
Index Structures for Similarity Search in
Multimedia Databases

Dissertation
zur Erlangung des akademischen Grades

des Doktors der Naturwissenschaften (Dr. rer. nat.)
an der Universität Konstanz, Fachbereich Informatik

vorgelegt von

Benjamin Eugenio Bustos Cárdenas

Universität
Konstanz

Universität
Konstanz

Universität
Konstanz

Juni 2006

Tag der mündlichen Prüfung: 16.10.2006

1. Referent: Prof. Dr. Daniel A. Keim, Universität Konstanz
2. Referent: Prof. Dr. Gonzalo Navarro, Universität Chile

http://www.ub.uni-konstanz.de/kops/volltexte/2006/1995/

To my wife Carola

Acknowledgments

I would like to express my gratitude to all the people who supported me for
the last four years, while I have been working on my Ph.D. thesis.

I would like to thank Prof. Dr. Daniel Keim, my thesis advisor, for his
excellent guidance during my Ph.D. I want to thank him first of all for letting
me come to Germany to work in his group, for being there when I needed
advice, and for letting (and encouraging) me to work on the topics that in-
terested me most. I am also thankful for his friendship and the unconditional
support that he gave me during all these years.

I would also like to thank Prof. Dr. Gonzalo Navarro for his valuable
suggestions and constant support. He encouraged me to publish my first
paper when I was still an Engineering student at the University of Chile,
and later to follow an academic career. He put me in contact with Prof. Dr.
Keim and made it possible for me to get my Ph.D. position in Konstanz. He
was always willing to discuss interesting topics that helped me tremendously
during my ongoing research. Also, he generously accepted to serve as a
second referee of my thesis and made useful comments that improved its
quality. For all these reasons, I am very grateful to him.

I must also offer my thanks to my colleagues and friends at the University
of Konstanz: Tobias Schreck, Florian Mansmann, Jörn Schneidewind, Mike
Sips, Daniela Oelke, Hartmut Ziegler, Christian Panse, Markus Wawryniuk,
Svetlana Mansmann, Evghenia Stegantova, Stefan Hiller, and Maria Carolina
Otero. My special thanks go to Tobias Schreck, for his friendship and for
all the exciting joint work that we did together during my first years in
Konstanz. I would also like to thank Prof. Dr. Dietmar Saupe and Prof.
Dr. Oliver Deussen for their help and suggestions with, respectively, the 3D
model retrieval project and the algorithms based on graphics processor units.

A special acknowledgment goes to my dear friend Nelson Morales. Not
only has he accepted to be the best man in my wedding, but he also provided
insightful comments and suggestions for many parts of my thesis, and was
always willing to answer my technical questions.

I would also like to thank my family (in Chile and Germany), who al-
ways supported me during these four years. Special thanks go to my father,
Roberto, and my aunt, Sonia, who handled all the formalities that had to be
taken care of in Chile while I was in Germany. Thanks to my friends: Javier
Gonzalez, Javier Bustos, Ricardo Lemus, Claudia Farina, and many others,
for their constant moral support.

The Faculty of Physics and Mathematics of the University of Chile and
the German Research Foundation (DFG) Project No. KE 740/6-1, within the
strategic research initiative “Distributed Processing and Delivery of Digital

Documents” (V3D2) SPP 1041, which partially supported this work, are
gratefully acknowledged. I also thank the anonymous conference and journal
reviewers for their helpful comments.

Last but not least, I am indebted to my wife Carola for her love and
support, which made it possible for me to complete this work.

Konstanz, June 2006

Benjamin Bustos

Abstract

An important research issue in the field of multimedia databases is the re-
trieval of similar objects. For most applications in multimedia databases,
an exact search is not meaningful. Thus, much effort has been devoted to
develop efficient and effective similarity search techniques. A widely used
approach for implementing similarity search engines is the feature-based ap-
proach. In this approach, all multimedia objects stored in a database are
transformed into high-dimensional feature vectors, which are then inserted
into an index structure to efficiently perform similarity queries.

The contribution of this thesis is to explore and propose novel solutions
to improve the efficiency of similarity queries in multimedia databases. The
thesis begins with a study on how to improve the effectiveness (i.e., the
quality of the answer) of a similarity retrieval engine. We first show that by
using combinations of feature vectors the effectiveness of the similarity search
may be significantly enhanced. Then, we describe methods for computing
query-dependent weights to perform linear combinations of feature vectors,
which can further improve the effectiveness of the similarity search. As almost
all index structures for similarity search developed so far can only deal with
single feature vectors, the design and analysis of new index structures is
necessary to efficiently perform similarity queries that use combinations of
feature vectors. This gives an extra motivation for the techniques studied in
the rest of the thesis.

In the next part of the thesis, we propose several algorithms and index
structures to improve the efficiency of similarity queries. Firstly, we study
pivot selection techniques for pivot-based indices. We provide an efficiency
criterion based on distance histograms for selecting good set of pivots, and
present empirical evidence showing that the technique is effective. Secondly,
we describe an improved k nearest neighbor (k-NN) algorithm, which is based
on the best-first traversal algorithm proposed by Hjaltason and Samet. Al-
though the original algorithm is already optimal in the number of distance
computations, its space requirements are significant. The improved algorithm
aims to lower the space requirements by using distance estimators. Thirdly,
we present a metric access method for dynamic combinations of feature vec-
tors. The index is pivot-based, and it can take advantage of the previously
studied pivot selection techniques. Finally, we introduce an approach that
aims to minimize the expected search cost of a similarity query. The idea
is to index only the most frequently used combinations of feature vectors. If
there are restrictions on the available space for constructing indices, then the
resulting optimization problem can be modeled as a binary linear program.
As binary linear programs are NP-hard in the general case, we also propose

algorithms that quickly find good sets of indices.
The last part of the thesis explores the use of graphics processor units

(GPUs) for accelerating database operations. We present GPU implemen-
tations of a high-dimensional nearest neighbor search and a clustering algo-
rithm. An experimental evaluation shows that the proposed GPU algorithms
are an order of magnitude faster than their CPU versions.

Zusammenfassung

Im Arbeitsbereich der Multimedia-Datenbanksysteme ist die Suche ähnlicher
Objekte ein wichtiges Forschungsgebiet. Für die meisten Anwendungen in
Multimedia-Datenbanken ist eine exakte Suche nicht sinnvoll. Deshalb wurde
viel Mühe darauf verwendet, effiziente und effektive Methoden der Ähn-
lichkeitssuche zu entwickeln. Eine weit verbreitete Methode für die Imple-
mentierung der Ähnlichkeitssuche ist die auf Objekteigenschaften basierende
Methode. Diese Methode transformiert alle multimediale Objekte, die in
einer Datenbank gespeichert sind, in hochdimensionale Feature-Vektoren.
Nach der Transformation werden diese Feature-Vektoren in einen Indexstruk-
tur eingefügt, um so effiziente Ähnlichkeitssuchen durchzuführen.

Diese Dissertation trägt dazu bei neuartige Lösungen vorzuschlagen, in-
dem sie erforscht wie die Effizienz der Ähnlichkeitssuche verbessert werden
kann. Die Dissertation beginnt mit einer Untersuchung, wie man die Effek-
tivität (d.h. die Qualität der Ergebnisse) der Ähnlichkeitssuche verbessern
kann. Es wird aufgezeigt, dass mit Kombinationen von Feature-Vektoren
die Effektivität der Ähnlichkeitssuche bedeutsam erweitert werden kann. Es
werden Methoden vorgestellt, um Suchobjektsabhängig Gewichte für lin-
eare Kombinationen von Feture-Vektoren zu berechnen, was die Effektivität
der Ähnlichkeitssuche weiter verbessern kann. Das Design und die Anal-
yse von neuen Indexstrukturen sind notwendig, um Ähnlichkeitsanfragen
mit Kombinationen von Feature-Vektoren effizient durchzuführen, denn bis-
lang können fast alle Indexstrukturen für Ähnlichkeitssuche nur individuelle
Feature-Vektoren indizieren. Dies begründete die besondere Motivation, der
in der restlichen Dissertation erforschten Methoden.

Im zweiten Teil der Dissertation werden verschiedene Algorithmen und
Indexstrukturen vorgeschlagen, um die Effizienz der Ähnlichkeitssuche zu
verbessern. Zuerst werden Techniken zur Auswahl von Pivots für Pivot-
basierte Indexstrukturen untersucht. Es wird ein auf Abstandhistogramme
basiertes Effizienzkriterium angeführt, um gute Pivotmenge auszuwählen
und der empirische Beweis dargelegt, dass die dargebotene Methode effek-
tiv ist. Desweiteren wird ein verbesserter k-Nächste-Nachbarn-Algorithmus
dargestellt, welcher auf dem best-first Algorithmus von Hjaltason und Hamet
basiert. Obwohl der ursprüngliche Algorithmus in der Abstandsberchnung
optimal ist, sind seine Raumanforderungen bedeutend. Der verbesserte Algo-
rithmus zielt auf die Absenkung der Raumanforderungen mit Hilfe von Dis-
tanzschätzfunktionen ab. Drittens wird eine metrische Indexstruktur für dy-
namische Kombinationen von Feature-Vektoren dargestellt. Die Indexstruk-
tur ist Pivot-basiert und kann einen Vorteil aus den zuvor entwickelten Piv-
otwahlmethoden ziehen. Zum Abschluss wird eine Annäherung ausgeführt,

welche auf die Minimierung der zu erwartenden Suchzeit einer Ähnlichkeit-
suche zielt. Die prinzipielle Idee ist, die am häufigsten benutzteten Kom-
binationen von Feature-Vektoren zu indizieren. Das sich ergebende Opti-
mierungsproblem kann zu einem Binary-Linear-Program ummodelliert wer-
den, wenn es bei der Speicherung von Indexstrukturen Beschränkungen des
Speicherplatzes gibt. Da Binary-Linear-Programs im Allgemeinen NP-hart
sind, werden Algorithmen vorgeschlagen, die auf schnelle Weise gute Index-
mengen finden.

Der Schlußteil der Dissertation beschreibt die Erforschung der Verwen-
dung von Grafikkartenprozessoren (GPU) für die Beschleunigung von Daten-
bankoperationen. Es werden GPU-Implementierungen für hoch-dimensionale
Nächste-Nachbarn-Suche und ein Clusteringalgorithmus vorgestellt. Die ex-
perimentelle Evaluierung zeigt, dass die vorgestellte GPU-basierten Algorith-
men eine Größenordnung schneller sind als die gleichen aus CPU-basierenden
Algorithmen.

Contents

Acknowledgments iii

Abstract v

Zussamenfassung vii

Contents ix

List of Figures xiii

List of Tables xvii

List of Algorithms xix

1 Introduction 1
1.1 Similarity search in multimedia databases 3
1.2 Effectiveness and efficiency of similarity search 5
1.3 Overview of the thesis . 6

2 Basic concepts and related work 9
2.1 Modeling multimedia data . 9

2.1.1 Metric spaces . 9
2.1.2 Vector spaces . 10

2.2 Similarity queries . 12
2.3 Metric access methods . 13

2.3.1 Pivot-based indexing 13
2.3.2 Indices based on compact partitions 17

2.4 Spatial access methods . 21
2.4.1 Examples of spatial access methods 21
2.4.2 Similarity queries in spatial access methods 25

2.5 Efficiency considerations . 28
2.5.1 Intrinsic dimension of a metric space 28

x CONTENTS

2.5.2 Fractal dimension of a vector space 28
2.5.3 Curse of dimensionality 29

2.6 Probabilistic and approximate similarity search algorithms . . 30
2.6.1 Probabilistic algorithms for metric spaces 31
2.6.2 Probabilistic algorithms for vector spaces 33

3 Effectiveness of feature based similarity search 37
3.1 Evaluation of single feature vectors 38

3.1.1 Case study: 3D object databases 38
3.1.2 Evaluation approach 43
3.1.3 Effectiveness comparison between descriptors 45
3.1.4 Analysis of the experimental results 49

3.2 Combinations of feature vectors 52
3.2.1 Unweighted combinations of feature vectors 53
3.2.2 Weighted combinations of feature vectors 54

3.3 Dynamic combinations of feature vectors 56
3.3.1 Purity measure . 57
3.3.2 Entropy impurity measure 57
3.3.3 Dynamic selection and combinations of feature vectors 58
3.3.4 Experimental evaluation 59

3.4 Conclusions . 62

4 Efficiency of feature based similarity search 65
4.1 Pivot selection techniques . 65

4.1.1 Motivation . 66
4.1.2 Efficiency criterion . 66
4.1.3 Pivot selection techniques 68
4.1.4 Experimental evaluation with synthetic datasets 70
4.1.5 Alternative efficiency estimators 74
4.1.6 Properties of a good set of pivots 76
4.1.7 Experiments with real data 76

4.2 Improved k nearest neighbor algorithm 80
4.2.1 Motivation . 80
4.2.2 Proposed best-first k-NN algorithm 81
4.2.3 Cost analysis of the proposed algorithm 89
4.2.4 Experimental evaluation 91

4.3 Pivot-based index for combinations of feature vectors 99
4.3.1 Index description . 100
4.3.2 Experimental evaluation 103

4.4 Indexing frequently used combinations of feature vectors . . . 109
4.4.1 Indexing combinations of feature vectors 110

CONTENTS xi

4.4.2 A binary linear program for the optimization problem . 117
4.4.3 Bounds for the optimal solution 121
4.4.4 Algorithms for solving the optimization problem 122
4.4.5 Experimental evaluation 125

4.5 Conclusions . 130

5 Hw. acceleration of feature-based similarity search 133
5.1 Introduction . 133
5.2 Graphics hardware . 135

5.2.1 The rendering pipeline 135
5.2.2 GPU programming . 137
5.2.3 The Cg language . 138

5.3 Fast linear scan using the graphics unit processor 139
5.3.1 GPU implementation of nearest neighbor search 139

5.4 A hardware accelerated clustering algorithm 144
5.4.1 Previous work . 144
5.4.2 GPU implementation of k-means 145

5.5 Experimental evaluation . 147
5.5.1 Experimental framework 147
5.5.2 Nearest neighbor algorithm 148
5.5.3 Clustering algorithm 150

5.6 Analysis of the performance results 153
5.7 Conclusions . 157

6 Conclusions 159

Bibliography 165

List of Figures

1.1 Example of a similarity search on a database of 3D objects . . 3

2.1 Shape of the unitary cube for different metrics on vector spaces 11
2.2 Feature-based similarity search 11
2.3 Range query and k-NN query examples 12
2.4 Model for indexing and querying metric spaces 14
2.5 Pivot exclusion condition . 15
2.6 Voronoi partition criterion . 17
2.7 Covering radius criterion . 18
2.8 Example of an M-tree . 19
2.9 Example of a List of Clusters 20
2.10 Hierarchical index structure of spatial access methods 21
2.11 Example of an R-tree . 22
2.12 Illustration of an X-tree . 24
2.13 MinDist, MaxDist, and MinMaxDist 27
2.14 Sierpinski triangle . 29
2.15 Distance histogram of a metric space with low (left) and high

(right) intrinsic dimension . 30
2.16 Exact and probabilistic algorithm based on pivots 33
2.17 Nearest neighbor and (1 + ε) nearest neighbor 34

3.1 A 3D model of a bunny and its mesh of polygons 39
3.2 A 3D object in different scale and orientation (left), and also

represented with increasing level of detail (right) 40
3.3 Pose estimation using the PCA for three classes of 3D objects 41
3.4 Descriptor extraction process model 41
3.5 Formula 1 cars (left) and sea animals (right) model classes . . 44
3.6 Average precision versus recall with best dimensionality, first

eight descriptors according to Table 3.3 47
3.7 Average precision versus recall with best dimensionality, last

eight descriptors according to Table 3.3 48

xiv LIST OF FIGURES

3.8 Dimensionality versus R-precision, first eight descriptors ac-
cording to Table 3.3 . 48

3.9 Dimensionality versus R-precision, last eight descriptors ac-
cording to Table 3.3 . 49

3.10 Average precision versus recall figures and R-precision values
for the F-1 cars model class 50

3.11 Average precision versus recall figures and R-precision values
for the sea animals model class 51

3.12 Example of similarity search using a combination of feature
vectors . 52

3.13 Average precision versus recall for the best feature vector and
the best unweighted combinations for an increasing numbers
of feature vectors . 54

3.14 Average precision versus recall figures for the best fix-weighted
combination and the best single feature vector 55

3.15 Example of a ranking Rk
fq using k = 5 57

3.16 Average R-precision as a function of parameter k for the meth-
ods based on the purity measure 60

3.17 Average R-precision as a function of parameter k for the meth-
ods based on the entropy impurity measure 61

4.1 Mapping the objects from (U, δ) onto (P, ∆), using two pivots 67
4.2 Comparison between selection techniques in an 8-dimensional

random vector space . 71
4.3 Comparison between selection techniques in a 14-dimensional

random vector space . 71
4.4 Comparison between random and good pivots when varying

dimensionality . 72
4.5 Comparison between random and good pivots when varying

database size . 73
4.6 Experimental results with a vector space with Gaussian dis-

tribution . 74
4.7 Efficiency of the selection technique when varying parameter A 75
4.8 Comparison between different efficiency estimators 75
4.9 Comparison between incremental and outliers selection tech-

niques in 8-dimensional random vector spaces 77
4.10 Comparison between incremental and outliers selection tech-

niques in 14-dimensional random vector spaces 77
4.11 Experimental results with a string database 78
4.12 Experimental results with the NASA images database 79
4.13 Experimental results with a color image database 79

LIST OF FIGURES xv

4.14 Distance estimators: Lower and upper bound distance from q
to any object on the ball . 83

4.15 The correct ubound for B′ is min{B.ubound, d(q, B′.c) + B′.cr} 86

4.16 Example of a k-NN query . 90

4.17 Gaussian 8-D: Mean of the maximum queue length 93

4.18 Gaussian 8-D: Average queue length 93

4.19 Gaussian 16-D: Mean of the maximum queue length 94

4.20 Gaussian 16-D: Average queue length 94

4.21 Gaussian 32-D: Mean of the maximum queue length 95

4.22 Gaussian 32-D: Average queue length 95

4.23 Corel features CH: Mean of the maximum queue length 96

4.24 Corel features CH: Average queue length 96

4.25 Corel features LH: Mean of the maximum queue length 97

4.26 Corel features LH: Average queue length 97

4.27 Edge structure: Mean of the maximum queue length 98

4.28 Edge structure: Average queue length 98

4.29 Corel features: Objects discarded as a function of the number
of pivots . 106

4.30 Corel images: Objects discarded as a function of the number
of pivots . 106

4.31 Corel features: Average number of distance computations per
NN query as a function of the number of pivots 107

4.32 Corel images: Average number of distance computations per
NN query as a function of the number of pivots 107

4.33 Corel features: Average time per NN query as a function of
the number of pivots . 108

4.34 Corel images: Average time per NN query as a function of the
number of pivots . 108

4.35 The new approach for similarity search in multimedia databases
using combinations of feature vectors 110

4.36 Example of set JK,L . 117

4.37 Expected search cost of the optimal iSet, F = 6, t = 2 126

4.38 Expected search cost of the iSets returned by the algorithms,
F = 6, t = 2 . 127

4.39 Expected search cost of the iSets returned by the algorithms,
F = 6, t = 3 . 128

4.40 Expected search cost of the iSets returned by the algorithms,
F = 16, t = 2 . 128

4.41 Expected search cost of the iSets returned by the algorithms,
F = 16, t = 3 . 129

xvi LIST OF FIGURES

5.1 Dataflow within GPU stages 136
5.2 Illustration of a 4× 4 texture 136
5.3 Data organization for the linear scan algorithm 140
5.4 How does fragment program 1 work (one texture shown) . . . 141
5.5 Texel processing performed by fragment program 2 142
5.6 Texture reduction performed by fragment program 3 143
5.7 Data organization for the k-means algorithm 145
5.8 Experimental results for the nearest-neighbor algorithm vary-

ing the dimensionality of the space 149
5.9 Experimental results for the nearest-neighbor algorithm vary-

ing the database size . 149
5.10 Experimental results for the nearest-neighbor algorithm with

real-world datasets . 150
5.11 Experimental results for k-means algorithm with uniformly

distributed data . 151
5.12 Experimental results for k-means algorithm, data with Gaus-

sian distribution . 152
5.13 Experimental results for k-means algorithm with U.S. Census

data . 152
5.14 Experimental results for k-means algorithm varying the database

size . 153
5.15 Performance of GPUs compared with CPUs over the last 5

years [Owens et al., 2005]. Figure courtesy of John D. Owens,
University of California, Davis. 154

5.16 Memory bandwidth comparison between two different graphic
cards . 155

5.17 Comparison between two different graphic cards with the near-
est neighbor algorithm . 156

5.18 Comparison between two different graphic cards with the k-
means algorithm . 156

List of Tables

3.1 Description of the classified set of our 3D object database . . . 44
3.2 Overview of the implemented 3D feature vectors 45
3.3 Average R-precision of the implemented 3D descriptors 46
3.4 Average R-precision for the best unweighted combinations of

feature vectors . 53
3.5 Summary of the average R-precision for the proposed methods 61

4.1 Notation used on Section 4.2 82
4.2 Storage requirements (maximum and average queue length) of

our algorithm (standard algorithm: 100%, k = 50) 99
4.3 Improvements obtained with the Corel features and the Corel

images databases . 109
4.4 Notation used in Section 4.4 111
4.5 Probabilities for combinations in the example 115
4.6 Improvements over a linear scan obtained with the optimal

iSet for the example . 116
4.7 Time (in seconds) needed for the algorithms and the binary

linear program to find the solution 129

List of Algorithms

4.1 Standard k-NN search . 84
4.2 Our proposed k-NN search algorithm 88
4.3 New add algorithm for C . 89
4.4 Shrink algorithm for Q . 89
4.5 NN search algorithm (radius reduction) 103
4.6 NN search algorithm (sorting by lower bound) 104
4.7 Algorithm A . 123
4.8 Algorithm B . 124
5.1 Fragment program 1: Computing Manhattan distance 140
5.2 Fragment program 2: Computing min value of the texel at-

tached vector of 4 distances, and associating an index value to
these objects . 141

5.3 Fragment program 3: Computing minimum distance between
objects stored in 4 different texels precomputed by fragment
program 2 . 143

5.4 Fragment program for k-means that uses the depth test 146
5.5 Fragment program for k-means without using the depth test . . 147

Chapter 1

Introduction

The development of multimedia database systems and retrieval components
is becoming increasingly important, due to a rapidly growing amount of
available multimedia data like images, audio files, video clips, 3D objects,
and text documents. As we see progress in the fields of acquisition, storage,
and dissemination of various multimedia formats, the application of effective
and efficient database management systems becomes indispensable in order
to handle these formats.

The application domains for multimedia databases include molecular bi-
ology, medicine, geographical information systems, Computer Aided De-
sign/Computer Aided Manufacturing (CAD/CAM), virtual reality, and many
others:

• In medicine, the detection of similar organ deformations can be used
for diagnostic purposes. For example, the current medical theory of
child epilepsy assumes that an irregular development of a specific por-
tion of the brain, called the hippocampus, is the reason for epilepsy.
Several studies show that the size and shape of the deformation of the
hippocampus may indicate the defect. This may be used to decide
whether or not to remove the hippocampus by brain surgery. Search-
ing for similar deformations in a database of hippocampi models can
support the decision process and help to avoid unnecessary surgeries
[Keim, 1999].

• Biometric devices (e.g., fingerprint scanners) read a physical charac-
teristic from an individual and then search in a database to verify if
the individual is registered or not. The search cannot be exact, as the
probability that two fingerprint scans, even from the same person, are
exactly equal (bit-to-bit) is very low.

2 Chapter 1. Introduction

• A 3D object database can be used to support CAD tools, because
a 3D object can model exactly the geometry of an object and any
information needed about it can be derived from the 3D model (e.g.,
any possible 2D view of the object). These CAD tools have many
applications in industrial design. For example, standard parts in a
manufacturing company can be modeled as 3D objects. When a new
product is designed, it can be composed of many small parts that fit
together to form the product. If some of these parts are similar to one
of the standard parts already designed, then the possible replacement
of the original part with the standard part can lead to a reduction of
production costs.

• In text databases, a typical query consists of a set of keywords or
a whole document. The documents are modeled as vectors [Baeza-
Yates and Ribeiro-Neto, 1999], which are used to assess the semantic
similarity between the query (keywords or document) and the stored
documents. The search system looks in the database for the most
similar (i.e., relevant) documents to the query. The search system
may also allow a certain tolerance on the search in case, for example,
that some of the given keywords were mistyped or an optical character
recognition (OCR) system was used to scan the documents (thus they
may contain some misspelled words).

• Movie and video game producers make frequent use of audio tracks,
video sequences, and 3D models to enhance realism in entertainment
applications. Reuse and adaptation of multimedia material by search-
ing in existing databases is a promising approach to reduce costs in the
creation of new material.

A common characteristic of all applications in multimedia databases is
that a query searches for similar objects instead of performing an exact
search, as in traditional relational databases. Therefore, one of the most
important tasks in a multimedia retrieval system is to implement effective
and efficient similarity search algorithms [Keim and Bustos, 2004]. Multi-
media objects cannot be meaningfully queried in the classical sense (exact
search), because the probability that two multimedia objects are identical
is negligible, unless they are digital copies from the same source. Instead,
a query in a multimedia database system usually requests a number of ob-
jects most similar to a given query object or to a manually entered query
specification.

1.1. Similarity search in multimedia databases 3

1.1 Similarity search in multimedia databases

One approach to implement similarity search in multimedia databases is by
using annotation information that describes the content of the multimedia
object. Unfortunately, this approach is not very practical in large multimedia
repositories, because in most cases textual descriptions have to be generated
manually and are difficult to extract automatically. Also, they are subject to
the standards adopted by the person who created them, and cannot encode
all the information available in the multimedia object. Another restriction
that imposes this approach is that any index processing must “guess” (and
thereafter fix) which kind of queries can be posed on the data.

A more promising approach for implementing a similarity search system
is a content-based search, which uses the multimedia data itself. In this
case, the multimedia data is used to perform a similarity query. Figure 1.1
illustrates the concept of content-based similarity search using 3D objects.
The figure shows a query object (q) and a set of possible relevant retrieval
answers (a): The search system should return, from the database, similar
objects to the query object.

Figure 1.1: Example of a similarity search on a database of 3D objects

To compute the similarity between two multimedia objects, a distance
function must be defined. This function measures the similarity (or dissimi-
larity) between two objects. If the distance function holds the properties of a
metric (strict positiveness, symmetry, and triangle inequality), then the mul-
timedia objects form a metric space. The space of strings together with the
edit distance (the minimum number of character insertions, deletions, and
replacements to make two strings equal) is a classical example of a metric
space.

4 Chapter 1. Introduction

Another approach to model the similarity between multimedia objects is
to transform them into points in a vector space, which is a particular type of
a metric space. Having defined certain object aspects, numerical values are
extracted from the multimedia object by using a transformation function.
These values describe the multimedia object and form a feature vector of
usually high dimensionality. There are many distance functions that can be
defined in vector spaces (e.g., the Euclidean distance).

Both approaches to model similarity have their advantages and disadvan-
tages. In the case of metric spaces, the similarity function usually measures
the minimum effort (cost) necessary to transform one object into another
(as in the case of the edit distance), thus it needs to solve an optimization
problem. This is a formal way of defining similarity between objects but,
depending also on the actual multimedia data type, the similarity function
may be very complex and may not hold all the properties of a metric (which
is important for indexing purposes).

In the case of vector spaces, there are many available metric functions
which are easy to compute, and the feature vectors have geometric properties
that can be used to improve the indexing of the space. However, it is not
always clear which features must be extracted to obtain a good representation
of the original data. A practical solution to this problem (that comes from
signal processing) resorts to the use of a numerical transformation, such as
the Fourier or Wavelet transform. If the data can be represented as a signal,
the transform gives the coefficients of a basis function (e.g., sinusoidal basis
functions in the case of Fourier transform) whose linear combination produces
the original signal. Some of the obtained coefficients are then used to form
the feature vectors.

It will depend on the final application which of both models should be
used. As explained before, the most practical approach is to model the data
as a vector space. However, the metric space approach can be also useful if
the similarity measure holds the properties of a metric, because a distance
function defined by experts for a specific data type may model similarity
better than the feature vector approach.

Once the multimedia data have been modeled either as a metric or a
vector space, the similarity search is reduced to a search for close objects or
points in the space. There are two typical similarity queries in multimedia
databases:

• Range query : It returns all objects from the database that are within
a given tolerance radius to the query object.

• k nearest neighbors query : It returns the k closest objects from the
database to the query object.

1.2. Effectiveness and efficiency of similarity search 5

1.2 Effectiveness and efficiency of similarity

search

Two major aspects of similarity search in multimedia databases are effective-
ness and efficiency.

Effectiveness is related with the quality of the answer returned by the
similarity query. Given a transformation function, a similarity query in mul-
timedia databases is reduced to a search for close points in, for example, a
d-dimensional vector space. An effective transformation function should map
two similar multimedia objects to two close points in the vector space.

Feature vectors describe particular characteristics of an object based on
the nature of the extraction method. It is important to note that different
extraction algorithms usually capture different characteristics of the multi-
media objects. It is a difficult problem to select some particular feature
methods to be integrated into a similarity search system, as we find that
not all methods are equally suited for all retrieval tasks. Ideally, a system
would implement a set of fundamentally different methods (i.e., a set of fea-
ture vectors), so that the appropriate feature could be chosen based on the
application domain and/or the user preferences.

The specific feature vector type and its given parameterization determine
the extraction procedure and the resulting vector dimensionality. In gen-
eral, different levels of resolution for the feature vector are allowed for each
transformation function: More refined descriptors are obtained using higher
resolutions. However, higher dimensional feature vectors do not necessarily
imply that a better effectiveness will be achieved.

Efficiency is related to the cost of the search (in CPU and I/O time). A
näıve method to answer range queries and k nearest neighbors queries is to
perform a sequential scan of the database. However, this method may be
too slow for real-world applications. Usually, an index structure is used to
filter out irrelevant objects (or complete zones of the space), thus avoiding
the sequential scan.

Several index structures have been proposed for metric and vector spaces.
Metric access methods [Chávez et al., 2001b] are index structures that use the
metric properties of the distance function (especially the triangle inequality)
to filter out zones of the space. There are two main classes of metric access
methods: Pivot-based indices and indices based on compact partitions. Both
classes of indices aim to divide the space into equivalence classes, and then the
index is used to filter out some of the classes at query time. The equivalence
classes that could not be discarded must be exhaustively checked for relevant
objects.

6 Chapter 1. Introduction

Spatial access methods [Böhm et al., 2001] are index structures especially
designed for vector spaces. Together with the metric properties, spatial access
methods use geometric information to discard points from the space. Usually,
these indices are hierarchical data structures that use a balanced structure
to index the database.

Almost all of these index structures (metric and spatial access methods)
have been designed to index single feature vectors, and do not support the
use of sets of feature vectors.

1.3 Overview of the thesis

The work presented in this thesis concerns the development and analysis of
novel algorithms and data structures that improve the efficiency of similarity
search in multimedia databases. As the effectiveness aspects of similarity
search are as important as its efficiency aspects, this thesis also propose
methods for improving the effectiveness of similarity search. The proposed
methods pose new questions and challenges to the efficiency aspects, which
are discussed in this thesis.

The thesis starts with an introductory chapter (Chapter 2) that describes
in detail the basic notions of similarity search in multimedia databases. It also
presents some related work in metric access methods, spatial access methods,
and probabilistic algorithms for similarity search in metric and vector spaces.
The rest of the thesis is divided in three chapters: Effectiveness of similarity
search (Chapter 3), efficiency of similarity search (Chapter 4), and hardware
accelerated database algorithms (Chapter 5).

Chapter 3 concentrates on how to improve the effectiveness of similarity
search in multimedia databases:

• We present an experimental evaluation on a large set of descriptors for
3D model retrieval (see Sections 3.1 and 3.2), and conclude that on
average there are effective 3D descriptors. However, we also conclude
that there are no single feature that can dominate over all model classes,
that the best descriptor to use depends on the query object, and that
the effectiveness of the similarity search may be improved by using
combinations of feature vectors.

• We propose methods for dynamically selecting and combining feature
vectors (see Section 3.3), which may significantly enhance the effec-
tiveness of the similarity search. We describe the purity and entropy
impurity methods, which assess a priori the suitability of a feature vec-

1.3. Overview of the thesis 7

tor depending on the query object, and show how to use these methods
to select and combine feature vectors.

Chapter 4 describes advanced techniques for searching in metric spaces
and indexing methods for combinations of feature vectors:

• We study pivot selection techniques for pivot-based indices (see Section
4.1). We provide an efficiency criterion based on distance histograms for
selecting good set of pivots. Based on the proposed efficiency criterion,
we describe several optimization techniques that allows us to find good
sets of pivots. We present empirical evidence showing that the proposed
pivot selection techniques are effective.

• We describe an improved k nearest neighbor algorithm (see Section
4.2), which is based on the best-first traversal algorithm proposed by
Hjaltason and Samet [1995]. The improved algorithm aims to lower
the space requirements by using distance estimators. The proposed
technique is general and can be used with databases modeled as metric
or vector spaces.

• We present a metric access method for dynamic combinations of fea-
ture vectors (see Section 4.3). The index is pivot-based, and it can
take advantage of the previously studied pivot selection techniques.
The proposed index structure can support similarity queries that use
dynamically weighted combinations of feature vectors.

• We introduce an approach that aims to minimize the expected search
cost of a similarity query that uses combinations of feature vectors (see
Section 4.4). The idea is to construct a set of indices that indexes
only the most frequently used combinations. If there are restrictions on
the available space for constructing indices, the resulting optimization
problem can be modeled as a binary linear program. As binary linear
programs are NP-hard in the general case, we also propose algorithms
that quickly find good sets of indices. The proposed approach is flexible
in the sense that is not restricted to a particular dimensionality of the
space, to a particular index structure, or to specific cost functions.

Finally, Chapter 5 presents hardware accelerated algorithms using the
graphics processor unit (GPU) for multimedia databases. GPU technology
has improved much faster than CPU technology in the last few years, due
to the rapid development of computer games and other multimedia applica-
tions, which require extensive graphic processing capabilities to render re-
alistic scenes in real time. It is therefore a good idea to exploit the power

8 Chapter 1. Introduction

of current GPUs to speed up general computations. We depict GPU imple-
mentations of a high-dimensional nearest neighbor search and a clustering
algorithm. We experimentally evaluate the proposed GPU algorithms, show-
ing that they are an order of magnitude faster than their CPU versions.

The ideas presented in this thesis have been published in Bustos et al.
[2003, 2004a,b,c, 2005a,b, 2006a,c], or have been submitted for publication
[Bustos et al., 2006b; Bustos and Navarro, 2006].

Chapter 2

Basic concepts and related
work

All applications that perform similarity search in multimedia databases need
to find objects that are close to each other. The closeness between two
multimedia objects is generally defined in terms of a dissimilarity function.
In this chapter, we describe how multimedia objects can be modeled, either
as a metric or a vector space, to implement similarity queries. We present
several access methods for multimedia databases and probabilistic algorithms
for similarity queries.

2.1 Modeling multimedia data

Given the heterogeneous nature of multimedia databases, the use of mathe-
matical models and tools is necessary to abstract the multimedia data types
from the implementation of a similarity search. This section describes two
widely used models for multimedia data: metric spaces and vector spaces.

2.1.1 Metric spaces

Let X be the universe of valid multimedia objects for a given application
(e.g., images). Let δ : X × X → R+ be a function between pairs of objects
that returns a positive real value. The pair (X, δ) represents a metric space
if and only if δ holds the following properties:

• Symmetry : ∀x, y ∈ X, δ(x, y) = δ(y, x).

• Reflexivity : ∀x ∈ X, δ(x, x) = 0.

10 Chapter 2. Basic concepts and related work

• Strict positiveness : ∀x, y ∈ X, x 6= y ⇒ δ(x, y) > 0.

• Triangle inequality : ∀x, y, z ∈ X, δ(x, z) ≤ δ(x, y) + δ(y, z).

The function δ is called the distance or metric of X. In metric spaces,
multimedia objects are directly compared using δ, which can be seen as a
“black box” function that indicates the degree of dissimilarity between two
objects. The smaller the value given by δ, the more similar are the two given
objects.

An example of a metric space is the space of strings with the edit distance.
A string can be defined as a finite sequence of characters, and the edit distance
edit(x, y) (also known as Levenshtein distance) is the minimum number of
insertions, deletions, or substitutions required to transform x into y. Another
important example of metric spaces are vector spaces.

2.1.2 Vector spaces

A vector space Rd is a particular type of metric space. The space Rd is
composed by d-tuples of real numbers, which are called vectors. That is, if
x ∈ Rd then x = (x1, . . . , xd), xi ∈ R, 1 ≤ i ≤ d.

There are many metrics for vector spaces. A widely used family of dis-
tances is the Minkowski distance (Lp), which is defined as

Lp(x, y) =

(
d∑

i=1

|xi − yi|p
)1/p

, p ≥ 1.

Some examples of Minkowski metrics are:

• Manhattan distance (p = 1): L1(x, y) =
∑d

i=1 |xi − yi|.

• Euclidean distance (p = 2): L2(x, y) =
√∑d

i=1 |xi − yi|2.

• Maximum distance (limp→∞ Lp): L∞(x, y) = maxd
i=1 |xi − yi|.

Another well-known metric for vector spaces is the Mahalanobis distance,
defined as

δ(x, y) =
√

(x− y)T C−1(x− y),

where C is the covariance matrix of the distribution of the vectors and T
denotes the transpose operator. If C is the identity matrix, then the Maha-
lanobis distance is equivalent to the Euclidean distance.

2.1. Modeling multimedia data 11

Figure 2.1 illustrates the shapes induced by different metrics on vector
spaces. All the points located on the perimeter of each shape are at the same
distance from its respective center.

L
1

L
2

8L Mahalanobis

Figure 2.1: Shape of the unitary cube for different metrics on vector spaces

To model multimedia data as a vector space, a transformation function
must be used, which is highly dependent on the multimedia data type. This
function extracts important features from the multimedia objects and maps
these features into d-dimensional feature vectors (also referred to in the liter-
ature as descriptors). Thus, a similarity query in the original space is reduced
to a search for close points in a d-dimensional vector space.

The feature-based approach for similarity search is illustrated in Figure
2.2. Through this thesis, we will refer to a “feature vector” (FV) as any
well-defined feature transformation method, and the actual vectors obtained
with this function will be called “points” or “objects”.

Figure 2.2: Feature-based similarity search

Usually, the dimensionality d of the FV is a parameter of the transfor-
mation function: By using higher values of d one can obtain a better (finer)
representation of the multimedia object. However, in practical applications
there is usually a saturation point, where adding more dimensions only adds
noise to the description (see Chapter 3). For most applications, the trans-
formation is irreversible, i.e., it is not possible to reconstruct the original
multimedia object from the description.

12 Chapter 2. Basic concepts and related work

2.2 Similarity queries

Let U ⊂ X be a set of multimedia objects (i.e., an instance of a multimedia
database). There are two typical similarity queries in multimedia databases:

• Range query. A range query (q, r), q ∈ X, r ∈ R+, reports all database
objects that are within a distance r to q, that is, (q, r) = {u ∈
U, δ(u, q) ≤ r}. The subspace V ⊂ X defined by q and r (i.e., ∀v ∈
V δ(v, q) ≤ r and ∀x ∈ X− V δ(x, q) > r) is called the query ball.

• k nearest neighbors query (k-NN). It reports the k objects from U closer
to q. That is, it returns the set C ⊆ U such that |C| = k and ∀x ∈
C, y ∈ U− C, δ(x, q) ≤ δ(y, q).

Note that it is possible that many sets of k objects are a valid answer for
the k-NN search. For example, if there are two or more objects at exactly
the same distance to the kth NN, any of them can be selected as the kth NN.
While this is unusual when using continuous distance functions, it is frequent
when using discrete distance functions, such as the edit distance.

Figure 2.3 illustrates a range query (left) and a k-NN query (right) with
k = 3 in a 2-D vector space using the Euclidean distance. The answers are
respectively: (q, r) = {u2, u4, u6, u7}; C = {u2, u6, u7}. Note that if one knew
a priori the distance from q to the kth nearest neighbor (denoted by uk), then
the range query (q, δ(q, uk)) would return the same set of objects as the k-NN
query (assuming that the answer set for the k-NN query is unique).

u
3

u
3

7
u

4
6

u
u

2
u

q r

u
1

5
u

u
8

9
u

u
6

4
u

u
2

u
1

u
5

u
8

u
9

u
7

q

Figure 2.3: Range query and k-NN query examples

Both similarity queries can be answered by performing a linear scan on
the database, which takes O(n) time with n = |U|. However, this näıve

2.3. Metric access methods 13

algorithm may be very slow if the database is too large and/or the distance
function is computationally too expensive. This is the main motivation for
the research and development of index structures for multimedia databases.
The goal of similarity search algorithms is to build an index of the database
in advance and later perform similarity queries using this index, avoiding a
full scan of the database.

2.3 Metric access methods

Metric access methods (MAMs) are index structures and algorithms designed
to perform efficient similarity queries in metric spaces. They only use the
metric properties of δ, especially the triangle inequality, to filter out objects
or entire regions of the space during the search, thus avoiding the linear scan.
In general, the function δ is considered expensive to compute, and in many
practical applications δ is so costly that the extra CPU time or even I/O
time costs can be neglected. For this reason, the complexity of MAMs is
generally measured as the number of distance computations performed. See
Chávez et al. [2001b] for a survey on metric access methods.

Figure 2.4 shows a model for indexing and querying metric spaces. All
index structures partition the data into subsets, each of them representing an
equivalence class, i.e., a subset of objects related somehow. When performing
a similarity query, the search algorithm filters out some of the classes. Those
classes not discarded by the index must be checked for relevant objects. The
cost associated with the index traversal is the internal complexity of the
search, and the cost of examining the non-discarded equivalence classes is
the external complexity of the search.

Almost all metric access methods proposed up to now store the index
structure in main memory, making them not suitable for very large metric
databases. Some exceptions are the M-tree (see Section 2.3.2) and the D-
Index [Dohnal et al., 2003].

MAMs can be classified into two main groups: Indices based on pivots (see
Section 2.3.1) and indices based on compact partitions (see Section 2.3.2).

2.3.1 Pivot-based indexing

Pivot-based indices select a number of pivot objects from the database, and
classify all the other objects according to their distance from the pivots. The
canonical pivot-based range query algorithm works as follows: Given a range
query (q, r) and a set of t pivots {p1, . . . , pt}, pi ∈ U, by the triangle inequality
it follows for any x ∈ X and 1 ≤ i ≤ t that δ(q, x) ≥ |δ(pi, x)− δ(pi, q)|. The

14 Chapter 2. Basic concepts and related work

Index traversal

(internal complexity)

Candidate classes

(external complexity)

structure

Index

insert

Equivalence classes

Querying

Database
Query q

Figure 2.4: Model for indexing and querying metric spaces

objects u ∈ U of interest are those that satisfy δ(q, u) ≤ r, so one can exclude
all the objects that satisfy |δ(pi, u)− δ(pi, q)| > r for some pivot pi, without
actually evaluating δ(q, u). This discarding criterion is known as the pivot
exclusion condition.

The index consists of the tn precomputed distances δ(pi, u) between every
pivot and every object of the database. At query time it is necessary to
compute the k distances between the pivots and q, δ(pi, q), to apply the
exclusion condition. Those distance calculations are known as the internal
complexity of the algorithm, and this complexity is fixed if there is a fixed
number of pivots. The list of objects {u1, . . . , um} ⊆ U that cannot be
discarded with the exclusion condition, known as the object candidate list,
must be checked directly against the query. Those distance calculations
δ(ui, q) are known as the external complexity of the algorithm.

Figure 2.5 shows an example of the pivot exclusion condition in a 2-D
Euclidean space. The left figure describes the zone of non-discarded objects
using pivot p: All elements inside the ring cannot be discarded. The right
figure shows the effect of using more pivots: Only those elements belonging
to the intersection of the rings cannot be discarded.

The total complexity of the search algorithm is the sum of the internal
and external complexity, t + m. Since one increases and the other decreases
(or at least does not increase) with t, it follows that there is an optimum t∗

that depends on the tolerance range of the query, r. In practice, however, t∗

is so large that one cannot store the t∗n distances, and the index simply uses
as many pivots as space permits.

2.3. Metric access methods 15

(p,q)+r

(p,q)−r

q
r

1
p

2
p

q
r

δ

δ

p

Figure 2.5: Pivot exclusion condition

Several indices resort to a tree structure to avoid considering the exclu-
sion condition for each u ∈ U individually. Each tree node p is a pivot and
its subtrees correspond to subsets of objects that are inside some given range
of distances from p. At search time, δ(q, p) is computed and the search algo-
rithm only needs to enter tree branches whose ranges of distances intersect
[δ(q, p)− r, δ(q, p) + r].

Pivot-based indices for discrete distance functions

The Burkhard-Keller tree (BKT) [Burkhard and Keller, 1973] is an index
structure designed for discrete distance functions. A node p is randomly
selected from U. For each distance i > 0, the subset si of objects which are
at distance i from p is computed. A BKT is recursively constructed on each
nonempty subset si, and the roots of these subtrees conform the children of
p. Other tree structures for discrete distance functions are the Fixed-Queries
tree (FQT) and the Fixed-Height FQT [Baeza-Yates et al., 1994]. The FQT
is a variant of the BKT, where only one pivot p is the root of all subtrees from
the same level. The Fixed-Height FQT fixes the FQT height at a given level
h, independently of the bucket sizes at the leaves. The Fixed-Queries Array
(FQA) [Chávez et al., 2001a] compactly represents a Fixed-Height FQT in
an array. This permits to save space, thus one can use more pivots, at the
cost of increasing the CPU time by a factor of O(log(n)).

16 Chapter 2. Basic concepts and related work

Pivot-based indices for continuous distance functions

The Vantage Point Tree (VPT) [Yianilos, 1993] is designed for metric spaces
with continuous distance functions. The VPT is a binary tree, where its root
is an object p randomly selected from U. Then, the median M of the set of
all distances between p and objects from U is computed. All objects u ∈ U
with δ(p, U) ≤ M are inserted in the left subtree, and the rest are inserted
in the right subtree. For each subtree, a new pivot is selected and a VPT
is recursively constructed. Given a range query (q, r), the search algorithm
computes δ(p, q) and adds p to the result if it is within the query ball. If
δ(p, q) − r ≤ M the search recursively continues on the left subtree, and if
δ(p, q) + r > M the search recursively continues on the right subtree. Note
that it is possible that both subtrees must be traversed. Extensions to the
VPT are the Multi-Vantage Point Tree [Bozkaya and Ozsoyoglu, 1997] and
the Vantage Point Forest [Yianilos, 1999].

Other pivot-based indices

The Approximating and Eliminating Search Algorithm (AESA) [Vidal, 1986]
builds an O(n2) matrix with all precomputed distances between objects from
U, i.e., it uses all database objects as pivots. This index structure has in
practice a very good performance, but its O(n2) space cost makes it only
suitable for very small databases. Linear AESA (LAESA) [Micó et al., 1994]
only uses t fixed pivots, thus its space cost is O(n), and it is basically a
direct implementation of the canonical pivot-based search algorithm. A data
structure called Spaghettis [Chávez et al., 1999] aims to reduce the CPU time
used to compute the set of non-discarded objects. The main data structure
is also a matrix with the distances between pivots and objects, but now the
distances for each pivot p are sorted. Given a range query, the set of non-
discarded objects by p can be efficiently computed using binary search. This
data structure uses extra pointers to link the same object on the different
lists of sorted distances.

Other index structures that use the pivot exclusion condition are the
OMNI family of access methods [Santos-Filho et al., 2001], which presents
a general approach for implementing the pivot exclusion condition on top
of existing access methods, and the D-Index [Dohnal et al., 2003], which
combines clustering techniques with the pivot-based approach.

2.3. Metric access methods 17

2.3.2 Indices based on compact partitions

These algorithms are based on dividing the space into partitions or zones
as compact as possible. Each zone stores a representative point, called the
center, and data that can be used to discard the entire zone at query time,
without measuring the actual distance from the zone objects to the query
object. Each zone can be partitioned recursively into more zones, inducing
a search hierarchy. There are two general criteria for partitioning the space:
Voronoi partition and covering radius.

The Voronoi diagram of a collection of objects is a partition of the space
into cells. Each cell contains the objects closer to one particular center than
to any other. A set of m centers is selected and the rest of the objects are
assigned to the zone of their closest center. Given a range query (q, r), the
distances between q and the m centers are computed. Let c be the closest
center to q. Every zone of center ci 6= c which satisfies δ(q, ci) > δ(q, c) + 2r
can be discarded, because its Voronoi area cannot intersect with the query
ball. Figure 2.6 shows an example of the Voronoi partition criterion. For
q1 the zone of c4 can be discarded, and for q2 only the zone of c4 must be
examined.

1
u

u
3

1
c

12
u

9
u

1
r

1
q

5
u

4
u

15
u 2

q 2
r 4

c

11
u

7
u

8
u

3
c

13
u

14
u

10
u

2
c

6
u

2
u

16
u

Figure 2.6: Voronoi partition criterion

The covering radius cr(c) is the maximum distance between a center
c and an object that belongs to its zone. Given a range query (q, r), if
δ(q, ci)− r > cr(ci) then zone i cannot intersect with the query ball and all

18 Chapter 2. Basic concepts and related work

its objects can be discarded. In Figure 2.7, the query ball of q3 does not
intersect with the zone of center c, thus it can be discarded. For the query
balls of q1 and q2, the zone cannot be discarded, because it intersects these
balls.

cr(c)

q
1

2
q

c q
3

Figure 2.7: Covering radius criterion

The Generalized-hyperplane tree [Uhlmann, 1991b] is an index structure
that uses the Voronoi partition criterion. Indices that use the covering radius
criterion are the Bisector tree (BST) [Kalantari and McDonald, 1983], the
Voronoi tree [Dehne and Noltemeier, 1987], the Monotonous bisector tree
[Noltemeier et al., 1992], the M-tree [Ciaccia et al., 1997], the PM-tree [Skopal
et al., 2005], and the List of clusters [Chávez and Navarro, 2005]. There exist
indices that use both criteria, for example the Geometric near-neighbor access
tree (GNAT) [Brin, 1995] and the Spatial approximation tree [Navarro, 2002].
From these methods, descriptions for the M-tree and the List of clusters are
given below.

M-tree

The M-tree [Ciaccia et al., 1997] is a dynamic index structure that provides
good performance in secondary memory. This index is similar to the GNAT
in the sense that it is a tree where some points are selected as centers and the
rest of the objects are (generally) assigned to the zone of its closest center.
Each zone (branch of the tree) is then recursively indexed with an M-tree.
Unlike the GNAT, the M-tree uses the covering radius criterion to filter out
branches while performing a similarity query. The data is stored in the leaves
of the M-tree, and the internal nodes store the so-called routing objects.

2.3. Metric access methods 19

A new object u is inserted in the best subtree, which is defined as the one
where the covering radius must increase the least in order to cover the new
object. In case of ties, the subtree whose center is closest to u is selected.
The insertion algorithm proceeds recursively until a leaf is reached and u is
inserted in that leaf, storing the distance to the center of its parent node.
Node overflows are managed in a similar way as in the B-tree. If an insertion
produces an overflow, two objects from the node are selected as new centers,
the node is split, and the two new centers are promoted to the parent node
(different splitting techniques are studied in Ciaccia et al. [1997]). If the par-
ent node overflows, the same split procedure is applied. If the root overflows,
it is split and a new root is created. Thus, the M-tree is a balanced tree.
Figure 2.8 illustrates an example of an M-tree.

u
8

14
u

13
u

2
u

4
u

9
u

u
5

11
u

3
u

10
u

14
u

4
u

2
u

8
u

12
u u

5

9
u

11
u6

u
13

u

1
u

7
u

u
3

6
u 10

u

1
u

12
u

7
u

root

Figure 2.8: Example of an M-tree

Range queries are implemented by traversing the tree, starting from the
root. As each node o in the tree contains the distances from the routing
objects to the center of its parent node p (except for the root), a similar
criterion as the pivot exclusion condition can be used to further filter out
branches. In this case, the parent node p is used as a pivot. A subtree
of o rooted by oro (one of the routing objects) can be safely filtered out if
|δ(p, q) − δ(oro, p)| > r + cr(oro). If the branch cannot be filtered out, the
actual distance between oro and q is computed. Then, if δ(oro, q)−cr(oro) > r
(covering radius criterion) the branch can be filtered out, otherwise the search
continues recursively on this branch.

List of Clusters

The List of Clusters [Chávez and Navarro, 2005] is a list of “zones”. Each
zone has a center and stores its covering radius. A center c ∈ U is chosen as
well as a radius rp, whose value depends on whether the number of objects

20 Chapter 2. Basic concepts and related work

per compact partition is fixed or not. The center ball of (c, rp) is defined
as (c, rp) = {x ∈ X, δ(c, x) ≤ rp}. The set I = U ∩ (c, rp) is defined as
the bucket of “internal” objects lying inside (c, rp), and the set E = U − I
is defined as the rest of the objects (the “external” ones). The process is
repeated recursively inside E. The construction process returns a list of
triples (ci, rpi, Ii) (center, radius, internal bucket). For the selection of c, it
is suggested in Chávez and Navarro [2005] to select as next center the object
that maximizes the sum to the previously selected centers.

This data structure is asymmetric, because the first center chosen has
preference over the next centers in case of overlapping balls. Figure 2.9 il-
lustrates the asymmetry of the data structure. With respect to the value of
the radius rp of each compact partition and the selection of the next center
in the list, there are many alternatives. Chávez and Navarro [2005] exper-
imentally showed that the best performance is achieved when the compact
partition has a fixed number of objects, so rp simply becomes cr(c), and the
next center is selected as the object which maximizes the distance sum to the
centers previously chosen. The brute force algorithm for constructing the list
takes O(n2/m), where m is the size of the compact partition, but it can be
improved using auxiliary data structures to build the partitions. For metric
spaces with high intrinsic dimensionality (see Section 2.5.1), the optimal m
is very small.

c
1

1
rp

3
rp

2
c

3
c

2
rp

I
1

(c , rp)
1

E
(c , rp)

2
E

(c , rp)
3

E

1 2 31 2 3

2
I

3
I

Figure 2.9: Example of a List of Clusters

Given a range query (q, r), the search algorithm computes δ(q, c), report-
ing c if it is within the query ball. Then, the algorithm searches exhaustively
inside I only if δ(q, c)− cr(c) ≤ r. The rest of the list, E, is processed only
if cr(c) − δ(q, c) < r, because of the asymmetry of the data structure. The
search cost has a form close to O(nα) for some 0.5 < α < 1.0 [Chávez and
Navarro, 2005].

2.4. Spatial access methods 21

2.4 Spatial access methods

Spatial access methods (SAMs) are index structures especially designed to
index data modeled as vector spaces. These index structures uses more in-
formation as MAMs (e.g., geometric properties of the data points), thus
providing better structures for efficiently handling similarity queries in these
spaces. See Böhm et al. [2001] and Gaede and Günther [1998] for surveys on
spatial access methods.

SAMs hierarchically cluster data pages, usually by means of a balanced
directory. Figure 2.10 illustrates the basic structure of a SAM. The root node
is a single directory node and corresponds to the first hierarchy level. All
but the last level of the search hierarchy are conformed by directory pages.
Each node of the directory pages spatially encloses all data points under its
subtree. The last level of the hierarchy corresponds to the data pages, which
contain the actual data points.

Directory pages

Data pages

Root

Figure 2.10: Hierarchical index structure of spatial access methods

2.4.1 Examples of spatial access methods

R-tree and its variants

The R-tree [Guttman, 1984] is a balanced tree that uses minimum bounding
rectangles (MBRs) as page regions. Given a vector space Rd, an MBR mbr ⊂
Rd is the minimal orthogonal hyperrectangle that encloses a set of given
points. Thus, all (d − 1)-dimensional surfaces of mbr contains at least one
data point. The space partitioning is neither complete nor disjoint. The
MBRs are allowed to overlap, although this can reduce the overall efficiency
of the index structure. Each node of the tree is allowed to contain between
m and M objects, with m ≤M/2, except for the root node.

Figure 2.11 shows an example of an R-tree in a 2-dimensional vector
space. For this example, M = 5 and m = 2. Each MBR is denoted by
Ri, 1 ≤ i ≤ 7, and the datapoints are denoted by uj, 1 ≤ j ≤ 14. Note that
all surfaces of the MBRs contain at least one data point.

22 Chapter 2. Basic concepts and related work

u
4

R 7

u
6

u
7

u
11

u
2

u
3

u
8

u
12

3R

1R 4R R 6

2R

5R

1R 2R

3R 4R
5R R 6 R 7

u
2

u
6

u
11

u
12

u
4

u
8

u
3

u
7

u
1

u
9

u
5

u
10

u
5

u
10

u
1

u
9

u
13

u
14

u
13

u
14

Root

Figure 2.11: Example of an R-tree

New points are inserted in the “best suited” data page: If the point is
contained in exactly one data page, then it is inserted there; if the point
is contained in several page regions, the one with the smallest volume is
selected; if no region contains the point, the one with smallest volume en-
largement is selected. In case of ties, the algorithm selects the region with
the minimum volume. When a node overflows after an insertion, it must be
split into two, thus new MBRs must be computed and the parent node must
also be updated. If the parent node overflows, the procedure is recursively
applied. If the root overflows, it is split and a new root is created. There
are different splitting policies in case of overflow. Guttman [1984] depicts a
quadratic and a linear algorithm, and recommends to use the latter.

The R*-tree [Beckmann et al., 1990] is an extension of the R-tree. The
basic data structure is the same, but the algorithms for splitting regions and
inserting new points are improved, and the concept of forced reinsertion is
presented.

The new insertion algorithm differentiates between data and directory
pages in case no region contains the new point. In the former case, the
criteria to select the best suited data page are the smallest enlargement of
the overlap between regions, the volume enlargement, and the volume of the
region (in that order). For the directory pages, the region with smallest
enlargement is the chosen one, and in case of ties the algorithm selects the
region with smaller volume.

The new split algorithm aims to minimize the overlap between page re-
gions and the coverage of empty space. Also, splits are avoided by the concept
of forced reinsertion. The idea is to reinsert a percentage of the objects from
the overflowed data region. The selected objects for reinsertion are those
furthest from the center of the region. Reinsertion has two beneficial results:
The storage utilization grows and the quality improves, because bad deci-
sions taken at the beginning, when the tree had only a few points, can be
corrected in this way.

2.4. Spatial access methods 23

X-tree

The X-tree [Berchtold et al., 1996] is an extension of the R*-tree, and it
is specifically designed to perform well in high dimensional spaces. It ex-
tends the R*-tree by providing overlap-free split and supernodes. It has
been observed experimentally that in high-dimensional spaces (more than 10
dimensions according to Berchtold et al. [1996]), the amount of volume of
spaces covered by more than one MBR in an R*-tree approaches quickly the
whole data space. This is due to the criteria used by the R*-tree to split
nodes, which also aim to minimize the volume of the resulting MBRs. The
high amount of overlap between MBRs means that, for any similarity query,
at least two subtrees must be accessed in almost every directory node, thus
reducing the efficiency of the index structure.

To avoid this problem, the X-tree maintains the history of data page splits
of a node in a binary tree. The root of this “split history tree” contains the
dimension where a overlap-free split is guaranteed (which is a dimension
according to which all MBRs in the node have been split previously). Thus,
when a directory node overflows, this dimension is used to perform the split.
However, the overlap-free split may be unbalanced, i.e., one of the nodes
may be almost full and the other one may be underfilled, thus decreasing the
storage utilization in the directory. To avoid this problem, the X-tree does
not split in this case and creates instead a supernode. A supernode is basically
an enlarged directory node, which can store more entries than normal nodes.
In this way, the unbalanced split is avoided and a good storage utilization is
mantained, at the cost of disminishing some of the discriminative power of
the index. Figure 2.12 illustrates an X-tree with two supernodes.

VA-file

The VA-file [Blott and Weber, 1997; Weber et al., 1998] aims to implement
a very fast linear scan of the database. While it is actually not an index as
those previously described, it is a very competitive technique, especially in
high dimensional spaces.

The main idea of the VA-file is to store bit-compressed versions of the data
points. For each dimension i of the vector space, bi bits are assigned. Thus,
the original vectors are quantized to

∑d
i=1 bi bits and sequentially stored in

a file. The vector quantization is computed using a grid, where dimension i
has a resolution equal to 2bi . The quantiles of the projections of the points
to axis i correspond to the grid lines for that dimension. To perform a
similarity query, the quantized points are sequentially scanned, discarding
the non-relevant points. The original coordinates for non-discarded points

24 Chapter 2. Basic concepts and related work

Supernode Data nodeNormal directory node

Root

Figure 2.12: Illustration of an X-tree

must be read and compared directly against the query object.

Other spatial access methods

The kdb-tree [Robinson, 1981] uses a kd-tree [Bentley, 1975] to create a com-
plete and disjoint partitioning of the space. The page regions are hyperrect-
angles but they are not MBRs, thus it is possible that a large part of a region
is empty. Some advantages of a complete partitioning of the space are that
there is always only one path to insert a new object, and that regions can
be easily merged maintaining the partitioning of the space. If a page re-
gion overflows it is split, the data entries are distributed among the two new
nodes, and the split is propagated to the rest of the tree. If lower levels of
the tree are also intersected by the split plane, then they must also be split.
Thus, an insertion operation costs O(n) in the worst case. The LSDh-tree
[Henrich, 1998] is also based on the kd-tree, but it uses a complex region
description to reduce the space cost of the index.

The SS-tree [White and Jain, 1996b] uses hyperspheres instead of hyper-
rectangles as page regions, but they are not minimun bounding. The centroid
of a set of points is used as the center of the hypersphere, and its radius is
always greater than or equal the distance to the farthest point on the set. A
new point is inserted in the hypersphere with the closest centroid to it. After
an insertion, a new centroid and radius must be computed for the selected
hypersphere. When a node overflows, a forced reinsertion is performed, as in

2.4. Spatial access methods 25

the R*-tree. If the children of the selected node have already been reinserted,
the node should be split and the axis with the highest variance is selected as
the split axis. The chosen split plane is the one that minimizes the sum of
variances on each side of the split.

Another index that does not use MBRs as page regions is the SR-tree
[Katayama and Satoh, 1997]. Instead, it uses the intersection between hy-
perrectangles and hyperspheres as the page region. The hyperrectangle cor-
responds to the MBR of the enclosed points, and the hypersphere is the
minimum bounding sphere around the centroid that encloses the points. In-
sertion and split algorithms for the SR-tree are the same as in the SS-tree,
only the MBRs must be updated after an insertion or split.

The Pyramid-tree [Berchtold et al., 1998] is an index that maps the high-
dimensional points into a one-dimensional space, and then uses a B+-tree to
index the data. The space is first partitioned into pyramids, where their top
is the centerpoint of the space. Then, each pyramid is cut into slices that
are parallel to its basis. A point is mapped to the 1-D space according to
the pyramid where it is located and its height (orthogonal distance from the
centerpoint to the point). Assuming points uniformly distributed in the space
and using the Lmax distance, it has been shown [Berchtold et al., 1998] that
the performance of the Pyramid-tree does not degrade in high-dimensional
spaces.

Innovative spatial access methods are proposed on a regular basis. For
example: the ∆-tree [Cui et al., 2003] is an index structure optimized for
main-memory storage; the ClusterTree [Yu and Zhang, 2003] is a hierarchi-
cal representation of data clusters, which can be used to support efficient
similarity queries; the iDistance [Yu et al., 2001], the Diagonal Ordering [Hu
et al., 2004], and the iMinMax [Yu et al., 2004] propose, like the Pyramid-
tree, different approaches to map the data points into a one-dimensional
space and use a B+-tree to index the data.

2.4.2 Similarity queries in spatial access methods

Range queries

The canonical range query algorithm for hierarchical index structures is as
follows. Starting from the root, the algorithm performs a depth-first traversal
of the index tree. If the actual node is a data page, all points on that data
page that are within the query ball are added to the result. If the page is
a directory node, the algorithm continues the search on all those children
nodes which region pages intersect with the query ball.

26 Chapter 2. Basic concepts and related work

Nearest neighbor queries

There are two different approaches for implementing nearest neighbor queries
on spatial access methods. The first one is the so-called RKV algorithm
[Roussopoulos et al., 1995]. It performs a depth-first traversal of the tree,
as in the range query algorithm, but in this case there is no fixed criterion
to filter out branches from the tree. The optimal criterion would be the
actual distance to the NN, but it is unknown at the beginning of the search.
Therefore, the algorithm uses conservative estimates of this distance (closest
point distance) to filter out branches. As the algorithm traverses the tree,
more information is gained and the estimates can be improved during the
search. One estimate for the distance to the NN is the smallest distance
from an already visited point and q, but the RKV algorithm also computes
estimates from the page regions visited so far.

First, we need to introduce some concepts to understand the estimation
of the NN distance. The MinDist value is the minimum distance between a
page region and q. For example, if the page regions are minimum bounding
spheres, then MinDist is equal to the distance from q to the centroid minus
the radius of the sphere (the formula in the case of MBRs can be found in
Böhm et al. [2001]). The MaxDist values is the maximum distance between
a page region and q. Finally, the MinMaxDist is the maximum distance from
the page region to q where a data point is guaranteed to be found. For exam-
ple, at least one point must be located on each surface of an MBR (cf. Section
2.4.1), thus a better lower bound of the distance from q to a point in the page
region than MaxDist can be computed. Figure 2.13 illustrates. Note that the
upper left corner of the MBR is farther from q than the lower right corner,
thus this last one is the geometric point which determines MinMaxDist for
this example.

The estimation value used in the RKV algorithm is the minimum value
between all computed distances to points and all MinMaxDist values from
page regions processed so far. A branch can be safely filtered out if its
MinDist is greater than the computed estimation value.

To extend this algorithm to k-NN queries, Roussopoulos et al. [1995]
propose to simply discard the use of MinMaxDist, and the new estimation
value is the kth lowest distance among all computed distances.

The second NN algorithm is the so-called HS algorithm [Uhlmann, 1991a;
Hjaltason and Samet, 1995]. It performs a best-first traversal of the index,
as page regions are accesed in the order of increasing lower bound distance
to q. A priority queue is used to store tree nodes whose parents were already
processed. The queue returns always the node with minimum MinDist to q.

At the beginning, the priority queue only contains the root node. A node

2.4. Spatial access methods 27

q

MaxDist

MinDist

MinMaxDist

Figure 2.13: MinDist, MaxDist, and MinMaxDist

dp is extracted from the queue and it is processed. If dp is a data page, all
its points are examined to see if one of them is closer to q than the closest
point distance. If this is the case, the candidate NN and the closest point
distance are updated. If dp is a directory page, then MinDist is computed
for all its children and they are inserted into the queue. The search stops
when when the MinDist of the first node in the queue is greater than the
current NN distance, which means that no other point can be closer to the
query than the current NN candidate (because MinDist is a lower bound to
the distance from a point to query and the nodes in the queue are sorted by
ascending MinDist).

For implementing k-NN queries, a second priority queue with the candi-
date list is needed. As in the case of the RKV algorithm, the new estimation
value is the kth lowest distance among all computed distance to points, which
results to be the maximum distance from q to one of the points stored in the
second queue.

Space complexity of RKV and HS algorithms

As the RKV algorithm performs a depth-first tree traversal and the index
tree is balanced, the worst case space complexity for the RKV algorithm is
O(log(n)). In contrast, the worst case space complexity of the HS algorithm
is O(n), because it is possible that all data pages are loaded into the priority
queue before the first data point is found. In spite of this drawback, the HS
algorithm has some nice optimality properties, for example in the number of
page accesses (see Section 4.2 for more details).

28 Chapter 2. Basic concepts and related work

2.5 Efficiency considerations

2.5.1 Intrinsic dimension of a metric space

Estimating the intrinsic dimensionality of a metric space (i.e., how “difficult”
is to perform a similarity search in that space) is a subject of intense research.
One proposal [Chávez et al., 2001b] defines the intrinsic dimension ρ of a
metric space (X, δ) as

ρ =
µ2

2σ2

where µ and σ2 are respectively the mean and the variance of the distance
histogram of (X, δ). This definition is coherent with the notion of dimen-
sionality in a vector space, where the coordinate values of its vectors are
uniformly distributed. A d-dimensional vector space under the Lp metric has
an intrinsic dimensionality of Θ(d) [Yianilos, 1999; Chávez et al., 2001b].

It follows that the intrinsic dimension of a metric space grows with µ and
decreases with σ2. This means that in spaces with high intrinsic dimension-
ality the objects tend to be “far away” from each other.

2.5.2 Fractal dimension of a vector space

A vector space Rd has, by definition, a space dimensionality equal to d.
That is, each vector of the space contains d attributes. This value is also
known as the embedding dimensionality of the space. However, the “real”
(intrinsic) dimensionality of the space can be much lower. For example, if all
the objects on a 10-dimensional vector space are located in a plane, then the
intrinsic dimensionality of the space is only 2. This means that one could
map the objects from the 10-dimensional space to a 2-dimensional space
while preserving all the distances between objects from the original space.
The intrinsic dimensionality of a vector space can be estimated by using the
concept of fractal dimension [Faloutsos and Kamel, 1994].

A fractal is a point set which is self-similar, i.e., it can be decomposed in
parts that are similar to the whole point set. A classic example of a fractal is
the Sierpinski triangle (see Figure 2.14), which is a fractal consisting of three
smaller pieces that are similar to the whole fractal. Each piece is scaled-down
by a factor of two.

Given a fractal with r self-similar pieces and with a scale down factor s,
its fractal dimension dfractal is defined as

dfractal =
log(r)

log(s)
.

2.5. Efficiency considerations 29

Figure 2.14: Sierpinski triangle

An alternative way to define the fractal dimension [Schroeder, 1991] is as
follows: If the space is divided into hypercubic grid cells of side r, and N(r)
is the number of cells that contain 1 or more points of the fractal, then the
fractal dimension is defined as:

dfractal = lim
r→0

log(N(r))

log(1/r)
.

It has been shown that several distributions of real data exhibit fractal be-
havior, and the fractal dimension has been used to estimate the performance
of index structures that store this data [Faloutsos and Kamel, 1994].

2.5.3 Curse of dimensionality

It is analytically and experimentally shown in Chávez et al. [2001b] that the
efficiency of similarity queries in metric spaces systematically degrades in
metric spaces with higher intrinsic dimensionalities. This fact is known as
the curse of dimensionality, and it occurs due to two main effects. Firstly, the
distance histograms in metric spaces with high intrinsic dimension have low
variance, i.e., all their mass is concentrated near the mean of the distribution.
Secondly, to retrieve a fixed fraction of the database, the tolerance radius of
a range query must be bigger for metric spaces with high dimensionality,
because in these spaces the objects of the database are far away from each
other. In general, both effects occur simultaneously.

This means that, in spaces with high intrinsic dimensionalities, no index
structure can filter out many objects during a search. For example, Figure
2.15 shows the distance histograms for a low dimensional (left) and a high
dimensional (right) metric space. The gray areas correspond to those objects

30 Chapter 2. Basic concepts and related work

that cannot be discarded using the pivot exclusion condition. One can ob-
serve that most of the objects cannot be discarded in the high dimensional
metric space.

δ

δ δ

δ

2r2r

(p,x)

(p,q) (p,q)

(p,x)

Figure 2.15: Distance histogram of a metric space with low (left) and high
(right) intrinsic dimension

The same effects can be observed in vector spaces of high intrinsic di-
mensionality [Böhm et al., 2001]. Cost models for similarity queries in high
dimensional spaces show an exponential dependence on the dimensionality
of the vector space [Friedman et al., 1977]. Böhm [2000] presents a more
complex cost model based on the Minkowski sum. In addition, the famous
results presented in Beyer et al. [1999] (and recently in Shaft and Ramakr-
ishnan [2005]) show theoretically that, for very high dimensionality, the NN
problem is inherently linear for a wide range of data distributions.

2.6 Probabilistic and approximate similarity

search algorithms

The main bottleneck of the research in similarity search is the curse of di-
mensionality, which makes the task of searching some metric/vector spaces
intrinsically difficult in high dimensional spaces, whatever algorithm is used.
A recent trend to remove this bottleneck resorts to probabilistic algorithms,
where it has been shown that one can find most of the relevant objects at a
fraction of the cost of the exact algorithm. These algorithms are welcome in
most applications, because resorting to similarity searching already involves
a fuzziness in the retrieval requirements: The process of modeling multimedia
data as a metric or vector space involves generally some loss of information.

2.6. Probabilistic and approximate similarity search algorithms 31

Thus, in most cases, finding some close objects is as good as finding all of
them.

A survey on approximate similarity search algorithms is presented in
Ciaccia and Patella [2001]. It proposes a classification scheme for exist-
ing approaches, considering as their relevant characteristics: Type of data
(metric or vector spaces), error metrics (changing space or reducing compar-
isons), quality guarantees (none, probabilistic parametric/non-parametric,
or deterministic), and user interaction (static or interactive). Approxima-
tion algorithms for vector spaces are surveyed in depth in White and Jain
[1996a].

2.6.1 Probabilistic algorithms for metric spaces

Zezula et al. [1998] introduce approximate k-NN queries with the M-tree.
Three different approximation techniques are proposed, which trade query
precision for improved efficiency: Approximation by relative distance errors,
approximation by distance distributions, and approximation by the slow-
down of distance improvements. The experimental results suggest that the
best method is the one based on distance distributions. Given the distance
distribution Fq(x) of a query object q (i.e., Fq(x) is the fraction of objects
from the database which distance to q is closer or equal than x), the stopping
criterion Fq(d(q, ok

A)) ≤ ρ can be defined, where ok
A is the kth approximated

nearest neighbor of q (as found by the search algorithm) and ρ is a given
treshold. This criterion is used to stop the search before the exact k-NN are
found. No search improvements are obtained when ρ ≤ Fq(δ(q, o

k
N)), where

ok
N is the actual kth nearest neighbor of q. If the distribution Fq is unknown,

Zezula et al. [1998] propose to use a “representative distance function”, for
example the average distribution function defined as Favg(x) = E[Fo(x)].

Clarkson [1999] proposes a data structure called M(U, Q) to answer near-
est neighbor queries. It requires a training dataset Q of m objects, taken
to be representative of typical query objects. This data structure may fail
to return a correct answer, but the failure probability can be made arbi-
trarily small at the cost of increasing the query time and space require-
ments for the index. When the metric space obeys a certain sphere-packing
bound [Clarkson, 1999], it is shown that M(U, Q) answers range queries in
O(K ln(n) log(Υ(U ∪ Q))) time, with failure probability O(log2(n)/K) and
requires O(Kn log(Υ(U ∪ Q))) space, where K is a parameter that allows
one to control the failure probability and Υ(T) is the ratio of the distance
between the farthest and closest pair of points of T .

Ciaccia and Patella [2000] present an approach to approximate near-
est neighbor similarity search called probabilistic approximately correct NN

32 Chapter 2. Basic concepts and related work

(PAC-NN). The algorithm retrieves an (1 + ε) nearest neighbor with proba-
bility greater or equal than 1− θ, where ε and θ are parameters that can be
tuned at query time. The algorithm can be implemented in an arbitrary in-
dex: Ciaccia and Patella describe both sequential and index-based PAC-NN
algorithms. Given a query object q, rq

θ is defined as the maximum distance
from q so that the probability of finding an object closer to q than rq

θ is lower
or equal than θ. An estimation of rq

θ may be obtained from the distance
distribution of the query points. Then, the database is scanned until an
object u such that δ(q, o) ≤ (1 + ε)rq

θ is found, reporting u as the probably
approximately correct nearest neighbor of q. On the other hand, an (1 + ε)
approximation is guaranteed by pruning from the search every element whose
lower bound distance to q (proved by the index structure) exceeds r∗/(1+ε),
where r∗ is the current distance to the kth nearest neighbor.

Goldstein and Ramakrishnan [2000] propose an index structure called P-
Sphere tree for nearest neighbor queries. The tree has a two-level structure,
a root level and a leaf level. The root contains a list of “sphere descriptions”
and pointers to all leaf levels. Each leaf contains a center point and all
data points that lie within the sphere described in the corresponding sphere
descriptor from the root level. Three parameters must be set before con-
structing the tree: The fanout of the root, the center points in the sphere
descriptors, and the leaf size. The search algorithm consists in determining
the leaf whose center point is closest to the query object. Then, a linear
scan is performed on that leaf, reporting the closest object to the query. By
selecting the appropriate parameters at construction time, which also depend
in the desired accuracy level, the index will yield a probably correct answer.

Chávez and Navarro [2003] present a probabilistic algorithm based on
“stretching” the triangle inequality. The idea is general, but it is applied
to pivot based algorithms. Their analysis shows that the net effect of the
technique is to reduce the search radius by a factor β, and that this reduction
is larger when the search problem becomes harder, i.e., when the intrinsic
dimension of the space becomes high. Even with very little stretching, large
improvements in the search time are obtained with low error probability. The
factor β can be chosen at search time, so the index can be built beforehand
and later one can choose the desired level of accurateness and speed of the
algorithm. As the factor is used only to discard elements, no element closer
to q than r/β can be missed during the search. In practice, all the elements
that satisfy |δ(pi, u)− δ(pi, q)| > r/β for some pi are discarded. Figure 2.16
illustrates how the idea operates. The exact algorithm guarantees that no
relevant object is missed, while the probabilistic one stretches both sides of
the ring and may miss some objects.

Bustos and Navarro [2004] propose probabilistic algorithms for indices

2.6. Probabilistic and approximate similarity search algorithms 33

β

β

δ

δ δ

δ
(p,q)+r

(p,q)−r

q

r

u

(p,q)−r /

(p,q)+r /

p q

r

u

p

Exact algorithm Probabilistic algorithm

Figure 2.16: Exact and probabilistic algorithm based on pivots

based on compact partitions. The incremental nearest neighbor search [Hjal-
tason and Samet, 2000] is modified, assigning a fixed amount of work to
perform the similarity query. Thus, the resultant algorithm performs time-
bounded range search queries in metric spaces. Also, a probabilistic technique
based on ranking zones is presented, which is a generalization of the former
technique. The idea is to sort the compact partitions induced by the index,
to favor the most promising ones. Then, the list is traversed until the as-
signed amount of work is used up. Several zone ranking criteria were tested,
obtaining the best empirical results with an adaptive ranking criterion that
weighs the lower bound of the distance from q to a given compact partition
with its covering radius.

2.6.2 Probabilistic algorithms for vector spaces

Arya and Mount [1995] propose a general framework to search for an arbitrary
region Q in (Rd, L2). The idea is to define areas Q− and Q+ such that Q− ⊂
Q ⊂ Q+. Points inside Q− are guaranteed to be reported and points outside
Q+ are guaranteed not to be reported. In between, the algorithm gives
no guarantee. The maximum distance between the real and the bounding
areas is ε. The vector space is partitioned and indexed using trees, which

34 Chapter 2. Basic concepts and related work

are used to guide the search by including or excluding whole areas. Every
decision about including (excluding) a whole area can be done using Q+

(Q−) to increase the probability of filtering out the search in either way.
Those areas that cannot be fully included or excluded are analyzed in more
detail by going down to the appropriate subtree. The complexity is shown to
be O(2d log(n) + (3

√
d/ε)d), and a very close lower bound is proven for the

problem.

Arya et al. [1994] propose a data structure called BBD-tree for searching
in a vector space Rd under any metric Lp. This structure is inspired in the
kd-tree and it can be used to find the “(1 + ε) nearest neighbor”, that is, to
find an object u∗ such that ∀u ∈ U, δ(u∗, q) ≤ (1+ε)δ(u, q) (see Figure 2.17).
The essential idea of the algorithm is to locate the query q in a cell (each leaf
in the tree is associated with a cell in the space decomposition). Every point
inside the cell is processed to obtain its nearest neighbor p. The search stops
when no promising cells are found, i.e., when the radius of any ball centered
at q and intersecting a nonempty cell exceeds the radius δ(q, p)/(1 + ε). The
search time for this algorithm is O(d1 + 6d/εed log(n)).

1

q

NN

1+ NN
1+ε

ε

Figure 2.17: Nearest neighbor and (1 + ε) nearest neighbor

Yianilos [2000] presents a technique called “aggressive pruning” for “lim-
ited radius nearest neighbors”. This query searches for nearest neighbors
that are inside a given radius. The idea can be seen as a special case of the
framework proposed in Arya and Mount [1995], where the search area is a
ball and the data structure is a kd-tree. Relevant elements may be lost but
irrelevant ones cannot be reported, i.e., Q+ = Q. The ball Q, of radius r
and centered at c = (c1, . . . , cd) is filtered out by intersecting it with the area
between hyperplanes ci− r + ε and ci + r− ε. The author gives a probabilis-

2.6. Probabilistic and approximate similarity search algorithms 35

tic analysis assuming normally distributed distances, which almost holds if
the points are uniformly distributed in the space. A parameter λ ∈ [0, 1],
independent of the dimensionality of the space, controls the probability that
the real NN will be found. The search time is shown to be O(nλ), where λ
decreases as the permitted failure probability ε increases.

Chapter 3

Effectiveness of feature based
similarity search

Similarity search systems are designed to retrieve similar objects for a given
query from a database. As the concept of “similarity” is inherently vague
and depends on the actual application, a retrieval performance evaluation is
usually performed to assess how precise the search system is. The effective-
ness of a similarity search system measures its ability to retrieve relevant
objects from the database while at the same time holding back non-relevant
ones. Improving the effectiveness of a similarity search system is at least as
important as improving its efficiency, because effectiveness is directly related
to the quality of the answers that the search system returns.

This chapter presents several techniques that aim to improve the effec-
tiveness of a similarity search engine. For this purpose, we present a case
study on 3D model retrieval, although the techniques are general and can
be used with any type of multimedia data. We compare a variety of 3D
descriptors and develop methods for improving the effectiveness of 3D simi-
larity search. We propose two techniques, called purity and entropy impurity
methods, which assess a priori the quality of a descriptor given a query ob-
ject. These methods are used for selecting and combining the best descriptors
to perform the similarity query, at search time. Our experimental evaluation
shows that dynamic combinations of feature vectors may lead to a significant
improvement in effectiveness compared with the best single descriptor.

The ideas presented on this chapter have been published in Bustos et al.
[2004c,b,a, 2005a, 2006c].

38 Chapter 3. Effectiveness of feature based similarity search

3.1 Evaluation of single feature vectors

3.1.1 Case study: 3D object databases

The problem of searching similar 3D objects arises in a number of fields. Ex-
ample problem domains include Computer Aided Design/Computer Aided
Manufacturing (CAD/CAM), virtual reality (VR), medicine, molecular bi-
ology, and entertainment. The improvement in 3D scanner technology and
the availability of 3D models widely distributed over the Internet are rapidly
contributing to create large databases of this type of multimedia data. Also,
the rapid advances in graphics hardware are making the fast processing of
this complex data possible and available to a wide range of potential users
at a relatively low cost.

As 3D objects are used in diverse application domains, different forms for
object representation, manipulation, and presentation have been developed.
In the CAD domain, objects are often built by merging patches of parame-
terized surfaces, which are edited by technical personnel. Also, constructive
solid geometry techniques are often employed, where complex objects are
modeled by composing primitives. 3D acquisition devices usually produce
voxelized object approximations (e.g., computer tomography scanners) or
clouds of 3D points (e.g., in the sensing phase of structured light scanners).
Probably the most widely used representation to approximate a 3D object
is by a mesh of polygons, usually triangles (see Figure 3.1 for an example).
For a survey on important representation forms, see Campbell and Flynn
[2001]. For 3D retrieval, basically all of these formats may serve as input to
a similarity query. Where available, information other than pure geometry
data can be exploited, for example structural data that may be included in a
VRML (Virtual Reality Modeling Language) representation. Many similarity
search methods that are presented in the literature to date rely on triangula-
tions but could easily be extended to other representation forms. Of course,
it is always possible to convert or approximate from one representation to
another.

3D objects may be very complex, both in terms of the data structures and
methods used to represent and to visually render such objects, as well as in
terms of the topological and geometric structures of the objects themselves.
The primary goal in 3D, as well as in other similarity search domains, is to
design algorithms with the ability to effectively and efficiently execute simi-
larity queries. One option is direct geometric matching, where it is measured
how easily a given object can be transformed into another one. The cost
associated with this transform serves as the metric for similarity [Novotni
and Klein, 2001]. However, directly comparing all objects of a database with

3.1. Evaluation of single feature vectors 39

Figure 3.1: A 3D model of a bunny and its mesh of polygons

a query object is time consuming and may be difficult, because 3D objects
can be represented in many different formats and may exhibit widely varying
complexity. Given that it is also not clear how to use geometry directly for
efficient similarity search, in typical methods the 3D data is transformed in
some way to obtain numerical descriptors (FVs) for indexing and retrieval.
These FVs characterize certain features of 3D objects and can be efficiently
compared to each other in order to identify similar shapes and to discard
dissimilar ones.

Invariance requirements

Considering the feature-based approach, one can define several requirements
that an effective FV for 3D objects should meet. Good FVs should abstract
from the potentially very distinct design decisions that different model au-
thors make when modeling the same or similar 3D objects. Specifically, the
FVs should be invariant to changes in the orientation (translation, rotation
and reflection) and scale of 3D models in their reference coordinate frame.
That is, the similarity search engine should be able to retrieve geometrically
similar 3D objects with different orientations. Figure 3.2 (left) illustrates
different orientations of a Porsche car 3D object: The extracted FV should
be (almost) the same in all cases. Ideally, an arbitrary combination of trans-
lation, rotation and scale applied to one object should not affect its similarity
score with respect to another object.

Furthermore, a FV should also be robust with respect to small changes of
the level-of-detail, geometry and topology of the models. Figure 3.2 (right)

40 Chapter 3. Effectiveness of feature based similarity search

shows the Porsche car 3D object at four different levels of resolution. If such
transformations are made to the objects, the resulting similarity measures
should not change abruptly, but still reflect the overall similarity relations
within the database.

Figure 3.2: A 3D object in different scale and orientation (left), and also
represented with increasing level of detail (right)

Invariance and robustness properties can be achieved implicitly by those
FVs that consider relative object properties, for example, the distribution
of surface curvature of the objects. For other FVs, these properties can be
achieved by a preprocessing normalization step, which transforms the ob-
jects so that they are represented in a canonical reference frame. In such
a reference frame, directions and distances are comparable between differ-
ent models, and this information can be exploited for similarity calculation.
The predominant method for finding this reference coordinate frame is pose
estimation by principal component analysis (PCA), also known as Karhunen-
Loève transformation [Paquet et al., 2000a; Vranić et al., 2001]. The basic
idea is to align a model by considering its center of mass and principal axes.
The object is translated to align its center of mass with the coordinate origin
(translation invariance), and is then rotated about the origin such that the
x, y and z axes coincide with the three principal components of the object
(rotation invariance). Additionally, flipping invariance may be obtained by
flipping the object based on a moment test, and scaling invariance can be
achieved by scaling the model by a canonical factor. Figure 3.3 illustrates
PCA-based pose and scaling normalization of 3D objects.

A final FV property that is also desirable to have is the multi-resolution
property. Here, the FV contains progressive model detail information, which
can be used for similarity search on different levels of resolution. This prop-
erty eliminates the need to extract and store multiple FVs with different
levels of resolution if multi-resolution search is required, for example for im-
plementing a filter-and-refinement step. A main class of FVs that implicitly

3.1. Evaluation of single feature vectors 41

Figure 3.3: Pose estimation using the PCA for three classes of 3D objects

provide the multi-resolution property is one that performs a discrete Fourier
or Wavelet transform of sampled object measures.

Feature vector extraction for 3D objects

The extraction of FVs generally can be regarded as a multistage process (see
Figure 3.4). In this process, a given 3D object, usually represented by a
polygonal mesh, is first preprocessed to achieve the required invariance and
robustness properties. The object is then transformed so that its character
is either of surface type, or volumetric, or captured by one or several 2D
images. Then, a numerical analysis of the shape can take place and, from
the result, the FVs are extracted. A brief overview of these basic steps is
given below:

Denoising

Surface

Image Graph

Statistical

 Rotation

 Preprocessing

(Descriptor)
Output

 Object Descriptor
 Abstraction GenerationTransformation

 Numeric

Feature Vector

(3D Object)
Input Translation

Scale

Volumetric Sampling

DFT

Wavelet

Etc.

Figure 3.4: Descriptor extraction process model

1. Preprocessing. If needed, the preprocessing normalization step (e.g.,
using PCA as explained in the previous subsection) is applied to the 3D
model in order to achieve the rotation, translation, and scale invariance.

2. Type of object abstraction. A polygonal mesh can be seen in different
ways. We may regard it as an ideal mathematical surface, infinitely
thin, with precisely defined properties of differentiability. Alternatively,
we may look at it as a thickened surface that occupies some portion

42 Chapter 3. Effectiveness of feature based similarity search

of volume in 3D space, or for watertight models (i.e., models without
holes or gaps and where the “inside” and “outside” is clearly defined)
as a boundary of a solid volumetric object. The transformation of a
mesh into one of these forms is typically called voxelization. Statistics
of the curvature of the object surface is an example of a descriptor
based directly on a surface, while measures for the 3D distribution of
object mass, for example, using moment-based descriptors, belong to
the volumetric type of object abstraction. A third way to capture the
character of a mesh would be to project it onto one or several image
planes producing renderings, corresponding depth maps, silhouettes,
and so on, from which descriptors can be derived.

3. Numerical transformation. The main features of meshes in either of the
types of object abstractions outlined before can be captured numeri-
cally using one of various methods. Voxel grids and image arrays can
be Fourier or Wavelet transformed, and surfaces can be adaptively sam-
pled. This yields a numerical representation of the underlying object.
It is not required that the numerical representation allows the complete
reconstruction of the 3D object. However, these numerical representa-
tions are set up to readily extract the mesh shape descriptors in the
final phase of the process.

4. Descriptor generation. The descriptors for 3D shape may be grouped
in three main categories based on their form.

(a) Feature vectors, or FVs, consist of elements in an usually high-
dimensional vector space equipped with a suitable metric (e.g., any
Minkowski distance). Such feature vectors may describe concep-
tually different types of shape information, such as spatial extent,
visual expression, surface curvature, and so forth. The dimension-
ality of the vectors is defined by the feature extractor process, and
it usually depends on a user-given parameter (in general not all di-
mensionalities are possible, but one can obtain vectors of different
dimensionalities by using different parameter values).

(b) In statistical approaches, 3D objects are inspected for specific fea-
tures, which are summarized usually in the form of a histogram.
For example, in simple cases this amounts to the total surface
area in specified volumetric regions. In more complex cases, it
may collect statistics about the distances of point pairs randomly
selected from the 3D object.

3.1. Evaluation of single feature vectors 43

(c) The third descriptor category is more suitable for a structural 3D
object shape description that can be represented in the form of a
graph [Sundar et al., 2003; Hilaga et al., 2001]. A graph can more
easily represent the structure of an object that is made up from
or can be decomposed into several meaningful parts, such as the
body and the limbs of objects modeling animals. However, finding
a good dissimilarity measure for graphs is not as straightforward
as for feature vectors, and, moreover, small changes in the 3D
object may lead to large changes in the corresponding structural
graph, which is not ideal for solving the retrieval problem.

The methods in the feature vector class are efficient, robust, easy to im-
plement, and provide some of the best approaches for 3D model retrieval
[Tangelder and Veltkamp, 2004; Kazhdan et al., 2003; Vranić, 2004]. There-
fore, these are the most popular ones that are explored in the literature. We
do not imply, however, that the other methods may be inferior and should
therefore be discarded from future research. Most of these methods have
their particular strengths and may well be the ideal candidate for a specific
application.

Details of the implementations for the different FV methods for 3D model
retrieval are outside of the scope of this thesis. For details, see Bustos et al.
[2005a], where more than 30 feature extraction methods for 3D model re-
trieval are surveyed.

3.1.2 Evaluation approach

The database used for our experiments contains 1,838 3D objects that we
collected from the Internet1. From this set, 472 objects were manually clas-
sified by shape similarity into 55 different model classes. Figure 3.5 shows
some of the 3D objects from two model classes: Formula 1 (F-1) cars and
sea animals. Each classified object of each model class was used as a query
object. The objects belonging to the same model class, excluding the query,
were taken as the relevant objects.

Table 3.1 gives a complete description of the classified objects of the
database. The first column indicates the class identification number. The
second column describes the 3D class models. The last column lists the
number of objects per model class.

For our 3D model retrieval system, we implemented 16 different FVs,
including statistical FVs (3D moments [Paquet et al., 2000b]), geometry-
based FVs (ray-based [Vranić and Saupe, 2000], cord-based [Paquet et al.,

1Konstanz 3D model search engine. http://merkur01.inf.uni-konstanz.de/CCCC/

44 Chapter 3. Effectiveness of feature based similarity search

Figure 3.5: Formula 1 cars (left) and sea animals (right) model classes

Class id Description # models
1 ants 6
2 rabbits 4
3 cows 7
4 dogs 4
5 fish-like 13
6 bees 5
7 CPUs 4
8 keyboards 8
9 cans 4
10 bottles 14
11 bowls 4
12 pots 4
13 cups 8
14 wine glasses 9
15 teapots 4
16 biplanes 5
17 helicopters 9
18 missiles 16
19 jet planes 18
20 fighter jet planes 26
21 propeller planes 10
22 other planes 4
23 zeppelins 6
24 motorcycles 5
25 sport cars 6
26 cars 23
27 Formula-1 cars 9
28 galleons 4

Class id Description # models
29 submarines 5
30 warships 5
31 beds 7
32 chairs 24
33 office chairs 6
34 sofas 4
35 benches 3
36 couches 11
37 axes 4
38 glasses 7
39 knives 3
40 screws 3
41 spoons 3
42 tables 6
43 skulls 3
44 human heads 8
45 human masks 4
46 books 4
47 watches 2
48 sand clocks 4
49 swords 25
50 barrels 3
51 birches 4
52 flower pots 9
53 trees 11
54 weeds 9
55 human bodies 56

Table 3.1: Description of the classified set of our 3D object database

3.1. Evaluation of single feature vectors 45

2000b], shape spectrum [Zaharia and Prêteux, 2001], ray-based with spherical
harmonics [Vranić and Saupe, 2002], shape distribution [Osada et al., 2002],
ray moments [Vranić and Saupe, 2001], harmonics 3D [Funkhouser et al.,
2003], voxel-based [Heczko et al., 2002], 3DDFT [Vranić and Saupe, 2001],
shading [Vranić and Saupe, 2002], complex valued shading [Vranić and Saupe,
2002], segment volume occupation [Heczko et al., 2002]), image-based FVs
(depth buffer [Heczko et al., 2002], silhouette [Heczko et al., 2002]), and other
approaches (rotation invariant point cloud [Kato et al., 2000]).

Table 3.2 presents an overview of the implemented 3D descriptors in our
system, according to the processing pipeline from Figure 3.4. The column
labeled “Prep.” indicates the preprocessing steps that must be applied to the
3D object (R: Rotation, T: Translation, S:Scale). “Obj. abstr.” indicates the
classification with regard to the underlying object abstraction (volumetric-,
surface-, and image-based). “Numerical transf.” indicates whether a nu-
merical transformation is applied or not, and which kind (sampling, discrete
Fourier transform, spherical harmonics, and curve fitting). Finally, “Type”
indicates whether the final descriptor is a FV or a histogram.

Descriptor name Prep. Obj. abstr. Numerical transf. Type
Rotation invariant point cloud RTS Volumetric Sampling Hist.

Voxel-based RTS Volumetric None Hist.
3DDFT RTS Volumetric 3D DFT FV

Segment volume occupation RTS Volumetric None FV
Harmonics 3D TS Volumetric Spherical harmonics FV
3D moments RTS Surface Sampling FV
Ray moments RTS Surface Sampling FV
Cords-based RT Surface Sampling Hist.

Shape distribution None Surface Sampling Hist.
Shape spectrum None Surface Curve fitting Hist.

Silhouette RTS Image Sampling + DFT FV
Depth buffer RTS Image 2D DFT FV
Ray-based RTS Image Sampling FV

Rays with sph. harm. RTS Image Sampl. + sph. harm. FV
Shading RTS Image Sampl. + sph. harm. FV

Complex valued shading RTS Image Sampl. + sph. harm. FV

Table 3.2: Overview of the implemented 3D feature vectors

3.1.3 Effectiveness comparison between descriptors

We use precision versus recall figures [Baeza-Yates and Ribeiro-Neto, 1999]
for comparing the effectiveness of the search algorithms. Precision is the
fraction of the retrieved objects which is relevant to a given query, and recall

46 Chapter 3. Effectiveness of feature based similarity search

is the fraction of the relevant objects which has been retrieved from the
database. That is, if R is the set of relevant objects to the query, A is the
set of objects retrieved, and RA is the set of relevant objects in the result
set, then

precision =
|RA|
|A|

and recall =
|RA|
|R|

.

All our precision versus recall figures are based on the eleven standard
recall levels (0%, 10%, . . . , 100%), and we average the precision figures over
all test queries at each recall level.

In addition to the precision at multiple recall points, we also calculate
the R-precision [Baeza-Yates and Ribeiro-Neto, 1999] for each query, which
is defined by the precision when retrieving only the first |R| objects. The
R-precision gives a single number to rate the performance of a retrieval al-
gorithm.

We tested all these FVs using different levels of resolution (from a few
dimensions up to 512-D), and used the Manhattan (L1) distance as the sim-
ilarity function between vectors (we also tested L2 and Lmax, but we con-
sistently obtained the best effectiveness scores using L1). Table 3.3 shows
the best R-precision values obtained with all the FVs in descending order.
The first column lists the different descriptors. The second column indicates
the best dimensionality (in terms of effectiveness) of the FV. The last col-
umn lists the average R-precision values obtained for each FV with their best
dimensionality.

Descriptor Best dim. Avg. R-precision
Depth buffer 366 0.3220
Voxel-based 343 0.3026

Complex valued shading 196 0.2974
Rays with spherical harmonics 105 0.2815

Silhouette 375 0.2736
3DDFT 365 0.2622
Shading 136 0.2386

Ray-based 42 0.2331
Rotation invariant point cloud 406 0.2265

Harmonics 3D 112 0.2219
Shape distribution 188 0.1930

Ray moments 363 0.1922
Cords-based 120 0.1728
3D moments 31 0.1648

Segment volume occupation 486 0.1443
Shape spectrum 432 0.1119

Table 3.3: Average R-precision of the implemented 3D descriptors

3.1. Evaluation of single feature vectors 47

The best overall FV among our set of implemented methods was the depth
buffer, with an average R-precision of 0.32. The difference in effectiveness
between the best and the worst performing FV (depth buffer and shape spec-
trum, respectively) was significant (up to a factor of 3x). However, the dif-
ference in effectiveness between similar performing FVs was small, especially
when comparing the most effective descriptors. This implies that, in practice,
these best FVs should be suited about equally well for retrieval of general
polygonal objects. We observed that descriptors that rely on consistent poly-
gon orientation like shape spectrum or volume exhibited low retrieval rates,
as consistent orientation is not guaranteed for many of the models retrieved
from the Internet. Also, the geometrical moment-based descriptors seem to
offer only limited discrimination capabilities. Figures 3.6 and 3.7 show the
precision versus recall figures for all the implemented descriptors (first eight
and last eight descriptors according to Table 3.3, respectively).

 1

 0.9

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

 0
 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

P
re

ci
si

on

Recall

Average precision vs. recall

Depth Buffer
Voxel

Complex
Rays−SH
Silhouette

3DDFT
Shading−SH

Ray based

Figure 3.6: Average precision versus recall with best dimensionality, first
eight descriptors according to Table 3.3

Figures 3.8 and 3.9 (first eight and last eight descriptors, respectively)
show the effect of the descriptor dimensionality on the overall effectiveness.
The figures show that the effectiveness of the FVs first increases with di-
mensionality, but the improvement rate diminishes quickly for roughly more
than 64 dimensions for most FVs (except for 3DDFT). It is interesting to
note that the saturation effect is reached for most descriptors at roughly the

48 Chapter 3. Effectiveness of feature based similarity search

 1

 0.9

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

 0
 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

P
re

ci
si

on

Recall

Average precision vs. recall

Rotational invariant
Harmonics 3D

Shape distribution
Ray−moments

Cords
Moments

Volume
Shape spectrum

Figure 3.7: Average precision versus recall with best dimensionality, last
eight descriptors according to Table 3.3

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 512 448 384 320 256 192 128 64

R
−

pr
ec

is
io

n

Dimensionality

Average R−precision

Depth Buffer
Voxel

Complex
Rays−SH
Silhouette

3DDFT
Shading−SH

Ray based

Figure 3.8: Dimensionality versus R-precision, first eight descriptors accord-
ing to Table 3.3

3.1. Evaluation of single feature vectors 49

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 512 448 384 320 256 192 128 64

R
−

pr
ec

is
io

n

Dimensionality

Average R−precision

Rotational invariant
Harmonics 3D

Shape distribution
Ray−moments

Cords
Moments
Volumes

Shape spectrum

Figure 3.9: Dimensionality versus R-precision, last eight descriptors accord-
ing to Table 3.3

same dimensionality level. This is an unexpected result, considering that
different FVs describe different characteristics of 3D objects.

We also performed some tests using the Princeton shape benchmark [Shi-
lane et al., 2004], to contrast our experimental results with those obtained
using a different 3D ground truth. In summary, we obtained the same results
as with our database with only minor differences (see Bustos et al. [2006c]
for details).

3.1.4 Analysis of the experimental results

From the results obtained in our experiments on the set of implemented
descriptors, we conclude that the best descriptors on average are those based
on projections (2-D, ray-based) of the original 3D object, for example, depth
buffer, silhouette, and so forth. Exceptions to this rule are the voxel and
the 3DDFT FVs, which are volumetric descriptors and also obtained a good
experimental effectiveness. Surface-based descriptors obtained, in general,
low effectiveness values. All the implemented FVs showed good robustness
with respect to the level of detail of the 3D objects. The good retrieval
quality of image-based descriptors from our experiments are in accordance
with [Chen et al., 2003], where an image-based descriptor embedded in an

50 Chapter 3. Effectiveness of feature based similarity search

advanced multistage matching framework was shown to provide excellent
retrieval results, and outperformed several other descriptors.

However, we also observed significant variance with respect to the effec-
tiveness of retrieval when comparing the results for classes of objects. For
different classes of objects, a different FV was usually the most effective one.
For example, Figure 3.10 shows the average precision versus recall figures for
the Formula 1 cars model class. In this case, the best effectiveness is obtained
with the depth buffer and the harmonics 3D FVs. Note that the best FV
for this model class is also the best FV on average. The R-precision value is
also given for each FV.

 1

 0.9

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

 0
 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

P
re

ci
si

on

Recall

Average precision vs recall, Formula 1 car models

Depth Buffer (0.6389)
Harmonics 3D (0.5278)

Voxel (0.4167)
Rays−SH (0.4167)
Silhouette (0.4167)
Complex (0.3611)

Figure 3.10: Average precision versus recall figures and R-precision values
for the F-1 cars model class

Figure 3.11 shows the average precision versus recall figure for the sea
animals model class. For this class, the best FVs are the silhouette and the
ray-based spherical harmonics FVs. This result shows that for some model
classes the best average FV (depth buffer) does not perform well. Moreover,
the best three FVs for this class are different from the best three FVs of the
F-1 cars model class. It follows that an appropriate selection of the FV used
for the similarity search, which depends on the query object, may improve the
overall retrieval effectiveness as compared with the standard policy of always
choosing a certain default FV.

Unfortunately, we could not find a strong correlation between geometric

3.1. Evaluation of single feature vectors 51

 1

 0.9

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

 0
 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

P
re

ci
si

on

Recall

Average precision vs recall, sea animals models

Silhouette (0.2564)
Rays−SH (0.2179)
Complex (0.1923)

Depth Buffer (0.1346)
Voxel (0.1346)

Harmonics 3D (0.0833)

Figure 3.11: Average precision versus recall figures and R-precision values
for the sea animals model class

properties of the 3D object class and the best suited FV for that model
class. A notable exception for this is the shape spectrum FV (the worst
descriptor on average), which obtained the best retrieval effectiveness for the
human model class. Shape spectrum was able to recognize different models
of human bodies in different poses, something that was not possible for the
rest of the implemented FVs. This can be attributed to the fact that the
shape spectrum FV considers the distribution of local curvature on the 3D
object, which does not vary considerably in similar 3D models with different
poses (e.g., human bodies in different positions). Another observation that
we made is that model classes which are difficult to correctly orient using
PCA (cf. Figure 3.3, first row) are best retrieved by FVs that are inherently
rotational invariant, for example, the harmonics 3D FV.

Besides these specific exceptions, it is difficult to assess a priori which FV
will have the best retrieval effectiveness for an unknown query object. On
average, depth buffer or voxel will do pretty well, but one would like to always
select the best FVs given a query object to perform the similarity search. In
the rest of this chapter, we propose methods for assessing the suitability of a
FV for a given query object, showing that combinations of selected FVs may
enhance significantly the effectiveness of the similarity search system.

52 Chapter 3. Effectiveness of feature based similarity search

3.2 Combinations of feature vectors

The retrieval performance analysis of the previous section suggests that there
are a number of FVs that achieve good average retrieval performance on the
majority of query classes, but that there is no clear winner amongst them.
Instead, the individual FVs have different strengths and weaknesses, and
they represent complementary information regarding the description of 3D
objects. Because FVs capture different aspects and characteristics of the
models, we propose to use combinations of FVs for further improving the
retrieval effectiveness of the similarity search, thus avoiding the disadvantages
of using a single feature, capturing only a single characteristic of an object.

Figure 3.12 shows an example of three similarity queries (with the same
query object) using two single feature vectors (depth buffer and silhouette,
respectively) and a combination of both feature vectors (see Section 3.2.1).
Note that all objects retrieved by the combination of feature vectors are
similar to the query object.

Figure 3.12: Example of similarity search using a combination of feature
vectors

A question that arises is how can different FVs be combined in a sim-
ilarity search system. A simple concatenation of all available FVs is not
advisable because the effectiveness of the similarity search would degrade
with the inclusion of FVs irrelevant to the query. Therefore, it is an interest-
ing problem to find whether there are combinations of FVs that are better
suited for performing similarity search on certain object classes, or even if
there are combinations that dominate others for all types of queries.

We propose two methods for combining FVs: An unweighted combination
of FVs and a dynamically weighted combination of FVs.

3.2. Combinations of feature vectors 53

3.2.1 Unweighted combinations of feature vectors

We ran retrieval experiments on all possible combinations of the best 5 FVs
according to Table 3.3 and using their best dimensionality. This gives a
total of

∑5
k=2

(
5
k

)
= 26 different combinations of FVs. To construct the

combinations, we use the sum of the unweighted normalized distances using
each FV.

Definition 1. The unweighted normalized combined distance dc is defined
as:

δc(q, o) =
F∑

i=1

bci

δi(q, o)

normi

where F is the total number of FVs, bci
is a binary variable that indicates

whether FV fi is included in combination c, δi is the distance function used
with FV fi, and normi is a normalization factor for fi.

The unweighted combination approach treats all FVs of the combination
as equally important when determining the similar objects for the query ob-
ject. The normalization factors are required to make the sum of distances
meaningful (e.g., in case the FVs produce points of different dimensional-
ities). The advantage of using the sum of distances as combined distance
is that if all δi distances are metrics, the sum of distances also holds the
properties of a metric (for a proof, see Section 4.3.1).

R-precision Combined feature vectors
1 0.3220 Depth buffer
2 0.3803 Voxel, complex
3 0.4108 Depth buffer, voxel, complex
4 0.4200 Depth buffer, voxel, complex, silhouette
5 0.4220 Depth buffer, voxel, complex, silhouette, rays-SH

Table 3.4: Average R-precision for the best unweighted combinations of fea-
ture vectors

Table 3.4 shows the average effectiveness of the best combinations of FVs
in terms of R-precision and combination cardinality. The results confirm our
assumption that there are FV combinations that significantly improve the
retrieval performance over the best single FV (depth buffer) in the average
case. The maximum R-precision value reached on average over all query
classes by a combination amounts to 42.20%, which is equal to an improve-
ment of more than 31% compared to the performance of the depth buffer.

54 Chapter 3. Effectiveness of feature based similarity search

This best combination is composed of all five FVs. The largest improve-
ment occurs when changing from the single to the 2-combination case (voxel
and complex FVs). The improvement increases further with combination
cardinality, but the increment becomes smaller as we add more FVs to the
combination. For the last combination, the improvement in effectiveness is
negligible.

Figure 3.13 shows the precision versus recall curves for the best un-
weighted combinations.

 1

 0.9

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

 0
 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

P
re

ci
si

on

Recall

Average precision vs recall

Best single FV
2 FVs
3 FVs
4 FVs
5 FVs

Figure 3.13: Average precision versus recall for the best feature vector and the
best unweighted combinations for an increasing numbers of feature vectors

We also performed a much larger series of experiments considering com-
binations of up to nine FVs (this was the limit in practice that returned
results in reasonable time). In these experiments, we found that the retrieval
effectiveness even starts to decrease when adding more FVs after a certain
saturation point has been reached. We reached this saturation point with
combinations of 5 FVs.

3.2.2 Weighted combinations of feature vectors

A further improvement over the unweighted combination of FVs can be
achieved by assigning weights to each FV in the combined distance, because
it is expected that not all FVs are equally relevant to all queries, and using

3.2. Combinations of feature vectors 55

a non-suitable FV can even lower the effectiveness of the search. We tested
all possible weightings for the combination of the six FVs using three differ-
ent weight values (0, 1, 2), resulting in 35 − 1 = 242 different combinations.
We call this approach fix-weighted combination, because each combination
uses the same set of weight values w = {w1, . . . , w5} for all queries. The
weights are assigned to the first 5 FVs in the order given by Table 3.3 (e.g.,
w1 corresponds to depth buffer, w2 corresponds to voxel, and so on).

Definition 2. The fix-weighted combined distance is defined as:

δfix-weighted(q, o) =
F∑

i=1

wi
δi(q, o)

normi

The experimental results showed that the set of weights w∗ = {2, 1, 2, 1, 1}
provides the best performance, which is slightly better than the case of un-
weighted combination of FVs. The precision versus recall plot is shown in
Figure 3.14. The R-precision for each case is also indicated in the chart.

 1

 0.9

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

 0
 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

P
re

ci
si

on

Recall

Average precision vs recall

Best single FV (0.3220)
Best fix−weighted combination (0.4263)

Figure 3.14: Average precision versus recall figures for the best fix-weighted
combination and the best single feature vector

Although the weight vector w∗ provides excellent retrieval performance,
it is expected to be highly correlated to our database. Thus, it will probably
not be useful for another 3D object database, because the optimal average

56 Chapter 3. Effectiveness of feature based similarity search

weighting may be different. Moreover, in a dynamic database, it is not pos-
sible to determine the best weighting factors by experimentally analyzing all
combinations of weighting factors for all possible queries. All these negative
attributes make this approach impractical for real-world applications.

3.3 Dynamic combinations of feature vectors

The experimental results from the last section showed that resorting to com-
binations of FVs is a promising approach to improve the effectiveness of
similarity queries in multimedia databases. However, a static combination of
FVs will not necessarily provide optimal results, because if one of the consid-
ered FVs has a very bad effectiveness for the given query object, it will spoil
the final result. Then, the problem is to determine which FVs to combine,
as the inclusion of FVs irrelevant to q can harm the overall effectiveness of
the search system. In general, different FVs provide the best effectiveness
for different query objects. Thus, the similarity search system should give a
higher priority to the best FVs for q to perform the similarity query.

To solve this problem, we propose to use dynamic weighting methods for
the combinations of FVs, which aim to give a high weight only to those FVs
that are most promising given a query object. In our proposed approach,
the suitability of a FV is estimated against a training (or reference) database
before performing the weighted combined query against the actual database.

We present two measures for the a priori estimation of individual FV
performance, namely the purity measure and the entropy impurity measure.
The values returned by these measures may be used for implementing dy-
namically weighted combinations of FVs.

Let X be the universe of valid multimedia objects and U ⊆ X the database.
Let T ⊆ U be a training set of classified objects, where ωj ⊆ T, 1 ≤ j ≤ M ,
is a model class of objects (i.e., all objects in ωj are considered similar), and
T =

⊎
ωj (i.e., T is the disjoint union of the M model classes).

Let q ∈ X be a query object. Given a FV f , a ranking Rk
fq is a list of

the k-NN of q from T with respect to f , sorted in ascending order by the
distances to q. Figure 3.15 shows an example of a ranking for k = 5. Three
of the k-NN belong to one of the model classes (dark grey) and the other two
belong to another model class (light grey). The ranking will be the base for
the proposed measures of FV performance.

3.3. Dynamic combinations of feature vectors 57

k=5

k−NN using f

Figure 3.15: Example of a ranking Rk
fq using k = 5

3.3.1 Purity measure

Let Si be the subset of objects from the ranking Rk
fq that belong to model

class i, that is, Si = ωi ∩Rk
fq.

Definition 3. The purity of FV f for the query object q with respect to k is
defined as

purity(f, q, k) = max
1≤i≤M

{|Si|}.

The purity of a FV indicates the maximum number of objects that belong
to a same model class in the first k positions of each ranking. This value aims
to measure the coherence of the retrieved objects using FV f . Our hypothesis
is that a well suited FV for the given query object will retrieve objects from
the training set that belong to the same model class (i.e., its purity measure
is high). On the other hand, if a FV retrieves objects from different model
classes, then the answer is not coherent (i.e., its purity measure is low) and
hence the FV is considered to be not suitable for this query object.

Considering the ranking illustrated in Figure 3.15, it follows that the
purity of FV f is

purity(f, q, 5) = max{3, 2} = 3.

Note that |Si| = 0 for all model classes that are not represented on the
ranking, thus they have no influence on the purity value of f .

3.3.2 Entropy impurity measure

The entropy impurity [Duda et al., 2001] is a well known measure used in the
context of decision tree induction. It measures the impurity of a node N of
a tree with respect to the elements assigned to N . If all these elements have

58 Chapter 3. Effectiveness of feature based similarity search

the same class label then the impurity is 0, otherwise it is a positive value
that increases up to a maximum when all classes are equally represented.
(Other impurity measures are the Gini impurity and the misclassification
impurity [Duda et al., 2001], but the best experimental results were obtained
using entropy impurity.)

Let P k
ωj

(Rk
fq) denote the fraction of objects at the first k positions of Rk

fq

that belong to class ωj.

Definition 4. The entropy impurity of a FV f with respect to q is defined
as

impurity(f, q, k) = −
M∑

j=1

{
P k

ωj
(Rk

fq) log2(P
k
ωj

(Rk
fq)) if P k

ωj
(Rk

fq) > 0

0 otherwise

Given a ranking Rk
fq, if the k objects belong to the same class then the

impurity of FV f is 0; otherwise it is a positive number, with its greatest
value occurring when the number of classes covered by the k objects in Rk

fq

is maximal.
Considering the ranking illustrated in Figure 3.15, it follows that the

entropy impurity of FV f is

impurity(f, q, 5) = −
(

3

5
· log2

(
3

5

)
+

2

5
· log2

(
2

5

))
≈ 0.29.

3.3.3 Dynamic selection and combinations of feature
vectors

The previously defined purity and entropy impurity measures may be used to
dynamically weight combinations of FVs, where the weight values depend on
the query object. Let F = {f} be the set of available FVs (|F| = F). We can
use the performance estimators to combine FVs by computing a dynamically
weighted combination of FVs or by selecting and combining t FVs.

Dynamically weighted combination of feature vectors

The obtained estimator value for FV f is used to compute its associated
weight. After all weights are computed, the combined distance function is
computed as the linear weighted combination of the distances using each FV.

As the FV performance estimation increases with purity, we directly use
the purity values as weights for the combination. We subtract 1 from the

3.3. Dynamic combinations of feature vectors 59

purity value to make it equal to 0 if the purity of the FV is minimal (i.e.,
equal to 1).

Definition 5. The purity weighted distance is defined as

δc(q, o) =
F∑

i=1

(purity(fi, q, k)− 1) · δi(q, o)

normi

.

As the FV performance estimation decreases with the entropy value and
it has a maximum value equal to log2(k), we use log2(k)−impurity(·) (which
returns a value in [0, log 2(k)]) as weight for the combination.

Definition 6. The entropy impurity weighted distance is defined as

δc(q, o) =
F∑

i=1

(log2(k)− impurity(fi, q, k)) · δi(q, o)

normi

.

The combined distance function δc(q, o) is then used to perform the sim-
ilarity query on the database.

Selection of t feature vectors

We use the estimator value to select the best t FV, and then we linearly
combine them. This is equivalent to using binary weights w ∈ {0, 1} for the
linear weighted combination of distances, setting wi = 1 only if FV fi is one
of the t selected FVs.

The system selects the t most promising FVs according to the obtained
performance estimation values with the purity or the entropy impurity mea-
sures. In the case of the purity-based selection, the t FVs with highest purity
values are selected. In the case of the entropy-impurity-based selection, the t
FVs with smallest entropy impurity values are selected. Both methods solve
ties by selecting the best FV according to a precomputed ranking of FVs
using, for example, a table with the average single FV performance (e.g.,
Table 3.3).

3.3.4 Experimental evaluation

We used the classified subset of our 3D model database as a training dataset
for the purity and entropy impurity measures, and used all the implemented
FVs for 3D models (16 in total) to perform the combinations. We computed
the average R-precision values to compare the effectiveness of the proposed
methods.

60 Chapter 3. Effectiveness of feature based similarity search

Figure 3.16 shows the obtained R-precision values as a function of param-
eter k with the purity-based methods. The figure shows the curve for the
dynamically weighted combination of FVs and three different cases of selec-
tion of FVs: t = 2, t = 3, and t = 8 (we made experiments for 1 ≤ t ≤ 15,
and the best results were obtained with t = 8). It follows that the most
effective method is the dynamically weighted combination of FVs. For all
curves, the best effectiveness result was obtained with k between 3 and 5.
The results did not vary much on the whole range of k values, but a sustained
decrease of effectiveness can be observed for k > 5.

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 3 4 5 6 7 8 9 10

R
−

pr
ec

is
io

n

k

Purity measure, average R−precision

Selection 2 FVs
Selection 3 FVs

Selection 8 FVs (best selection)
Dynamically weighted combination

Figure 3.16: Average R-precision as a function of parameter k for the meth-
ods based on the purity measure

Figure 3.17 shows the effectiveness values with the entropy-impurity-
based methods. The obtained results are very similar to those obtained with
the purity-based methods. The best effectiveness values were also obtained
with k between 3 and 5.

Table 3.5 presents a summary of the best experimental results with all the
methods described in this chapter. By using dynamically weighted combina-
tions of FVs, the overall effectiveness of the similarity search system improved
significantly (41% compared with the best single FV). This improvement is
much higher than the improvements obtained by using different single FV (cf.
Table 3.3). An advantage of the dynamically weighted combination method
compared with the selection method is that one does not need to fix in ad-

3.3. Dynamic combinations of feature vectors 61

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 3 4 5 6 7 8 9 10

R
−

pr
ec

is
io

n

k

Entropy impurity measure, average R−precision

Selection 2 FVs
Selection 3 FVs

Selection 8 FVs (best selection)
Dynamically weighted combination

Figure 3.17: Average R-precision as a function of parameter k for the meth-
ods based on the entropy impurity measure

vance how many FVs must be selected (we needed to test all possibilities to
find the optimal value t = 8), but the method automatically assigns a weight
to each FV.

Method Avg. R-precision Relative improv.
Best single FV 0.3220 0%

Entropy impurity selection 1 FV (k=3) 0.3520 9%
Entropy impurity selection 2 FV (k=3) 0.4011 25%

Unweighted combination (5 FVs) 0.4220 31%
Entropy impurity selection 3 FVs (k=3) 0.4227 31%

Best fix-weighted combination 0.4263 32%
Purity selection 8 FVs (k=5, best selection) 0.4448 38%

Entropy impurity weighted combination (k=3) 0.4550 41%

Table 3.5: Summary of the average R-precision for the proposed methods

To discard that the selection of the model classes could have some influ-
ence on the obtained results, we qualitatively validated the obtained results
running a cross-validation test [Han and Kamber, 2001]. We divided the set
of the classified objects into two equally sized groups: A query set and a
training set. The query set was used as in the described experimental frame-
work (i.e., each object from this was used as a query, and the relevant objects

62 Chapter 3. Effectiveness of feature based similarity search

for each query were the objects of the query set belonging to the same model
class). The training set was considered to be outside of the database, that
is, it was not considered for computing the effectiveness of the search system
(it was only used to compute the weights). The partitioning of the classified
set of objects was randomly performed, and we computed the average over
100 random partitions. The results of the cross-validation test confirmed the
significant improvement in effectiveness of the dynamically weighted combi-
nation of FVs approach. An independent experimental evaluation using a
different database [Ohbuchi and Hata, 2006] also confirmed the effectiveness
of our proposed approach.

It is worth noting that we also tested a combination technique not based
on distance aggregation, but on rank aggregation [Fagin et al., 2003]. In
this framework, each considered FV is used to rank the objects for a given
query. To each position in the rank, an inversely proportional score is as-
signed. The first position has the maximum score, the last position has the
minimum score, and the scores monotonically decrease with the position in
the ranking. The scores corresponding to each object in the different rank-
ings are added up, and then they are sorted in descending order according to
their aggregated score, obtaining the final ranking. We implemented a linear
as well as a superlinear decreasing scoring function, but found that the effec-
tiveness results obtained with this method were lower than the effectiveness
score of the best single FV (depth buffer).

3.4 Conclusions

We experimentally evaluated the performance of 3D object descriptors us-
ing standard effectiveness measures from Information Retrieval (precision
vs. recall diagrams and R-precision values). The experimental effectiveness
comparison showed that there are a number of descriptors that have a good
average effectiveness and work well in many query classes (e.g., depth buffer,
voxel, and complex descriptors). Other descriptors work well with some spe-
cific model classes (e.g., shape spectrum with the human model class), and
some of them are effective when the normalization step using PCA is not
effective (e.g., harmonics 3D). However, we made the observation that no
single FV dominates over all others in all situations, and that depending on
the query object a different FV is the optimal one to use.

We found that by using combinations of FVs it is possible to significantly
enhance the effectiveness of a similarity search system. However, a simple
combination of all available FVs does not yield the best results, because
a bad FV for a given query object may spoil the final result. Therefore,

3.4. Conclusions 63

we proposed methods for dynamically weighting and combining FVs. The
impurity and entropy impurity methods assess a priori the suitability of a
FV based on a small training dataset. Algorithms for selecting the best FVs
and for computing dynamic weights for the combination were described.

Our experimental results showed that both purity and entropy impurity
methods allow us to significantly improve the effectiveness of the search sys-
tem, especially with the dynamically weighted combination technique. We
experimentally found that it is possible to improve the effectiveness by 36%,
in terms of R-precision, with respect to the best single FV using the dynamic
combination technique with a small set of good FVs (5 in our experiments).
This improvement in retrieval effectiveness is significant, because the ob-
served improvement gap between descriptors is on average 6%. The obtained
results showed that similarity search systems may profit from automatic FV
combination techniques.

We would like to remark that a static combination of FVs is an infe-
rior technique compared to dynamically weighted combinations. Firstly, one
needs to find the best static combination for a given database: If the database
change, it is not clear if the chosen static combination will continue being
the best one. Secondly, if the static combination includes a bad FV for
some query objects, the effectiveness of the search system for those objects
may be reduced. Finally, we made a experiment were an “oracle” told us
which was the best combination of FVs for each query object (for this ex-
periment, we computed the results with all possible combinations of FVs for
each query object). Using the optimal combination per query, we got an av-
erage R-precision of 0.5997, far better than the best static combination (see
Table 3.5). With dynamic combination methods we could potentially obtain
results close to this optimum.

It is worth noting that the proposed techniques are general and not re-
stricted to 3D objects, and that they can be used with any multimedia data
type (images, audio, etc.) if an appropriate distance function is defined.

The proposed methods for combining FVs open the issue of efficiently
supporting similarity queries that use dynamically weighted combinations of
FVs, because the standard indexing techniques (cf. Chapter 2) have been
primarily designed for a single FV. In Sections 4.3 and 4.4 we will study and
propose solutions for this problem.

Chapter 4

Efficiency of feature based
similarity search

Efficient query processing for similarity search in multimedia databases has
been an active research area, and several metric [Chávez et al., 2001b] and
spatial access methods [Böhm et al., 2001] have been already proposed. How-
ever, there are still many open problems in this area. This chapter presents
novel solutions for some of these open problems, which include advanced tech-
niques for searching in metric spaces and algorithms and index structures for
multimedia objects described by a combination of feature vectors (FVs). We
experimentally evaluate the proposed algorithms and data structures using
a wide variety of synthetic and real datasets.

This chapter is organized as follows. Section 4.1 presents several pivot se-
lection techniques for pivot-based indices. Section 4.2 describes an improved
k-NN algorithm that lowers the memory requirements of the standard best-
first search algorithm. In Section 4.3, we present a pivot-based index struc-
ture for dynamically weighted combinations of FVs. Finally, in Section 4.4
we introduce the problem of finding the optimal set of indices for frequently
used combinations of FVs.

4.1 Pivot selection techniques

With few exceptions, similarity search algorithms in metric spaces based on
the use of pivots (see Section 2.3.1) select them at random from the objects of
the metric space. However, it is well known that the way in which the pivots
are selected can drastically affect the performance of the algorithm. Between
two sets of pivots of the same size, better chosen pivots can largely reduce
the search time. Alternatively, a better chosen small set of pivots (requiring

66 Chapter 4. Efficiency of feature based similarity search

much less space) can yield the same efficiency as a larger, randomly chosen,
set.

In this section, we propose an efficiency measure to compare two pivot
sets, combined with an optimization technique that allows one to select good
sets of pivots. The proposed criterion is based on the distance distribution
of the metric space. We provide abundant empirical evidence, showing that
the proposed pivot selection technique is effective. The proposed technique
consistently produces good results in a wide variety of cases and is based
on a formal theory. It is also shown that good pivots are outliers, but that
selecting outliers does not ensure that good pivots are selected.

This work has been published in Bustos et al. [2003].

4.1.1 Motivation

Almost all proximity search algorithms based on pivots choose them ran-
domly from the objects of the database. However, it is well known that the
way pivots are selected affects the search performance [Micó et al., 1994;
Faragó et al., 1993; Chávez et al., 2001b]. Some heuristics to choose pivots
better than at random have been proposed, but in general all of them try to
choose objects that are far away from each other. For example, Micó et al.
[1994] propose to choose objects that maximize the sum of the distances be-
tween previously chosen pivots (see Section 4.1.6 for more details), Yianilos
[1993] proposes a heuristic based on the second moment of the distance dis-
tribution which selects objects that are far away, and Brin [1995] proposes
a greedy heuristic to select objects that are the farthest apart (note that
this last structure does not select pivots, but “split points”). However, these
heuristics only work in specific metric spaces and have a bad behavior in
others. Faragó et al. [1993] show that, in Rd with the Euclidean metric, it is
possible to find an optimal set of d + 1 pivots, selecting them as the vertices
of a sufficiently large regular d-dimensional simplex containing all the objects
of the database. Unfortunately, this result does not apply to general metric
spaces.

4.1.2 Efficiency criterion

Depending on how pivots are selected, they can filter out less or more ob-
jects. Thus, the first task is to define a criterion to tell which from two
pivot sets is expected to filter out more, and hence reduce the number of
distance computations carried out during a similarity query. Since the inter-
nal complexity is fixed, only the external complexity can be reduced. This is

4.1. Pivot selection techniques 67

achieved by making the object candidate list (the list of objects that could
not be discarded) as short as possible.

Let (X, δ) be a metric space and let U ⊆ X be the set of objects or
database. A set of t pivots {p1, p2, . . . , pt}, pi ∈ U, defines a space P of
distance tuples between pivots and objects from U. The mapping of an
object u ∈ U to P, which will be denoted [u], is carried out as [u] =
(δ(u, p1), . . . , δ(u, pt)). Defining the metric

∆{p1,...,pt}([x], [y]) = max
1≤i≤t

|δ(x, pi)− δ(y, pi)| ,

it follows that (P, ∆) is a metric space, which turns out to be (Rt, L∞). Given
a range query (q, r), the pivot exclusion condition (cf. Section 2.3.1) in the
original space U becomes

∆{p1,...,pt}([q], [u]) > r

for the new metric space (P, ∆). Figure 4.1 shows the mapping of the objects
and the new exclusion condition.

u
1

u
1

u
2

u
2

u
3

u
3

u
4

u
4

u
5

u
5

u
6

u
6

u
7

u
7

u
8

u
8

u
9

u
9

u
10

u
10

u
11

u
11

u
12

u
12

u
13

u
13

u
14

u
14

u
15

u
15

q

q

u8

u11

u3

Figure 4.1: Mapping the objects from (U, δ) onto (P, ∆), using two pivots

To achieve a candidate object list as short as possible, the probability
of ∆{p1,...,pt}([q], [u]) > r should be as high as possible. One way to achieve
this is to maximize the mean of the distance distribution of ∆, which will
be denoted µ∆ (some alternative efficiency estimators were also tested, cf.
Section 4.1.5). Hence, the set {p1, . . . , pt} is a better set of pivots than
{p′1, . . . , p′t} when

µ∆{p1,...,pt}
> µ∆{p′1,...,p′t}

.

68 Chapter 4. Efficiency of feature based similarity search

An estimation of the value of µ∆ is obtained in the following way: A
pairs of objects {(a1, a

′
1), (a2, a

′
2), . . . , (aA, a′A)} from U are chosen at ran-

dom. All the pairs of objects are mapped to space P, obtaining the set
{∆1, ∆2, . . . , ∆A} of distances ∆ between every pair of objects. The value
of µ∆ is estimated as µ∆ = 1

A

∑
1≤i≤A Di. It follows that 2t distance com-

putations are needed to compute distance ∆ for each pair of objects using t
pivots. Therefore, 2tA distance computations are needed to estimate µ∆.

4.1.3 Pivot selection techniques

We present three pivot selection techniques based on the proposed efficiency
criterion. Each technique has a cost measured in number of distance compu-
tations at index construction time. As more work in optimizing the pivots is
done, better pivots are obtained. When comparing two techniques, the same
amount of work to spend is given to them. We describe the optimization
cost of each technique.

These selection techniques can be directly adapted to work with algo-
rithms that use a fixed number of pivots, such as Fixed-height FQT, FQA,
LAESA and Spaghettis. They can also be easily adapted to other pivot-based
algorithms.

i. Selection of N random groups.

N groups of t pivots are chosen at random among the objects of U, and
µ∆ is calculated for each of this groups of pivots. The group that has
the maximum µ∆ value is selected.

Optimization cost: Since the value of µ∆ is estimated N times, the
total optimization cost is 2tAN distance computations.

ii. Incremental selection.

A pivot p1 is selected from a sample of N objects of U, such that that
pivot alone has the maximum µ∆ value. Then, a second pivot p2 is
chosen from another sample of N objects of U, such that {p1, p2} has
the maximum µ∆ value, considering p1 fixed. The third pivot p3 is
chosen from another sample of N objects of U, such that {p1, p2, p3}
has the maximum µ∆ value, considering p1 and p2 fixed. The process
is repeated until t pivots have been chosen.

Optimization cost: If the distances ∆{p1,...,pi−1}([ar], [a
′
r]), 1 ≤ r ≤ A,

are kept in an array, it is not necessary to redo all the distance com-
putations to estimate µ∆ when the ith pivot is added. It is enough to
calculate ∆{pi}([ar], [a

′
r]), 1 ≤ r ≤ A, because it follows that

4.1. Pivot selection techniques 69

∆{p1,...,pi}([ar], [a
′
r]) = max(∆{p1,...,pi−1}([ar], [a

′
r]), ∆{pi}([ar], [a

′
r])).

Therefore, only 2NA distance computations are needed to estimate µ∆

when a new pivot is added. Since the process is repeated t times, the
total optimization cost is 2tAN distance computations.

iii. Local optimum selection.

A group of t pivots is chosen at random among the objects of the
database. The matrix M(r, j) = ∆pj

([ar], [a
′
r]), 1 ≤ r ≤ A, 1 ≤ j ≤ t,

is calculated using the A pairs of objects. It follows that ∆([ar], [a
′
r]) =

max1≤j≤k M(r, j) for every r, and this can be used to estimate µ∆.
Also, for each row of M the index of the pivot with the maximum
value, called rmax, and the second maximum value, called rmax2, must
be kept. The contribution contr of the pivot pj is the sum over the
A rows of how much does pj help increase the value of D([ar], [a

′
r]),

that is, contr = M(r, rmax)−M(r, rmax2) if j = rmax for that row, and
contr = 0 otherwise. The pivot whose contribution to the value of µ∆

is minimal with respect to the other pivots is marked as the victim, and
it is replaced, when possible, by a better pivot selected from a sample
of X objects of the database. The process is repeated N ′ times.

Optimization cost: The construction cost of the initial matrix M is
2At distance computations. The search cost of the victim is 0, because
no extra distance computations are needed, all information is in M .
Finding a better pivot from the X objects sample costs 2AX distance
computations, and the process is repeated N ′ times, so the total op-
timization cost is 2A(t + N ′X) distance computations. Considering
tN = t + N ′X, i.e., N ′X = t(N − 1), the optimization cost is 2AtN
distance computations.

Note that it is possible to exchange the values of N ′ and X while
maintaining the optimization cost. In the experiments, two possible
value selections were tested: (N ′ = t) ∧ (X = N − 1) (called local
optimum A) and (N ′ = N − 1) ∧ (X = t) (called local optimum B).
Another value selection was also tested, N ′ = X =

√
t(N − 1), but the

obtained result did not show any improvement on the performance of
the algorithm.

70 Chapter 4. Efficiency of feature based similarity search

4.1.4 Experimental evaluation with synthetic datasets

The proposed selection techniques were tested on a synthetic set of random
points in a k-dimensional vector space treated as a metric space, that is, the
fact that the space has coordinates was not used, but the points were treated
as abstract objects in an unknown metric space. The advantage of this choice
is that it allows us to control the exact dimensionality the index is working
with, which is very difficult to do in general metric spaces. The points are
uniformly distributed in the unitary cube, the tests use the L2 (Euclidean)
distance, the dimension of the vector space is in the range 2 ≤ dim ≤ 14,
the database size is n = 100, 000 (except when otherwise stated) and range
queries were performed returning 0.01% of the total database size, taking an
average from 10,000 queries. Results with real-world datasets are shown in
Section 4.1.7.

About the parameters A and N of the optimization cost: The experimental
results showed that, given an amount of work to spend, it is better to have
a high value of A and a low value of N . This indicates that it is worth
to make a good estimation of µD, while small samples of candidate objects
suffice to obtain good sets of pivots. For the experiments in this section,
these parameters have fixed values as follows: A = 100, 000 and N = 50.

Comparison between the selection techniques

Figures 4.2 and 4.3 show the comparison between all of the selection tech-
niques, when varying the number of pivots and keeping the dimension of the
space fixed. These results show that the incremental selection technique and
the local optimum A technique obtain the best performance in practice. Lo-
cal optimum B works well only in spaces with low dimension and with few
pivots, obviously influenced by the setting of parameter N . Selection of N
random groups shows little improvement over random selection in all cases.

Although the incremental and local optimum A techniques give almost the
same efficiency, the incremental selection have some advantages that makes
it the favorite pivot selection technique: It is a much simpler technique and
it allows us to easily add more pivots to the index. Also, the only way to
determine the optimum number of pivots t∗, for a fixed tolerance range, is
to calculate an average of the total complexity of the algorithm for different
values of t, where t∗ is equal to the value of t which minimizes the total
complexity. That is, it is worth adding pivots to the index until the total
complexity stops improving. The incremental selection allows us to add more
pivots to the index at any time without repeating the optimization process, if
the distances ∆{p1,...,pt}([ar], [a

′
r]), ∀r ∈ 1 . . . A are kept. On the other hand,

4.1. Pivot selection techniques 71

 100

 200

 300

 400

 500

 600

 700

 800

 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
co

m
pu

ta
tio

ns
 (

T
ot

al
 c

om
pl

ex
ity

)

Number of pivots

8−D, 100,000 objects, 10,000 queries, retrieving 0.01% of the database

Random
Selection

Incremental
Loc Opt. A

Loc. Opt. B

Figure 4.2: Comparison between selection techniques in an 8-dimensional
random vector space

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 200 300 400 500 600 700 800

D
is

ta
nc

e
co

m
pu

ta
tio

ns
 (

T
ot

al
 c

om
pl

ex
ity

)

Number of pivots

14−D, 100,000 objects, 10,000 queries, retrieving 0.01% of the database

Random
Selection

Incremental
Loc Opt. A

Loc. Opt. B

Figure 4.3: Comparison between selection techniques in a 14-dimensional
random vector space

72 Chapter 4. Efficiency of feature based similarity search

selection of N random groups and local optimum selection techniques must
reperform the optimization process in order to obtain a new set of pivots,
because these techniques cannot take advantage of the work done previously.
For this reason, it is much easier to calculate the optimum number of pivots
t∗ using the incremental selection technique.

Comparison between random and good pivots

Figures 4.4 and 4.5 show a comparison for the internal and total complexity
between random and incremental selection when using the optimum number
of pivots for each technique. Figure 4.4 shows a comparison when varying
the dimension of the space. Since k∗ is equal to the internal complexity of
the algorithm, it follows that not only the optimum number of pivots is lower
when using the incremental selection, but also the total complexity of the
algorithm. Figure 4.5 shows a comparison in an 8-dimensional vector space
varying the database size. Again, the results show that the optimum num-
ber of pivots and the total complexity of the algorithm is lower when using
the incremental selection. The obtained results show that the incremental
selection technique effectively produces good sets of pivots.

 0

 500

 1000

 1500

 2000

 2500

 2 4 6 8 10 12 14

D
is

ta
nc

e
co

m
pu

ta
tio

ns
 (

T
ot

al
 c

om
pl

ex
ity

)

Dimension

100,000 objects, 10,000 queries, retrieving 0.01% of the database, optimum number o

Random − internal
Random − total
Good − internal

Good − total

Figure 4.4: Comparison between random and good pivots when varying di-
mensionality

4.1. Pivot selection techniques 73

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

D
is

ta
nc

e
co

m
pu

ta
tio

ns
 (

T
ot

al
 c

om
pl

ex
ity

)

Database size

Optimum number of pivots, retrieving 0.01% of the database

Random − internal
Random − total
Good − internal

Good − total

Figure 4.5: Comparison between random and good pivots when varying
database size

Figure 4.6 shows the result of an experiment in a 30-dimensional vector
space, where the elements have a Gaussian distribution, that is, the elements
form clusters. The space is formed by 100 clusters, each of them centered at
a random point in the space, and the variance for each coordinate is 0.001.
The result shows that good pivots improve the performance of the search
algorithm in comparison with random pivots.

The profit when using k∗ pivots with incremental selection seems low in
high dimensional spaces. However, consider that much fewer pivots (i.e., less
memory) are needed to obtain the same result than with random selection.
For example, in a 14-dimensional vector space, the optimum number of pivots
using random selection is 920, while incremental selection only needs 280
pivots to achieve a better total complexity, hence saving almost 70% of the
memory used in the index.

The optimization cost used in these experiments given by parameters
A and N , may seem a little bit high. However, it is possible to obtain
good results with a fraction of the used optimization cost. Figure 4.7 shows
the results of an experiment in a uniform 8-dimensional vector space, using
the optimum number of good pivots and varying parameter A from 100 to
100,000. The results shows that for values higher than 10,000 the improve-
ment is negligible. Even when using a value as low as A = 100, we observed

74 Chapter 4. Efficiency of feature based similarity search

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 2 4 6 8 10 12 14 16 18 20

D
is

ta
nc

e
co

m
pu

ta
tio

ns
 (

T
ot

al
 c

om
pl

ex
ity

)

Number of pivots

Vector space with Gaussian distribution, 30−D, retrieving 0.01% of the databas

Random pivots
Good pivots

Figure 4.6: Experimental results with a vector space with Gaussian distri-
bution

an improvement of 12% in the total complexity over random pivots.

4.1.5 Alternative efficiency estimators

Another possibility for maximizing the probability of the pivot exclusion
condition is trying to reduce the variance of the distribution of ∆, σ2

∆, at the
same time µ∆ is maximized. To accomplish this, one can try to maximize the
intrinsic dimension of the space P, defined as µ∆/2σ2

∆ (see Section 2.5.1).
Another possible efficiency estimator is to maximize the minimum value of
the distribution of ∆. This aims to shift the distance distribution to the right
as much as possible.

Figure 4.8 shows the results of an experiment in a synthetic 8-dimensional
vector space, comparing the two additional efficiency estimators against the
original one. The figure shows that the original estimator selects better sets
of pivots compared with the others, which even cannot do better than random
selection for more than 40 pivots.

4.1. Pivot selection techniques 75

 155

 160

 165

 170

 175

 180

 185

 190

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

D
is

ta
nc

e
co

m
pu

ta
tio

ns
 (

T
ot

al
 c

om
pl

ex
ity

)

Parameter A

8−D, 100,000 objects, 10,000 queries, retrieving 0.01% of the database

Incremental selection

Figure 4.7: Efficiency of the selection technique when varying parameter A

 100

 200

 300

 400

 500

 600

 700

 800

 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
co

m
pu

ta
tio

ns
 (

T
ot

al
 c

om
pl

ex
ity

)

Number of pivots

8−D, 100,000 objects, 10,000 queries, retrieving 0.01% of the database

Random
Maximum mean

Maximum intrinsic dimension
Maximum minimum D

Figure 4.8: Comparison between different efficiency estimators

76 Chapter 4. Efficiency of feature based similarity search

4.1.6 Properties of a good set of pivots

When studying the characteristics of the good sets of pivots, it was found that
good pivots are far away from each other, i.e., the mean distance between
pivots is higher than the mean distance between random objects of the metric
space, and also that good pivots are far away from the rest of the objects of
the metric space. The objects that satisfy these properties are called outliers.
It is clear that pivots must be far away from each other, because two very
close pivots give almost the same information for discarding objects. This is
in accordance with previous observations [Faragó et al., 1993; Yianilos, 1993;
Brin, 1995].

Then, it can be assumed that good pivots are outliers, so a new selection
technique could be as follows: Use the same incremental selection method
with the new criterion of selecting objects, which maximize the sum of the
distances between the pivots previously chosen, selecting the first pivot at
random. This selection technique will be called outlier selection, and it was
already proposed in Micó et al. [1994]. It carries out (i − 1)N distance
computations when the ith pivot is added, where N is the size of the sample
of objects from where a new pivot is selected. Hence, the optimization cost
of this technique is t(t−1)

2
N .

It is important to note that outlier selection do not use the efficiency cri-
terion described in Section 4.1.2, because this alternative selection technique
maximizes the mean distance in the original space and the efficiency crite-
rion maximizes the mean of the distance ∆. These criteria do not always go
together.

Figures 4.9 and 4.10 show the results obtained when comparing incre-
mental and outliers selection techniques in random 8-dimensional and 14-
dimensional vector spaces, respectively. The figures show that the outlier se-
lection has slightly better performance than the incremental selection. This
result can lead to the conclusion that outlier selection is the best pivot selec-
tion technique, but in the next section it will be shown that this assumption
is not true for general metric spaces.

4.1.7 Experiments with real data

This subsection presents three examples of the use of the proposed efficiency
criterion and the outlier selection, where the objects of the metric space are
not uniformly distributed. The incremental selection technique is used to
select good pivots. The local optimum A technique was also tested with these
databases, obtaining slightly better results compared with the incremental
selection. However, the incremental selection technique is preferred over the

4.1. Pivot selection techniques 77

 100

 200

 300

 400

 500

 600

 700

 800

 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
co

m
pu

ta
tio

ns
 (

T
ot

al
 c

om
pl

ex
ity

)

Number of pivots

8−D, 100,000 objects, 10,000 queries, retrieving 0.01% of the database

Random
Good pivots

Outliers

Figure 4.9: Comparison between incremental and outliers selection tech-
niques in 8-dimensional random vector spaces

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 200 300 400 500 600 700 800

D
is

ta
nc

e
co

m
pu

ta
tio

ns
 (

T
ot

al
 c

om
pl

ex
ity

)

Number of pivots

14−D, 100,000 objects, 10,000 queries, retrieving 0.01% of the database

Random
Good pivots

Outliers

Figure 4.10: Comparison between incremental and outliers selection tech-
niques in 14-dimensional random vector spaces

78 Chapter 4. Efficiency of feature based similarity search

local optimum technique for the reasons stated in Section 4.1.4.
Figure 4.11 shows the results of the experiment over a string space, that

is, the objects of the database were strings taken from an English dictionary
of 69,069 terms, and 10% of the database was used as the query set. The
distance function used was the edit distance (the minimum number of char-
acter insertions, deletions and substitutions to make two strings equal), and
the tolerance range was set to r = 2, which retrieves an average of 0.02%
of the database size per query. For this dataset, the incremental selection
improved the performance of the algorithm more, with respect to random
pivots, compared to the outlier selection.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
co

m
pu

ta
tio

ns
 (

T
ot

al
 c

om
pl

ex
ity

)

Number of pivots

String database, r=2, retrieving 0.02% of the database

Random pivots
Good pivots

Outliers

Figure 4.11: Experimental results with a string database

Figure 4.12 shows the results of the experiment when the objects of the
database are a set of 40,700 images from NASA archives1. Those images
were transformed into 20-dimensional vectors, and 10% of the database was
defined as the query set. The tolerance range was set to return on average
0.10% of the objects of the database per query. The figure shows that for more
than 25 pivots the outliers selection technique had a poorer performance than
the random selection, while incremental selection always performed better.

Figure 4.13 shows the result of the experiment with a database of 112,682
color images, where each image is represented by a 112-dimensional feature

1Source: 6th DIMACS Implementation Challenge: Available Software. http://-
www.dimacs.rutgers.edu/Challenges/Sixth/software.html.

4.1. Pivot selection techniques 79

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
co

m
pu

ta
tio

ns
 (

T
ot

al
 c

om
pl

ex
ity

)

Number of pivots

NASA images database, retrieving 0.10% of the database

Random pivots
Good pivots

Outliers

Figure 4.12: Experimental results with the NASA images database

 0

 100

 200

 300

 400

 500

 600

 10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
co

m
pu

ta
tio

ns
 (

T
ot

al
 c

om
pl

ex
ity

)

Number of pivots

Color images database, retrieving 0.01% of the database

Random pivots
Good pivots

Outliers

Figure 4.13: Experimental results with a color image database

80 Chapter 4. Efficiency of feature based similarity search

vector. A 10% of the database was used as the query set. The result shows
that good pivots performed better than random pivots, but outliers per-
formed worse than random pivots. In fact, with less than 40 pivots the
results using outliers were an order of magnitude worse than with random
pivots.

The last two results are in contrast with those obtained on uniformly
distributed vector spaces.

4.2 Improved k nearest neighbor algorithm

One of the most important similarity queries in multimedia databases is the k
nearest neighbor (k-NN) search. The standard best-first k-NN algorithm uses
the lower bound distance to filter out objects during the search. Although
optimal in several aspects, the disadvantage of this method is that its space
requirements for the priority queue that stores unprocessed clusters can be
linear in the database size. Most of the optimizations used in spatial access
methods (e.g., filtering out using MinMaxDist) cannot be applied in metric
spaces, due to the lack of geometric properties.

We propose a new k-NN algorithm that uses distance estimators. The new
algorithm aims to reduce the storage requirements of the search algorithm.
An experimental evaluation with synthetic and real datasets confirms the
savings in storage space of our proposed algorithm.

This work has been submitted for publication [Bustos and Navarro, 2006].

4.2.1 Motivation

Unlike the case of range searching, where the tree traversal order is irrelevant,
for k-NN search we wish to find close candidates as soon as possible, as this
will determine how much of the tree is traversed. The most common traversal
order is depth-first traversal. In this case, the tree traversal is recursive,
and the criterion to try to find soon good k-NN candidates translates into
traversing the children of the current node from most to least promising.
Given a criterion to prefer one node over another, depth-first traversal does
not achieve the optimal node traversing order because it is forced to be depth-
first. On the other hand, the amount of memory it requires does not exceed
the height of the tree index.

An optimal, best-first traversal ordering uses a global priority queue
where unprocessed tree nodes are inserted, giving higher priority to the more
promising ones, and the tree is traversed in the order given by the queue
[Uhlmann, 1991a; Hjaltason and Samet, 1995]. Each extracted node inserts

4.2. Improved k nearest neighbor algorithm 81

its children in the queue. If this priority is defined as a lower bound to the
distance between q and any element in the subtree rooted at the tree node,
the search can finish as soon as the most promising node has a lower bound
larger than the distance to the current kth NN. This algorithm has been
proved to be optimal in the number of required page accesses [Böhm et al.,
2001]. It was also proved to be range-optimal, that is, the number of dis-
tance computations to find the k-NN answer is exactly that of a range search
with distance d(q, ok), where ok is the kth NN. This range search would give
the same answer as the k-NN search, so there is no penalty for not knowing
d(q, ok) beforehand [Hjaltason and Samet, 2000].

The algorithm has, however, an important problem, which may compli-
cate its use in practice. The problem is the amount of memory required for
the queue, which can store as many elements as the database itself. The non-
optimal depth-first-search algorithm may be preferable because of its much
lower space consumption, which is proportional to the depth of the hierarchy.
Samet [2003] recently proposed a technique to alleviate this problem, based
on computing an upper bound to the distance between q and any subtree ele-
ment, and using the fact that one knows that a subtree must have at least one
element within that upper bound distance to q. We refine this idea, which
will be described later as a particular case of ours. Our refinement consists
in using the information on the number of elements in a region of the space,
all of which lie within that upper bound. Unlike Samet’s approach, ours
translates into a relevant contribution even on vector spaces, where Samet’s
approach is never better than the MinMaxDist estimator.

4.2.2 Proposed best-first k-NN algorithm

In this section, we describe the standard best-first k-NN search and present
in detail our improved k-NN algorithm. Table 4.1 lists the notation used
throughout this section.

We assume that the index is a hierarchical data structure which groups
close objects in clusters. We will refer to these clusters in our metric space
as balls, which resembles a cluster’s shape in an Euclidean vector space.
A ball B from the index contains a number of objects from the database,
represented by B.bsize. The center of B is a distinguished object B.c ∈ B,
usually selected trying to minimize the covering radius of B, B.cr = max{b ∈
B, d(B.c, b)}, that is, the maximum distance between B.c and any other
object in B. Those elements b ∈ B can be recursively organized into balls,
which descend from B forming a search hierarchy. This type of hierarchical
clustering index is very popular [Kalantari and McDonald, 1983; Dehne and
Noltemeier, 1987; Noltemeier et al., 1992; Brin, 1995; Ciaccia et al., 1997;

82 Chapter 4. Efficiency of feature based similarity search

Symbol Definition
X Universe of valid objects

U ⊆ X Database
δ(x, y) Distance between x and y
q ∈ X Query object
k ∈ N # of NN to be retrieved
B ⊆ U Ball (cluster of objects)
B.c ∈ U Center of ball B
B.cr ∈ R Covering radius of B

B.bsize ∈ N # objects inside B
B.children Set of children balls of B

B.lbound ∈ R Lower bound distance from B to q
B.ubound ∈ R Upper bound distance from B to q

Bb Bubble of B
Bb.csize ∈ N Size of bubble Bb in C

Q Queue with unprocessed balls
C Queue with NN candidates

c.distq ∈ R Distance from c to q
C.maxUB ∈ R Maximum upper bound distance in C

C.size ∈ N Sum of all Bb.csize in C

Table 4.1: Notation used on Section 4.2

Navarro, 2002; Chávez and Navarro, 2005]. There are other indexes that,
although less obviously, can also be considered as belonging to this scheme
[Burkhard and Keller, 1973; Yianilos, 1993; Baeza-Yates et al., 1994; Bozkaya
and Ozsoyoglu, 1997; Yianilos, 1999].

Given a query q and a ball B, the lower bound distance from q to B,
B.lbound, is a lower bound to d(q, b) for any b ∈ B. Similarly, the upper
bound distance from q to B, B.ubound, is an upper bound to d(q, b) for
any b ∈ B2. Figure 4.14 illustrates both bounds in 2D space using the
Euclidean distance and the covering radius. On index structures for vector
spaces that use minimum bounding rectangles (MBRs), the lower (upper)
bound distance can be defined as the minimum (maximum) distance from
q to the MBR. These distance bounds can be used to filter out balls while
performing a similarity query. For example, if we know that the upper bound
distance to the kth NN candidate at some point of the search is maxUB, and
that maxUB < B.lbound for a ball B, then it is not possible that an object
inside the ball is closer to q than any of the current k-NN candidates. Thus,
one can safely discard B and all its descendents.

2Our proposed algorithms are general and work with any hierarchical index structure
with appropriately defined distance estimators. For simplicity, we describe them using the
covering radius for computing the distance bounds.

4.2. Improved k nearest neighbor algorithm 83

(lower bound)

���� ����B.c

B.cr

d(q,B.c)−B.cr

q

(upper bound)

���� ����

d(q,B.c)+B.cr

B.cr

B.c q

Figure 4.14: Distance estimators: Lower and upper bound distance from q
to any object on the ball

Standard best-first k-NN algorithm

The best-first k-NN search algorithm [Hjaltason and Samet, 1995] uses two
queues, one (Q) that contains the balls not yet processed (also called active
page list in the literature), and the other (C) with the k-NN candidate list.
A ball is stored in Q if it has not yet been processed but its parent has
already been processed. At each step of the search, the algorithm removes
the ball B from Q with smallest B.lbound. The distance between the center
of each child of B and q is computed, inserting in C all centers that are closer
than the current kth NN candidate. The child balls are inserted into Q. The
algorithm ends when Q becomes empty or when the minimum lbound from
a ball in Q is greater than the distance to q of the current kth NN candidate,
as at this point no other ball can improve the current candidate list.

Algorithm 4.1 depicts the algorithm. We use the normal priority queue
operations on max-queue C (initialize empty, Add, max, DequeueMax) and
min-queue Q (initialize empty, Add, DequeueMin). Note that the size of C
never exceeds k, but Q can be as large as the database size. As explained be-
fore, this algorithm is optimal in several aspects but it has a serious memory
usage problem (for Q), which our proposal seeks to alleviate.

Description of our proposed algorithm

As in the standard k-NN algorithm, we use two priority queues, Q and C. Q
contains unprocessed balls whose center have already been processed, and is
sorted by lbound. C is sorted by ubound. This time, however, C will contain
a mixture of objects and bubbles. A bubble Bb in C corresponds to ball B
that exists in Q, but the bubble itself does not contain any element. From
the bubble Bb we only know the upper bound B.ubound and size B.bsize of
its corresponding ball B (i.e., B.bsize indicates the number of objects u ∈ U
that are inside B). The existence of bubble Bb in C just tells us that there
are B.bsize elements at a maximum distance of B.ubound from q, yet we

84 Chapter 4. Efficiency of feature based similarity search

Algorithm 4.1: Standard k-NN search

Input: Index, q ∈ X, k ∈ N
Output: k-NN
Q← ∅;1

C ← ∅;2

B ← root of Index;3

B.c.distq ← d(q, B.c);4

B.lbound← B.c.distq −B.cr;5

Q.Add(B, B.lbound);6

C.Add(B.c,B.c.distq);7

while Q 6= ∅ do8

B ← Q.DequeueMin();9

if |C| = k ∧B.lbound ≥ C.Max().distq then break;10

foreach B′ ∈ B.children do11

B′.c.distq ← d(q, B′.c);12

B′.lbound← B′.c.distq −B′.cr;13

if |C| < k ∨B′.lbound < C.Max().distq then14

Q.Add(B′, B′.lbound);15

C.Add(B′.c, B′.c.distq);16

if |C| = k + 1 then C.DequeueMax();17

return C18

still do not know those elements. With this upper bound information, we
can filter out irrelevant elements of Q earlier. For example, assume we find
B such that B.bsize > k. Before knowing the elements of B, we find B′ such
that B′.lbound ≥ B.ubound. At this point we can discard B′, as we know
that we will get enough better k-NN candidates from B, even when we still
have not obtained them.

Our algorithm maintains the following invariants. We assume that there
are at least k elements in the database, otherwise the query is trivial. For
simplicity, we assume that balls do not directly contain objects, just ad-
ditional balls. The last balls of the tree contain balls that have only one
element, so the balls become empty once their centers are removed. This
does not restrict the algorithm in any way, it is just a way to present it.

(i) We process the database hierarchy starting at the root, and never pro-
cess a node without having processed its parent.

(ii) Any hierarchy ball not already processed is in Q or descends from a
ball in Q, yet the centers of balls in Q have already been processed.

4.2. Improved k nearest neighbor algorithm 85

(iii) Any object c in C is the center of a ball already processed, c.csize = 1.

(iv) Any bubble Bb in C corresponds to a ball B currently in Q, Bb.csize =
B.bsize− 1.

(v) C.size ≥ k is the sum of csize’s of objects and bubbles in C. C.maxUB
is the maximum ubound in C, taking c.ubound = c.distq for objects.

(vi) C contains the objects and bubbles with smallest ubound processed so
far.

(vii) If we remove any element from C with ubound equal to C.maxUB,
then C.size < k.

The above invariants ensure the correctness of the following termination
conditions:

• Assume Q = ∅ at some point. Then we have processed all the database
objects (i, ii). Moreover, there cannot be bubbles in C (iv), so C
contains just objects, of csize = 1 (iii). Therefore, C contains exactly
k objects (v, vii), and those are the objects with smallest distq in the
database (vi). Thus C is the correct answer to the query.

• Assume, at some point, that B has the smallest lbound in Q and
B.lbound ≥ C.maxUB. Since ubound ≥ lbound for any element and
lbound for a descendant of B can never be smaller than B.lbound,
condition (vi) holds for all the database, not only for the elements pro-
cessed so far (ii). Moreover, C cannot contain any bubble B′

b, because
B′

b.lbound < B′
b.ubound ≤ C.maxUB ≤ B.lbound for any ball B in Q,

and ball B′ must be in Q (iv). Thus the same arguments as before
show that C is the correct answer to the query.

From the second point we also see that, if B.lbound ≥ C.maxUB for any
B, then the output of the algorithm does not vary if we remove B and all its
descendents from Q. This is the key to reduce the storage requirement of Q.

We explain now how we set and maintain the invariants throughout the
algorithm. We initialize Q with the only ball that roots the whole index (for
simplicity we assume there is only one such root, it is easy to insert several
roots if so is the index structure). Its center and corresponding bubble are
inserted in C. This satisfies all the invariants. At each step of the algorithm,
we extract the ball B from Q with the smallest B.lbound. Recall that B.c
has already been processed. Now, to restore invariant (ii), we must insert in
Q every child B′ of B such that B′.lbound < C.maxUB (otherwise, we know

86 Chapter 4. Efficiency of feature based similarity search

that the descendents of B′ can be immediately filtered out from the search).
Then, to restore invariants (iii, iv), we must insert in C every center B′.c
and bubble B′

b, as well as remove bubble Bb from C, if present. Actually, if
Bb is in C, we are replacing it with the centers B′.c and bubbles B′

b, which
add up the same Bb.csize. These replacements/insertions cannot therefore
affect invariants (v, vi) as the new ubounds are never larger than that of
Bb. Yet, we have to restore invariant (vii). We must remove from C the
elements with largest ubound as long as C.size ≥ k. We choose those with
largest ubound so as to maintain (vi), and update C.size and C.maxUB
to maintain (v). The remaining invariant (i) holds because we only access
B′ from its already processed parent B. Although not necessary for the
correctness of the algorithm, we remove balls of Q that become irrelevant
each time C.maxUB is reduced. This diminishes the memory requirement
for Q.

d(q,B’.c)+B’.cr

d(q,B.c)+B.cr

B.cB’.c

q

Figure 4.15: The correct ubound for B′ is min{B.ubound, d(q, B′.c)+B′.cr}

Algorithm 4.2 shows the pseudocode of the proposed k-NN search algo-
rithm. Note that we enforce that lbound is increasing and ubound is de-
creasing as we descend in the hierarchy. Although this is true, it might not
occur automatically if we simply use, for example B′.ubound = d(q, B′.c) +
B′.cr for B′ child of B, because the ball of B′ could spatially exceed that
of B, although we know that there cannot be objects of B′ in the ex-
ceeded area (Figure 4.15 illustrates). Thus the correct value is B′.ubound =
min(B.ubound, d(q, B′.c)+B′.cr). We make the correction only if Bb is in C,
otherwise B.ubound > C.maxUB and the correction is irrelevant. Add2 is a

4.2. Improved k nearest neighbor algorithm 87

special insertion procedure into C, which in addition to the element and its
ubound gives the csize of the element. Add2 takes care of updating C.size
and C.maxUB, and of maintaining invariants (vi, vii). Algorithm 4.3 shows
the pseudocode of the Add2 function for C.

Algorithm 4.4 shows the pseudocode for Shrink on Q, called each time
the maximum upper bound distance C.maxUB might change, to reduce the
storage requirements of the search algorithm. Note that, thanks to the use
of Shrink, we can always finish when Q becomes empty, since if the other
termination condition holds, then Shrink will take care of removing all of
the remaining elements from Q. To reduce the CPU cost associated with
Shrink, it should be called when C.maxUB has changed (not when it might
have changed, as shown for simplicity), and implement Q as a min-max heap.

A key element of our k-NN algorithm is B.bsize. If this value is not stored
in the index, the proposed algorithm cannot run and the best that one can
do in that case is to assume B.bsize = 2 for internal hierarchy nodes (since
B.bsize ≥ 2, for the center and at least another point). This is precisely what
was done by Samet in previous work [Samet, 2003], and we refine that work
here assuming B.bsize is known. Slightly better than assuming B.bsize = 2
is, if B has cb child balls and co child objects, assume B.bsize = 2 · cb + co.

Example

Figure 4.16 shows an example of a k-NN query. (Note visually that all k-
NN are on B1 and B1.ubound < B.c.distq.) The index consists of a ball B
which has three child balls: B1, B2, and B3. From the figure, it follows that
B.bsize = 1+k+X +Y . The figure shows the index hierarchy up to the first
level. At the beginning, B.c is inserted into C as well as the bubble Bb with
upper bound B.c.distq+B.cr. Thus, C.size = 1+k+X+Y ≥ k and if we ex-
tract the bubble with the larger ubound then C.size = 1 < k, thus the invari-
ants hold. Ball B is inserted into Q and the algorithm enters the loop. Ball
B is extracted from Q, and then Bb is removed from C. Now the algorithm
processes the children of B. The object B1.c and the bubble B1b are inserted
into C. Meanwhile, B.c is removed from C because B1.ubound < B.c.distq
and C.size = k ≥ k with B1b and B1.c in C (note that the algorithm will
also perform the same operations if B1.bsize > k). The maximum upper
bound C.maxUB is updated to C.maxUB = B1.ubound, B1 is inserted into
Q, and the algorithm invokes Q.Shrink(). B2 and B3 will never be inserted
into Q, because C.maxUB < B2.lbound < B3.lbound. Therefore, the max-
imum length of Q until this step was 1. Using the standard algorithm, B2
and B3 will be inserted into Q, even when they will never be removed from
the queue (the algorithm will stop searching before removing them), thus

88 Chapter 4. Efficiency of feature based similarity search

Algorithm 4.2: Our proposed k-NN search algorithm

Input: Index, q ∈ X, k ∈ N
Output: k-NN
Q← ∅;1

C ← ∅;2

C.maxUB ←∞;3

C.size← 0;4

B ← root of Index;5

B.c.distq ← d(q, B.c);6

B.lbound← B.c.distq −B.cr;7

Q.Add(B, B.lbound);8

C.Add2(B.c, B.c.distq, 1);9

C.Add2(B, B.c.distq + B.cr, B.bsize− 1);10

while Q 6= ∅ do11

B ← Q.DequeueMin();12

if Bb ∈ C then13

ubound← Bb.ubound;14

C.size← C.size−Bb.csize;15

C.Remove(Bb);16

else ubound←∞;17

foreach B′ ∈ B.children do18

B′.c.distq ← d(q, B′.c);19

C.Add2(B′.c, B′.c.distq, 1);20

if B′.bsize > 1 then21

B′.lbound← B′.c.distq −B′.cr;22

if B′.lbound < C.maxUB then Q.Add(B′, B′.lbound);23

minub← min{ubound, B′.c.distq + B′.cr};24

C.Add2(B′, minub, B′.bsize− 1);25

Q.Shrink();26

return C27

4.2. Improved k nearest neighbor algorithm 89

Algorithm 4.3: New add algorithm for C

Input: B, ubound ∈ R+, csize ∈ N
if ubound < C.maxUB then1

Bb ← CreateBubble(B);2

Bb.ubound← ubound;3

Bb.csize← csize;4

C.size← C.size + Bb.csize;5

C.Add(Bb, Bb.ubound);6

while C.size− C.Max().csize ≥ k do7

C.size← C.size− C.Max().csize;8

C.DequeueMax();9

if C.size ≥ k then C.maxUB ← C.max().ubound;10

Algorithm 4.4: Shrink algorithm for Q

while Q 6= ∅ and Q.Max().lbound ≥ C.MaxUB do1

Q.DequeueMax();2

wasting storage space.
Assume now that B1, B2, and B3 are inserted into Q (for example,

this could be the case if the index contained several roots). The algorithm
removes B1 from Q and processes each of its children. Then, it updates
C.maxUB. Note that the algorithm ensures that C.maxUB ≤ B1.ubound.
Next, procedure Q.Shrink() is invoked, which removes balls B2 and B3 from
Q, thus diminishing the average length of Q during the search.

In both cases, the algorithm was able to filter out balls B2 and B3 without
processing them and at a very early stage of the search. Therefore, the storage
requirement for Q was successfully diminished using our proposed algorithm.

4.2.3 Cost analysis of the proposed algorithm

Now we compare the computational complexity of the original and our pro-
posed k-NN search algorithms. Firstly, as both algorithms perform a best-
first traversal of the index, it follows that they compute exactly the same
number of distance computations for the same query object. Thus, for this
concept the CPU cost is the same for both algorithms.

Regarding the insertion/deletions of elements in Q, the CPU cost of the
original algorithm is O(totQ · log max(k,maxQ)), where totQ is the overall
number of balls inserted into Q and maxQ the maximum size of Q across

90 Chapter 4. Efficiency of feature based similarity search

B3.bsize=Y

B3.c

B3.lbound

B2.c
B.c

B.c.distq

B1.bsize=k

B2.lbound

B2.bsize=X

B1.c

B1.ubound
q

Figure 4.16: Example of a k-NN query

the process. The cost for our proposed algorithm is the same, noting that in
our case totQ and maxQ will be smaller, given that we avoid some insertions
into Q.

With respect to C, the CPU cost of the original algorithm is in the worst
case O(totQ log(k)), since all centers from balls in Q may be inserted into C,
and it is ensured that only one object per iteration may be extracted from C.
For our proposed algorithm, in the worst case it may be possible that totQ
objects and totQ bubbles are inserted into C, but then the algorithm may
extract up to k elements from C after an insertion (cf. Algorithm 4.3, lines
7–9 of the pseudocode). However, it is not possible to extract more elements
that those inserted into C, therefore the total CPU cost in the worst case is
also O(totQ log(k)), i.e., it is the same CPU cost compared with the original
algorithm. Note that the query “Bb ∈ C” in line 13 of Algorithm 4.2 requires
a dictionary data structure built on top of C if one wants to avoid an O(k)
time linear traversal.

Thus, our proposed algorithm has the same CPU cost as the original one,
but using always less memory for Q. As previously observed, our algorithm
needs to know how many objects are within each ball of the index, which
also uses some memory space (one float value per internal node). In most
practical situations, there is always some extra space free on each index node,
because it is almost impossible to completely use its assigned space (equal to

4.2. Improved k nearest neighbor algorithm 91

the size of a disk data page), so the extra float can be stored “for free”. Also,
we experimentally observed that the memory savings are at least an order of
magnitude higher than the extra used space. Although not an analytically
interesting result, it is an interesting practical saving.

4.2.4 Experimental evaluation

For our experimental evaluation, we used several synthetic and real-world
databases:

• Gaussian: This set of synthetic databases are formed by clusters in
a vector space using different dimensionalities (8-D, 16-D, and 32-D),
where the objects that form each cluster follow a Gaussian distribution.
Each Gaussian database contains 1,000 clusters, and their centers are
random points with coordinates uniformly distributed in [0, 1]. The
variance for the Gaussian distribution was set equal to 0.001 for each
coordinate, to produce compact clusters. The size of each cluster is sim-
ilar but not necessarily equal, and the whole dataset contains 100,000
objects. We generated 1,000 random query points, which follow the
same data distribution as the database.

• Corel Features : The Corel features database contains features from
68,040 images extracted from a Corel image collection. The features
are based on the color histogram (32-D), color histogram layout (32-D),
co-occurrence texture (16-D), and color moments (9-D). This database
is available at the UCI KDD Archive [Hettich and Bay, 1999]. We used
a subset of this database consisting on 65,615 images, because there
were some missing features for some of the images (we included only
those objects for which complete sets of feature vectors were available).
We selected 1,000 objects at random from the database to be used as
query objects. For the experiments presented in this section, we used
the color histogram (CH) and the layout histogram (LH) databases.

• Edge structure: This database contains 20,197 feature vectors (edge
structure, 18-D) extracted from the Corel image database. We selected
1,000 random objects from the database as query points.

The number of objects per cluster was selected depending on the dimen-
sionality of the dataset, in a way that all objects from the cluster (plus a
small header) could fit on a datapage. By setting the datapage size to 4
Kb, we obtained the following cluster size values: 127 (8-D), 63 (16-D), 56
(18-D), and 31 (32-D).

92 Chapter 4. Efficiency of feature based similarity search

We compared the standard best-first k-NN algorithm (labeled HS) against
ours (labeled Ours) and the best-first version proposed by Samet [2003] (la-
beled Samet)3. As representative index structures, we used the List Of Clus-
ters [Chávez and Navarro, 2005] and the M-tree [Ciaccia et al., 1997]. The
List of Clusters can be seen as a “list of balls”, i.e., a search hierarchy with
only one level, while the M-tree is a more general hierarchical index structure.
To compare the storage requirements of each search algorithm, we computed
the mean of the maximum queue length (max{|Q|}) obtained on each query,
and the average length of Q. The first measure indicates how much memory
(on average) the search algorithm needs in order to answer the k-NN query.
The second measure is related to the number of disk accesses made if the
queue is stored on secondary memory. All results are shown as percentage
of the database size.

Figures 4.17 to 4.22 show the results obtained with the Gaussian databases.
Our algorithm needs considerably less memory than the standard algorithm,
especially for high dimensions. For example, our algorithm only used 18% of
the memory required by the standard algorithm with 32-D and using List of
Clusters (k = 50). In low dimensions, the gain was smaller (48% of memory
requirement compared with the standard algorithm), but still considerable.
The List of Clusters performed better than the M-tree in terms of storage
usage. In both indices, our algorithm was consistently better than the orig-
inal version by Samet. The average length of the queue was up to 5 times
shorter than the standard algorithm. The charts also show that the storage
efficiency degrades with k, especially in the case of the M-tree.

We obtained similar results with real-world datasets (see Figures 4.23 to
4.28). For example, with the color histogram database, our algorithm only
used 34% of the storage requirement of the standard algorithm with List of
Clusters. The average length queue was always smaller than 32% compared
with the standard algorithm. Similar improvements were obtained with the
other two real-world databases.

Table 4.2 summarizes the improvements in storage requirements of our
algorithm over the standard k-NN search for k = 50. Note that the better
results were obtained with the List of Clusters. A possible explanation for
this is that this index structure produces more compact balls than the M-
tree (due to the dynamic nature of the last index structure), thus the search
algorithm is able to find better distance estimations with the List of Clusters.

3Actually, Samet speaks mostly of depth-first algorithms, but the paper mentions that
the best-first algorithm could be handled as well. As we are interested in the optimal
traversal order, we compare only its best-first version.

4.2. Improved k nearest neighbor algorithm 93

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 200 150 100 50

M
ea

n
m

ax
 |Q

| (
%

D
B

)

k

Gaussian 8−D

List of Clusters − HS
List of Clusters − Samet

List of Clusters − Ours
M−tree − HS

M−tree − Samet
M−tree − Ours

Figure 4.17: Gaussian 8-D: Mean of the maximum queue length

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 200 150 100 50

A
vg

 |Q
| (

%
D

B
)

k

Gaussian 8−D

List of Clusters − HS
List of Clusters − Samet

List of Clusters − Ours
M−tree − HS

M−tree − Samet
M−tree − Ours

Figure 4.18: Gaussian 8-D: Average queue length

94 Chapter 4. Efficiency of feature based similarity search

 0

 0.5

 1

 1.5

 2

 2.5

 200 150 100 50

M
ea

n
m

ax
 |Q

| (
%

D
B

)

k

Gaussian 16−D

List of Clusters − HS
List of Clusters − Samet

List of Clusters − Ours
M−tree − HS

M−tree − Samet
M−tree − Ours

Figure 4.19: Gaussian 16-D: Mean of the maximum queue length

 0

 0.5

 1

 1.5

 2

 200 150 100 50

A
vg

 |Q
| (

%
D

B
)

k

Gaussian 16−D

List of Clusters − HS
List of Clusters − Samet

List of Clusters − Ours
M−tree − HS

M−tree − Samet
M−tree − Ours

Figure 4.20: Gaussian 16-D: Average queue length

4.2. Improved k nearest neighbor algorithm 95

 0

 1

 2

 3

 4

 5

 6

 7

 8

 200 150 100 50

M
ea

n
m

ax
 |Q

| (
%

D
B

)

k

Gaussian 32−D

List of Clusters − HS
List of Clusters − Samet

List of Clusters − Ours
M−tree − HS

M−tree − Samet
M−tree − Ours

Figure 4.21: Gaussian 32-D: Mean of the maximum queue length

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 200 150 100 50

A
vg

 |Q
| (

%
D

B
)

k

Gaussian 32−D

List of Clusters − HS
List of Clusters − Samet

List of Clusters − Ours
M−tree − HS

M−tree − Samet
M−tree − Ours

Figure 4.22: Gaussian 32-D: Average queue length

96 Chapter 4. Efficiency of feature based similarity search

 0

 1

 2

 3

 4

 5

 200 150 100 50

M
ea

n
m

ax
 |Q

| (
%

D
B

)

k

Corel Features − Color Histogram

List of Clusters − HS
List of Clusters − Samet

List of Clusters − Ours
M−tree − HS

M−tree − Samet
M−tree − Ours

Figure 4.23: Corel features CH: Mean of the maximum queue length

 0

 0.5

 1

 1.5

 2

 2.5

 200 150 100 50

A
vg

 |Q
| (

%
D

B
)

k

Corel Features − Color Histogram

List of Clusters − HS
List of Clusters − Samet

List of Clusters − Ours
M−tree − HS

M−tree − Samet
M−tree − Ours

Figure 4.24: Corel features CH: Average queue length

4.2. Improved k nearest neighbor algorithm 97

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 200 150 100 50

M
ea

n
m

ax
 |Q

| (
%

D
B

)

k

Corel Features − Layout Histogram

List of Clusters − HS
List of Clusters − Samet

List of Clusters − Ours
M−tree − HS

M−tree − Samet
M−tree − Ours

Figure 4.25: Corel features LH: Mean of the maximum queue length

 0

 0.5

 1

 1.5

 2

 2.5

 3

 200 150 100 50

A
vg

 |Q
| (

%
D

B
)

k

Corel Features − Layout Histogram

List of Clusters − HS
List of Clusters − Samet

List of Clusters − Ours
M−tree − HS

M−tree − Samet
M−tree − Ours

Figure 4.26: Corel features LH: Average queue length

98 Chapter 4. Efficiency of feature based similarity search

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 200 150 100 50

M
ea

n
m

ax
 |Q

| (
%

D
B

)

k

Edge Structure

List of Clusters − HS
List of Clusters − Samet

List of Clusters − Ours
M−tree − HS

M−tree − Samet
M−tree − Ours

Figure 4.27: Edge structure: Mean of the maximum queue length

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 200 150 100 50

A
vg

 |Q
| (

%
D

B
)

k

Edge Structure

List of Clusters − HS
List of Clusters − Samet

List of Clusters − Ours
M−tree − HS

M−tree − Samet
M−tree − Ours

Figure 4.28: Edge structure: Average queue length

4.3. Pivot-based index for combinations of feature vectors 99

Database LOC-max LOC-avg MT-max MT-avg
Gaussian 8-D 49.4% 48.3% 93.7% 86.5%
Gaussian 16-D 19.5% 19.2% 96.2% 88.3%
Gaussian 32-D 18.5% 18.2% 96.3% 89.1%

Color Histogram 34.6% 32.3% 93.4% 89.1%
Layout Histogram 30.8% 28.4% 93.7% 88.9%
Edge Structure 26.1% 23.4% 86.8% 81.3%

Table 4.2: Storage requirements (maximum and average queue length) of our
algorithm (standard algorithm: 100%, k = 50)

4.3 Pivot-based index for combinations of fea-

ture vectors

In this section, we present a novel index structure that provides efficient
nearest-neighbor queries in multimedia databases that consist of objects de-
scribed by multiple feature vectors. The benefits of the simultaneous usage
of several (statically or dynamically) weighted feature vectors with respect to
retrieval effectiveness have been previously studied in this thesis (see Section
3.2). Support for efficient multi-feature vector similarity queries is an open
problem, as existing indexing methods do not support dynamically parame-
terized distance functions. We present a solution for this problem that relies
on a combination of several pivot-based metric indices. We define the in-
dex structure, present an algorithm for performing nearest-neighbor queries
on the new index, and demonstrate the feasibility of our technique by an
experimental evaluation conducted on two real-world image databases.

To describe multimedia objects using the feature vector approach, nu-
merical values are extracted from each object to form feature vectors of typi-
cally high dimensionality. For many multimedia data types (e.g., images, 3D
models, audio tracks), a number of extraction algorithms have already been
proposed. For example, in the case of 3D model retrieval, there are more
than 30 proposed feature vectors [Bustos et al., 2005a].

We already showed in Section 3.2 that combinations of feature vectors
may lead to significant improvements in the effectiveness of the similarity
search. Now we want to address the efficiency problem, that is, how to
efficiently perform similarity queries with dynamically weighted combinations
of feature vectors.

Traditional index structures were primarily designed to index single fea-
ture vectors, and they cannot be directly used to index a set of dynamically
combined features. Even if one concatenates the feature vectors and applies
standard indexing techniques, the efficiency of these indices may be poor due

100 Chapter 4. Efficiency of feature based similarity search

to the curse of dimensionality. To solve this problem, we propose a pivot-
based index structure that can be used to improve the efficiency of similarity
search algorithms in multimedia databases, where each multimedia object is
described by a set of different feature vectors.

This work has been published in Bustos et al. [2005b].

4.3.1 Index description

The proposed data structure aims to index dynamically weighted combina-
tions of feature vectors. The combined distance function that compares two
multimedia objects has the form

δdc(x, y) =
F∑

i=1

wi ·
δi(x, y)

normi

,

where the weights wi ∈ R+ are dynamically assigned on each similarity query.
The weights may be computed, for example, using the purity method or the
entropy impurity method described in Section 3.3.

Theorem 1. If ∀i, δi is a metric, the function δdc is also a metric.

Proof. We prove this theorem using the principle of induction on F . Let x,
y, and z be three multimedia objects. As the weights are positive real values,
the strict positiveness property is direct (we do not consider the special case
when ∀i wi = 0, because the resulting combined distance function is not
interesting for similarity search). Symmetry is also direct, because all δi

distances are symmetric:

δdc(x, y) =
F∑

i=1

wi ·
δi(x, y)

normi

=
F∑

i=1

wi ·
δi(y, x)

normi

= δdc(y, x).

The rest of the proof concentrates on proving the triangle inequality.
Basis case: The case F = 1 is trivial. For F = 2, we observe that

w1 ·
δ1(x, z)

norm1

≤ w1 ·
δ1(x, y)

norm1

+ w1 ·
δ1(y, z)

norm1

, and

w2 ·
δ2(x, z)

norm2

≤ w2 ·
δ2(x, y)

norm2

+ w2 ·
δ2(y, z)

norm2,

which are true because both δ1 and δ2 are metrics. Summing both inequations
we get

4.3. Pivot-based index for combinations of feature vectors 101

2∑
i=1

wi ·
δi(x, z)

normi

≤
2∑

i=1

wi ·
δi(x, y)

normi

+
2∑

i=1

wi ·
δi(y, z)

normi

,

which concludes the proof of the basis case.
Induction step (F − 1⇒ F): We have that

F−1∑
i=1

wi ·
δi(x, z)

normi

≤
F−1∑
i=1

wi ·
δi(x, y)

normi

+
F−1∑
i=1

wi ·
δi(y, z)

normi

, and

wF ·
δF (x, z)

normF

≤ wF ·
δF (x, y)

normF

+ wF ·
δF (y, z)

normF

.

We assume that the first inequation is true (induction hypothesis). The
second inequation is true because δF is a metric. Summing both inequations
we obtain

F∑
i=1

wi ·
δi(x, z)

normi

≤
F∑

i=1

wi ·
δi(x, y)

normi

+
F∑

i=1

wi ·
δi(y, z)

normi

,

which concludes the proof.

The canonical pivot-based algorithm stores in a table all the distances
between objects u ∈ U and selected pivots p ∈ P, with P ⊂ U. In the case
of dynamically weighted combinations of feature vectors, what we would like
to compute is a matrix of the form

M =

 δdc(p1, u1) . . . δdc(pk, u1)
...

. . .
...

δdc(p1, un) . . . δdc(pk, un)

 .

Such a matrix could be directly used to implement a standard pivot-based
index. However, the combined distance function δdc is not static, because
the weights depend on the query object. Therefore, it is not possible to
precompute the matrix M with the combined distances between pivots and
objects, because we do not know a priori the set of weights and they may
change for each query.

To overcome this problem, we propose a novel index structure that builds
the distance matrix at query time. The index consists of N matrices of the
form

Mi =
1

normi

·

 δi(p1, u1) . . . δi(pk, u1)
...

. . .
...

δi(p1, un) . . . δi(pk, un)

 , 1 ≤ i ≤ F.

102 Chapter 4. Efficiency of feature based similarity search

With this information, it is possible to compute matrix M once the
weights corresponding to a similarity query are known. It follows that

M =

∑F

i=1 wi ·Mi[1, 1] . . .
∑F

i=1 wi ·Mi[k, 1]
...

. . .
...∑F

i=1 wi ·Mi[1, n] . . .
∑F

i=1 wi ·Mi[k, n]

 .

Intuitively, at query time we dynamically build the pivot index table
for the submitted combination of weights. This table is then used by the
similarity search engine to discard objects during the search, thus avoiding
a sequential scan of the database. Note that the proposed index structure is
not restricted to the case of vector spaces. It can also index metric spaces
where the distance function is formed by a weighted combinations of metrics.

Nearest-neighbor search algorithm

We use a modification of the NN search algorithm sketched in Chávez et al.
[2001b] to perform this type of query using our proposed index. This algo-
rithm can be easily modified to implement k-NN queries.

The idea of the NN search algorithm is as follows. Given a set of pivots
P ⊂ U, we compute the distances between all pivots and the query object
q, and the pivot whose distance to q is minimum (mindist) will be the first
NN candidate. Then, for each object u ∈ U that is not a pivot, the exclusion
criterion is applied, using as tolerance radius the distance from the candidate
NN to the query object. If u cannot be discarded, we compute the distance
between u and q. If this distance is smaller than mindist, we set u as the new
NN candidate and update mindist. The process ends when all the objects
from U have been checked. Algorithm 4.5 shows the pseudocode for this
algorithm.

Another version of the NN algorithm that is optimal in the number of
distance computations, but that needs O(n) extra space, is as follows. We
compute the distances between all pivots and the query object q, and the
pivot whose distance to q is minimum (mindist) will be the first NN can-
didate. Then, we compute the lower bound distance from q to each object
u ∈ U that is not a pivot. This lower bound is computed as δlowerbound(q, u) =

max
|P|
i=1 |δ(pi, u)− δ(pi, q)|. Then, we sort the objects u ∈ U in ascending or-

der according to their lower bound distances to q. Starting with the the
object u with smallest lower bound distance, we apply the pivot exclusion
criterion using as tolerance radius the distance from the candidate NN to the
query object. If u cannot be discarded, we compute the distance between
u and q. If this distance is smaller than mindist, we set u as the new NN

4.3. Pivot-based index for combinations of feature vectors 103

Algorithm 4.5: NN search algorithm (radius reduction)

Input: U, P, Index, q ∈ X, w = {wi}
Output: NN
foreach ui ∈ U do1

foreach pj ∈ P do2

M [i, j]←
∑F

k=1 wk ·Mk[i, j];3

mindist← mink
i=1{δdc(pi, q)};4

NN ← parg mink
i=1{δdc(pi,q)};5

foreach ui ∈ U− P do6

foreach pj ∈ P do7

// Note that δdc(p, q) is already computed

if |M [i, j]− δdc(p, q)| > mindist then8

Discard ui;9

break;10

if ui not discarded ∧ δdc(q, ui) < mindist then11

mindist← δdc(q, u);12

NN ← u;13

return NN14

candidate and update mindist. The process ends when all the objects from
U have been checked or if the lower bound distance of an object is greater
than mindist (i.e., no other object can be closer to q than the actual NN
candidate). Algorithm 4.6 shows the pseudocode for this algorithm.

4.3.2 Experimental evaluation

We performed a number of NN queries using two real-world databases, and
computed the average response time. We used the Manhattan distance as
the distance function for all feature vectors. For constructing the pivot-based
indices, we used random as well as good pivots (cf. Section 4.1). All feature
vectors were normalized by the estimated maximum distance between two
points in the space (for each feature vector, respectively).

We implemented both proposed NN search algorithm and compared it
against a linear scan. The platform on which the experiments were run has
two Intel Xeon (2.80 GHz) CPUs and 4 GB of main memory. As efficiency
measures, we used the CPU time, the number of discarded objects by the
index, and the number of distance computations performed in average to

104 Chapter 4. Efficiency of feature based similarity search

Algorithm 4.6: NN search algorithm (sorting by lower bound)

Input: U, P, Index, q ∈ X, w = {wi}
Output: NN
foreach ui ∈ U do1

foreach pj ∈ P do2

M [i, j]←
∑F

k=1 wk ·Mk[i, j];3

mindist← mink
i=1{δdc(pi, q)};4

NN ← parg mink
i=1{δdc(pi,q)};5

// Computing lower bound distances

foreach ui ∈ U− P do6

δlowerbound(q, u)← 0;7

foreach pj ∈ P do8

// Note that δdc(p, q) is already computed

if |M [i, j]− δdc(p, q)| > δlowerbound(q, ui) then9

δlowerbound(q, ui)← |M [i, j]− δdc(p, q)|;10

// Sorting objects in U− P by ascending lower bound

U′ ← Sort(U− P);11

// Searching for NN

foreach ui ∈ U′ do12

if δlowerbound(q, ui) > mindist then break;13

if δdc(q, ui) < mindist then14

mindist← δdc(q, u);15

NN ← u;16

return NN17

answer the NN queries. We performed a number of NN queries using two
real-world databases, and computed the average response time. We used the
Manhattan distance as the distance function for all feature vectors.

For the experimental evaluation, we used two real datasets:

• Corel features (described in Section 4.2.4).

• Corel images databases: Contains several features obtained from im-
ages of a subset of the Corel Gallery 380,000 package. The database
contains 6,192 images classified into 63 categories. Six features vec-
tors of very high dimensionality (184-D, 165-D, 784-D, 625-D, 784-D,
and 30-D) were computed for each image. The feature vectors include
color histogram, texture, and convolution descriptors (see Pickering

4.3. Pivot-based index for combinations of feature vectors 105

and Rüger [2003] and Howarth and Rüger [2004] for details on the fea-
ture vectors). We used 10% of the objects from this database, selected
at random, as query objects.

All feature vectors were normalized by the estimated maximum distance
between two points in the respective feature space. For each query object,
the weights were generated at random (a value uniformly distributed in the
range [0, 1]).

Experimental results

Figures 4.29 and 4.30 show the number of discarded objects (as a percentage
of the respective database) as a function of the number of pivots used to
build the index. The figure shows the results using random and good pivots.
We consistently obtained better results using good sets of pivots with both
datasets. With a few pivots, the proposed index structure was able to discard
large fractions of the databases. Even with the Corel images database, which
has a combined dimensionality of more than 2,500-D, the index was able to
discard more than 50% of the database objects with only 10 pivots. Note
that the algorithm based on sorting the objects from U by their lower bound
distances discarded more objects, using the same number of pivots, as the
algorithm based on radius reduction.

Figures 4.31 and 4.32 show the number of distance computations (as a
fraction of the database size) as a function of the number of pivots used,
using random and good sets of pivots. For the Corel features database, the
optimum performance was reached with 16 good pivots, and for the Corel
images database the optimum was reached with 220 good pivots (both with
the NN algorithm based on sorting by lower bound distance).

Figures 4.33 and 4.34 show the average time (in milliseconds) needed to
answer NN queries using the proposed index structure, using random and
good sets of pivots. It follows that the total time is highly correlated with
the number of distance computations needed to answer the NN queries (cf.
Figures 4.31 and 4.32), that is, most of the CPU time used by the NN search
algorithm is spent on computing distances. Also notice that the algorithm
based on sorting by lower bound distance was slower than the algorithm based
on radius reduction with the Corel features database. This is because the
distance function is not too expensive, and therefore the time using for sorting
the distances becomes also important. With the Corel images database, the
distance function is more expensive and the time needed by both algorithms
are similar (but still the algorithm based on radius reduction was faster for
more than 100 pivots).

106 Chapter 4. Efficiency of feature based similarity search

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 5 10 15 20 25

%
D

B
 d

is
ca

rd
ed

Number of pivots

Corel features, % objects discarded

Random pivots (radius reduction)
Good pivots (radius reduction)

Random pivots (sorting by lower bound)
Good pivots (sorting by lower bound)

Figure 4.29: Corel features: Objects discarded as a function of the number
of pivots

 55

 60

 65

 70

 75

 80

 85

 90

 0 50 100 150 200 250

%
D

B
 d

is
ca

rd
ed

Number of pivots

Corel images, % objects discarded

Random pivots (radius reduction)
Good pivots (radius reduction)

Random pivots (sorting by lower bound)
Good pivots (sorting by lower bound)

Figure 4.30: Corel images: Objects discarded as a function of the number of
pivots

4.3. Pivot-based index for combinations of feature vectors 107

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 5 10 15 20 25

D
is

ta
nc

e
co

m
pu

ta
tio

ns
 (

%
D

B
)

Number of pivots

Corel features, average distance computations per query

Random pivots (radius reduction)
Good pivots (radius reduction)

Random pivots (sorting by lower bound)
Good pivots (sorting by lower bound)

Figure 4.31: Corel features: Average number of distance computations per
NN query as a function of the number of pivots

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 50 100 150 200 250

D
is

ta
nc

e
co

m
pu

ta
tio

ns
 (

%
D

B
)

Number of pivots

Corel images, average distance computations per query

Random pivots (radius reduction)
Good pivots (radius reduction)

Random pivots (sorting by lower bound)
Good pivots (sorting by lower bound)

Figure 4.32: Corel images: Average number of distance computations per
NN query as a function of the number of pivots

108 Chapter 4. Efficiency of feature based similarity search

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5 10 15 20 25

T
im

e
[m

se
c]

Number of pivots

Corel features, average search time per query

Random pivots (radius reduction)
Good pivots (radius reduction)

Random pivots (sorting by lower bound)
Good pivots (sorting by lower bound)

Figure 4.33: Corel features: Average time per NN query as a function of the
number of pivots

 20

 22

 24

 26

 28

 30

 32

 34

 36

 38

 40

 42

 0 50 100 150 200 250

T
im

e
[m

se
c]

Number of pivots

Corel images, average search time per query

Random pivots (radius reduction)
Good pivots (radius reduction)

Random pivots (sorting by lower bound)
Good pivots (sorting by lower bound)

Figure 4.34: Corel images: Average time per NN query as a function of the
number of pivots

4.4. Indexing frequently used combinations of feature vectors 109

Finally, Table 4.3 presents a summary of the improvements obtained by
the proposed index structure compared with a sequential scan (näıve search
method) of the database.

Database Method # pivots Avg. time (msec) Improvement
Corel features Linear scan - 57.22 -

Random pivots 14 11.70 4.89x
Good pivots 8 10.57 5.41x

Corel images Linear scan - 88.90 -
Random pivots 230 25.44 3.49x
Good pivots 160 21.78 4.08x

Table 4.3: Improvements obtained with the Corel features and the Corel
images databases

4.4 Indexing frequently used combinations of

feature vectors

Although many feature extraction functions are available for each multime-
dia domain, only one feature extraction function is usually used within a
multimedia database for performing similarity queries. We have shown in
Section 3.2 that by using query dependent combinations of feature vectors it
is possible to significantly increase the effectiveness of the similarity search.
The idea is to select some of the available feature vectors (depending on the
query object and according to some predefined criteria), and to linearly com-
bine them to perform the similarity query. Figure 4.35 illustrates this new
approach for implementing effective similarity queries.

As explained in Section 3.3, we have observed that a linear combination
of all extracted FVs will not provide the optimal results, because if one of
the considered FVs has a very low effectiveness for a given query object, it
will degrade the final result. By using dynamic combination methods (see
Sections 3.3.1 and 3.3.2), we can avoid this problem by combining only those
FVs that are most promising for the given query object.

We address the problem of indexing combinations of selected feature vec-
tors. In real multimedia datasets, the similarity search system usually selects
only a few of the possible combinations with high probability. Our solution
aims to use the available space (e.g., in secondary storage) to build indices
for those frequently used combinations, i.e., we propose to construct not only
one index but a set of indices that optimally uses the available space. We
model the problem as a binary linear program, which is able to find the set of

110 Chapter 4. Efficiency of feature based similarity search

Figure 4.35: The new approach for similarity search in multimedia databases
using combinations of feature vectors

indices that minimizes the expected search cost. Our model is general, in the
sense that it can be used with any index structure, and it allows us to find the
optimal set of indices. Unfortunately, it is not an efficient method (binary
linear programming is NPO-Hard in the general case [Garey and Johnson,
1979; Hromkovic, 2001]). Therefore, we also propose fast algorithms that can
find a good set of indices.

In this section, we assume that the similarity search engine of the multi-
media database implements a query processor, which for a given query object
selects t FVs (from the set of available FVs) to perform the similarity query.

This work has been submitted for publication [Bustos et al., 2006b].

4.4.1 Indexing combinations of feature vectors

Here we present the formal definition of the optimization problem to be
solved. The idea is to build a set of indices that minimizes the expected
search cost of similarity queries based on combinations of FVs. Table 4.4
shows the notation used in this section.

Assumptions

Let X be the universe of valid multimedia objects (which depends on the
application domain), and let U ⊂ X be the set of objects or database (|U| =
n). Let F = {f} be a set of FVs, each of them with dimensionality d.4 A
combination of FVs has the form c ⊆ F. To perform similarity queries, the

4We made this assumption to consider all FVs equally important for the combination.
Later on this section, we will discuss what happens if one relaxes this restriction.

4.4. Indexing frequently used combinations of feature vectors 111

Symbol Description
X Set of valid objects

U ⊂ X Database
n = |U| Database size
q ∈ X Query object

F Set of feature vectors (FVs)
F = |F| Number of FVs
f ∈ F A single FV

d Dimensionality of the FVs
c ⊆ F A combination of FVs

t Number of combined FVs
T =

(
F
t

)
Total number of combinations

C Set of all combinations of t FVs
pc Probability of selecting combination c
I Set of indices (iSet)

idx ∈ I An index from the iSet
S Available space for building indices

Table 4.4: Notation used in Section 4.4

search system combines t of the FVs, that is, it selects a combination c such
that |c| = t. It follows that there are T =

(
F
t

)
different combinations of FVs.

A query processor selects at query time one of the combinations to per-
form the similarity search. That is, given an object q ∈ X, the query processor
selects combination ci (1 ≤ i ≤ T) with probability pci

, where pci
≥ 0 and∑T

i=1 pci
= 1. Without loss of generality, in what follows we assume that

pci
≥ pci+1

.
For example, the similarity query can be solved by linearly searching each

of the FVs of the selected combination. The search cost of this linear scan is
given by the function LS(t, d, n), which is O(tdn). Note that this linear scan
cannot be efficiently implemented, because it is not known a priori which FVs
will be selected for the combination for a given query q (we only know the
probability pci

of selecting combination ci). Thus, the FVs files cannot be
optimally arranged on the secondary storage for the linear scan: If we had
F files storing each FV independently, we would need to read t different files
(one at the time) to compute the combined distance between the query and
the objects from the database. Therefore, after reading each file we would
need to store n partial distances (in main memory or in disk). The extra
O(n) space cost could be too expensive if the database is too large. Now, if
we read only one disk page of each file at the time to avoid the O(n) space
cost (computing directly the combined distance of all objects stored on that
disk page), we would not be performing a sequential scan on the disk (i.e.,
to read sequential disk pages), thus this could not be optimally performed.

If there is enough available space to construct and save indices, this space

112 Chapter 4. Efficiency of feature based similarity search

could be used to improve the efficiency of the search. The idea is to build
indices for the most frequently used combinations of FVs, thus reducing the
expected search cost. We define an index of size k as an index that stores
combinations of k FVs (e.g., we could use the pivot-based index described
in Section 4.3). The space cost of an index of size k is given by the function
Space(k, d, n), and its search cost is given by the function Search(k, d, n).
(As the values of d and n are assumed to be fixed for a given database, we
will only write Space(k), Search(k), and LS(t).) Both space and search
cost functions depend on the currently used index structure and on the data
distribution for each FV. For simplicity, we assume that all indices of size k
use the same index structure and that they have the same search and space
cost (independent of the indexed FVs). We also assume that the search cost
always increases with the index size.

Indexing single combinations

We will first assume that we are only allowed to build indices of size t, which
can index one combination of FVs. Let I = {idx} be the set of constructed
indices. We refer to I as an iSet (index set). Given that there is an amount
S of available space to build indices, it follows that |I| ≤ bS/Space(t)c. The
total space cost R(I) is equal to

R(I) = |I| · Space(t).

The expected search cost depends on which combinations of FVs are in-
dexed. If the query processor selects a combination c to perform the similarity
query, the search engine checks if there is an index idx ∈ I that contains c.
If this is the case, idx is used to perform the similarity query. Otherwise,
the search engine resorts to a linear scan over the database. Without losing
generality, let us suppose that the combinations of FVs are enumerated, and
that the first |I| combinations in order of decreasing pci

were indexed. Then,
the expected search cost E(I) of the iSet is

E(I) =

|I|∑
i=1

pci
· Search(t) +

1−
|I|∑

i=1

pci

 · LS(t).

As the probabilities are ordered in descending order, it follows that the
expected search cost is minimum when |I| = bS/Space(t)c (assuming that
Search(t) < LS(t), otherwise it would be always convenient to search using
a linear scan). If T · Space(t) ≤ S, then the optimal solution is to build an
index for every possible combination of FVs.

4.4. Indexing frequently used combinations of feature vectors 113

Indexing several combinations per index

If the indices of the iSet may contain more than t FVs, then one can do
better. An index of size k (t ≤ k ≤ F) contains

(
k
t

)
combinations of FVs.

This means that with only one index we can index simultaneously many
combinations of FVs. Note, however, that an index of size greater than t will
read more FVs than necessary to perform the similarity query, thus making
the search slower. Therefore, there is a trade-off between search time and
number of indexed combinations. Also, note that an index of size F contains
all combinations of those FVs.

The available space S may allow us to build many indices of size t or
greater, and they do not need to be of the same size. As each idx may index
more than one combination of FVs, it is possible that a specific combination
c is contained by more than one index. If the query processor selects c, then
the index with smallest search cost that contains c must be used to perform
the similarity query. This is equivalent to selecting the index of smallest size
that contains c. We use the function msI(c) to determine the size of this
smallest index:

msI(c) =

{
k if k is the size of the smallest index in I that contains c,
∞ if no index in I contains c.

It follows that t ≤ msI(c) ≤ F if there is an index in the iSet that contains
c. Thus, the expected search cost for the iSet I is

E(I) =
∑

c,msI(c)<∞

pc · Search(msI(c)) +
∑

c,msI(c)=∞

pc · LS(t).

The space constraint must be respected, thus

R(I) =

|I|∑
i=1

Space(size(idxi)) ≤ S,

where size(idxi) returns the size of idxi, i.e., the number of FVs that idxi

contains.
Once the functions Search(k) and Space(k) are appropriately defined,

the question is, what is the optimal iSet to build, given the probabilities of
selecting each combination of FVs? To find the optimal solution, we have to
take into account that:

• There is a trade-off between index size and search cost: An index that
contains more FVs will index more combinations, but its search time
will be longer than the search time of a smaller index.

114 Chapter 4. Efficiency of feature based similarity search

• A combination may be indexed by many indices, but the search system
must use the one with smallest search cost.

• We have a limited space S available to build indices.

Therefore, the problem can be formalized as the following optimization
problem: Given a set of combinations of FVs, their probabilities of being
selected, and the search and space cost functions for the index structures,
find the optimal iSet so that the expected search cost is minimized, given that
there is a limited amount of space for building indices.

Example using a compressed linear scan

Now we present a small concrete example that clarifies how an iSet works.
We define the cost functions and calculate the optimal solution, given the
probabilities of using a combination and the allowed amount of space.

Let us suppose that the VA-File (see Section 2.4.1) is used as the index
structure. Its associated space (in bits) and search cost are

Space(k) = kdnb and Search(k) = kdnb + RefinementStep,

where b is the number of bits used for each dimension and RefinementStep
is the cost of checking the non-discarded points (if b is too low, the index
scan is fast but the refinement step may be expensive, because there will be
many non-discarded points). Suppose also that F = 6, t = 2, Search(F) = 1
(which implies that Search(k) = k

F
if the same number of bits per dimension

is used, as the cost of the VA-File is linearly dependent on the number of
indexed FVs), Space(F) = F (which also implies that Space(k) = k), and
let LS(t) = K · Search(t), i.e., to search using a linear scan is K times
slower than using an index of size t for the selected combination of FVs.
For our computations, we used K = 10 [Weber et al., 1998; Chakrabarti
and Mehrotra, 1999; Qian et al., 2003]. These selections were only done to
facilitate the computation of the search cost, and other values can be used
without affecting the behavior of the iSet (though, probably, the optimal
solution may be different). Finally, let us suppose that the probabilities of
selecting the combinations of FVs are as shown in Table 4.5.

If S ≤ 1, there is not enough space to build an index. Thus, the search
cost is trivially the cost of a linear scan, which is 10 · 2

6
= 20

6
≈ 3.33.

If S = 2, we have enough space to construct one index for one combination
of FVs. It follows that the best decision is to index the combination {f1, f2}

4.4. Indexing frequently used combinations of feature vectors 115

Combination Probability
{f1, f2} 0.34
{f1, f3} 0.33
{f2, f3} 0.32

All other combinations ≈ 8.3 · 10−4 (thus their sum is 0.01)

Table 4.5: Probabilities for combinations in the example

(the most frequently used one). If Ii denotes the optimal iSet for S = i, then
the expected search and space cost for I2 are

E(I2) = 0.34 · 2
6

+ (1− 0.34) · 20

6
≈ 2.31, R(I2) = 2.

With one index we are able to reduce the search cost by a factor of 1.44x
compared with a linear scan.

If S = 3, it follows that the best decision is to construct an index with
three FV (f1, f2, and f3), which contains combinations {f1, f2}, {f1, f3}, and
{f2, f3}. In this case, the size of the index is 3 and therefore we use all the
available space. The expected search cost and total space cost are

E(I3) = 0.99 · 3
6

+ (1− 0.99) · 20

6
≈ 0.53, R(I3) = 3.

The expected search time is reduced by a factor of 6.31x compared with
a linear scan.

An interesting observation is that if we had S = 4, we cannot do any
better. In that case, one possibility is to construct two indices for the most
frequent combinations. In this case, the expected search cost is

0.67 · 2
6

+ (1− 0.67) · 20

6
≈ 1.32 > 0.53.

Even if the probability of using combination {f3, f4} would be 0.01, it
would not be a good idea to have only one index containing the four FVs:

4

6
≈ 0.67 > 0.53.

This illustrates the fact that it is not always optimal to use all the avail-
able space for constructing indices.

If S = 5, the optimum is to build indices for {f1, f2} and {f1, f2, f3}. In
this case, both indices contain combination {f1, f2}, but only the first one
must be used in case the query processor selects this combination. The second
index must be used for combinations {f1, f3} and {f2, f3}. The expected
search and space costs are

116 Chapter 4. Efficiency of feature based similarity search

E(I5) = 0.34 · 2
6

+ 0.65 · 3
6

+ (1− 0.99) · 20

6
≈ 0.47.

R(I5) = 5.

The search time is reduced by a factor of 7.07x compared with a linear
scan.

Finally, if we had S = 6, we can build three indices, one for each of the
most frequently used combinations of FVs. The search and space costs are

E(I6) = 0.99 · 2
6

+ (1− 0.99) · 20

6
≈ 0.36, R(I6) = 6.

In this case, the expected search time is reduced by a factor of 9.17x
compared with the linear scan. Comparing against an optimized linear scan,
i.e., an index of size F (given that now we have enough space to build such
an index), the speed up factor is about 2.75x.

Table 4.6 summarizes the optimal iSets, their space costs, and their cor-
responding improvement factors for the different values of S over a linear
scan.

S Optimal iSet Space Speedup
2 {f1, f2} 2 1.44x
3 {f1, f2, f3} 3 6.31x
4 {f1, f2, f3} 3 6.31x
5 {f1, f2}, {f1, f2, f3} 5 7.07x
6 {f1, f2}, {f1, f3}, {f2, f3} 6 9.17x

Table 4.6: Improvements over a linear scan obtained with the optimal iSet
for the example

This concrete example illustrates that the problem of finding the optimal
iSet is not trivial. We can summarize our observations as follows:

• An incremental greedy algorithm does not guarantee that it will find
the optimal solution. For example, the optimal iSet for S = 6 adds
two indices to the optimal solution with S = 5, but it also deletes one
of the constructed indices.

• It is not always optimal to use all of the available space (see the case
for S = 4).

• The optimal solution for a given amount of available space S is not
necessarily a subset of the optimal solution if one had space S ′ > S
(e.g., compare the optimal solutions for S = 3 and S = 6).

4.4. Indexing frequently used combinations of feature vectors 117

4.4.2 A binary linear program for the optimization
problem

We model the iSet problem as a binary linear program, which allows us to find
the optimal iSet using an integer linear programming optimization package
(e.g., GLPK or CPLEX).

Let C = {c} be the set of combinations of t FVs. Let us define the set of all

possible indices JK,L =
{

idxk,` : t ≤ k ≤ F, 1 ≤ ` ≤ min
[⌊

S
Space(k)

⌋
,
(

F
k

)]}
,

so idxk,` is the `th index of size k. Figure 4.36 illustrates an example of a
set JK,L (with F = 6, t = 2, S = 9, and Space(k) = k). Note that JK,L

enumerates all the possible indices of different sizes that fit in the available
space. We still need to decide which FVs will be inserted on the actually
constructed indices.

3

4

5

(2,1) (2,2) (2,3) (2,4)

(3,1) (3,2) (3,3)

(4,1) (4,2)

(5,1)

(6,1)F=6

t=2

S

Figure 4.36: Example of set JK,L

We extend JK,L with a special index idx∞,` that contains non-indexed
combinations of FVs (i.e., if k = ∞ then Search(∞) = LS(t)) and uses no
space. We also introduce the following binary variables:

118 Chapter 4. Efficiency of feature based similarity search

xf,k,` =

{
1 if f belongs to idxk,`,
0 if not.

yc,k,` =

{
k if idxk,` is the cheapest index s.t. c ∈ idxk,`,
0 if not.

zk,` =

{
1 if index idxk,` exists,
0 if not.

Variable xf,k,` associates FVs and indices, i.e., this variable is equal to
1 if f is in idxk,`. Variable yc,k,` indicates which of the constructed indices
is the cheapest one to perform a similarity query for a given combination c.
Variable zk,l indicates which indices from JK,L are constructed.

Given these variables and parameters, we describe the constraints of the
problem. The space constraint can be written as:∑

k,l

Space(k) · zk,l ≤ S. (4.1)

Next, we ask that every combination is indexed (notice that, in the worst
case, this happens in the special index idx∞,`):

(∀c)
∑
k,`

yc,k,` = 1. (4.2)

Note that this only guarantees that exactly one index is considered in
the search cost of the combination, but not that this index has the minimum
search cost. We will show later that the actual cost will be associated with
the cheapest index.

Now, we set the relation between a combination and the FVs. A com-
bination belongs to an index if all the FVs in the combination are in the
index:

(∀c, k, `) yc,k,` ≤
1

t

∑
f∈c

xf,k,`. (4.3)

The right-hand size of the equation is strictly smaller than 1 (thus it
forces yc,k,` = 0) unless the t FVs in the combination are present in the index
idxk,`.

Next, we need to fix the capacity of an index in number of FVs:

(∀k, `)
∑

f

xf,k,` = k · zk,`. (4.4)

4.4. Indexing frequently used combinations of feature vectors 119

This means that if the system decides to build an index of size k, this
index contains exactly k FVs. Having less than k FVs would waste space,
and having more than k FVs is infeasible.

Finally, we write the target function (to be minimized), which has the
expected search cost:

E =
∑
c,k,`

pc · Search(k) · yc,k,`. (4.5)

At this point we can show that, as long as the search cost increases with
the size of the indices, the cost of a combination c is counted only in the
smallest (i.e., cheapest) index. Indeed, if the FVs of a combination c are
present in two indices idxk,`, idxk′,`′ such that k < k′ and yc,k′,`′ = 1, then
setting yc,k,` = 1, yc,k′,`′ = 0 is a feasible solution with a strictly smaller cost,
i.e., in the optimum, for any fixed c, the variable yc,k,` equals 1 if and only if
index idxk,` contains combination c and k is minimum.

Finally, we observe that the size of the above described binary linear
program is polynomial in the size of the input of the problem. If we use b
bits to represent each probability of C, it follows that the input size of the
problem is log2(F) + log2(t) + log2(S) + b ·

(
F
t

)
.

Note that |JK,L| ≤ 1 + (F − t + 1) ·
⌊

S
Space(t)

⌋
≤ 1 + F ·

⌊
S

Space(t)

⌋
, that

S <
(

F
t

)
· Space(t) (otherwhise, the solution is trivial: build an index for

each combination of FVs), which implies that
⌊

S
Space(t)

⌋
≤
(

F
t

)
, and that

F ≤ |C| =
(

F
t

)
(unless t = 0, which is not valid in our problem, or t = F ,

in which case the solution to the problem is trivial). Thus, the number of
variables is

variables = |F||JK,L|+ |C||JK,L|+ |JK,L|

≤ F ·
(

1 + ·F ·
⌊

S

Space(t)

⌋)
+

(
F

t

)
·
(

1 + F ·
⌊

S

Space(t)

⌋)
+

(
1 + F ·

⌊
S

Space(t)

⌋)
<

(
F +

(
F

t

)
+ 1

)
·
(

1 + F ·
(

F

t

))
≤

(
2 ·
(

F

t

)
+ 1

)
·

((
F

t

)2

+ 1

)

= 2 ·
(

F

t

)3

+

(
F

t

)2

+ 2 ·
(

F

t

)
+ 1

120 Chapter 4. Efficiency of feature based similarity search

and the number of constraints is

constraints = 1 + |C|+ |C||JK,L|+ |JK,L|

< 1 +

(
F

t

)
+

(
F

t

)
·
(

1 + F ·
(

F

t

))
+

(
1 + F ·

(
F

t

))
≤ 1 +

(
F

t

)
+

((
F

t

)
+ 1

)
·

(
1 +

(
F

t

)2
)

=

(
F

t

)3

+

(
F

t

)2

+ 2 ·
(

F

t

)
+ 2.

Therefore, the binary linear program instance that we build has polyno-
mial size with respect to the original problem. An upper bound of the total
size of the binary linear program is variables · b + (variables + log2(S)) ·
constraints ≈ O

((
F
t

)6)
.

On the one hand, our model shows that finding the optimum iSet is NPO
(note that we have not proved that our problem is NPO-Complete, for that
we still need to prove that the problem is NPO-Hard). On the other hand,
binary linear programs are NPO-Hard to be solved in the general case [Garey
and Johnson, 1979; Hromkovic, 2001], so having this formulation does not
provide an efficient way to find the optimum. Nevertheless, standard methods
such as the Branch and Bound [Garfinkel and Nemhauser, 1972] can be used
for small instances or to obtain an approximation to the optimal solution.

Also note that our model is general in the sense that it can be used with
any index structure. One only needs to define the Search and Space cost
functions appropriately, depending on which index structure is used. It is
even possible to use different index structures for different index sizes: The
binary linear program ensures that the optimal solution will be found, given
the set of parameters (cost functions, available space, and probabilities for the
combinations). Therefore, if more efficient index structures for combinations
of FVs are created, our proposed model can always take advantage of them,
finding the optimal use of the available space for building indices.

At the beginning of this section, it was assumed that all FVs had the
same dimensionality. If this is not the case, the binary linear program is still
able to find the optimal iSet. The only difference is that the cost functions
Search(k, d) and Space(k, d) need to be defined for all the used dimension-
alities.

4.4. Indexing frequently used combinations of feature vectors 121

4.4.3 Bounds for the optimal solution

Now we analyze the upper and lower bounds for the minimum expected
search cost. Let P (S) =

∑bS/Space(t)c
i=1 pci

and M(t, S) = min{Search(t +
1), LS(t)}.

Theorem 2. Assume that

1. Search(t) < LS(t), Search(t + 1) > Search(t).

2. C = {ci}i=1,...,T is the set of combinations, with probabilities pi, pi+1 ≥
pi.

Let E(I) be the expected cost of iSet I and OPT (S) be the minimum
expected search cost when there is space S for indexing.

Then, upper and lower bounds for the minimum expected search cost are
given by

OPT (S) ≤ Search(t) · P (S) + LS(t) · (1− P (S)), (4.6)

and

OPT (S) ≥ Search(t) · P (S) + M(t, S) · (1− P (S)). (4.7)

Proof. We start proving inequality (4.6). Consider the iSet I that con-
sists of bS/Space(t)c indices of size t indexing the combinations with high-
est probabilities, and that does not index any other combination. Then
E(I) = Search(t) · P (S) + LS(t) · (1 − P (S)), but OPT (S) ≤ E(I), so we
are done.

For inequality (4.7), we distinguish two cases:

i. Either Search(t + 1) ≥ LS(t), in which case no index of size t + 1 is
created, so we find ourselves in the case of Section 4.4.1 (indexing single
combinations) and the result follows; or

ii. Search(t + 1) < LS(t), and therefore the optimum solution may use
indices of different sizes.

Let A = {ci : ci is contained by an index of size t} and B = C − A. It
follows that |A| ≤ bS/Space(t)c. Let msI(ci) be the size of the smallest
index that contains combination ci (to simplify the notation, here we assume
Search(∞) = LS(t)). Then

122 Chapter 4. Efficiency of feature based similarity search

OPT (S) =
∑
ci∈C

Search(msI(ci)) · pci

=
∑
ci∈A

Search(t) · pci
+
∑
ci∈B

Search(msI(ci)) · pci

≥
∑
ci∈A

Search(t) · pci
+
∑
ci∈B

Search(t + 1) · pci

= Search(t) · p(A) + Search(t + 1) · (1− p(A))

where p(A) =
∑

ci∈A pci
.

Because Search(t + 1) > Search(t), the right side is minimized when
p(A) is maximum. But |A| ≤ bS/Space(t)c, therefore the maximum value
of p(A) is attained when |A| = bS/Space[t]c, i.e., then p(A) = P (S), which
concludes the proof.

4.4.4 Algorithms for solving the optimization problem

We propose three greedy algorithms to find good solutions for the optimiza-
tion problem efficiently. In Section 4.4.5, we show that our algorithms find
solutions close to the optimal values.

Algorithm A

The first algorithm starts with I = ∅. On each iteration, the algorithm
performs the best of:

• Adding a new index of size t (if there is enough available space), and

• Adding a FV to one of the indices already in I.

For both possible actions, the algorithm selects the one that minimizes the
expected search cost. The algorithm iterates until there is no more available
space or none of the actions improves the expected search cost. Algorithm
4.7 depicts the pseudocode for this algorithm.

Algorithm B

The second algorithm starts with an iSet that contains indices of size t for
all combinations of t FVs. Then, the algorithm searches for two indices to
merge, such that the ratio of the increase in the expected search cost and the
amount of saved space is minimal. The merge operation frees some of the

4.4. Indexing frequently used combinations of feature vectors 123

Algorithm 4.7: Algorithm A

Input: F, t, S, probabilities pci

Output: I
I← ∅;1

avSpace← S;2

mincost← LS(t);3

repeat4

flag ← STOP ;5

// Add an index

if Space(t) ≤ avSpace then6

forall idx of size t do7

if idx /∈ I then8

cost← E(I ∪ {idx});9

if cost < mincost then10

mincost← cost;11

iSetNew ← I ∪ {idx};12

flag ← ADD;13

// Expand an index

forall f ∈ F do14

forall idx ∈ I do15

if f /∈ idx then16

idx′ ← idx ∪ f ;17

cost← E((I− {idx}) ∪ {idx′});18

if cost <19

mincost∧ avSpace+Space(|idx|)−Space(|idx|+ 1) ≥ 0
then

mincost← cost;20

iSetNew ← (I− {idx}) ∪ {idx′};21

m← |idx|;22

flag ← EXPAND;23

// Selecting best option

if flag 6= STOP then I← iSetNew;24

switch flag do25

case ADD avSpace← avSpace− Space(t);26

case EXPAND27

avSpace← avSpace + Space(m)− Space(m + 1);

until avSpace = 0 or flag = STOP ;28

124 Chapter 4. Efficiency of feature based similarity search

space used by the indices, but the method also takes care (implicitly) that
the search cost does not increase too much. The algorithm iterates until the
used space for the iSet is equal or smaller than S. Algorithm 4.8 depicts the
pseudocode for this algorithm.

Algorithm 4.8: Algorithm B

Input: F, t, S, probabilities pci

Output: I
I← set of all indices of size t;1

usedSpace←
(

F
t

)
· Space(t);2

while usedSpace > S do3

ratio←∞;4

// Merge two indices

forall i, j ∈ I, i 6= j do5

idx← i ∪ j;6

cost← E((I− {i} − {j}) ∪ {idx});7

saved← Space(|i|) + Space(|j|)− Space(|idx|);8

if saved > 0 and cost/saved < ratio then9

iSetNew ← (I− {i} − {j}) ∪ {idx};10

ratio← cost/saved;11

freed← saved;12

I← iSetNew;13

usedSpace← usedSpace− freed;14

Note that this algorithm only works if S ≥ Space(F). When S =
Space(F), it simply returns one index that contains all FVs. Thus, it is
not possible to save space by merging indices once this solution is reached.

Algorithm C

The third algorithm is a slight modification of algorithm A. Instead of starting
with an empty iSet, it starts with an iSet that contains bS/Space(t)c indices
of size t for the most frequently used combinations. Then, while there is
available space, it tries to expand the indices if this further decreases the
expected search cost.

Recall that

P (S) =

bS/Space(t)c∑
i=1

pi and M(t, S) = min{Search(t + 1), LS(t)}.

4.4. Indexing frequently used combinations of feature vectors 125

Theorem 3. Algorithm C finds an iSet whose expected search cost is at most

Search(t) · P (S) + LS(t) · (1− P (S))

Search(t) · P (S) + M(t, S) · (1− P (S))

times the minimum expected search cost.

Proof. It follows directly from Theorem 2 and the fact that if it is not conve-
nient to expand any of the indices of size t, then the algorithm will return as
solution bS/Space(t)c indices of size t for the most probable combinations.
This solution has an expected search cost equal to the upper bound (equation
(4.6)) of the optimal solution. Thus, any solution returned by algorithm C
which includes an index of size greater than t must have an expected search
cost lower than the upper bound.

Notice that if M(t, s) = LS(t), the algorithm C finds the optimal solution.
Also, notice that Theorem 3 also holds for an algorithm that returns the iSet
that has a minimum expected search cost value between those returned by
algorithms A, B, and C.

4.4.5 Experimental evaluation

We used a real dataset to compare the iSets obtained by the binary linear
program and the proposed algorithms. The dataset consists of 3D models
collected from the Internet. For this dataset, we implemented 16 different
FVs for 3D models, which include volumetric descriptors, surface descriptors,
and image-based descriptors. See Section 3.1.2 for a detailed explanation of
the experimental framework.

We pre-processed the implemented FVs before computing the combina-
tions. First, we applied a PCA-based dimensionality reduction that all FVs
have the same dimensionality. We applied PCA to all FVs and then we kept
the 32 principal axes of each FV (32-D was the smallest dimensionality in
the original set of FVs). Then, we normalized the coordinate values of all
FVs in the range [0, 1].

To compute the probabilities of using a given combination of FVs, we used
the entropy impurity method (cf. Section 3.3.2). The t FVs with the smallest
entropy impurity values were selected for the combination. We ran our set
of queries and let the query processor select the best combination, storing
which combination was selected for each query. We used the frequency of
selection of each combination as its probability of being selected by the query
processor.

126 Chapter 4. Efficiency of feature based similarity search

For the space and search cost functions, we used the same of Section 4.4.1,
i.e., we used a VA-File as index structure. We considered two sets of FVs
(F = 6 and F = 16) and two combination sizes (t = 2 and t = 3).

For all the values of F and t, we ran our algorithms, calculated the lower
and upper bounds of Theorem 2, and solved the binary linear program over
different values of S. Finally, we normalized the results by the search cost of
a single index of size F .

To solve the binary linear program, we used the CPLEX linear optimiza-
tion solver, version 7.5. Our machine has two Pentium IV 3.7 Ghz processors
running Fedora Linux 4, with 1Gb of RAM.

Experimental results

Figure 4.37 shows the results for the binary program in the case F = 6, t = 2,
and S = 6, . . . , 12, as well as the search cost of a single index containing all
FVs, the general lower and upper bound, and the search cost when each
combination is indexed in its own index of size t (which is feasible only if
S ≥

(
6
2

)
· Space(t) = 30). The reduction in the search cost is important. For

instance, having twice the space of the näıve solution (one index of size 6)
reduce the expected search cost by a factor of 2x.

 0

 0.5

 1

 1.5

 2

 6 7 8 9 10 11 12

E
xp

ec
te

d
se

ar
ch

 c
os

t

S

Expected search cost, F=6, t=2

Optimum
All indices of size t

One index of size F
Lower bound
Upper bound

Figure 4.37: Expected search cost of the optimal iSet, F = 6, t = 2

Figure 4.38 (respectively 4.39) shows the solutions obtained by the algo-

4.4. Indexing frequently used combinations of feature vectors 127

rithms for the case F = 6, t = 2 (respectively t = 3) and S = 6, . . . , 12, as
well as the optimum value (from the binary linear program) and the lower
and upper bounds of Theorem 2. From these figures, it can be seen that,
even though algorithm C did not find good iSets, it was worthwhile to have
indices of size greater than t. Indeed, this was the reason for the drastic re-
ductions in the search cost obtained by algorithm C when S is not divisible
by t. The results of algorithm A for the case t = 3 were optimal over the
whole range of S values.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 6 7 8 9 10 11 12

E
xp

ec
te

d
se

ar
ch

 c
os

t

S

Expected search cost, F=6, t=2

Algorithm A
Algorithm B
Algorithm C

Optimum
Lower bound
Upper bound

Figure 4.38: Expected search cost of the iSets returned by the algorithms,
F = 6, t = 2

For the case F = 16, neither the binary linear program, nor algorithm
B (for the case t = 3) gave a solution within a reasonable amount of time
(less than 1 day), so we present results only regarding algorithms A, B (for
t = 2), and C, as well as the theoretical lower and upper bounds. Figure
4.40 (respectively 4.41) shows the results for t = 2 (respectively t = 3) when
S = 12, . . . , 24. Here it becomes clear that in some important cases the
only practical way to get a good solution is by resorting to approximation
algorithms.

Finally, Table 4.7 shows the running times of the algorithms and the
binary linear program for F = 6 and t = 2. The first column shows the
available space S. The second, third, and fourth columns show the running
time for algorithms A, B, and C, respectively. The fifth column shows the

128 Chapter 4. Efficiency of feature based similarity search

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 6 7 8 9 10 11 12

E
xp

ec
te

d
se

ar
ch

 c
os

t

S

Expected search cost, F=6, t=3

Algorithm A
Algorithm B
Algorithm C

Optimum
Lower bound
Upper bound

Figure 4.39: Expected search cost of the iSets returned by the algorithms,
F = 6, t = 3

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 12 14 16 18 20 22 24

E
xp

ec
te

d
se

ar
ch

 c
os

t

S

Expected search cost, F=16, t=2

Algorithm A
Algorithm B
Algorithm C

Lower bound
Upper bound

Figure 4.40: Expected search cost of the iSets returned by the algorithms,
F = 16, t = 2

4.4. Indexing frequently used combinations of feature vectors 129

 0

 0.5

 1

 1.5

 2

 12 14 16 18 20 22 24

E
xp

ec
te

d
se

ar
ch

 c
os

t

S

Expected search cost, F=16, t=3

Algorithm A
Algorithm C

Lower bound
Upper bound

Figure 4.41: Expected search cost of the iSets returned by the algorithms,
F = 16, t = 3

running time of the binary linear program. It follows that the time needed
by the binary linear program increased steeply with S, and that the approx-
imated algorithms are at least one order of magnitude faster than the binary
linear program.

S A B C BLP
6 0.037 0.379 0.052 0.13
7 0.038 0.344 0.028 1.41
8 0.042 0.346 0.025 3.15
9 0.046 0.349 0.030 16.51
10 0.054 0.350 0.025 76.83
11 0.060 0.344 0.032 451.70
12 0.066 0.347 0.025 765.95

Table 4.7: Time (in seconds) needed for the algorithms and the binary linear
program to find the solution

Analysis of the results

From algorithms A, B, and C, the best overall was algorithm A. It was fast to
compute and returned nearly optimal solutions: About 4% in average from

130 Chapter 4. Efficiency of feature based similarity search

the optimum in the cases where we could calculate the optimum using the
binary linear program.

Algorithm B also returned good iSets (sometimes better than A), but
it became too slow when the total number of combinations T became large
(when F = 16, t = 3, then T =

(
16
3

)
= 560). This is because the initial

solution for this algorithm contains exactly one index per combination and
it is O(T 2) on each iteration. Also, this algorithm does not work when
S < Space(F).

Algorithm C was the fastest, but it produced the worst results compared
to the other algorithms. Its only advantage is that we can prove a guarantee
(Theorem 3) on the relative error of its output. Even though algorithm A
always performed better than C in our experiments, it is possible to construct
instances in which algorithm C performs better than A, thus it is not possible
to apply Theorem 3 to algorithm A.

Therefore, a good compromise would be to use the iSet with minimum
expected search cost between the outputs of algorithms A and C.

Finally, notice that in Figure 4.41 algorithm A produced a better solution
for S = 19 than for S = 20. This may happen when the algorithm does not
have more space for building a new index of size t and therefore it expands
an existing index (S = 19). When more available space is allowed (S = 20),
the greedy algorithm may decide to create a new index, missing a chance to
expand afterwards.

4.5 Conclusions

This chapter presented several contributions to improve the effectiveness of
similarity search in multimedia databases. Here we present some conclusions
with regard to each of the proposed techniques.

In Section 4.1, we defined an efficiency criterion to compare two sets of
pivots, and have experimentally shown that this criterion consistently selects
good sets of pivots in a variety of synthetic and real-world metric spaces,
reducing the total complexity of pivot-based proximity searching when an-
swering range queries. The proposed efficiency criterion is based on a formal
theory, that takes into account the distance distribution of the mapped space
defined by the selected pivots. This formalism is crucial, in contrast to simple
heuristics, to consistently obtain good results in a wide scope as the one of
metric spaces.

We presented three different pivot selection techniques, which use the ef-
ficiency criterion defined, and showed that the so-called incremental selection
is the best method in practice. It was found that good pivots are outliers,

4.5. Conclusions 131

but outliers are not necessarily good pivots. It is interesting to note that
outlier sets have a good performance in uniformly distributed vector spaces,
but have a poor performance in general metric spaces, even worse than ran-
dom selection in some cases. This result raises the question if it is valid to
test pivot selection techniques in uniformly distributed vector spaces.

In Section 4.2, we presented an optimized version of the optimal-order
k-NN search algorithm, using distance estimators (such as the upper and
lower bound distance to the query object) in order to reduce the storage
requirements of the search algorithm. Our proposed algorithm aims to filter
out from the active page list, as soon as possible, all nodes from the index
where it is ensured that no relevant objects can be found. We also introduce
the concept of bubble, which are “abstract” index nodes with no elements
inside. Bubbles can be used to filter out index nodes from the active page
list using the distance estimators, even if the algorithm has not yet visited
the index nodes which actually contain the objects inside the bubble. We
tested our algorithm with several synthetic and real-world datasets, using
two state-of-the-art index structures for metric spaces. The experimental
results confirmed that the storage requirements of our proposed algorithm
are considerably smaller compared with the standard k-NN algorithm (up to
5 times smaller).

Although we focused on indices for metric spaces, the improved k-NN
algorithm is general and can be adapted with minimal effort to be used with
spatial access methods. In that case, each subtree is usually bounded by
a hyperrectangle. Our heuristic translates into the following rule: Assume
a tree node contains bsize elements within a hyperrectangle. Then there are
bsize elements at a distance max d(q, c), where c ranges among all the corners
of the hyperrectangle. This heuristic is different from the usual MinMaxDist,
which gives a better distance estimator but only holds for one object per
tree node. If we use the simpler rule from Samet [2003] and translate it
to a spatial data structure, the result is always inferior to the MinMaxDist
heuristic.

In Section 4.3, we proposed a pivot-based index for combinations of fea-
ture vectors. As we showed in Chapter 3, combinations of features may
improve the effectiveness of the similarity search. The presented index struc-
ture addresses the efficiency problem of similarity searching using more than
a single feature to represent a multimedia object. We especifically described
the data structure of the index and a NN search algorithm for the case of
dynamically weighted combinations of feature vectors. Our experimental
evaluation showed that the proposed pivot-based index improves the effi-
ciency of the search up to a factor of more than 5x when compared to the
sequential scan.

132 Chapter 4. Efficiency of feature based similarity search

Finally, in Section 4.4 we presented methods for finding the set of indices
(iSet) that minimizes the expected search cost of similarity queries that use
dynamic combinations of feature vectors. We model the problem of finding
the optimal iSet as a binary linear program. This provides us with a tool
to find the optimal solution for small instances of the problem. We also
proposed fast algorithms that are able to find good sets of indices.

The applicability of the proposed model is not restricted to the particular
cases that we presented in this section. Our approach is very flexible in the
sense that is not restricted to a particular dimensionality of the space, to
a particular index structure, or to specific cost functions. The model can
be used to evaluate different indexing schemes, different dimensionalities of
the FVs, and so on: It suffices to define the cost functions, available space,
and probabilities of using the combinations, and the model will return the
optimal solution for that set up. If LS were to be replaced by more efficient
techniques, our model can still be applied to find the best indexing. It suffices
to change the corresponding parameter in the model. The same applies if,
for instance, more efficient index structures become available.

Chapter 5

Hardware acceleration of
feature-based similarity search

Modern graphics processor units (GPUs) consist of several parallel working
stream processors, and the memory bandwidth of state-of-art graphic cards is
much higher than in any high-end conventional desktop PC. These GPUs are
now capable of processing several million vertex coordinates or fragments per
second, and actually provide more processing power than the last generation
of CPUs. At this time, only a few publications focus on graphic hardware
acceleration for database related algorithms.

In this chapter, we explore the practical usage of GPUs as co-processors
for database applications and show its high potential. We present detailed de-
scriptions of GPU implementations of two basic database algorithms, namely
high-dimensional nearest neighbor search and clustering. Since GPUs are
designed to perform graphic primitives, the implementation of database al-
gorithms requires some innovating and challenging data encoding and GPU
programming. The experimental results show that the proposed GPU algo-
rithms are an order of magnitude faster than their CPU versions.

This work has been published in Bustos et al. [2006a].

5.1 Introduction

In the last few years, GPU technology has improved much faster than CPU
technology. For example, the processing power of the GeForce 6800 Ultra
GPU peaks at 40 GFlops (the Intel Pentium IV CPU (3 GHz) provides
about 6 GFlops peak performance), its processing speed has improved to
600 million vertices per second, and its memory bandwidth has increased
to more than 35 GBytes/s [Fan et al., 2004; NVIDIAa, 2005]. The main

134 Chapter 5. Hw. acceleration of feature-based similarity search

driving force behind this rapid development are computer games and other
multimedia applications, which require extensive graphic processing capa-
bilities to generate realistic scenes in real time. Due to the fast growing
computer game industry, this development will undoubtedly continue. Cur-
rently, graphic cards connect to a very high performance bidirectional data
bus (PCI Express (PCIe)) with an acceptable price-performance ratio. Also,
it is now possible to use multiple graphic cards in a single host computer.
It is therefore interesting to develop algorithms which exploit the power of
current GPUs to speed up general computations.

Recently, there have been research projects which have dealt with new
programming interfaces, that allow GPUs to be used for general purpose
computations. For example, the recently proposed GPU programming in-
terface Brook [Buck et al., 2004] is a generic system, which extends the C
language to facilitate the usage of GPUs as streaming co-processors. The
idea is to code special functions called kernels that run on the GPU using
a high level C-style programming language. Brook transforms and compiles
the kernels into assembly language for the GPU, thus allowing a fast devel-
opment of general purpose programs for GPUs. Application examples are
the Fast Fourier Transform [Moreland and Angel, 2003], a framework for
linear algebra operators [Krüger and Westermann, 2003], and an algorithm
for computing 3D distance fields [Sud et al., 2004]. Unfortunately, by using
Brook there are some performance drawbacks.

Recent publications study the usage of GPUs as co-processors for database
applications. Not surprisingly, the first papers mainly focused on graphics
related operations in spatial databases. Sun et al. [2003] propose methods to
accelerate the refinement step of spatial selections and joins using the GPU;
and following the same trend, Bandi et al. [2004] show how to integrate the
hardware acceleration provided by GPUs with a commercial DBMS for spa-
tial operations. One of the first papers which focused on general database
operations, such as predicate evaluation, boolean combination, and aggre-
gation, is by Govindaraju et al. [2004]. Their experimental results showed
that GPUs can be used as a co-processor for some of these common database
operations. However, the limited scale experiments also showed that some of
the operations were much slower than with the CPU implementation.

We present GPU implementations for two important database applica-
tions: nearest neighbor search and clustering. The aim of these proposed
implementations is to achieve the maximum performance with these algo-
rithms. The proposed GPU-based solutions are evaluated using large real
and synthetic datasets. In contrast to most of the previous work, this re-
search is not focused on general conception or theory, but rather illustrates a
more efficient and practical approach to implement GPU-based algorithms.

5.2. Graphics hardware 135

5.2 Graphics hardware

A modern graphics adapter can be seen as a parallel computer with its own
memory, that works on a large stream of data records. This section outlines
the data processing pipeline currently used in such adapters, and the resulting
requirements and restrictions for programming GPUs to deal with database
operations.

5.2.1 The rendering pipeline

Nowadays, high end graphics accelerators, such as NVIDIA’s GeForce series
[NVIDIAa, 2005], contain programmable parallel working stream processor
units. To properly take advantage of these powerful units and to use their
full potential for any kind of computational work, it is first necessary to take
a look at the rendering pipeline, that explains how a geometric data stream
is transformed into images. Figure 5.1 shows a diagram of this pipeline in
modern graphics hardware. The algorithms presented in this chapter work
almost completely within the rasterization stage. These units are the most
efficient/parallel parts of the data pipeline in today’s graphics hardware.

Data for rendering consist basically of geometric primitives and connected
texture information. Textures are digital images that are projected on the
primitives to enhance realism by using texture coordinates. These coordinates
control the fine addressing of texture elements (called texels): A texture is a
2D array of texels (see Figure 5.2). Each texel ti,j contains 4 color channels
(red, green, blue, and alpha), i.e., it can store up to 4 float values. The
proposed GPU-based algorithms will use textures to encode the database
information.

The first stage in the pipeline is called geometry setup stage. Here, geom-
etry data may be altered (e.g., it can be rotated, scaled, or translated in the
3D space). The pre-processed 3D data is then processed by the rasterizer,
which samples the geometry data into a set of fragments. It is useful to think
of fragments as potential pixels to be rendered on the screen. According to
the texture information, the color and depth values of these fragments may
be altered. This transformation process can be controlled with the aid of
programmable fragment processors. A state-of-art graphics card, such as the
NVIDIA GeForce 6800 Ultra, includes 16 parallel working fragment proces-
sors, which are attached to DDR video memory with a high-speed, 256 bit
wide, 550 MHz data bus. Finally, the processed fragments may become part
of the final picture as pixels.

The set of fragment processors can either execute a set of fixed set of
instructions defined in a graphic API (e.g., OpenGL), or a user-specified

136 Chapter 5. Hw. acceleration of feature-based similarity search

Geometry stage
(source of fragment stream)

Rasterization stage
Fragment shader

(Cg: static & dynamic control flow)

Depth test
(can discard fragments)

Results at the Framebuffer
(off screen pbuffer)

Set of textures
(video memory on card)

convert texture data to
OpenGL texture objects

HW texture lookup at
fast 550 Mhz DDR RAM

RenderToTexture if further
rendering loops needed

upload fragment
program

the results
read back

System memory:
3D geometry + texture data

Fragment stream

3D geometry stream

3D geometry

Pixel stream

Host computer

Graphics card

Bus (AGP or PCIe)

Figure 5.1: Dataflow within GPU stages

(4x4, 64 float values)

Texture

t
1,1

t
1,2

t
1,3

t
1,4

t
2,1

t
2,2

t
2,3

t
2,4

t
3,1

t
3,2

t
3,3

t
3,4

t
4,1

t
4,2

t
4,3

t
4,4

t
i, j

=

Red channel

Alpha channel

Green channel
Blue channel

Figure 5.2: Illustration of a 4× 4 texture

5.2. Graphics hardware 137

assembly-level program called fragment program, which is a more flexible so-
lution. Fragment programs consist of 4-way SIMD (Single Instruction Multi-
ple Data) instructions. As GPUs are designed for different kinds of graphical
calculations, the instructions include standard mathematical operations and
a few special purpose instructions in combination with texture operations.

With a correct setup of geometry and texture data, every texel becomes
a fragment in the rendering pipeline and can be processed by a fragment
program. This is necessary to ensure that all data in the stream are processed
correctly. Hence, the major task during the implementation of the algorithms
is the proper data en- and decoding, to correctly convert the data into graphic
pipeline compatible records.

5.2.2 GPU programming

Every fragment processor works with the same code, but on different parts
of the fragment stream. A fragment program has simultaneous access of up
to 16 different textures on current GeForce hardware. Fragment programs
do not have any access to previous or future fragments in the data stream,
which allows the hardware to work in parallel on parts of the data stream.
It is possible to transfer additional parameters to the fragment programs for
each stream processing pass, but only before the fragment program starts.

The general approach here is to set up the fragment programs and their
input data once and run them using the highest possible amount of input
data, because the data transfer from the host main memory to the graphics
card is slow compared to video memory access, even if the data is located
in the AGP memory buffer. Such transfers must be optimized, which can
be done, for example, by partitioning the data or clustering the queries.
To set up the input stream, the input data is converted and copied to at
least one texture, making use of the modern floating point texture formats.
After that, the rendering pipeline is fed with basic geometry to map the
textures. Additionally, the fragment programs are loaded into hardware using
the NVIDIA’s Cg toolkit [NVIDIAb, 2005]. After doing so, a stream of
data is attached to fragments, which relays the input data. The fragment
programs combine these and additional data (encoded in additional textures)
to compute intermediate or final results. Often, more than one rendering step
is required for the whole computing process. This is a common process in
computer graphics (e.g., games use up to seven rendering steps until the
final (visible) image is shown on the screen). Consequently, GPU algorithms
consist of a set of stream processing rendering steps. The fragment programs
only work together with surrounding data encode/decode and render control
routines (e.g., C/C++ and OpenGL framework).

138 Chapter 5. Hw. acceleration of feature-based similarity search

Once the fragments have been generated, the depth buffer, which is asso-
ciated with all fragments, is used to determine the visible pixels (depth test).
In its standard setup, a fragment is converted into a visible pixel if its depth
is smaller than the actual value in the depth buffer. In this case, the pixel is
set and the new depth is adjusted. This setup can be changed in a flexible
way to create special renderings and, in our case, to help compute complex
database operations.

5.2.3 The Cg language

The Cg Language [NVIDIAc, 2005], “C for graphics”, is a high level language
that can be used to code fragment programs. Cg code looks very similar to
C code, but it is enhanced to make it easy to code and compile programs
that run on the GPU. Some of the Cg commands that will be used in the
following fragment programs are:

• float4 fv : Declares a 4-D vector fv. Each coordinate can be accessed as
follows: fv.x, fv.y, fv.z, and fv.w. Scalar value are declared as float.

• samplerRect tex : Addresses the different texture units.

• float4 texRect(samplerRect tex, float2 coords): Returns a 4-D vector
with the data stored in the texture tex at coordinates (coords.x, co-
ords.y).

• Swizzle operator ‘.’ : Efficiently converts a scalar value into a vector.
E.g., if c is a scalar, then c.xxxx is a 4-D vector with all coordinates
values equal to c.

A fragment program should always return a 4-D vector with color infor-
mation. Each coordinate value of this vector corresponds to one of the 4
color channels. If the depth test is used, the fragment program also needs
to return a depth value. These variables are declared as parameters of the
fragment program with the keyword out.

• out float4 color : This variable returns the processed data.

• out float depth: This variable stores the depth value of the fragment.

5.3. Fast linear scan using the graphics unit processor 139

5.3 Fast linear scan using the graphics unit

processor

As already discussed in Chapter 2, nearest neighbor search in high dimen-
sional spaces is an important, but challenging problem. Several indexing
algorithms have been proposed for implementing this similarity query (cf.
Section 2.4). However, most of the experiment results reported with spa-
tial access methods showed that the performance of the linear scan is highly
competitive for high-dimensional datasets, and that it can be faster than any
index structure in such spaces (cf. Section 2.5.3). In this section, we describe
a GPU version of the linear scan based NN search algorithm, which will help
to keep the presentation as simple and clear as possible.

5.3.1 GPU implementation of nearest neighbor search

The first step of the algorithm is to load the vectors into the graphics card
texture memory. For this purpose, d textures are created. Each of them will
store one coordinate value of all vectors. The four available color channels
will be used to store the data, thus each texel contains the ith coordinate value
of four different vectors (e.g., a 512x512 texture is needed to store 1,048,576
coordinate values). Figure 5.3 illustrates how the textures are used to store
the data, using a 6-dimensional database with 4 vectors. Vi,j represents the
jth coordinate of the ith vector.

Three different fragment programs are used to implement the GPU-based
linear scan. The first fragment program computes the distance between each
object u and the query q. As distance metric we use the Manhattan dis-
tance. This simple metric was chosen because it is useful for many multi-
media databases and its very fast to compute, but other metrics are also
possible (e.g., any Minkowski distance). To fully exploit the potential of
the GPU, the difference between coordinates is simultaneously computed for
several dimensions. Algorithm 5.1 shows the actual fragment program code
used for the experiments. During each pass of the algorithm, t textures, i.e.,
t dimensions, are processed in parallel (line 15 of the FP) for a total of d/t
passes (we obtained the best results with our hardware using t = 8). Vari-
ables texi represent each texture, which contain coordinate values. Texture
texR contains the result from previous iterations that is aggregated with the
results of the current pass (initially, texR only contains zeros). Figure 5.4
illustrates how this fragment program works.

In the next rendering pass, the NN to q is determined by using two dif-
ferent fragment programs. The first one computes the minimum distance

140 Chapter 5. Hw. acceleration of feature-based similarity search

V1,1 V1,2 V1,3 V1,4 V1,5 V1,6

V2,1 V2,2 V2,3 V2,4 V2,5 V2,6

V3,1 V3,2 V3,4 V3,5 V3,6

V4,2 V4,4V4,3 V4,5 V4,6V4,1

V3,3

V1,1
V2,1
V3,1
V4,1

Texture
1

R:
G:
B:
A:

R:
G:
B:
A:

V
V
V
V

1,2

2,2

3,2

4,2

Texture
2

R:
G:
B:
A:

V
V
V
V

1,3

2,3

3,3

4,3

Texture
3

R:
G:
B:
A:

V
V
V
V

1,4

2,4

3,4

4,4

Texture
4

R:
G:
B:
A:

V
V
V
V

1,5

2,5

3,5

4,5

Texture
5

R:
G:
B:
A:

V
V
V
V

1,6

2,6

3,6

4,6

Texture
6

Data

Figure 5.3: Data organization for the linear scan algorithm

Algorithm 5.1: Fragment program 1: Computing Manhattan distance

void FragmentProgram1(1

float2 coords : TEXCOORD0, // fixed texture coordinates2

uniform samplerRECT tex0 : TEXUNIT0, // DB data3

. . .4

uniform samplerRECT tex7 : TEXUNIT7,5

uniform samplerRECT texR : TEXUNIT8, // partial results are6

stored here
uniform float qc0, . . . , uniform float qc7, // query vector data7

out float4 color : COLOR) {8

// fetch data related to linear interpolated tex coords, process every9

record once
float4 fv0 = texRECT(tex0, coords); // reads one texel from tex010

. . .11

float4 fv7 = texRECT(tex7, coords); // reads one texel from tex712

float4 fv = texRECT(texR, coords); // reads partial result stored on13

texR
// compute partial distance over 8 dimensions (aggregated into texR)14

color = fv+abs(fv0-qc0.xxxx)+. . . +abs(fv7-qc7.xxxx); }15

5.3. Fast linear scan using the graphics unit processor 141

Partial resulti−th texturePartial result Query

R: texR

G: texR

B: texR

A: texR

R: tex0

G: tex0

B: tex0

A: tex0

1, i

2, i

3, i

4, i

R: Q

G: Q

B: Q

A: Q

i

i

i

i

R: texR

G: texR

B: texR

A: texR

+ |tex0 − Q |

+ |tex0 − Q |

+ |tex0 − Q |

1, i

2, i

3, i

4, i

i

i

i

i

+ |tex0 − Q |
1

2

3

4

1

2

3

4

Figure 5.4: How does fragment program 1 work (one texture shown)

values within the color and alpha channels (variable min), and associates
these distance values with the index of the corresponding object (variable
fvidx). Algorithm 5.2 shows the code. Lines 9–11 compare the four values
stored in each texel, and keeps the minimum value in the red channel (coor-
dinate x). In the green channel (coordinate y), the fragment program stores
the index associated with the object which has the minimum distance to the
query (the index is simply an integer value between 1 and n). Figure 5.5
illustrates.

Algorithm 5.2: Fragment program 2: Computing min value of the
texel attached vector of 4 distances, and associating an index value to
these objects

void FragmentProgram2(1

float2 coords : TEXCOORD0,2

uniform samplerRECT data : TEXUNIT0,3

uniform samplerRECT index : TEXUNIT1,4

out float4 color : COLOR) {5

float4 fv = texRECT(data, coords); // computed distances with6

fragment program 1
float4 fvidx = texRECT(index, coords); // respective indices7

float4 min = float4(fv.x,fvidx.x,0.0,0.0);8

if (min.x > fv.y) {min=float4(fv.y,fvidx.y,0.0,0.0);}9

if (min.x > fv.z) {min=float4(fv.z,fvidx.z,0.0,0.0);}10

if (min.x > fv.w) {min=float4(fv.w,fvidx.w,0.0,0.0);}11

color = min; } // min value: (distance, index, 0, 0)12

The last fragment program searches for the minimum distance between
four appropriately selected texels, and iteratively reduces the texture size by a
factor of 4 during each pass. The minimum distance and its associated index
are stored in the red and green channels, respectively. This iterative reduction

142 Chapter 5. Hw. acceleration of feature-based similarity search

d

d

d

d

1

2

3

4

1

2

3

4

idx

idx

idx

idx

Minimum distance

and object id

R:

G:

B:

A:

R:

G:

B:

A:
R:

G:

B:

A:

d

−−

−−

idx
min

minIndices

Distances

Figure 5.5: Texel processing performed by fragment program 2

is the tricky part in the minimum search algorithm, and it is simulated by
storing the results on the first quarter of the original texture, and only this
quarter is used at the next rendering step. Algorithm 5.3 shows the code, and
Figure 5.6 illustrates how the texture reduction is performed. Note that the
offset value (which depends on the texture size) is received as a parameter,
and it is calculated on the CPU before invoking the fragment code. These
min-searches seem somewhat complicated, but because of the restrictions
given by the GPU hardware there is no other way to determine the minimum
value inside a data stream. Within a single stream processing run there is no
way to communicate the actual minimum value to other running fragment
program instances.

The algorithm stops when the texture has been reduced to size 1 × 1
(if the texture generated by fragment program 2 contains s × s texels, the
algorithm needs log2(s) iterations to reduce the texture). Thus, only one
texel (16 bytes) is read back from the graphics card memory, hence saving
data transfer time. The index of the object with the minimum distance to q
is returned as the NN.

The algorithm can easily be extended to compute the k nearest neighbors.
For the case k = 2, the blue and alpha color channels can be used to store
the distance to the 2-NN candidate. For k > 2, we have to use k/2 additional
textures to store the k data points with smallest distances. At the end, the
k remaining data points have to be sorted.

5.3. Fast linear scan using the graphics unit processor 143

Algorithm 5.3: Fragment program 3: Computing minimum distance
between objects stored in 4 different texels precomputed by fragment
program 2

void FragmentProgram3(1

float2 cds : TEXCOORD0, // primary tex coords2

uniform float2 os, // offset tex coords3

uniform samplerRECT tex : TEXUNIT0,4

out float4 color : COLOR) {5

float4 min, fv2, fv3, fv4;6

// os is an offset value used to access the “right” 4 texels7

min=texRECT(tex,float2(cds.x+os.x,cds.y)); // gets 1st texel8

fv2=texRECT(tex,float2(cds.x+os.x,cds.y+os.y)); // gets 2nd texel9

fv3=texRECT(tex,float2(cds.x,cds.y+os.y)); // gets 3rd texel10

fv4=texRECT(tex,float2(cds.x,cds.y)); // gets 4th texel11

if (min.x > fv2.x) {min = fv2;} // Compute min value within12

if (min.x > fv3.x) {min = fv3;} // the 4 read texel, then13

if (min.x > fv4.x) {min = fv4;} // return only one texel14

color = min; } // min value: (distance, index, 0, 0)15

R: dmin
G: idx
B: −−
A: −−

1

1

R: dmin
G: idx
B: −−
A: −−

R: dmin
G: idx
B: −−
A: −−

9

9

11

11

R: dmin
G: idx
B: −−
A: −−

3

3

R: dmin
G: idx
B: −−
A: −−

Reduced texture

Original texture

Figure 5.6: Texture reduction performed by fragment program 3

144 Chapter 5. Hw. acceleration of feature-based similarity search

5.4 A hardware accelerated clustering algo-

rithm

Cluster analysis is an essential task in many applications. It allows one
to find natural clusters and describe their properties (data understanding),
find useful and suitable groupings (data class identification), find represen-
tatives for homogeneous groups (data reduction), find unusual objects (out-
liers detection), find random perturbations of the data (noise detection),
and so on. A clustering algorithm identifies a set of categories, classes,
or groups (called clusters) in the database, such that objects within the
same cluster shall be as similar as possible, and objects from different clus-
ters shall be as dissimilar as possible. More formally, the clustering prob-
lem may be defined as the problem of partitioning a d-dimensional set of
data vectors D = {x1, . . . , xN} ⊂ Rd into a set of clusters {C1, . . . , Ck} and
noise (C0) such that ∀m=1,...,k∀i,j=1,...,N : xi, xj ∈ Cm ⇒ similar(xi, xj) and
∀m=1,...,k∀l=0,...,k,m6=l∀i,j=1,...,N,i6=j : xi ∈ Cm, xj ∈ Cl ⇒ not similar(xi, xj).

5.4.1 Previous work

A large number of clustering algorithms have been proposed in the liter-
ature of statistics, machine learning, knowledge discovery and databases.
These methods can be classified into model-based and optimization-based
methods [Fukunaga, 1990; Fritzke, 1997; Zhang et al., 1999], linkage-based
methods [Bock, 1974; Zhang et al., 1996; Xu et al., 1998; Ankerst et al.,
1999], density-based methods [Silverman, 1986; Scott, 1992; Sheikholeslami
et al., 1998; Hinneburg and Keim, 1998, 1999], and hybrid methods [Zhang
et al., 1996; Agrawal et al., 1998]. Many recent approaches, developed in
the Knowledge Discovery and Data Mining (KDD) community, aim at im-
proving efficiency and effectiveness. These are based on sampling techniques
[Palmer and Faloutsos, 2000], incremental techniques [Zhang et al., 1996;
Ester et al., 1998], hierarchical techniques [Zhang et al., 1996; Wang et al.,
1997], or multidimensional indexing [Xu et al., 1998; Ankerst et al., 1999].

One of the most widely used approaches is the k-means algorithm and
its variants [MacQueen, 1967; Hamerly and Elkan, 2002]. The basic k-means
algorithm starts with an initial selection of k centroids (e.g., k random objects
from D). Each x ∈ D is assigned to the cluster of its closest centroid. At
each iteration, k new centroids are computed as the mean vector of all objects
in each cluster, and the objects are again assigned to the cluster of its new
closest centroid. The algorithm iterates until there is no further change in
the cluster assignment or until a user-given maximum number of iterations t

5.4. A hardware accelerated clustering algorithm 145

is reached. One of the reasons for the popularity of the k-means algorithm is
the adequate performance properties with a running time of O(k×N×d×t).
A problem is that the type of clusters that can be found by k-means is limited
to mixtures of Gaussian distributions. However, this problem can be solved
by using the k-means clustering algorithm with a rather large value for k
as a preclustering step, and then merge close-by or overlapping clusters in
a postprocessing step. Experimental results have shown that this approach
provides very competitive results, comparable to the best available clustering
algorithms. For this reason, the proposed GPU implementation of the k-
means algorithm aims to be capable of running efficiently for large values of
k.

5.4.2 GPU implementation of k-means

The depth test (see Section 5.2.2) is used to efficiently implement the k-means
algorithm on the GPU. For a better understanding, we first describe the algo-
rithm for up to four-dimensional vectors, and then we explain the extension
to arbitrary dimensional vectors. The first step of the GPU algorithm is to
encode the data into textures in an appropriate way. For this algorithm, all
coordinate values of each vector are stored in a single texel. This allows one
to run the algorithm on vectors with up to four dimensions. As a result,
the dataset is stored in a single texture with each texel representing a vector
of the database. Figure 5.7 illustrates how the data is organized into the
texture when using 4-D vectors. Vi,j represents the jth coordinate of the ith

vector. In the example, the original data is encoded into a 2×3 pixels image.

V1,1 V1,2 V1,3 V1,4

V2,1 V2,2 V2,3 V2,4

V3,1 V3,2 V3,4

V4,2 V4,4V4,3V4,1

V3,3

V

V V

V V

V V

V5,1 5,2 5,3 5,4

6,1 6,2 6,3 6,4

R:
G:
B:
A:

V1,1
V
V
V

1,2

1,3

1,4

R:
G:
B:
A:

V
V
V
V

R:
G:
B:
A:

V
V
V
V

R:
G:
B:
A:

V
V
V
V

R:
G:
B:
A:

V
V
V
V

R:
G:
B:
A:

V
V
V
V

2,1

2,2

2,3

2,4

3,1

3,2

3,3

3,4

4,1

4,2

4,3

4,4

5,1

5,2

5,3

5,4

6,1

6,2

6,3

6,4

Data

Texture

Figure 5.7: Data organization for the k-means algorithm

During each iteration, the algorithm performs k passes, one for each cen-

146 Chapter 5. Hw. acceleration of feature-based similarity search

troid. Each pass computes the distances between a centroid and all of the
vectors of the database, and stores these values in the depth buffer if they
are smaller than the previously computed distances. This task is accom-
plished by the depth test, automatically executed when the depth variable is
assigned. Only after a positive depth test (i.e., when the distance is smaller
than the already stored value), the fragment program proceeds and the re-
spective cluster identifier is stored. After the k passes, the respective cluster
identifier is read back for each vector.

Algorithm 5.4 shows the code of the fragment program. As can be seen,
the final code is very compact. The hardware optimized dot function, which
returns the dot product of two vectors, is used to efficiently compute the
sum of the square difference of coordinates between a vector and a centroid
(line 11). The depth value needs to be divided by dim to normalize it in the
depth range [0.0, 1.0]. The fragment program stores the cluster identifier in
the four color channels for efficiency reasons (line 13).

Algorithm 5.4: Fragment program for k-means that uses the depth
test

void k-means(1

float2 coords : TEXCOORD0,2

uniform samplerRECT tex : TEXUNIT0,3

uniform float4 centroid,4

uniform float centroidID,5

uniform float dim,6

out float4 color : COLOR,7

out float depth : DEPTH) {8

// Compute the difference of coords. between object and centroid9

float4 fv=texRECT(tex, coords)-centroid;10

// Compute square of distance and apply depth test11

depth=dot(fv,fv)/dim;12

color=centroidID.xxxx; } // id saved only if depth test passed13

The only task of the algorithm that is performed on the CPU is the
computation of the new centroids at each iteration. Implementing this part of
the algorithm on the GPU would be rather difficult, because of the mentioned
hardware restrictions (no communication between parallel running fragment
program instances).

An extension of this algorithm for vectors with more than four coordi-
nates can be carried out as follows: Each vector is split into blocks of four
dimensions, and the Euclidean distance is computed in the same way as the

5.5. Experimental evaluation 147

Manhattan distance is computed for the NN search algorithm. Only in the
last pass, the depth test is used to obtain the closest centroid to the corre-
sponding vector.

An alternative implementation of this GPU algorithm uses an auxiliary
texture to store intermediate data, thus avoiding the usage of the depth test.
An advantage of this alternative implementation is that the data does not
need to be normalized to the range [0.0, 1.0]. However, the experimental
results will show that this implementation is slower than the one using the
depth test.

Algorithm 5.5: Fragment program for k-means without using the
depth test

void k-means2(1

float2 coords : TEXCOORD0,2

uniform samplerRECT tex : TEXUNIT0,3

uniform samplerRECT texR : TEXUNIT1,4

uniform float4 centroid,5

uniform float centroidID,6

out float4 color : COLOR) {7

float4 vec=texRECT(tex, coords)-centroid;8

float4 fv=texRECT(texR, coords);9

float dist=dot(vec,vec);10

if (dist < fv.y) {color=float4(centroidID, dist, 0.0, 0.0);}11

else {color=fv;} }12

5.5 Experimental evaluation

In this section, we present an experimental evaluation of the proposed GPU
algorithms. We compare their efficiency with CPU implementations of the
same algorithms.

5.5.1 Experimental framework

The graphics card used to perform the experiments is an NVIDIA GeForce
6800 Ultra graphics card, with 256 MBytes of video memory. The CPU is
a Pentium IV 3.0 GHz. To compare the actual running time between con-
ventional PCs and the CPU implementation, the database transfer time is
not included in our performance measurement diagrams. Instead, we used
data sizes which completely fit the graphics card memory. This approach

148 Chapter 5. Hw. acceleration of feature-based similarity search

was already used in previous studies [Govindaraju et al., 2004]. We did mea-
sure query upload time, computation time, and texture download time (the
databases are uploaded only once into the graphics memory, thus this upload
time is amortized over the queries). This constitutes a fair measurement to
compare raw performance between CPU and GPU implementations of the
same algorithm.

The CPU algorithms were implemented in C++ and compiled with the
best available C++ compiler, the Intel C++ Compiler v8. All optimization
flags were activated at compilation time to produce SSE2 enhanced CPU
code. To compile the GPU fragment programs, we used the Cg compiler
version 1.3.

5.5.2 Nearest neighbor algorithm

For the first experiment, databases of 262,144 vectors were used, with vary-
ing dimensions ranging from 16 to 256. All the coordinates values were
random values uniformly distributed in the range [0.0, 1.0]. For each dimen-
sion, 1,000 random query vectors were created. Figure 5.8 shows the results
of the comparison between the CPU and the GPU implementations. The
GPU implementation clearly outperforms the CPU algorithm. With 256
dimensions, a speed-up factor of about 7x is observed, and on average the
observed speed-up factor is about 6.4x. The GPU algorithm also scales well
when using different database sizes. If the data did not fit into one texture
(textures have a limited maximum size), they were partitioned into blocks
of about 1 million objects and the algorithm run on each block iteratively.
Figure 5.9 shows the results for 1 to 7.5 million vectors. In this case, the
GPU algorithm was also several times faster than the CPU algorithm.

The GPU algorithm was also tested using real-world databases. The first
database was the Forest CoverType database (UCI-KDD-A) which contains
data about different forest cover types obtained by the U.S. Forest Service.
Each observation is composed of 54 attributes, and the database consists of
about 250,000 observations. The second database was the Corel image fea-
tures database (UCI-KDD-B), which contains features of about 65,000 images
extracted from a Corel image collection. The features are based on color his-
tograms of 32-D. Both sets UCI-KDD-A and UCI-KDD-B are available at
the UCI KDD Archive [Hettich and Bay, 1999]. The third dataset were fea-
ture vectors computed from a 3D CAD database. The database consists of
about 16,000 CAD models, and the feature vectors (512-D) were computed
using the spherical harmonics descriptor [Funkhouser et al., 2003]. For each
dataset, 1,000 random objects were selected as queries for the NN search.
Figure 5.10 shows the results for the three real-world databases. The GPU

5.5. Experimental evaluation 149

0

10

20

30

40

50

60

70

80

90

100

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

T
im

e
(s

ec
)

Dimensionality

NN search, 262,144 objects, PIV 3.0 GHz vs. GeForce 6800 Ultra

CPU algorithm
GPU algorithm

Figure 5.8: Experimental results for the nearest-neighbor algorithm varying
the dimensionality of the space

0

50

100

150

200

250

300

1 2 3 4 5 6 7

T
im

e
(s

ec
)

Database size (millions of objects)

NN search, 16−D, PIV 3.0 GHz vs. GeForce 6800 Ultra

CPU algorithm
GPU algorithm

Figure 5.9: Experimental results for the nearest-neighbor algorithm varying
the database size

150 Chapter 5. Hw. acceleration of feature-based similarity search

algorithm shows improvement factors of 6.4x, 4.5x, and 4.2x respectively over
the CPU algorithm.

 0

 5

 10

 15

 20

 25

CAD DataUCI−KDD−BUCI−KDD−A

T
im

e
(s

ec
)

Database

NN search, real−world databases, PIV 3.0 Ghz vs. GeForce 6800 Ultra

CPU algorithm
GPU algorithm

Figure 5.10: Experimental results for the nearest-neighbor algorithm with
real-world datasets

5.5.3 Clustering algorithm

The GPU implementation of the k-means algorithm was evaluated using
three different databases. High k values in the range [100, 1000] were used,
and the first k centroids were selected at random from the database. The
first database consisted of 1,048,576 4-D random vectors (coordinate values
between [0.0, 1.0]). For this database, 20 iterations were sufficient to obtain
a stable clustering. Figure 5.11 shows the experimental results. The GPU
algorithm using the depth test is on average an order of magnitude faster
than the CPU algorithm, and it is on average 26% faster than the GPU
algorithm that does not use the depth test.

Below, only the results for the GPU algorithm that uses the depth test
will be shown.

The second database consisted of 1,048,576 4-D vectors with Gaussian
distributions: It had 37 clusters with their centers being randomly selected.
The variance of each cluster was also randomly selected between 0.0001 and
0.001. All vector coordinates were in the range of [0.0, 1.0]. 20 iterations were

5.5. Experimental evaluation 151

0

50

100

150

200

250

300

350

400

450

100 200 300 400 500 600 700 800 900 1000

T
im

e
(s

ec
)

Number of clusters

k−means, 1,048,576 4−D objects, PIV 3.0 GHz vs. GeForce Ultra 6800

CPU algorithm
GPU algorithm with depth test

GPU algorithm without depth test

Figure 5.11: Experimental results for k-means algorithm with uniformly dis-
tributed data

needed to get stable clustering results. Figure 5.12 shows the experimental
results. The speed-up factor of the GPU algorithm over the CPU is on
average 12x.

The third database is a U.S. Census 2000 dataset, which consists of about
230,000 4-D vectors with the geographic location, median household income,
and interest dividends income of citizens from New York. The vector’s coor-
dinates were normalized to the range [0.0, 1.0]. 50 iterations were required to
obtain a stable clustering. Figure 5.13 shows the experimental results. The
speed-up factor of the GPU algorithm over the CPU algorithm is on average
about 15x.

The scaling of the GPU algorithm to large datasets was also tested. Fig-
ure 5.14 shows how the GPU algorithm scales for database sizes between 1
and 4.3 million data points. The data is split into blocks of about 1 million
objects, and each block is processed in one rendering pass of the GPU. The
results show that, for k-means, the GPU is at least one order of magnitude
faster than the CPU.

152 Chapter 5. Hw. acceleration of feature-based similarity search

0

50

100

150

200

250

300

350

400

450

100 200 300 400 500 600 700 800 900 1000

T
im

e
(s

ec
)

Number of clusters

k−means, Gaussian distribution, PIV 3.0 GHz vs. GeForce Ultra 6800

CPU algorithm
GPU algorithm

Figure 5.12: Experimental results for k-means algorithm, data with Gaussian
distribution

0

50

100

150

200

250

100 200 300 400 500 600 700 800 900 1000

T
im

e
(s

ec
)

Number of clusters

k−means, U.S. Census data, PIV 3.0 GHz vs. GeForce Ultra 6800

CPU algorithm
GPU algorithm

Figure 5.13: Experimental results for k-means algorithm with U.S. Census
data

5.6. Analysis of the performance results 153

0

100

200

300

400

500

600

700

800

900

1 1.5 2 2.5 3 3.5 4

T
im

e
(s

ec
)

Database size (millions of objects)

k−means, 4−D, 500 clusters, PIV 3.0 GHz vs. GeForce Ultra 6800

CPU algorithm
GPU algorithm

Figure 5.14: Experimental results for k-means algorithm varying the
database size

5.6 Analysis of the performance results

The experimental results presented in the last section showed that a state-of-
the-art graphics card easily outperforms the CPU. The main reasons behind
this fact are the parallelism of the fragment processors and the highly opti-
mized vector operations inside the GPU. Both factors contribute to the much
faster execution of the nearest neighbor and k-means algorithms, compared
with their CPU implementations.

What kind of improvements can one expect for the future? Figure 5.15
shows the floating-point performance of GPUs from NVIDIA and ATI com-
pared with the performance of CPUs from Intel. The figure shows that GPU
performance has increased considerably over the last years, and at a much
faster rate than CPUs (even considering dual core CPUs, as shown in the
figure). As GPUs are being used nowadays for general purpose computations
in many application domains [Owens et al., 2005], we expect that the trend
shown in Figure 5.15 will continue for the next years.

To assess how much the performance may improve between different gen-
erations of graphics cards, with respect to the GPU algorithms proposed in
this chapter, we performed a comparison between the GeForce 6800 Ultra
card, used in the experiments, with one of the latest cards from the last

154 Chapter 5. Hw. acceleration of feature-based similarity search

0

50

100

150

200

250

G
F
L
O

P
S

(m
ul

ti
pl

ie
s

pe
r

se
co

nd
)

G
F
L
O

P
S

(m
ul

ti
pl

ie
s

pe
r

se
co

nd
)

2001 2002 2003 2004 2005 2006 2007

YearYear

ATI
NVIDIA
Intel

dual-core

Figure 5.15: Performance of GPUs compared with CPUs over the last 5
years [Owens et al., 2005]. Figure courtesy of John D. Owens, University of
California, Davis.

generation, namely the GeForce 5900 FX.
One important metric to compare two graphic cards is the number of

pixels that the GPU can process per clock cycle. The GeForce 5900 FX can
process up to 8 pixels at the same time, while the GeForce 6800 Ultra can
process up to 16 pixels. Another important metric is the memory bandwidth
of the graphics card. Figure 5.16 shows that the memory bandwidth of the
GeForce 6800 Ultra doubles the memory bandwidth of the GeForce 5900 FX
as long as the data fits into the graphics card memory (note that the figure
shows the inverse of the memory bandwidth, thus a lower value is better).
Figure 5.16 further shows that the memory bandwidth of the GeForce 6800
Ultra quickly decreases if the texture data is larger than the video memory.
This occurs because the data must be re-loaded onto the graphics card during
each pass. This problem will be alleviated in the near future in two ways.
Firstly, the introduction of the PCI Express bus will increase the transfer
memory bandwidth from the host to graphics card (it is two times wider
than the AGP 8x bus). Secondly, there are already new graphic cards with
512 MBytes of video memory, and in the near future graphic cards with a
minimum of 1 GByte video memory will be available. It is also interesting
to note that by using textures with 256x256 resolution, we achieve the best
performance results. It seems that the hardware is optimized to this texture
size, mainly because today’s video games use this texture resolution.

5.6. Analysis of the performance results 155

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

 0 50 100 150 200 250 300 350 400

se
c/

M
B

Data size

Inverse of the memory bandwith, GeForce 5900 FX vs. GeForce 6800 Ultra

5900 FX (512x512 textures)
5900 FX (256x256 textures)

6800 Ultra (512x512 textures)
6800 Ultra (256x256 textures)

Figure 5.16: Memory bandwidth comparison between two different graphic
cards

Thus, with regard to hardware, the GeForce 6800 Ultra should be at
least twice as fast as the GeForce FX 5900. To validate this hypothesis, the
proposed GPU algorithms were run on both graphic cards to compare their
performance. Figure 5.17 shows the results for the NN search algorithm. It
is obvious that the GeForce 6800 Ultra is twice as fast as the GeForce FX
5900 using this algorithm.

Figure 5.18 shows the results for the k-means algorithm. In this case,
the GeForce 6800 Ultra is 3 times faster than the GeForce FX 5900. An
explanation for this result is that while the GeForce FX 5900 can process
up to 8 pixels per clock cycle, it only contains 4 “real” (hardware coded)
fragment processors, but it can process two textures at the same time. But
the GeForce 6800 Ultra has 16 “real” fragment processors. For this reason,
the k-means algorithm cannot take full advantage of the capabilities of the
GeForce FX 5900, and thus the speed-up is higher on the GeForce 6800 Ultra.
For the next generation of graphic cards, a similar speed-up factor compared
with the actual state-of-the-art is expected.

Another possibility to gain more performance is using the CPU while
the GPU is processing data, because during this time the CPU is idle. A
load-balancing algorithm between CPU and GPU will provide additional im-
provements. Current graphic cards drivers do not allow such a load balancing.

156 Chapter 5. Hw. acceleration of feature-based similarity search

0

5

10

15

20

25

30

35

8 16 24 32 40 48 56

T
im

e
(s

ec
)

Dimensionality

NN search, 1,048,576 objects, GeForce 5900 FX vs. GeForce 6800 Ultra

5900 FX
6800 Ultra

Figure 5.17: Comparison between two different graphic cards with the nearest
neighbor algorithm

0

20

40

60

80

100

120

100 200 300 400 500 600 700 800 900 1000

T
im

e
(s

ec
)

Number of clusters

k−means, 1,048,576 objects, GeForce 5900 FX vs. GeForce 6800 Ultra

5900 FX
6800 Ultra

Figure 5.18: Comparison between two different graphic cards with the k-
means algorithm

5.7. Conclusions 157

One way to overcome this problem would be to run another thread on the
CPU, in order to use the idle time for performing some of the computations.

5.7 Conclusions

In this chapter, we presented hardware accelerated algorithms for nearest
neighbor search in high-dimensional vector spaces and for k-means cluster-
ing. Firstly, an introduction into GPU programming was given, and it il-
lustrated that data encoding into texture memory is the key to efficient and
compact GPU programming. Several experimental results using synthetic
and real-world datasets showed that GPU implementations provide an order
of magnitude better performance than corresponding CPU implementations
with linear scalability in dimensionality and in database size. The good
price-performance ratio and fast improvements of GPUs guarantee signifi-
cant additional performance improvements in the near future.

The coding of the input data as geometric primitives is the most complex
task for implementing GPU-based algorithms for database operations. For
the studied applications, two ways for mapping vectors into texture data were
described. These data mappings are general and do not have restrictions on
the dimensionality of the data. Once this problem was solved, it was shown
that relatively simple fragment programs can efficiently process the data and
return the nearest neighbor of a dataset or perform clustering on a set of
points. Also, the integration of GPU-based algorithms in commercial DBMS
has been proved to be feasible [Bandi et al., 2004]. The proposed GPU
algorithms may be the starting point for a new research area focusing on
using GPUs for improving database performance.

Chapter 6

Conclusions

In this thesis, we presented several techniques that aim to improve the ef-
fectiveness and the efficiency of similarity search in multimedia databases.
As the amount of multimedia data is rapidly growing, the development
of efficient and effective techniques for searching and indexing multimedia
databases has become indispensable. Therefore, we believe that this thesis
makes a valuable contribution to this research area.

The main contributions of this thesis can be summarized as follows:

• We have presented an experimental evaluation of the effectiveness of
feature vectors for 3D model retrieval. We implemented and compared
16 different descriptors. We concluded that there are a few descriptors
that have good effectiveness on average, but that there is no feature
vector that outperforms all others in all possible situations: The best
feature vector to use depends highly on the query object.

• We have found that combinations of feature vector may significantly
improve the effectiveness of similarity search. We introduced the purity
and entropy impurity methods, which aim to assess a priori the good-
ness of a feature vector given a query object. Both methods use a small
training dataset, and can be used to implement dynamically weighted
combinations of feature vectors. We obtained the best experimental
evaluation using these dynamic combinations.

• We have presented several pivot selection techniques for pivot-based
indices. We proposed an efficiency criterion based on distance distribu-
tions for selecting good sets of pivots, and tested several optimization
techniques that uses the proposed efficiency criterion. We tested the
proposed techniques with several synthetic and real datasets, showing
that our techniques are better than previously proposed heuristics.

160 Chapter 6. Conclusions

• We have described an improved version of the best-first k-NN search.
Our proposed algorithm reduces the memory requirements of the orig-
inal algorithm by using distance estimators. These estimators can be
used to define a better distance upper bound that can be used for early
discarding zones in the space, which cannot have any relevant object
for the query.

• We have proposed a pivot-based index structure that allows us to index
dynamically weighted combination of feature vectors. We provided
a NN-search algorithm that uses the proposed index structure, and
showed that it is several times faster than the näıve search algorithm.

• We have introduced an approach to index the most frequently used
combinations of feature vectors by using set of indices. The result-
ing optimization problem can be modeled as a binary linear program,
which can be used to find the optimal solution. We also propose some
heuristics that quickly find good sets of indices.

• We have presented hardware accelerated algorithms for NN-search and
a clustering algorithm. Both implementations use the graphics proces-
sor unit (GPU) as a co-processor for both applications. We developed
data encoding techniques to map the original data into graphics primi-
tives, which can be processed by the GPU. The experimental evaluation
showed that our proposed GPU algorithms are an order of magnitude
faster than the CPU implementations of the same algorithms.

Each of the techniques described and analyzed in this thesis intends to
improve the state-of-the-art of different aspects of similarity search in multi-
media databases. As we already said, the effectiveness aspects of the search
are as important as its efficiency aspects, thus it is fundamental to have
methods that improve both aspects and can be used jointly. That is exactly
what this thesis pursued: By using together all the proposed techniques (e.g.,
using entropy impurity to select the best feature vectors to perform a simi-
larity query, supported by a pivot-based data structure selected from an iSet
and whose pivots were chosen with the incremental selection technique, and
using the improved nearest neighbor algorithm to optimize the space used
while performing the query), we are effectively improving the efficiency of
the similarity search as well as the quality of the retrieved result.

We would like to emphasize that the different contributions presented in
this thesis can be used jointly, providing an overall improvement to the area of
similarity search in multimedia databases. We showed that the effectiveness
of a similarity query in a multimedia database may be improved by using

161

dynamic combinations of feature vectors. Later, we showed how to index
these dynamic combinations of feature vectors using a pivot-based index,
and showed how to improve the efficiency of this index by using our proposed
pivot selection techniques. If the search system selects some of the feature
vectors to perform the dynamic combination, we showed how to use the
available space for building indices to minimize the expected search cost (by
constructing the optimal set of indices or iSet). Finally, the similarity query
may be further optimized (in terms of space cost) by using our improved
k-NN search algorithm.

Here we outline possible trends and improvements that can be performed
based on the results presented in this thesis.

• With respect to the effectiveness of similarity search:

– It would be interesting to define methods for computing dynam-
ically weighted combinations of feature vectors that do not rely
on a training dataset. For example, self-organizing maps could be
used for the analysis of feature vectors, to determine their suit-
ability for a given query object.

– A question that remains open is the optimal size of the training
set. Unfortunately, ground-truth sets for multimedia databases
are not common and are in general very small. Indeed, a great
amount of work was invested to obtain our own classified set of
3D objects, because the classification was done manually. We ob-
served experimentally that by using only a half of our classified set
of 3D objects we could still improve significantly the effectiveness
of the search, but our 3D database is too small to infer conclusions
from this result. Further experiments with larger databases are
needed to answer this question.

– Feature-engineering may be used to further improve the effective-
ness of single feature vectors. Mathematical as well as visual anal-
ysis tools could be useful for this purpose.

– The definition and effective implementation of partial similarity
search notions among multimedia objects remains a big challenge.
This problem is far more complex than the similarity search prob-
lem studied in this thesis, because in partial similarity only a frac-
tion of the multimedia object is considered for the match. Even
the concept of “match” in this context must be properly defined:
We may want to look for similar parts or for complementary parts
(e.g., protein docking problem).

162 Chapter 6. Conclusions

• With respect to the efficiency of similarity search:

– We plan to continue exploring the trade-off between the index
size and the storage requirements for the active page list in our
improved k-NN search algorithm. Further improvements in the
average length of Q may be obtained if one had more structural
information about the balls, at the cost of storing more informa-
tion on each index node.

– We made the observation that our improved k-NN algorithm is
also relevant in the vector space case. Further experimental eval-
uations are needed to assess the real gains that could be achieved
in this case by our algorithm compared with the standard tech-
niques.

– The main drawback of the proposed pivot-based index for combi-
nations of feature vectors is that it is a main-memory index. It
would be interesting and very useful to have a secondary-storage
implementation of this index structure. For this case, one would
like not only to minimize the number of distance computations,
but also the number of disk accesses performed during the search.

– Another open problem is the adaptation of hierarchical access
methods for indexing combinations of feature vectors. One possi-
bility is to adapt a tree-like structure (e.g., the M-tree) to support
queries that uses combinations of feature vectors. In this case, the
index structure must provide a correct partitioning of the space
independent of the set of weights used while providing at the same
time a good discriminative power.

– We plan to study the complexity of finding the optimal iSet. We
have shown that the problem is NPO, but its complexity is still
unknown. We presume that finding the optimal iSet is NPO-
Complete, but we still need to prove it formally. We also want to
improve the proposed algorithms, by analyzing their weaknesses,
and to improve the presented lower bound for the optimal solution.

– Also related with the iSet is the definition of the Space and Search
cost functions. In some cases, these functions are not difficult to
define (e.g., in the case of VA-File). However, it is not clear a
priori how to define these functions for other index structures. One
possible solution is to compute empirically the cost values using
different database sizes and dimensionalities, and then extrapolate
analytical cost functions from these obtained values.

163

• With respect to hardware accelerated algorithms for similarity search
in multimedia databases:

– We proposed a sequential scan of the database on the GPU to
implement a NN-search. It would be interesting to implement
GPU accelerated index structures and their associated search al-
gorithms, and to compare them against the brute-force approach.
The pivot-based index is a good candidate to start with, because
the data structure is a matrix which can be directly mapped to
a texture. However, the implementation of the search algorithm
could be more complicated.

– It would also be interesting to implement a complete similarity
search engine that runs entirely on the GPU. For example, in
the case of 3D model retrieval this would mean implementing
the transformation function (including a normalization process-
ing, feature extraction, post-processing, etc.) and the similarity
search (which is already partly done). For static databases that fit
on the graphics card memory, we expect that such an implemen-
tation would be several times faster than the existing CPU-based
solutions.

Bibliography

Agrawal, R., Gehrke, J., Gunopulos, D., and Raghavan, P. (1998). Automatic
subspace clustering of high dimensional data for data mining applications.
In Proc. ACM International Conference on Management of Data (SIG-
MOD’98), pages 94–105. ACM Press.

Ankerst, M., Breunig, M., Kriegel, H.-P., and Sander, J. (1999). OPTICS:
Ordering points to identify the clustering structure. In Proc. ACM Inter-
national Conference on Management of Data (SIGMOD’99), pages 49–60.
ACM Press.

Arya, S. and Mount, D. (1995). Approximate range searching. In Proc.
11th Annual ACM Symposium on Computational Geometry, pages 172–
181. ACM Press.

Arya, S., Mount, D., Netanyahu, N., Silverman, R., and Wu, A. (1994).
An optimal algorithm for approximate nearest neighbor searching in fixed
dimension. In Proc. 5th ACM-SIAM Symposium on Discrete Algorithms
(SODA’94), pages 573–583. Society for Industrial and Applied Mathemat-
ics.

Baeza-Yates, R., Cunto, W., Manber, U., and Wu, S. (1994). Proximity
matching using fixed-queries trees. In Proc. 5th Annual Symposium on
Combinatorial Pattern Matching (CPM’94), LNCS 807, pages 198–212.
Springer.

Baeza-Yates, R. and Ribeiro-Neto, B. (1999). Modern Information Retrieval.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Bandi, N., Sun, C., Abbadi, A., and Agrawal, D. (2004). Hardware ac-
celeration in commercial databases: A case study of spatial operations.
In Proc. International Conference on Very Large Databases (VLDB’04),
pages 1021–1032. Morgan Kaufmann.

166 BIBLIOGRAPHY

Beckmann, N., Kriegel, H.-P., Schneider, R., and Seeger, B. (1990). The
R*-tree: An efficient and robust access method for points and rectangles.
In Proc. ACM International Conference on Management of Data (SIG-
MOD’90), pages 322–331. ACM Press.

Bentley, J. (1975). Multidimensional search trees used for associative search-
ing. Communications of the ACM, 18(9):509–517.

Berchtold, S., Böhm, C., and Kriegel, H.-P. (1998). The Pyramid-tree:
Breaking the curse of dimensionality. In Proc. ACM International Confer-
ence on Management of Data (SIGMOD’98), pages 142–153. ACM Press.

Berchtold, S., Keim, D., and Kriegel, H.-P. (1996). The X-tree: An index
structure for high-dimensional data. In Proc. 22th International Confer-
ence on Very Large Databases (VLDB’96), pages 28–39. Morgan Kauf-
mann.

Beyer, K., Goldstein, J., Ramakrishnan, R., and Shaft, U. (1999). When is
“nearest neighbor” meaningful? In Proc. 7th International Conference on
Database Theory (ICDT’99), pages 217–235. Springer.

Blott, S. and Weber, R. (1997). A simple vector-approximation file for simi-
larity search in high-dimensional vector spaces. Technical report, Institute
for Information Systems, ETH Zentrum, Zürich, Switzerland.

Bock, H.-H. (1974). Automatic Classification. Vandenhoeck and Ruprecht,
Göttingen.

Böhm, C. (2000). A cost model for query processing in high dimensional
data spaces. ACM Transactions on Database Systems, 25(2):129–178.

Böhm, C., Berchtold, S., and Keim, D. (2001). Searching in high-dimensional
spaces: Index structures for improving the performance of multimedia
databases. ACM Computing Surveys, 33(3):322–373.

Bozkaya, T. and Ozsoyoglu, M. (1997). Distance-based indexing for high-
dimensional metric spaces. In Proc. ACM International Conference on
Management of Data (SIGMOD’97), pages 357–368. ACM Press. Sigmod
Record 26(2).

Brin, S. (1995). Near neighbor search in large metric spaces. In Proc. 21st
Conference on Very Large Databases (VLDB’95), pages 574–584. Morgan
Kaufmann.

BIBLIOGRAPHY 167

Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M.,
and Hanrahan, P. (2004). Brook for GPUs: Stream computing on graphics
hardware. ACM Transactions on Graphics, 23(3):777–786.

Burkhard, W. and Keller, R. (1973). Some approaches to best-match file
searching. Communications of the ACM, 16(4):230–236.

Bustos, B., Deussen, O., Hiller, S., and Keim, D. (2006a). A graphics hard-
ware accelerated algorithm for nearest neighbor search. In Proc. Inter-
national Conference on Computational Science (ICCS’06) Part IV, LNCS
3994, pages 196–199. Springer.

Bustos, B., Keim, D., and Morales, N. (2006b). Indexing frequently used
combinations of feature vectors. Submitted for publication.

Bustos, B., Keim, D., Saupe, D., Schreck, T., and Vranić, D. (2004a). Auto-
matic selection and combination of descriptors for effective 3D similarity
search. In Proc. IEEE International Workshop on Multimedia Content-
based Analysis and Retrieval (MCBAR’04), pages 514–521. IEEE Com-
puter Society.

Bustos, B., Keim, D., Saupe, D., Schreck, T., and Vranić, D. (2004b).
An experimental comparison of feature-based 3D retrieval methods. In
Proc. 2nd International Symposium on 3D Data Processing, Visualization,
and Transmission (3DPVT’04), pages 215–222. IEEE Computer Society.
Poster.

Bustos, B., Keim, D., Saupe, D., Schreck, T., and Vranić, D. (2004c). Using
entropy impurity for improved 3D object similarity search. In Proc. IEEE
International Conference on Multimedia and Expo (ICME’04), pages 1303–
1306. IEEE.

Bustos, B., Keim, D., Saupe, D., Schreck, T., and Vranić, D. (2005a).
Feature-based similarity search in 3D object databases. ACM Comput-
ing Surveys, 37(4):345–387.

Bustos, B., Keim, D., Saupe, D., Schreck, T., and Vranić, D. (2006c). An
experimental effectiveness comparison of methods for 3D similarity search.
International Journal on Digital Libraries, Special Issue on Multimedia
Contents and Management in Digital Libraries, 6(1):39–54.

Bustos, B., Keim, D., and Schreck, T. (2005b). A pivot-based index structure
for combination of feature vectors. In Proc. 20th Annual ACM Symposium

168 BIBLIOGRAPHY

on Applied Computing, Multimedia and Visualization Track (SAC-MV’05),
pages 1180–1184. ACM Press.

Bustos, B. and Navarro, G. (2004). Probabilistic proximity search algorithms
based on compact partitions. Journal of Discrete Algorithms, 2(1):115–134.

Bustos, B. and Navarro, G. (2006). Improving space cost of k-NN search in
metric spaces using distance estimators. Submitted for publication.

Bustos, B., Navarro, G., and Chávez, E. (2003). Pivot selection techniques
for proximity searching in metric spaces. Pattern Recognition Letters,
24(14):2357–2366.

Campbell, R. and Flynn, P. (2001). A survey of free-form object representa-
tion and recognition techniques. Computer Vision and Image Understand-
ing, 81(2):166–210.

Chakrabarti, K. and Mehrotra, S. (1999). The hybrid tree: An index struc-
ture for high dimensional feature spaces. In Proc. 15th International Con-
ference on Data Engineering (ICDE’99), pages 440–447. IEEE Computer
Society.

Chávez, E., Marroqúın, J., and Baeza-Yates, R. (1999). Spaghettis: An
array based algorithm for similarity queries in metric spaces. In Proc. 6th
International Symposium on String Processing and Information Retrieval
(SPIRE’99), pages 38–46. IEEE Computer Society.

Chávez, E., Marroqúın, J., and Navarro, G. (2001a). Fixed queries array:
A fast and economical data structure for proximity searching. Multimedia
Tools and Applications, 14(2):113–135.

Chávez, E. and Navarro, G. (2003). Probabilistic proximity search: Fight-
ing the curse of dimensionality in metric spaces. Information Processing
Letters, 85(1):39–46.

Chávez, E. and Navarro, G. (2005). A compact space decomposition for
effective metric indexing. Pattern Recognition Letters, 26(9):1363–1376.

Chávez, E., Navarro, G., Baeza-Yates, R., and Marroqúın, J. (2001b).
Searching in metric spaces. ACM Computing Surveys, 33(3):273–321.

Chen, D., Tian, X., Shen, Y., and Ouhyoung, M. (2003). On visual similarity
based 3D model retrieval. Computer Graphics Forum, 22(3):223–232.

BIBLIOGRAPHY 169

Ciaccia, P. and Patella, M. (2000). PAC nearest neighbor queries: Approxi-
mate and controlled search in high-dimensional and metric spaces. In Proc.
16th International Conference on Data Engineering (ICDE’00), pages 244–
255. IEEE Computer Society.

Ciaccia, P. and Patella, M. (2001). Approximate similarity queries: A sur-
vey. Technical Report CSITE-08-01, Department of Electronics, Computer
Science and Systems, University of Bologna.

Ciaccia, P., Patella, M., and Zezula, P. (1997). M-tree: An efficient access
method for similarity search in metric spaces. In Proc. 23rd Conference
on Very Large Databases (VLDB’97), pages 426–435. Morgan Kaufmann.

Clarkson, K. (1999). Nearest neighbor queries in metric spaces. Discrete &
Computational Geometry, 22(1):63–93.

Cui, B., Ooi, B., Su, J., and Tan, K. (2003). Contorting high dimensional
data for efficient main memory knn processing. In Proc. ACM International
Conference on Managment of Data (SIGMOD’03), pages 479–490. ACM
Press.

Dehne, F. and Noltemeier, H. (1987). Voronoi trees and clustering problems.
Information Systems, 12(2):171–175.

Dohnal, V., Gennaro, C., Savino, P., and Zezula, P. (2003). D-index: Dis-
tance searching index for metric data sets. Multimedia Tools and Applica-
tions, 21(1):9–33.

Duda, R., Hart, P., and Stork, D. (2001). Pattern Classification. Wiley-
Interscience, New York, 2nd edition.

Ester, M., Kriegel, H.-P., Sander, J., Wimmer, M., and Xu, X. (1998). Incre-
mental clustering for mining in a data warehousing environment. In Proc.
24th International Conference on Very Large Databases (VLDB’98), pages
323–333. Morgan Kaufmann.

Fagin, R., Lotem, A., and Naor, M. (2003). Optimal aggregation algorithms
for middleware. Journal of Computer and System Sciences, 66(4):614–656.

Faloutsos, C. and Kamel, I. (1994). Beyond uniformity and independence:
Analysis of r-trees using the concept of fractal dimension. In Proc. 13th
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS’94), pages 4–13. ACM Press.

170 BIBLIOGRAPHY

Fan, Z., Qiu, F., Kaufman, A., and Yoakum-Stover, S. (2004). GPU clus-
ter for high performance computing. In Proc. ACM/IEEE Conference on
Supercomputing, page 47.

Faragó, A., Linder, T., and Lugosi, G. (1993). Fast nearest-neighbor search in
dissimilarity spaces. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 15(9):957–962.

Friedman, J., Bentley, J., and Finkel, R. (1977). An algorithm for finding best
matches in logarithmic expected time. ACM Transactions on Mathematical
Software, 3(3):209–226.

Fritzke, B. (1997). The LBG-U method for vector quantization: An improve-
ment over LBG inspired from neural networks. Neural Processing Letters,
5(1):35–45.

Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition. Aca-
demic Press, San Diego, CA.

Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin, D.,
and Jacobs, D. (2003). A search engine for 3D models. ACM Transactions
on Graphics, 22(1):83–105.

Gaede, V. and Günther, O. (1998). Multidimensional access methods. ACM
Computing Surveys, 30(2):170–231.

Garey, M. and Johnson, D. (1979). Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY,
USA.

Garfinkel, R. and Nemhauser, G. (1972). Integer Programming. John Wiley
& Sons.

Goldstein, J. and Ramakrishnan, R. (2000). Contrast plots and P-sphere
trees: Space vs. time in nearest neighbor searches. In Proc. 26th Inter-
national Conference on Very Large Databases (VLDB’00), pages 429–440.
Morgan Kaufmann.

Govindaraju, N., Lloyd, B., Wang, W., Lin, M., and Manocha, D.
(2004). Fast computation of database operations using graphics proces-
sors. In Proc. ACM International Conference on Managment of Data
(SIGMOD’04), pages 215–226. ACM Press.

BIBLIOGRAPHY 171

Guttman, A. (1984). R-trees: A dynamic index structure for spatial search-
ing. In Proc. ACM International Conference on Management of Data
(SIGMOD’84), pages 47–57. ACM Press.

Hamerly, G. and Elkan, C. (2002). Alternatives to the k-means algorithm
that find better clusterings. In Proc. 11th International Conference on In-
formation and Knowledge Management (CIKM’02), pages 600–607. ACM
Press.

Han, J. and Kamber, M. (2001). Data mining: concepts and techniques.
Morgan Kauffman.

Heczko, M., Keim, D., Saupe, D., and Vranić, D. (2002). Methods for similar-
ity search on 3D databases. Datenbank-Spektrum, 2(2):54–63. In German.

Henrich, A. (1998). The LSDh-tree: An access structure for feature vectors.
In Proc. 14th International Conference on Data Engineering (ICDE’98),
pages 362–369. IEEE Computer Society.

Hettich, S. and Bay, S. (1999). The UCI KDD archive
[http://kdd.ics.uci.edu].

Hilaga, M., Shinagawa, Y., Kohmura, T., and Kunii, T. (2001). Topol-
ogy matching for fully automatic similarity estimation of 3D shapes. In
Proc. ACM International Conference on Computer Graphics and Interac-
tive Techniques (SIGGRAPH’01), pages 203–212. ACM Press.

Hinneburg, A. and Keim, D. (1998). An efficient approach to clustering in
large multimedia databases with noise. In Proc. 4th International Confer-
ence on Knowledge Discovery and Data Mining (KDD’98), pages 58–65.
AAAI Press.

Hinneburg, A. and Keim, D. (1999). Optimal grid-clustering: Towards break-
ing the curse of dimensionality in high-dimensional clustering. In Proc. 25th
International Conference on Very Large Databases (VLDB’99), pages 506–
517. Morgan Kaufmann.

Hjaltason, G. and Samet, H. (1995). Ranking in spatial databases. In Proc.
4th International Symposium on Advances in Spatial Databases (SSD’95),
LNCS 951, pages 83–95. Springer.

Hjaltason, G. and Samet, H. (2000). Incremental similarity search in multi-
media databases. Technical Report CS-TR-4199, University of Maryland,
Computer Science Department.

172 BIBLIOGRAPHY

Howarth, P. and Rüger, S. (2004). Evaluation of texture features for content-
based image retrieval. In Proc. 3rd International Conference on Image and
Video Retrieval (CIVR’04), LNCS 3115, pages 326–334. Springer.

Hromkovic, J. (2001). Algorithms for Hard Problems. Springer.

Hu, J., Cui, B., and Shen, H. (2004). Diagonal ordering: A new approach
to high-dimensional KNN processing. In Proc. 15th Conference on Aus-
tralasian Database, pages 39–47. Australian Computer Society.

Kalantari, I. and McDonald, G. (1983). A data structure and an algorithm for
the nearest point problem. IEEE Transactions on Software Engineering,
9(5):631–634.

Katayama, N. and Satoh, S. (1997). The SR-tree: An index structure for
high-dimensional nearest neighbor queries. In Proc. ACM International
Conference on Management of Data (SIGMOD’97), pages 369–380. ACM
Press.

Kato, T., Suzuki, M., and Otsu, N. (2000). A similarity retrieval of 3D
polygonal models using rotation invariant shape descriptors. In Proc. IEEE
International Conference on Systems, Man, and Cybernetics, pages 2946–
2952.

Kazhdan, M., Funkhouser, T., and Rusinkiewicz, S. (2003). Rotation in-
variant spherical harmonic representation of 3D shape descriptors. In
Proc. Eurographics/ACM SIGGRAPH Symposium on Geometry Process-
ing (SGP’03), pages 156–164. Eurographics Association.

Keim, D. (1999). Efficient geometry-based similarity search of 3D spatial
databases. In Proc. ACM International Conference on Management of
Data (SIGMOD’99), pages 419–430. ACM Press.

Keim, D. and Bustos, B. (2004). Similarity search in multimedia databases.
In Proc. 20th International Conference on Data Engineering (ICDE’04),
page 873. IEEE Computer Society.

Krüger, J. and Westermann, R. (2003). Linear algebra operators for GPU
implementation of numerical algorithms. ACM Transactions on Graphics,
22(3):908–916.

MacQueen, J. (1967). Some methods for classification and analysis of mul-
tivariate observations. In Proc. 5th Berkeley Symposium on Mathematical
Statistics and Probability, volume 1, pages 281–297. University of Califor-
nia Press.

BIBLIOGRAPHY 173

Micó, L., Oncina, J., and Vidal, E. (1994). A new version of the
nearest-neighbor approximating and eliminating search (AESA) with lin-
ear preprocessing-time and memory requirements. Pattern Recognition
Letters, 15:9–17.

Moreland, K. and Angel, E. (2003). The FFT on a GPU. In Proc. SIG-
GRAPH/Eurographics Workshop on Graphics Hardware, pages 112–119.
Eurographics Association.

Navarro, G. (2002). Searching in metric spaces by spatial approximation.
VLDB Journal, 11(1):28–46.

Noltemeier, H., Verbarg, K., and Zirkelbach, C. (1992). Monotonous
Bisector∗ Trees – a tool for efficient partitioning of complex schemes of
geometric objects. In Data Structures and Efficient Algorithms, LNCS
594, pages 186–203. Springer.

Novotni, M. and Klein, R. (2001). A geometric approach to 3D object com-
parison. In Proc. International Conference on Shape Modeling and Appli-
cations, pages 167–175. IEEE Computer Society.

NVIDIAa (2005). NVIDIA GeForce 6800 [http://www.nvidia.com/page/-
geforce 6800.html].

NVIDIAb (2005). NVIDIA Developer web site [http://-
developer.nvidia.com/page/home].

NVIDIAc (2005). NVIDIA Cg Toolkit [http://developer.nvidia.com/object/-
cg toolkit.html].

Ohbuchi, R. and Hata, Y. (2006). Combining multiresolution shape descrip-
tors for 3d model retrieval. In Proc. 14th International Conference in
Central Europe on Computer Graphics, Visualization and Computer Vi-
sion (WSCG’06), pages 225–232.

Osada, R., Funkhouser, T., Chazelle, B., and Dobkin, D. (2002). Shape
distributions. ACM Transactions on Graphics, 21(4):807–832.

Owens, J., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn,
A., and Purcell, T. (2005). A survey of general-purpose computation on
graphics hardware. In Eurographics 2005, State of the Art Reports, pages
21–51.

174 BIBLIOGRAPHY

Palmer, C. and Faloutsos, C. (2000). Density biased sampling: An improved
method for data mining and clustering. In Proc. ACM International Con-
ference on Management of Data (SIGMOD’00), pages 82–92. ACM Press.

Paquet, E., Murching, A., Naveen, T., Tabatabai, A., and Rioux, M. (2000a).
Description of shape information for 2-D and 3-D objects. Signal Process-
ing: Image Communication, 16:103–122.

Paquet, E., Murching, M., Naveen, T., Tabatabai, A., and Rioux, M. (2000b).
Description of shape information for 2-D and 3-D objects. Signal Process-
ing: Image Communication, 16:103–122.

Pickering, M. and Rüger, S. (2003). Evaluation of key frame-based retrieval
techniques for video. Computer Vision and Image Understanding, 92:217–
235.

Qian, G., Zhu, Q., Xue, Q., and Pramanik, S. (2003). The ND-tree: A dy-
namic indexing technique for multidimensional non-ordered discrete data
spaces. In Proc. 29th International Conference on Very Large Databases
(VLDB’03), pages 620–631. Morgan Kaufmann.

Robinson, J. (1981). The K-D-B-tree: A search structure for large multidi-
mensional dynamic indexes. In Proc. ACM International Conference on
Management of Data (SIGMOD’81), pages 10–18. ACM Press.

Roussopoulos, N., Kelley, S., and Vincent, F. (1995). Nearest neighbor
queries. In Proc. ACM International Conference on Management of Data
(SIGMOD’95), pages 71–79. ACM Press.

Samet, H. (2003). Depth-first k-nearest neighbor finding using the MaxN-
earestDist estimator. In Proc. 12th International Conference on Image
Analysis and Processing (ICIAP’03), pages 486–491. IEEE Computer So-
ciety.

Santos-Filho, R., Traina, A., Jr., C. T., and Faloutsos, C. (2001). Similarity
search without tears: The OMNI family of all-purpose access methods.
In Proc. 17th International Conference on Data Engineering (ICDE’01),
pages 623–630. IEEE Computer Society.

Schroeder, M. (1991). Fractals, Chaos, Power Laws: Minutes From an Infi-
nite Paradise. W. H. Freeman & Company, New York.

Scott, D. (1992). Multivariate Density Estimation. Wiley and Sons.

BIBLIOGRAPHY 175

Shaft, U. and Ramakrishnan, R. (2005). When is nearest neighbors index-
able? In Proc. International Conference on Database Theory (ICDT’05),
pages 158–172.

Sheikholeslami, G., Chatterjee, S., and Zhang, A. (1998). WaveCluster: A
multi-resolution clustering approach for very large spatial databases. In
Proc. 24th International Conference on Very Large Databases (VLDB’98),
pages 428–439. Morgan Kaufmann.

Shilane, P., Min, P., Kazhdan, M., and Funkhouser, T. (2004). The Princeton
shape benchmark. In Proc. Shape Modeling International (SMI’04), pages
167–178. IEEE Computer Society.

Silverman, B. (1986). Density Estimation for Statistics and Data Analysis.
Chapman and Hall.

Skopal, T., Pokorný, J., and Snášel, V. (2005). Nearest neighbours search
using the PM-tree. In Proc. 10th International Conference on Database
Systems for Advanced Applications (DASFAA’05), LNCS 3453, pages 803–
815. Springer.

Sud, A., Otaduy, M., and Manocha, D. (2004). DiFi: Fast 3D distance
field computation using graphics hardware. Computer Graphics Forum,
23(3):557–566.

Sun, C., Agrawal, D., and Abbadi, A. (2003). Hardware acceleration for
spatial selections and joins. In Proc. ACM International Conference on
Managment of Data (SIGMOD’03), pages 455–466. ACM Press.

Sundar, H., Silver, D., Gagvani, N., and Dickinson, S. (2003). Skeleton based
shape matching and retrieval. In Proc. International Conference on Shape
Modeling and Applications (SMI’03), pages 130–142. IEEE Computer So-
ciety.

Tangelder, J. and Veltkamp, R. (2004). A survey of content based 3D shape
retrieval methods. In Proc. International Conference on Shape Modeling
and Applications (SMI’04), pages 145–156. IEEE Computer Society.

Uhlmann, J. (1991a). Implementing metric trees to satisfy general proxim-
ity/similarity queries. Manuscript.

Uhlmann, J. (1991b). Satisfying general proximity/similarity queries with
metric trees. Information Processing Letters, 40(4):175–179.

176 BIBLIOGRAPHY

Vidal, E. (1986). An algorithm for finding nearest neighbors in (approxi-
mately) constant average time. Pattern Recognition Letters, 4:145–157.

Vranić, D. (2004). 3D Model Retrieval. PhD thesis, University of Leipzig.

Vranić, D. and Saupe, D. (2000). 3D model retrieval. In Proc. Spring Confer-
ence on Computer Graphics and its Applications (SCCG’00), pages 89–93.
Comenius University.

Vranić, D. and Saupe, D. (2001). 3D model retrieval with spherical harmonics
and moments. In Proc. DAGM-Symposium, LNCS 2191, pages 392–397.
Springer.

Vranić, D. and Saupe, D. (2001). 3D shape descriptor based on 3D Fourier
transform. In Proc. EURASIP Conference on Digital Signal Processing
for Multimedia Communications and Services (ECMCS’01), pages 271–
274. Comenius University.

Vranić, D. and Saupe, D. (2002). Description of 3D-shape using a com-
plex function on the sphere. In Proc. IEEE International Conference on
Multimedia and Expo (ICME’02), pages 177–180.

Vranić, D., Saupe, D., and Richter, J. (2001). Tools for 3D-object retrieval:
Karhunen-Loeve transform and spherical harmonics. In Proc. IEEE 4th
Workshop on Multimedia Signal Processing, pages 293–298.

Wang, W., Yang, J., and Muntz, R. (1997). STING: A statistical informa-
tion grid approach to spatial data mining. In Proc. 23rd International
Conference on Very Large Databases (VLDB’97), pages 186–195. Morgan
Kaufmann.

Weber, R., Schek, H.-J., and Blott, S. (1998). A quantitative analysis
and performance study for similarity-search methods in high-dimensional
spaces. In Proc. 24th International Conference on Very Large Databases
(VLDB’98), pages 194–205. Morgan Kaufmann.

White, D. and Jain, R. (1996a). Algorithms and strategies for similarity
retrieval. Technical Report VCL-96-101, Visual Computing Laboratory,
University of California, La Jolla, California.

White, D. and Jain, R. (1996b). Similarity indexing with the SS-tree. In Proc.
12th International Conference on Data Engineering (ICDE’96), pages 516–
523. IEEE Computer Society.

BIBLIOGRAPHY 177

Xu, X., Ester, M., Kriegel, H.-P., and Sander, J. (1998). A distribution-based
clustering algorithm for mining in large spatial databases. In Proc. 14th
International Conference on Data Engineering (ICDE’98), pages 324–331.
IEEE Computer Society.

Yianilos, P. (1993). Data structures and algorithms for nearest neighbor
search in general metric spaces. In Proc. 4th ACM-SIAM Symposium on
Discrete Algorithms (SODA’93), pages 311–321. Society for Industrial and
Applied Mathematics.

Yianilos, P. (1999). Excluded middle vantage point forests for nearest neigh-
bor search. In DIMACS Implementation Challenge, ALENEX’99, Balti-
more, MD.

Yianilos, P. (2000). Locally lifting the curse of dimensionality for nearest
neighbor search. In Proc. 11th ACM-SIAM Symposium on Discrete Al-
gorithms (SODA’00), pages 361–370. Society for Industrial and Applied
Mathematics.

Yu, C., Bressan, S., Ooi, B., and Tan, K. (2004). Querying high-dimensional
data in single-dimensional space. VLDB Journal, 13(2):105–119.

Yu, C., Ooi, B., Tan, K., and Jagadish, H. (2001). Indexing the distance: An
efficient method to KNN processing. In Proc. 27th International Confer-
ence on Very Large Databases (VLDB’01), pages 421–430. Morgan Kauf-
mann.

Yu, D. and Zhang, A. (2003). Clustertree: Integration of cluster representa-
tion and nearest-neighbor search for large data sets with high dimensions.
IEEE Transactions on Knowledge and Data Engineering, 15(5):1316–1337.

Zaharia, T. and Prêteux, F. (2001). 3D shape-based retrieval within the
MPEG-7 framework. In Proc. SPIE Conference on Nonlinear Image Pro-
cessing and Pattern Analysis XII, volume 4304, pages 133–145.

Zezula, P., Savino, P., Amato, G., and Rabitti, F. (1998). Approximate
similarity retrieval with M-trees. VLDB Journal, 7(4):275–293.

Zhang, B., Hsu, M., and Dayal, U. (1999). K-harmonic means: A data
clustering algorithm. Technical Report HPL-1999-124, HP Research Labs.

Zhang, T., Ramakrishnan, R., and Livny, M. (1996). BIRCH: An efficient
data clustering method for very large databases. In Proc. ACM Interna-
tional Conference on Management of Data (SIGMOD’96), pages 103–114.
ACM Press.

	Title
	Acknowledgments
	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Chapter 1 Introduction
	1.1 Similarity search in multimedia databases
	1.2 Effectiveness and efficiency of similarity search
	1.3 Overview of the thesis

	Chapter 2 Basic concepts and related work
	2.1 Modeling multimedia data
	2.2 Similarity queries
	2.3 Metric access methods
	2.4 Spatial access methods
	2.5 Efficiency considerations
	2.6 Probabilistic and approximate similarity search algorithms

	Chapter 3 Effectiveness of feature based similarity search
	3.1 Evaluation of single feature vectors
	3.2 Combinations of feature vectors
	3.3 Dynamic combinations of feature vectors
	3.4 Conclusions

	Chapter 4 Efficiency of feature basedsimilarity search
	4.1 Pivot selection techniques
	4.2 Improved k nearest neighbor algorithm
	4.3 Pivot-based index for combinations of feature vectors
	4.4 Indexing frequently used combinations of feature vectors
	4.5 Conclusions

	Chapter 5 Hardware acceleration of feature-based similarity search
	5.1 Introduction
	5.2 Graphics hardware
	5.3 Fast linear scan using the graphics unit processor
	5.4 A hardware accelerated clustering algorithm
	5.5 Experimental evaluation
	5.6 Analysis of the performance results
	5.7 Conclusions

	Chapter 6 Conclusions
	Bibliography

	Text1: Konstanzer Online-Publikations-System (KOPS)URL: http://www.ub.uni-konstanz.de/kops/volltexte/2006/1995/

