories and 50% for the final data value). This was done once for all repetitions.
To avoid learning effects, the stimulus was rotated between repetitions, keeping the values and
the neighboring dimensions identical.

Each trial also contained a target glyph—the correct answer, thus the most similar to the
stimulus in terms of data closeness (minimum data value distance). To generate it, we changed
the data values of the stimulus randomly up to a maximum of 7 changes in data distance for
the high dimensional condition, and 1 for the low. This was done by sequentially scanning the
dimensions with a probabilistic function, which first decided to change the dimension or not
(50%), second to increase or decrease the corresponding data value (50%) and third by how
much (i.e., 1 or 2)(50%). At the end we ensured that the resulting data values fit into one of the
three categories (i.e. low, middle, and high) and that the sum of all changes meet the predefined
criteria.

Besides the stimulus and target glyph, we created 3 types of distracters. First, a rotated
version of the stimulus, keeping the data values identical, but switching the dimensions one step
either to the left or to the right. Second, a scaled version of the stimulus where we reduced the
data values of each dimension by 1. Since the data values of the stimulus reach from 2 to 5 it
is not possible to end up with negative values. Third, a close alternative of the target glyph.
This alternative takes the data values from the stimulus and changes the values randomly up to a
maximum of 8 changes in data distance for the high dimensional case, or 3 for the low. Values
were chosen to ensure that the alternative glyph is not too different from the stimulus, while
the target glyph continues to be the most similar in data distance. The remaining distracters
were created randomly by assigning a data value to each dimension with an equal chance (see
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Figure 4.23). For each trial we ensured that the sum of all differences between stimulus and all
distracters was higher to that between stimulus and target glyph.

S"mulus'

Scaled' Rotated' Alterna"ve'

Scaled'

Rotated'Random'Random'

Correct'

Figure 4.23: Experiment setting: For each trial glyphs were arranged in a 3 ∗ 3 matrix. The
stimulus is highlighted and positioned in the middle to assure an equal distance to the other
glyphs. This setting is used in all three experiments.

Results

We report only statistically significant results (p < .05) for accuracy. Given the non-normal
nature of our data we used a non-parametric Friedman’s test for the analysis of correct answers
between glyph variations and a Kruskal-Wallis test for comparisons between expertise (between
group factor). Figure 4.24 shows overall correct answers, and Figure 4.25 (low dimensional) and
Figure 4.26 (high dimensional) which type of distracters participants chose under the different
experimental conditions. Although completion time was logged, we found no differences across
variations and user groups, with low dimension trials taking on average 11sec (D = 12.7sec,
D + C = 11.3sec, C = 9, 7sec) and high ones 18sec (D = 19.7sec, D + C = 16.9sec,
C = 16.7sec).

Overall accuracy for experts across variations was 79.1% for the low and 44.4% for the high
dimensional glyphs, and for novices 74.3% and 36.8% respectively. However, there was no
significant effect of expertise on accuracy. Figure 4.24 illustrates more high level results.
Dimensionality: There was a significant effect of dimensionality on accuracy (χ2(1, N =
288) = 23, p < .001).

Post-hoc tests revealed that participants were more accurate in the low dimensional condition
(76.7%) compared to the high dimensional condition (40.6%, p < .001).
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Experiment 1 - Summary 

Expertise Variations Dimension 

Figure 4.24: Experiment 1 summary: The bar charts illustrate the percentage of correct answers
and the standard deviation.

Contour variation: There was a significant effect of contour variation on accuracy (χ2(2, N =
192) = 7.9, p < .05). Participants using variation C performed significantly worse (51.6%)
compared to D (63%, p < .05) and D+C (61.5%, p < .05). For experts, there was a significant
effect of contour variation on accuracy in the high dimensional condition (χ2(2, N = 48) =
12, p < .001). A pairwise comparison revealed a significant higher accuracy with theD variation
(66.7%) compared to bothD+C (41.7%, p < .05) andC (25%, p < .001). No significant results
were found for novice participants.

When comparing the accuracy of the two participant groups, we found that for the variation
D, there was a significant effect of expertise on accuracy in the high dimensional condition
(χ2(1, N = 96) = 5.85, p < .05). Experts performed significantly better (66.7%) using the D
variation compared to novice participants (39.6%, p < .05).

When selecting a wrong answer, both experts and novices most frequently selected the second
closest data point to the stimulus (17.7%, 20.5% respectively), followed by a scaled version of
the stimulus (16%, 16.3%) and to a lesser extent rotated versions (2.4%, 4.1%), mostly in the
high dimension case of the contour variations (C +D,C).
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Low*Dimensional*

Figure 4.25: Experiment 1 results low dimensionality: The bar charts illustrate the percentage
of selections and the standard deviation for each factor. In the low dimensional condition there
were no significant differences across expertise and design variation.

Summary and Discussion

Overall we cannot confirm H1, our experts were not significantly more correct than novices on
average. This is especially true for the low dimensional condition where both user groups had a
good performance (≈ 80% correct). However, for higher dimensionalities experts using variation
D were significantly more accurate compared to novices (partially confirming H1).

When comparing the two dimensionalities, similarity judgments were significantly more ac-
curate for both user groups in the low dimensional condition compared to higher dimensional-
ities, confirming H2. With an increasing number of dimensions more data values have to be
visually compared, leading to more complex mental calculations resulting in a higher error rate.

Contrary to intuition from previous work that contour can improve similarity judgments [58,
79], we found that contour affected the accuracy of judgments negatively for experts. Thus we
cannot confirm H3. As no significant effects were found for novice participants, we could also
not confirm H4, however, mean accuracy for C (50%) was lower compared to D + C (59.4%)
and D (57.3%).
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High*Dimensional*

Figure 4.26: Experiment 1 results high dimensionality: The bar charts illustrate the percentage of
selections and the standard deviation for each factor. In the high dimensional condition experts
using variations D+C,C were lead to judge shape similarity rather than data similarity whereas
the accuracy of novices was low for all three variations.

We also could not confirm H5. Contrary to expectations, the variation without a contour (D)
led to significantly more correct answers for high-dimensional glyphs. The effect was not visible
in the low dimensionality case where all participants were overall approx. 80% accurate with all
variations.

Trying to explain the unexpected negative effect of contour on experts, especially in high
dimensional cases, we noted that at least half of the erroneous answers in the contour variations
(C+D,C) were in the form of scaled versions of the stimulus glyph, and to a lesser extent rotated
versions, i.e., glyphs that have a geometric form similar to the stimulus glyph. In retrospect, this
negative effect of contour could be explained by the fact that contour, and closure in general, is
one of the factors promoting the notion of unity according to Gestalt psychology [105]. In our
case contours led our experts to erroneously consider glyphs as coherent shapes when judging
similarity, rather than data points. This resulted in judgments and comparison of geometrical
shapes rather than data, with experts being led to consider as more similar data points that were
either scaled or rotated versions of the stimulus, rather than the one closest in data space.
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Given the overall poor performance of novices in the high dimensional case we conjecture
that due to their lack of familiarity and experience they tended to fall back to judging shape rather
than data similarity for all star glyph variations. This is evidenced by the fact that at least half of
their errors were a combination of scaled and rotated versions of the stimulus glyph.

4.3.2 Experiment 2: Perception of Similarity
Results from Experiment 1 indicated that in high dimensional cases contours mislead even ex-
perts to perceive rotated or scaled versions of the stimulus as more similar, rather than the one
closest in data space. Based on this finding, we conducted a second experiment to better un-
derstand what type of similarity different kinds of data glyphs naturally support. To this end,
participants were not given any training or explanation of what similarity means, and we did
not inform them that the glyphs encoded multi-dimensional data. Their only instruction was to
select the most similar glyph. Our goal in this experiment was to examine what viewers naturally
perceive as similar in different data glyph variations, without being instructed on how to judge
similarity. Based on our results we hoped to identify the data glyph variations, if any, that nat-
urally promote data similarity rather than shape similarity and, therefore, are more suitable for
data visualization.

Design and Procedure

Glyphs. We included another two common profile glyph designs in the study to extend the
applicability of our results [52]. They are a small bar chart (we refer to this representation as Bar
glyph) and a linear version of the star glyph, which we call MirrorBar glyph. By adding these
designs we can investigate possible differences in similarity perception between directional (i.e.,
Star glyph) and positional laid dimensions (i.e., Bar and MirrorBar glyph). We additionally
include a filled version of each design to examine whether variations of glyphs that are filled,
reinforce the notion of a closed shape due to foreground/background contrast [105]. We conjec-
tured that fill color may lead to shape rather than data similarity choices. In total we had the 6
glyph designs illustrated in Figure 4.27.

Task. We again used a synoptic task, where participants selected the most similar glyph com-
pared to a stimulus glyph. Participants were shown a highlighted stimulus surrounded by another
8 glyphs in a 3 ∗ 3 matrix configuration. The positions of the surrounding glyphs were random-
ized around the stimulus. Again, we wanted to explore the notion of similarity and examine if
some glyphs are naturally judged in a manner that approaches data rather than shape comparison.
We thus gave no explanation as to what the glyphs represented and provided our participants with
no training. Participants were free to interpret the word “similar” as they saw fit.

Data, Target Types and Dimensionality. Our data was generated as in Experiment 1, and
again we tested low and high dimensionality. However, we included slightly different glyph
choices to our participants, that we call ”Target Types” (they are no longer distracters, as there
is no correct answer). To balance the selection likelihood between each target type, we included
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two of each shape similarity and two glyphs that were closest to the stimulus in data space (we
refer to this kind of target as “data”). As a result we had 2 data, 2 rotated and 2 scaled versions
of the stimulus, and 2 randomly generated targets.

Participants and Procedure. Our study was conducted on Amazon Mechanical Turk (AMT),
inspired by previous graphical perception experiments [19, 85]. We accepted 185 participants in
total, and subjects were paid 0.50$ per Human Intelligence Task (HIT). Given the simple nature
of our perceptual study, no qualification tests were required to complete our HITs. In accordance
with AMT guidelines, however, only workers with 95% or more HIT approval rate were allowed
to participate. Furthermore, we added control questions (3 in total) throughout the study, where
one of the targets was identical to the stimulus and the answer was, therefore, obvious. We
dismissed workers who did not get all the control questions correctly and their data was not
included in the analysis. As a result we ended up with 108 participants (18 per fill type). Each
participant worked on 4 trials for each variation and dimensionality, and viewed either the fill or
the no-fill types. The order of presenting the glyph variations was randomized.

Overall our experiment consisted of

3 glyphs (Bar, MirrorBar, Star) ∗
2 filling types (Fill, No-Fill) ∗
3 contour variations (D, D+C, C) ∗
2 dimensionalities (high, low) ∗
4 repetitions =

144 trials per participant ∗
18 participants per glyph and fill type =

2592 trials in total

for a between subjects design (glyph and fill type being the between subjects factor).

Hypothesis

Given the results from Experiment 1, and our conjecture on filling, we formulated the following
hypothesis.

H1: Given Exp 1, glyphs without contours and filling will promote data similarity comparison
rather than shape, even when participants are unaware they are viewing data.

H2: Familiar glyphs such as chart visualizations (e.g. Bar glyph) will promote data similarity
more than unfamiliar ones (e.g. MirrorBar or Star glyph).

H3: Low dimensionality will lead more often to data similarity judgements in cases where
shape is not enforced (no contour, non-filled), even with no instruction about what the glyphs
represent and what is similarity.
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Figure 4.27: Experiment 2 design space: We enriched the design space from our previous study
by adding bar chart like glyphs (i.e., Bar glyph) and a linear variant of the star glyph (i.e., Mir-
rorBar glyph). All designs also appear in a filled version. The different design variations of the
first study (i.e., D, D + C, C) are applied to all designs.

Results

We only report statistically significant results (p < .05) for the quantitative data. We used a
non-parametric Friedman’s test for the analysis of the selections between the glyph variations
(within-subjects) and a Kruskal-Wallis test for comparisons between glyph designs (between
group factor).

We first report overall averages for all selections made. For Star glyphs the most common
selection was the data distracter (44.6%). The second was the rotated distracter (37.3%), partic-
ularly in higher dimensions and C,D + C contour variations. The scaled distracter came third
(17.8%), mostly in the C,D + C filled versions of the Star glyph.
For the Bar the most common selection was the scaled distracter (69.5%), particularly in the
high dimensional cases and filled versions of this glyph. Nevertheless, the data distracter was the
most often selected one in the D variation.
For the MirrorBar the most common selection was the scaled (44.1%) then the data distracter
(36.4%). Again, the data distracter was more common in low dimensions for D.

We next treat each distracter as a separate dependent variable but focus on results for data
distracter selections, to help us compare glyph variations for data visualization. We first examine
each glyph design and data dimensionality independently for the different variations (D, D+C,
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C). We then compare glyph designs between them.
Bar glyph: For the Bar glyph, there was a significant effect of variation on distracter in the low
(χ2(2, N = 72) = 8.64, p < .05) and high dimensional case (χ2(2, N = 72) = 7.53, p < .05)
(see Figure 4.28). Pairwise comparisons showed that participants considered significantly more
often the data distracter as similar for variation D in the low and high dimensional case (52.8%;
9.7% respectively), compared to both D + C (34.7%; 1.4%, all p < .05) and C (31.9%; 0%, all
p < .01).

The filled Bar glyph only showed a significant effect of variation on distracter for the low
dimensionality (χ2(2, N = 72) = 14.62, p < .001). Again, the data distracter was selected
significantly more often with variation D (50%) compared to D + C (31.9%, p < .01) and C
(26.4%, p < .001).

There was no significant effect of filling types for the Bar glyph design.
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Figure 4.28: Experiment 2 results bar glyph: The bar charts illustrate the percentage of selections
and the standard deviation for each factor.

Star glyph: The Star glyph showed a significant effect of variation on distracter for both low
(χ2(2, N = 72) = 8.21, p < .05) and high dimensional cases (χ2(2, N = 72) = 28.25, p < .001)
(see Figure 4.29). Post-hoc tests revealed a significantly higher selection rate for data distracters
in variation D for the low and high dimensional case (75%; 62.5%) compared to D+C (61.1%;
15.3%, all p < .05) and C (59.7%; 9.7%, all p < .01).

The filled Star glyph only had a significant effect of variation on distracter in the high dimen-
sional case (χ2(2, N = 72) = 17.33, p < .001). Participants working with variation D selected
significantly more often the data distracter (41.7%) compared to D + C (11.1%, p < .001) and
C (9.7%, p < .001).

When comparing the filled Star glyph with the non-filled version there is a significant effect
on filling types with variation D in the high dimensional case (χ2(1, N = 144) = 6.22, p < .05).
Participants working with the non-filled Star glyph selected the data distracter significantly more
often (62.5%) compared to the filled design (41.7%, p < .05).
MirrorBar glyph: We found no significant results for the MirrorBar glyph, but the filled Mir-
rorBar glyph showed a significant effect of variation on distracter in the low density case
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Figure 4.29: Experiment 2 results star glyph: The bar charts illustrate the percentage of selections
and the standard deviation for each factor.

(χ2(2, N = 72) = 6.77, p < .05) (see Figure 4.30). Pairwise comparisons revealed that the data
distracter was selected significantly more often with variation D (52.8%) than with C (33.3%,
p < .01).

A significant effect on filling types can be seen for the MirrorBar with variation C in the
low dimensional condition (χ2(1, N = 144) = 8.05, p < .01). With the non-filled version
participants tend to select the data distracter more often (56.9%) compared to the filled design
(33.3%, p < .01).
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Figure 4.30: Experiment 2 results mirrorBar glyph: The bar charts illustrate the percentage of
selections and the standard deviation for each factor.

All glyphs: When comparing the different glyphs (i.e., Bar glyph, Star glyph, MirrorBar glyph)
with each other we only consider the version of each design (i.e., filled or non-filled), which per-
formed better. We have thus chosen the common non-filled Star glyph, the non-filled MirrorBar
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and the filled Bar glyph. Although there was no significant difference between the filled and
non-filled versions of the Bar glyph, we consider the filled version as it is most often seen in
print in with fill colors. We also focus on the non-contour variation D that gave the best results.

Variation D: There was an overall effect of glyphs on distracter in both the low (χ2(2, N =
216) = 9.62, p < .01) and high dimensional case (χ2(2, N = 216) = 56.95, p < .001). In
the low dimensional case, pairwise comparison showed a better performance for the Star glyph
(75%) compared to the Bar glyph (50%, p < .01). When switching to the high dimensional
condition the Star glyph still performed best (62.5%) compared to the MirrorBar (20.8%, p <
.001) and the Bar glyph (6.9%, p < .001), with the MirrorBar having a higher performance
compared to the Bar glyph (p < .05).

Summary and Discussion

We found strong evidence that glyphs without contours promote data similarity comparison
rather than shape (H1). This was particularly the case for Star glyphs across dimensionali-
ties, and less for Bar and MirrorBar in low dimensionalities. Data similarity judgments were
also more common in the non-filled variations of Star and MirrorBar (H1). Thus overall factors
enforcing perceptual unity of shape[105], such as contour containment and emphasis between
glyph and background (figure and ground), lead viewers to naturally make shape judgements of
similarity rather than data, while open variations of the glyphs lead to similarity choices closer
to data comparisons, even without any training.

Even though the lack of contours increases data judgements, the majority of selections for
the Bar and MirrorBar glyph, especially in high dimensionality, were based on shape similarity,
mostly scaled. This is contrary to our expectation that glyphs resembling familiar visualizations
will lead to data similarity (H2). We feel this finding merits further study. One explanation for
this effect, is that we are accustomed to reading such charts to see trends (e.g. increasing and
decreasing tendencies) and thus scaled versions look similar as they preserve trends. On the
other hand, for Star glyphs the second most popular selection in high dimensions (after the data
similarity), was the rotated version of the stimulus. This is not unexpected, as the Star glyph
layout is directional and thus small rotation shifts look indeed very similar.

For all glyphs in low dimensionality, when no contours and no filling were present, data
similarity was more common than shape, but in higher dimensions shape similarity was more
common for Bar and MirrorBar (H3). We note again that in this study participants were never
told they were viewing data visualizations, they were just asked to find the most similar shapes
without further instructions. Thus, our results indicate the natural tendency of people to judge
glyphs instinctively in a more “data-centric” manner in low dimensionalities, and in high ones
when factors that enforce coherent shapes are absent. It is clear that with training we can further
enforce data similarity judgments–but given that some glyphs and glyph variations seem to be
naturally well suited for data judgments, we focus on those star glyph designs and try to further
improve their performance with small design variations.
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4.3.3 Experiment 3: Improvements for Star Glyphs
The first experiment showed that people judge data similarity with non-contour designs more
accurately while the second experiment showed that non-contour designs also lead to data sim-
ilarity judgments to be made more naturally. Yet, accuracy in the high-dimensional case was
quite low for all main design variations we tested previously. In this last experiment, we thus
explore whether we can improve the accuracy of data similarity judgments by adding simple
reference structures—tickmarks and grids—to the designs. We focused on static reference struc-
tures to learn how much these general approaches would aid data comparison before considering
the design of interactive aids.

Star Glyph Reference Structures

Reference structures such as grids and tickmarks are frequently recommended for data charts
to aid in relating content to axes [107]. We, thus, hypothesized that they could provide similar
reading aids for star glyphs despite their smaller footprint. Tickmarks and grids use two different
types of reference mechanisms. While tickmarks add information to each individual data line
only, grids connect the overall glyph design. While there are many different ways to draw grids
and tickmarks we settled on the following designs:

Tickmarks T : Whenever a data line exceeds a certain threshold we draw a short orthogonally
oriented tickmark on the data lines using the same stroke color. Tickmarks are spaced to be
17 pixels apart. The resulting D + T glyph (see Figure 4.31) resembles the snowflake glyph
previously mentioned in literature [16] and is also close to how tickmarks are used on axes in
many data charts.

Grid G: We draw three circles in the background of the glyph using a gray value of #ccc in
RGB color space chosen according to design considerations by Bartram et al. [11]. The circles
are spaced 16.6 pixels apart. The resulting design resembles radar graphs or spider plots [189].
As an alternative we considered drawing a gridline at the end of each data line. Doing so would
create an underlying texture that could help to identify the overall data distribution across all
dimensions. Yet, we chose not to use this design as this texture can be misleading since rotated
star glyphs with similar data values would have the same texture, although they have entirely
different data values.

Of course, the readability of glyphs could further be improved by adding double encodings
(e.g., additionally using color to distinguish dimensions or data values), dimension ordering
[148], or sorting the glyphs on the display. Yet, all of these encodings have limitations: use
of color is limited to glyphs with a small number of dimensions, dimension ordering may not
improve legibility for a large number of variable glyphs in a small-multiple setting, and sorting
glyphs may disrupt a pre-defined layout based on other meta-data such as time. We, thus, did not
consider these encodings for the study.

Design and Procedure

Glyphs: We tested the two star glyph variations that performed best in the first experiments:
the data-only glyph (D) and the star glyph with data lines and a contour line (D + C). The
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Figure 4.31: Experiment 3 design space: We have chosen the star glyph only with data whiskers
(D) and with an additional contour line (D + C) and applied tickmarks (T ) and gridlines (G) to
these designs.

reason for discarding the contour only design (C) is the bad performance for previous similarity
judgments, the lack of ability to place tickmarks, and the minimal number of real-world examples
of this glyph type in use.

For baseline comparisons we kept the originally tested versions of the star glyph (D, D+C)
and added two types of reference structures (T , G). The experiment, thus, compared the six
different designs (D, D + T , D +G, D + C, D + C + T , D + C +G) in Figure 4.31.

Participants: We recruited 12 data visualization experts (3 female). The age ranged from 23–
40 years in age (mean (29.75) & median age (30)). All participants reported normal or corrected-
to-normal vision. All experts focused during their studies on data visualization (4 Bachelor; 5
Master; 3 PhD) or a related topic and were familiar with reading data glyphs. They had not
participated in the first study.

Task and Procedure: Participants completed data similarity search trials with all 6 designs.
The order of the designs was randomized using a latin square. For each design there was a
short introduction of the visual encoding and the similarity search task with 5 test questions.
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The participants had to complete those simple test trials with 80% accuracy in order to continue
the experiment. The purpose of the test was to first check the participants’ ability to read the
visual encoding of the glyph and second to test their data similarity judgments. All participants
passed the test section. The introduction was followed by 4 training trials to help the participants
develop a strategy for solving the task. For training trials, the correct answer was shown to
participants after they had made a choice. Finally the four study trials were shown without any
visual feedback of the correct answer.

The experiment took place in a lab setting using a 24” screen with a resolution of 1920 ∗ 1200
pixels. The experimenter was present during the study. After the study, 11 of the 12 participants
filled out a questionnaire for subjective feedback on aesthetics of the designs and strategies used
to answer the questions.

Data, Distracters and Dimensionality: Since participants were already ≈ 80% correct in the
low dimensional condition in Experiment 1, we only used high-dimensional glyphs in Experi-
ment 3. We generated the data the same way as in Experiment 2 and balanced selection likelihood
between distracters. To reduce the chance of a successful random guess we generated only one
data point closest in data space (target) and another one second closest in data space (alternative)
as in Experiment 1. The experiment included 2 rotated, 2 scaled, 2 random, 1 alternative and 1
target glyph. The stimulus was highlighted and positioned in the middle of the 3 ∗ 3 matrix as in
the two previous experiments. The distracters were randomly arranged around the stimulus.

Overall our experiment was a within-subjects design with the following factors, participants,
and trials:

1 glyph (Star) ∗
2 contour variations (D, D+C) ∗
3 improvements (Basic, T, G) ∗
4 repetitions =

24 trials per participant ∗
12 participants per glyph =

288 trials in total

Hypotheses

Based on our previous experiments and the frequent use of reference structures to aid chart
reading, we tested the following hypotheses:

H1: Tickmarks (T ) in star glyphs improve the accuracy of data similarity judgments for both (D)
and (D + C) variations compared to the variations without the tickmarks. The additional
anchor points help to better read and compare line distances.

H2: An underlying grid (G) in the background of the star glyph provides additional orientation
and facilitates more accurate comparison of data values for both (D) and (D+C) variations
than the variations without the grid.

H3: The contour variation D + C benefits more from the additional reference structures than
the D variation since contour has previously shown to lead to shape comparison rather than
data similarity comparisons.
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High Dimensional 

Figure 4.32: Experiment 3 results of the percentage of selections and the standard deviation for
each factor. Design improvements (T,G) do not significantly increase the accuracy of the two
star glyph variations (D + C,C).

H4: Completion time is higher for designs enriched with reading marks (T or G). The viewer
has to invest more mental effort to process the additional visual information.

Results

Similarly to Experiment 1 we used a non-parametric Friedman’s Test on the data to analyze
accuracy, and a one-way ANOVA for the completion time. We only report statistically significant
results (p < .05).

The overall accuracy was 51.4%, with designs with grids (G) being more accurate (59.4%),
followed by the tickmark designs (T ) (47.9%) and then designs without additional marks (46.9%).
There was a statistical trend for different types of reference structures on accuracy (p < .1), with
glyphs with grids being more accurate than with tickmarks. There was no difference between
designs with reference structures and the baseline design.

Next, we compared the different glyph variations without contour (D) and with contour (D+
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C). As in Experiment 1, participants were significantly more accurate with variation D (60.4%)
than when the contour was present D + C (33.3%, p < .01).

Reference structures on glyphs without contours (theD glyphs) did not significantly improve
accuracy over the glyph without the reference structure. Participants were 60.4% accurate with
D, 68.8% accurate with (D +G), and 45.8% accurate with (D + T ). Nevertheless, we note that
the mean accuracy of the (D+G) variation is indeed higher than for D only. We also found that
for the two variations using reference structures, grids (D+G) were significantly more accurate
than tickmarks (D + T ) (45.8%, p < .05).

For the contour variations, we have a statistical trend (p < .1) indicating that the accuracy of
both the contour variation with a grid (D+C+G) and the one with tickmarks (D+C+T ) tend
to be more accurate (both 50%) than that of simple glyph with contour (D + C) with accuracy
33.3% (p = .06 and p = .08 respectively).

Looking at differences across variations, we also found that D + G (68.8%), which had the
highest overall mean accuracy, performed significantly better than D+C (33.3%, p < .001) and
had a statistical trend to perform better than D + C +G (p = .1) and D + C + T (p = .8).

The mean number of selections per distracter type are shown in Figure 4.32. We found a
significant effect of variation on distracter (χ2(5, N = 48) = 12.68, p < .05). Participants
using variations with contour lines most often selected the scaled distracter (24%) followed by
the rotated (16%) and the alternative (15%) distracter. For the non-contour variations partici-
pants chose the alternative and the rotated distracter equally often (18%) followed by the scaled
distracter (5%).

No significant results can be reported for the completion time, thus we cannot confirm that ad-
ditional marks influenced comparison times. However, participants needed approx. 2sec longer
when working with designs using additional marks. Average completion time was 22sec per trial
(D = 21.7sec, D +G = 24.8sec, D + T = 26.1sec, D +C = 17.9sec, D +C +G = 21.5sec,
D + C + T = 22sec).

The questionnaire showed that the glyph variations with contours ranked highly amongst
participants’ aesthetic preferences. The mostly strongly preferred glyph variation wasD+C+G
(5/11 participants), followed byD+C (3/11 participants). Interestingly, no participants preferred
the D variation even though its mean accuracy (60.4%) was higher than D + C + G (50%).
Participants also ranked the D variation as hard to use (median=6 on a 7-point Likert scale) with
all other designs ranking at least between median 4–2. The D+C+T and D+C+G variations
were both found easy to use (median=2). We report on the results of the questions regarding
strategy in our discussion section.

Discussion

Adding reference structures to the star glyph did not have the effect on accuracy we were expect-
ing for our data similarity search task. Additional anchor points on the data line (i.e., tickmarks)
did not significantly improve the comparison of data points. Therefore, we cannot accept H1.
Nevertheless, there was a statistical trend indicating that an overall reference in the background
(i.e., gridlines) may increase accuracy, especially in the case of contour star glyphs, providing
some evidence for H2.
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This lack of strong significant effects is surprising, especially given that most participants
mentioned in the questionnaire that for the simple star glyph D, gridlines (81%), and to a lesser
extent tickmarks (72%), helped them find the most similar data point. Although the mean accu-
racy for the D + G variation was indeed higher, the effect was not significant, perhaps due to
the already very good performance of the D variation. The value of gridlines and tickmarks in
general may warrant further research. As Few notes [62], gridlines may be useful only in specific
cases, e.g., when small differences have to be compared. Therefore, it is possible that for other
tasks, such as direct lookup, these additional reference marks could help more strongly.

For the star glyph with contour (D + C), only 54% of our participants reported using tick-
marks and 36% gridlines to complete the task. From their reports they felt (erroneously) that
glyphs with contours are easier to compare and, thus, did not make conscious use of the addi-
tional improvements. Thus, in the contour case, participants were not only more error prone, but
also misled to feel confident in their choices, ignoring the marks that could help them improve
their performance. Nevertheless, it is highly likely that the addition of reading marks was taken
into account, even if unintentionally, explaining the trend we see for both the tickmark and grid
variation to be more accurate than simple contour glyphs (H3).

Finally, we could not confirm H4 due to a lack of significant results when comparing task
performance time.

Even though participants using variation (D) performed very well, it is interesting that they
did not like this design variation. On a 7-step Likert scale 63% of the participants rated the design
with either 6 (difficult to use) or 7 (very difficult to use). Most participants (46%) preferred the
star glyph with contour and gridlines, with only 1 participant rating it with a 5 (slightly difficult
to use) and the others with 3 or better.

Given the results of this experiment the benefit of using reference structures for star glyphs is
limited. Especially since in real world scenarios when multi-dimensional glyphs are projected to
two dimensional surfaces, there is the possibility of over-plotting, and adding marks or gridlines
could worsen this effect due to the additional ink introduced.

4.3.4 Design Considerations

With the results gained from the analysis and discussions we derive the following design consid-
erations.
When judging data similarity avoid contours in glyph designs. Viewers have a natural ten-
dency to judge data similarity in star glyphs without contours. In all our experiments viewers
were tricked into making shape-based, rather than data-based judgments when using contours.
This is especially true if glyphs in the visualization are scaled or rotated versions of each other.
For low number of dimensions (around 4) any glyph variation can safely be used for data
similarity judgments. In the first and second experiment viewers naturally leaned towards data
similarity for each glyph variation in low dimensions, even without training.
When there is a need for contours, add data lines to the design to strengthen data similarity
judgments. Participants independent of glyph design (fill or no-fill) judged data similarity better
using the D + C variation compared to C in the first two experiments. Although, there was no
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statistical significance, mean data comparisons for contour + data variations were always higher
than contour only.
When there is a need for contours, the designer can decide whether or not to use fill color.
Our Experiment 2 gave no indication that fill color degrades the performance of glyphs with
contour.
When clutter is an issue avoid reference structures in non-contour star glyphs for similarity
search tasks. Results of Experiment 3 illustrate that even though participants preferred using
tickmarks or grids they did not perform significantly better with them, especially for glyphs
without contours. Nevertheless, there is a statistical trend that shows that tickmarks and grids
improve glyphs with contours.
If references are required use grids rather than tickmarks. Independent from the design
(i.e., with or without contour) gridlines always increased mean accuracy, which is not true for
tickmarks.

4.3.5 Limitations
As stated at the beginning, we focused in our study on the similarity perception of multi-dimensional
data points and, therefore, the comparison over all displayed dimensions. Pre-studies suggest that
different tasks like reading exact data values of individual dimensions may yield different results
(e.g., additional orientation like grids or tickmarks should improve performance) [154]. How-
ever, since glyphs are meant to be compact representations of data points their main advantage is
to give an overview of the data rather than a highly accurate representation of single data values.
This also influenced our decision to only investigate a value range of 6 different data values.
Increasing this number would result in too small visual differences, which due to the compact
glyph representation could be hardly perceived. In order to conduct a controlled lab experiment
we restricted ourselves to variations of star glyphs. Generalizing the results for designs not tested
in our studies must be done with caution.

4.3.6 Conclusion
We investigated the effect of contours on the perception of similarity for star glyphs. In a first
controlled experiment with 24 participants, we examined the influence of contours for novice
and expert users. We found that experts can be tricked into making similarity judgments based
on shape, rather than data closeness, when viewing glyphs with contours. For novices the effect
was less pronounced. To better understand how people naturally judge similarity, we conducted
a second online study with 108 participants and asked about intuitive notions of similarity. We
found that removing contours and fillings from star glyphs, naturally increased the perception of
data similarity (rather than shape) even when viewers were not trained or aware they are viewing
data.

As a next step we tried to improve the accuracy in judging data similarity. We added two types
of reference structures to the star glyph, gridlines and tickmarks, and tested these alternatives in
a third experiment. Surprisingly, the star glyph without contour line and reference structure still
performs best for similarity search tasks. Based on our findings we provide a set of glyph design
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considerations, the most important being that visualization designers should avoid contours when
representing similar data points to analysts.

In summary, our work has provided insights as to the effect of contours on similarity per-
ception for star glyphs. Similarity perception is an important task especially since glyphs are
mostly used for quick overviews, and to detect trends and similarities [195], rather than to pro-
vide highly accurate value representations [73]. Other tasks performed on glyphs, however, such
as exact data value reading, may yield different results from ours, e.g., adding grids or tickmarks
could improve performance [154].

Given our experimental results and our provided guidelines, we would like to focus on two
future research directions. First, we would like to examine whether our findings can be applied
to different glyph designs (e.g., profile glyphs [52]), as it is unclear if contours promote shape
similarity rather than data in glyphs that already resemble familiar data charts. Thus we can
derive a more generalized set of design considerations. Second, based on our results on possible
pitfalls in data similarity judgments, we plan to introduce a more task specific training, focusing
on rotated and scaled distracters that seem to mislead viewers the most. Given our results, both
novices and experts would profit from such specific training, especially when using glyphs with
contours.

4.4 Summary
This chapter 4 introduces a review on multi-dimensional data glyph designs used in practice. The
papers are organized according to Ward’s categorization simplifying the search for individual
designs. In contrast to data glyphs for time-series data more uniquely shaped designs do exist.
This is due to the different nature of the underlying data and, therefore, the different analysis
tasks.

Unlike designs for time-series data metaphoric designs are used more often [35, 142, 170,
208]. This is also due to the possibility of having more flexible designs. The survey has shown
that no metaphoric data glyphs for environmental data exists. This research gap is closed by
introducing the leaf glyph as a suitable representation. Its usefulness is shown in an analysis of
the forest fire dataset from the UCI machine learning repository. Since the leaf glyph design is a
one-to-one mapping according to Ward’s classification a lot of possibilities for a visual mapping
do exist. Further studies need to be conducted to come up with the most effective mapping
strategy, which is not a trivial task as can be seen in the many studies conducted about variations
of Chernoff faces.

To shed some more light on the performance of the well-established star glyph a controlled
user study was conducted to reason about changes in performance when switching between de-
signs. Results indicate not to use the surrounding contour line for similarity search tasks to
increase performance. The suggested visual improvements of the star glyph did not help to fur-
ther decrease the error rate. Against intuition the simple star glyph without a contour line is best
for performing a similarity search task.
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Chapter 5

Design Considerations

Throughout my dissertation I have conducted several controlled user studies to shed more light
on changes in performance when switching between different data glyph designs. As a result, I
have suggested various design considerations to help practitioners and researchers in choosing
the most appropriate data glyph alternative.

In this chapter 5, I will summarize the design considerations proposed in literature and pro-
vide the interested reader with an overview on how to design effective data glyphs. Additionally,
I will indicate whether a guideline is the result of an experiment or a subjective opinion from re-
searchers. This may help to better assess the quality of each guideline. The design considerations
are categorized according to different analysis tasks.

5.1 Elementary Analysis Task

Simple lookup tasks are typical examples of elementary analysis. The analyst is focused on in-
dividual parts of the data glyph and tries to read data values as accurately as possible. Therefore,
the analyst needs to first identify the respective dimension and in a next step extract the necessary
information.

Lookup Data Values: An important aspect of reading data values is the support of the quanti-
tative analysis in the attentive phase [157]. Therefore, elementary tasks not focusing on the pre-
attentive phase should be visually supported with a glyph legend showing the different scales or
mapping criteria. For example, having a color legend is crucial when encoding data values with
color to incorporate the range of values. This general design consideration proposed by Ropinski
et al. is only based on observations and wasn’t confirmed in a user study. For reading single data
values Ware proposes to ”Ideally, use glyph length or height, or vertical position, to represent
quantity. If the range of values is large, consider using glyph area as an alternative. Never use
the volume of a three-dimensional glyph to represent quantity.”1. For this design consideration
Ware refers to studies conducted by Ekman and Junge [57] and Cleveland and McGill [43]. In

1[195], page 169
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general representing quantity can be effectively done by mapping the data also to: “size, light-
ness (on a dark background), darkness (on a light background), vividness (higher saturation) of
color, or vertical position in the display”2. However, as the studies conducted in section 3.3 have
shown the ranking of Cleveland and McGill’s visual variables seems to hold for smaller glyph
representations [43]. At least this is true for linear data glyph designs where position/length en-
codings should be preferred to a color encoding. Additionally, Ropinski et al. suggest to avoid
perspective projections when using the glyph size to convey data values [157].

Interestingly, color encodings seem to be a reasonable choice for circular designs because
with position/length encodings the mental rotation required for comparisons affects participants
more strongly than color comparisons that can be conducted without a common axis. For linear
designs it is important to arrange the different dimensions along a common baseline. Three
studies indicate that linear designs are most effective when the dimensions are aligned along a
common baseline [28, 29, 95].

Having an intuitive mapping based on semantics helps to read data values [17]. For example,
encoding low temperature values to a blueish color and high values to reddish colors facilitates
the information extraction. Important variables should be encoded redundantly to reduce the risk
of a possible information loss [17]. This design consideration is based on thoughts and ideas
discussed by Lie et al. and Ropinski et al [115, 156].

Detect Dimensions: For detecting individual dimensions independently within a data glyph
design the orthogonality and the separability of the different glyph components must be pursued
[17, 195]. This design consideration is based on thoughts and ideas discussed by Lie et al. [115]
and studies conducted by Garner [78] and can be applied to data glyph designs for temporal as
well as multi-dimensional data. For time-series data circular layouts seem to be more appropriate
compared to linear ones. As the experiment conducted in section 3.3 has shown participants were
able to read the correct point in time more accurate with circular glyph designs. This may be true
because participants tend to read circular designs like clocks. However, I assume that this clock
metaphor only works for a certain number of dimensions, which can be mapped to the layout
of common clocks. Additionally, it is important to use sufficient space for communicating the
different dimensions since there is a significant drop in performance when increasing the number
of dimensions keeping the size of the glyph stable.

Conclusion: Based on the aforementioned guidelines two different fundamental data glyph
designs should be pursued. For reading data values a linear position/length encoding meets the
predefined criteria Figure 5.1. When detecting certain dimensions in time-series a color encoded
circular design is best.

2[195], page 168
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Figure 5.1: Designs for elementary tasks: When reading data values a linear position/length
encoding should be preferred. For detecting specific dimensions radial designs with a color
encoding are more appropriate.

5.2 Synoptic Analysis Task

Analysts performing synoptic tasks focus on grouping or comparing data points according to
their similarity, trying to detect trends, or searching for elements. Therefore, it is important
to consider the entire data glyph and not just single dimensions. For all tasks, these ”glyph
shapes should be unambiguously perceivable independent of the viewing direction.”3. This de-
sign consideration is based on observations and needs to be further evaluated. However, it seems
reasonable especially in three dimensional visualizations that the viewing angle may change. In
such a case the glyph needs to be readjusted to match the new position/angle of the analyst’s per-
spective. Otherwise the perception of data will be distorted. An additional halo surrounding data
glyphs in three dimensional space facilitates depth perception and helps to distinguish between
individual glyphs [17, 115]. In order to detect even minor shape changes, which is beneficial
for all tasks, Borgo et al. suggest to use simple symmetric shapes like the wings of InfoBugs
[17, 40].

Similarity Search: For similarity and grouping tasks, a surrounding contour line has a big
influence on the perception of data glyphs. The experiments conducted in section 4.3 investigate
the influence of a contour line on star glyphs. When data points should be compared according
to their shape similarity adding a contour line to data glyphs is beneficial. However, for data
similarity judgments the contour line should be removed. This design consideration is especially
important for higher number of dimensions. Till now it is not possible to tell whether a linear or
a circular layout is more appropriate. Only one study recommends that linear layouts should be
preferred [126].

A suitable alternative representation are faces. Especially for similarity judgments faces
performed well [93, 126, 199]. The more detailed or realistic the faces look like, the better [65].

3[157], page 399
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Although they are currently not used in practice designers should rethink using faces more often.

Trend Detection: For trend detection tasks multiple data variables should be encoded with the
same visual variable to improve the comparison of different data variables for a single data el-
ement [17]. Therefore, one-to-one mapping strategies should be avoided as discussed by Ward
[192]. Based on the outcome of the systematic review in chapter 2 linear designs outperform
circular arrangements [73, 126]. Therefore, simple line chart glyphs are an appropriate choice
for trend detection tasks. Additionally, results from the experiment introduced in section 3.3
indicate that for time-dependent tasks sufficient space should be assigned to the designs. As a
consequence, data glyphs must grow in size with an increasing number of dimensions. Espe-
cially, for color encodings sufficient space is mandatory to avoid blurring effects and be able to
extract information. Circular designs profit from the additional space near the circumference. As
a result the single slices depicting the different dimensions can be read more easily, which has
partially been proven in section 3.3.

Visual Search: Only little advice exists, which glyph design is best for visual search tasks. One
quantitative experiment concludes to use star glyphs without a contour line compared to faces
or circular color encodings. However, if three dimensional visualizations are possible Forsell et
al. recommend to use surface glyphs, which outperformed star glyphs without a contour line and
also linear color encodings [67, 68].

It is interesting to note that faces were often used in visual search tasks, however, not com-
pared to alternative designs. Therefore, it is not possible to draw general conclusions. An inter-
esting fact is that faces cannot be pre-attentively identified [171, 173].

Metaphors: Whenever possible a metaphoric design should be preferred. Compared to ab-
stract data glyph designs, metaphors performed always better [65, 73, 91, 170]. This is true for
similarity search and lookup tasks. Of course, additional studies need to be conducted to further
generalize these results.

Conclusion: The performance of data glyphs changes according to the underlying task. There-
fore, different glyph designs need to be considered (see Figure 5.2). For similarity search or
grouping tasks star glyphs without a contour line are a suitable choice. Detecting trends is easi-
est with simple line charts and three dimensional surface glyphs help to perform a visual search.

5.3 Glyph Placement Strategy

According to Ward there are basically two different glyph placement strategies [191]. Data-
driven layouts and structure-based arrangements. Data-driven layouts make use of the data values
to position data glyphs. This can either be a direct usage e.g., in a scatterplot, or a computation
based on these values like a two-dimensional projection. Structure-based arrangements make
use of inherent data characteristics like hierarchies, temporal sequence, geographic location, or
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Figure 5.2: Designs for synoptic tasks: Different designs should be used for different tasks.

any kind of ordering. Independent from these two placement strategies Ropinski et al. further
suggests to avoid unwanted glyph aggregations in image space [157]. Due to the layout and
the distribution of the data several data glyphs might be positioned in a small area. Therefore,
overplotting may occur in these dense regions. In such a case different relaxation procedures or
jitter techniques should be applied to avoid these effects. This can be done in a static approach
by slightly repositioning the data glyphs or interactively with different kinds of lens based tech-
niques.

Since glyph designs can be flexibly arranged on the screen and used in various contexts
understanding the different interconnections is crucial. Results from a study conducted by Mar-
tin et al. indicate that the reading capabilities of a data glyph do not change according to the
background information [123]. Therefore, designers can think of showing more detailed context
information without influencing the performance of glyphs. Of course, this suggestion is only
based on one experiment and has to be considered with caution.

5.4 Summary
This chapter was meant as a summary of design considerations to guide practitioners as well as
researchers to a data glyph design most suitable for a certain analysis task and dataset. The design
considerations are based on the results of quantitative experiments but also on thoughts and ideas
from researchers. Since there is still a lack of evaluations to be conducted for certain designs
and presentation settings this guidance in designing data glyphs is not exhaustive. Most of the
design considerations mentioned are based on results from quantitative experiments conducted
under strictly controlled conditions making it difficult to generalize their outcomes.



118 5. Design Considerations



Chapter 6

Conclusions & Future Research Directions

This thesis has shed more light on the performance and usage of data glyphs in information vi-
sualization for different analysis tasks and datasets. Therefore, several contributions in the area
of information visualization and visual analytics were provided. At the beginning, a common
definition of the term ”data glyph” was introduced to establish a common understanding of the
overall topic. Clarifying the usage of the term was necessary to avoid contradictions or misinter-
pretations of the whole topic. Based on this definition the literature was systematically reviewed
to summarize existing research and extract the insights of quantitative experiments to formulate
design considerations (chapter 2). Moreover, open research gaps were identified within this sur-
vey, which were partially closed by conducting several controlled user studies (section 3.3 &
section 4.3). The insights gained from these experiments contributed to a catalog of design con-
siderations comprising former conclusions and new findings (chapter 5). Since results from user
studies suggest that metaphoric designs perform well, two new data glyph designs were intro-
duced, which make use of metaphors to encode the underlying data (section 3.2 & section 4.2).
In the future, more evaluations need to be conducted based on the research gaps revealed in the
initial survey. Additionally, some contributions introduced throughout this thesis would profit
from a more in-depth analysis. In the following paragraphs, I will discuss possible research
directions for future work structured along the thesis outline.

Definition of data glyphs: In the introduction of this thesis I raised awareness that different
definitions of the term ”glyph” in the context of information visualization do exist. By con-
tributing a more general definition with a summary of ideas and concepts from various sources I
wanted to establish a common understanding of the term.

However, this definition is partially build on subjective opinions about certain characteristics
of data glyphs. There is potential to further analyze the different properties of data glyphs in a
more structured way. In the future, a qualitative user study with information visualization experts
should be conducted comparing common charts with abstract data glyphs. As a factor the level
of detail for certain visual characteristics is varied and participants have to tell whether they call
the representation a data glyph or a chart. The threshold when the experts change their opinion
would be an indicator for the respective visual feature being an important part of the definition
of a data glyph.
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Systematic literature review: Literature about quantitative evaluations and the practical usage
of data glyphs has been systematically reviewed to provide practitioners and researchers with
guidance on how to create or choose an appropriate data glyph. Based on this survey design
considerations were extracted and several open research gaps were identified, which provide
space for further controlled experiments. Besides these revealed gaps other research directions
are also worth pursuing.

To keep the study outcomes comparable and to better structure the study design space only
quantitative experiments were reviewed in this thesis. However, results from qualitative user
studies could also contribute to a more complete catalog of design considerations. Subjective
preferences based on the aesthetics, the ease of use, or the learnability of different data glyphs
are also important indicators, which have not been investigated in detail, yet. Another research
direction could be the analysis of data glyphs used in practice. Which designs have been chosen
to accomplish certain use cases and why? Is there a reason why some designs are used more
often than others? By analyzing the practical usage of data glyphs additional insights can be
gained, which might be interesting for analysts, since these application oriented examples better
reflect real world scenarios.

Data glyphs for temporal data: A new data glyph representation (i.e., clock glyph) was intro-
duced to fill a research gap visualizing time-series data with metaphors. The new design looked
like a common clock to help analysts in identifying single points in time intuitively. Addition-
ally, this clock glyph was integrated in three different visualization tools using several layout
techniques to communicate varying context information. A quantitative user study was con-
ducted to compare the clock glyph against well-established alternative representations like line
glyphs or star glyphs in a small multiple setting. Results indicate that the clock glyph facilitates
the detection of certain temporal dimensions and for this specific task outperforms the alternative
representations.

It is important to note that these results are restricted to a specific context. The data glyphs
were arranged in a grid layout to avoid confounding factors due to the positioning. However, a
major advantage of data glyphs is the flexibility in arranging them on the screen and in combi-
nation with some context information. It would be interesting to see, whether the layout or the
additional context information is influencing the reading performance of clock glyphs. Keeping
the design identical and just switching between different layouts opens new space for further ex-
periments. Currently, only one quantitative user study has been conducted investigating a similar
topic with weather vanes and varying context information [123]. Results suggest that the context
information is not influencing the reading performance of data glyphs.

Data glyphs for multi-dimensional data: To visualize multi-dimensional data from the envi-
ronmental domain more intuitively a new metaphoric data glyph design was introduced, namely
the leaf glyph. In combination with domain specific aggregation techniques this data glyph is
applicable to larger datasets, as well. A use case scenario focusing on the exploration of the
well-known forest fire dataset from the UCI machine learning repository [44] showcased the
usefulness of the metaphor.
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However, this evaluation does not help to prove the fact, whether metaphors are really ben-
eficial for displaying domain specific data. As future research, I would like to see more studies
about metaphoric glyph designs alternating between domain specific datasets and the respective
glyph representations.

Additionally, a quantitative experiment was conducted to investigate the influence of a con-
tour line on the well-known star glyph. This study focuses solely on similarity search tasks using
varying number of dimensions. Of course, it would be interesting to know whether the findings
can be generalized to other tasks, as well. Are the designs also influenced by the surrounding
contour line when performing a visual search, or reading exact data values? Furthermore, the
effect of a contour line could also be studied on different glyph designs like linear profile glyphs,
or size encoded pixel glyphs. Getting more information about various settings would facilitate
the generalization of findings concerning the influence of a contour line.

Summary: Literature has been systematically reviewed, quantitative experiments have been
conducted, and new data glyph designs were introduced within this thesis. All these research
directions contributed to the catalog of design considerations proposed for different tasks and
datasets in chapter 5. Practitioners and researchers can now easily follow the suggested design
considerations to systematically create the most appropriate glyph design for their analysis task
and dataset.

However, as previously discussed, there are still many open research gaps. Because of the
huge design space of data glyphs and the various analysis tasks and different datasets only a few
of them could be tackled within this thesis. A list of promising research topics in the area of
quantitative experiments on data glyph designs was also identified in section 2.4. Researchers
can use this list as a starting point for future research or refer to the discussion in this chapter 6.
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