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Abstract

Cartograms are a well-known technique for showing geography-related statistical information, such as
demographic and epidemiological data. The idea is to distort a map by resizing its regions according to a
statistical parameter, but in a way that keeps the map recognizable.

In this thesis, we formally define a family of cartogram drawing problems. We show that even simple
variants are unsolvable in the general case. Furthermore, we propose two methods of cartogram genera-
tion. Both algorithms cover a wide range of user requirements which can be directly maintained by the
user. The first algorithm strictly retains the topology and shape of the map regions while minimizing the
area error. The second algorithm approximates the map regions by rectangles focusing on an exact area
approach and minimizing shape, topology and relative position of the map regions. Both algorithms are
fast enough to be used in interactive systems which is important to be used as information visualization
technique.

Application experiments show that the proposed algorithms can compute high-quality cartograms in
few seconds, even for large maps with a high number of polygons. Also, our algorithms were designed for
a dynamic visualization, for which we need an algorithm that recalculates a cartogram in a few seconds.
None of the algorithms published before provides an adequate performance with an acceptable level of
quality for this application. Additional application examples of the two new algorithms introduced in this
work help to demonstrate their potential.
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Zusammenfassung

Die Wissenschaft und Kunst, Karten zu erstellen ist so alt wie die Menschheit. Erste einfache Landkarten
datieren bis in die Steinzeit zurück. Die Kartographie ist von immenser Bedeutung für die Entwicklung
der Menschheit gewesen, Karten sind ein grundlegendes Werkzeug für die Entdeckung der Erde und des
Weltalls.

Neben diesen traditionellen Karten, die bedeutsam für die Navigation sind, existieren sogenannte Kar-
togramme. Dies sind abstrakte Karten, die neben der geographischen noch zusätzliche Informationen vi-
sualisieren, z.B. statistische Werte. Dies ist von großer Bedeutung: Bei traditionellen Karten entsprechen
die Fl̈achen der Regionen der geographischen Fläche. Diese stehen jedoch in keinerlei Zusammen-
hang mit regionen-verkn̈upften statistischen Werten, z.B. bei der Darstellung von Bevölkerungszahlen.
Sehr große Gebiete können sehr kleine statistische Werte haben und umgekehrt, z.B. niedrige oder hohe
Bevölkerungsdaten. Bei einem Kartogramm werden die Flächen entsprechend den statistischen Werten
verzerrt, d.h. f̈ur das Beispiel eines Bevölkerungskartogramms, daß dünn besiedelte Gebiete sehr klein
werden und dicht besiedelte Gebiete sehr groß. Dadurch werden Fehlinterpretationen vermieden, das
Versẗandnis erleichtert.

Um Kartogramme effektiv, d.h. leicht verständlich zu gestalten, ist es essentiell, daß der Mensch die
dargestellten Daten leicht verstehen kann und mit den ursprünglichen geographischen Daten in Verbind-
ung bringen kann. Dieses Verständnis ist wiederum abhängig davon, daß die ursprüngliche Form, die
Lage der einzelnen Gebiete zueinander sowie der Zusammenhang der Gebiete möglichst gut erhalten
wird.

Im allgemeinen Fall ist dieses Problem nicht lösbar, was zu Beginn dieser Arbeit gezeigt wird. Auf-
grund derÜberlegung, daß das Problem vermutlich nicht in Polynomialzeit lösbar ist, wird es in dieser
Arbeit als Optimierungsproblem behandelt.

Der Hauptbeitrag der vorliegenden Dissertation besteht darin, daß zwei neuartige Algorithmen zur
Berechnung von Kartogrammen entwickelt wurden. Der erste Algorithmus wurdeCartoDrawgenannt.
Der Vorteil dieses Algorithmus liegt darin, daß die Topologie und Form der Ausgangskarte erhalten wird.
Dabei wird versucht, den Flächenfehler, d.h. die Abweichung der Flächen des Kartogramms von den
statistischen Werten entsprechenden Flächen, zu minimieren. Naturgemäß kann der Flächenfehler nicht
restlos beseitigt werden. Diesen Nachteil umgeht der zweite in dieser Arbeit vorgestellte Algorithmus
mit der BezeichnungRecMap. Dabei wird jede Kartenregion durch ein Rechteck ersetzt, dadurch wird
ein Fl̈achenfehler vollsẗandig vermieden, bei Verlust der ursprünglichen Form. Der Topologiefehler wird
minimiert.

Beide Algorithmen wurden implementiert. Die Flächenfehler sind im Vergleich mit bereits vorhande-
nen Algorithmenähnlich oder kleiner, die benötigte Rechenzeit ist im Vergleich um Größenordnungen
kleiner. In einer visuellen Gegenüberstellung zu existierenden Methoden generieren die vorgestellten
Verfahren vergleichbare oder bessere Kartogramme.

Welcher der beiden Algorithmen zu bevorzugen ist, hängt von der Zielsetzung ab. Die Anwendung von
CartoDrawundRecMapwird anhand von zahlreichen Beispielen im KapitelApplicationsgezeigt.

Die vorliegende Arbeit bietet eine Vielzahl von neuen Möglichkeiten zur Visualisierung geographie-
bezogener Daten mit Hilfe von Kartogrammen.
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1 Introduction

Maps are as old as humans. First maps were probably manufactured using animal bones and used by
humans in the Stone Age [61, page 63]. The so far oldest known map of the cosmos, was found on
a presumably 3600 years old bronze plate famous today as theSky Disc of Nebra[98]. This Sky Disc
was used to predict sowing and harvest for several hundred years. During the evolution of mankind the
art of drawing maps became more and more sophisticated. Maps were and still are probably among the
most important tools for the discovery of the earth and the universe. Maps are abstract descriptions of
things which are directly linked to a spatial position, e.g., sky maps, land-covering maps, or constructional
maps. Beside traditional maps, which are used for navigation, there exist a large amount of abstract maps
which visualize additional, often statistical, information on the map. The Greek and Romans called them
cartograms.

There exist several kinds of cartograms. Some of them are mentioned below.Timetable cartograms
are known from the London or New York subway [115]. The subway lines are straightened and stations
are drawn as points.Traffic-flow mapsare simplified street maps where the line width corresponds to the
number of vehicles passing the streets.Migration mapsshow migration of people during a time period by
arrows on the map.Isochronesare used to illustrate the travel time from one to several locations on a map.
Destinations with the same travel time are connected by lines.Route mapsare used to describe the path
from a starting to a target location an a map. OnChoropleth mapsthe regions are colored lighter or darker
to express the statistical value. If the areas of the maps regions are proportional to the statistical value, the
maps are calledvalue-by-area cartograms. However, these maps were simplified because of two reasons.
First, simplified maps are easier to draw and second, they are easier to understand and to use by humans.
On such visualizations only those things are drawn which are important for the understanding. This dis-
sertation deals with value-by-area cartograms. When mentioning cartograms in this thesis we will always
consider value-by-area cartograms. For a cartogram to be effective, a human must be able to understand
quickly the displayed data and relate it to the original geographical model. Recognition in cartograms
depends on preserving basic properties, such as shape, orientation, and contiguity. This, however, is diffi-
cult to achieve in the general case because it is impossible to retain the original map’s topology. Because
the generation of contiguous cartograms by simultaneous optimization of these objectives is difficult, all
currently available algorithms are very time-consuming. Let’s consider a potential application example.
Supposed we have a map as the U.S. continental map and the results of the 2004 U.S. presidential election
should be visualized. The political map on figure 1.1 is an often-used visualization of the election results.
In this conventional choropleth map, each state is colored according to the winner of the vote, A drawback
of that visualization is that the area is not proportional to the number of electors and it appears that the red
party got a big majority. For completeness, this type of visualization needs additional information (e.g. as
scatterplot or table) linked to the map regions. Instead, by using cartograms the map can be distorted in a
way that the area of each state represents the number of electors and therefore it can be seen that the U.S.
election in 2004 was a head-to-head race between both candidates. Figure 1.2 shows such a cartogram.
The application of cartograms is not restricted to visualization of election data. Example applications
include population demographics [120] and epidemiology [54].

The goal of this work is to display continuously the behavior of an input parameter, in particular, its
deviation from an expected value. Our aim is to create dynamic cartograms for on-line network monitor-
ing, such as display of traffic or transaction event levels by country, state, and local regions. This requires
a very fast cartogram generation, and to our knowledge there is currently no competing algorithm with
adequate speed for that.
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Figure 1.1:Election 2004 analysis – Political map 1.1(a) and categorized and sorted election results
1.1(b). Numbers show [numbers of electors, percentage of votes for Kerry, percentage of
votes for Bush].

Cartographers and geographers have used cartograms long before computers were available to make
displays [106, 107, 58]. References date back as far as 1868 (see remarks on Levasseur in [47] on page
355). A short historical overview can be found in [27]. The basic idea of a cartogram is to distort a map by
resizing its regions by some geographically-related parameter. Because cartograms are difficult to make
manually, the study of algorithms to draw them is of high interest.

The main contribution of this work is the design of two completely new algorithms for computing
contiguous cartograms based on an observation of existing methods. The first method, calledCartoDraw,
retains the topology by minimizing the area error while on the second approach, namedRecMap, each
map region is approximated by a rectangle to avoid the area error. Both algorithms were implemented and
various application examples show their functionality. Beside that the area error and the computational
time is less or similar to the other methods, a visual comparison with existing cartogram construction
techniques shows that our algorithms compute comparable if not better cartograms. Additionally, we
modified and combined our algorithms with some other techniques, which creates new opportunities for
visualizing geo-related data.

The dissertation is organized as follows: In chapter 2, we expose the classification in the information
visualization field. We study some geographic phenomena and we shortly introduce a pixel based visu-
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Figure 1.2:Election 2004 analysis cartogram – The area corresponds to the number of electors. The shape
of the states is clearly recognizable. Numbers show [numbers of electors, percentage of votes
for Kerry, percentage of votes for Bush].

alization for geo-related data calledPixelMap. The chapter finishes with a description of high resolution
display wall design at the University of Konstanz.

Chapter 3 describes what cartogram drawing is all about, explores the problems to be faced, and re-
views previous work on cartogram drawing. Then we define several variants of the problem and show that
even simple ones are unsolvable in the general case. Because it is not known, if the cartogram problem
can be solved in polynomial time, we expect that feasible variants are likely to beN P -hard problems.
Therefore, heuristics are necessary to solve the problem. Followed by observations on previous car-
togram drawing, we introduce a map simplification technique which is used as pre-processing step of our
cartogram algorithms.

Chapters 4, 5, and 6 include the main contribution of this thesis. Based on some important observations
in chapter 3, in chapter 4 we develop theCartoDraw heuristic which uses scanline-based local reposi-
tioning of vertices with an explicit shape error control function to preserve both the global shape and the
shape of interior polygons while providing sufficient speed for dynamic cartograms drawing.

In the following chapter a genetic based algorithm is introduced which approximates each map region
by a rectangle, calledRecMap.

In chapter 6 we give a description of a various extensions and combinations of cartogram techniques.
Furthermore, we describe the design of theCartoDraw-System which is used as a graphical user interface
(GUI).

In chapter 7, we present a number of application examples and provide a detailed comparison with
previous approaches, showing the effectiveness and efficiency of our proposed algorithms.

Chapter 8 summarizes our approaches and discusses open issues.
All chapters which introduce new methods for computing cartograms, i.e. 4, 5, and 6 will have there

own evaluation part. The appendix chapters provide related work to this thesis.

5



1 Introduction

6



2 Information Visualization: Scope,
Techniques and Opportunities for
Geovisualization

2.1 Introduction

Geovisualization deals with many disciplines including cartography, scientific visualization, image anal-
ysis, information visualization and exploratory data analysis [33, see chapter 1] and [94]. Cartography
is the art and science of drawing maps [107, page 293] and this thesis covers most of it. A map is a
visualization of points, lines, or areas. The maps are used in many ways e.g., they can be static or dy-
namic. Dynamic maps are often used in exploratory data analysis. Using maps can be useful for the
data exploration because e.g., maps can visualize information at location, they can show distribution of
spatial pattern, or it is possible to compare pattern in two or more maps. The information to be visu-
alized are often massive data generated from sensors, e.g., radio telescopes [100] or genome data base
[117], transaction processes, e.g., ecommerce data, or even feature vectors of real world objects, and they
are often stored as tables in log files or data bases. Beside time this data is often referenced by a geo-
graphic location. Both, time and space can not easily be exchanged [9] which make them often difficult
to visualize.

This chapter touches several areas of geovisualization. It starts with an overview of information vi-
sualization. It explains the phenomena of geo-related visualization, shows one example technique for
visualizing point data, and ends with a demonstration of a device for data exploration. Parts of this chap-
ter were published in [88, 87].

2.2 Visual Exploration Paradigm

Visual data exploration usually follows theInformation Seeking Mantra[110] which is a three-step pro-
cess:Overview first, zoom and filter, and then details-on-demand.

First, the user needs to get an overview of the data. In the overview, the user identifies interesting
patterns or groups in the data and focuses on one or more of them. For analyzing these patterns, the user
needs to drill-down and access details of the data. Visualization technology may be used for all three
steps of the data exploration process. Visualization techniques are useful for showing an overview of the
data, allowing the user to identify interesting subsets. In this step, it is important to keep the overview
visualization while focusing on the subset using another visualization. An alternative is to distort the
overview visualization in order to focus on the interesting subsets. This can be performed by dedicating a
larger percentage of the display to the interesting subsets while decreasing screen space for uninteresting
data. The visualization technology does not only provide visualization techniques for all three steps but
also bridges the gaps between them.
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2 InfoVis Scope, Techniques and Opportunities for Geovisualization

2.3 Classification

There are a number of well-known techniques for visualizing large data sets, such as x-y plots, line
plots, and histograms. These techniques are useful for data exploration but are limited to relatively small
and low dimensional data sets. Over the last years, a large number of novel information visualization
techniques (see [16, 130, 114]) have been developed, allowing visualizations of multidimensional data
sets without inherent two- or three-dimensional semantics. Keim [70] classifies the techniques according
to three criteria: the data to be visualized, the visualization technique, and the interaction technique used.
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Figure 2.1:Data type to be visualized.

Thedata type to be visualized[110] may be:

• One-dimensional data- such as temporal (time-series) data
One-dimensional data usually has one dense dimension. A typical example of one-dimensional data
is temporal data. Note that with each point of time, one or multiple data values may be associated.
An example are time series of stock prices. Figure 2.1(a) shows the accumulated monthly number
of utility power failure of an USV system during four years at the University of Konstanz.

• Two-dimensional data- such as geographical maps
Two-dimensional data usually has two dense dimensions. A typical example is geographical data,
where the two distinct dimensions are longitude and latitude. Longitude and Latitude describe lo-
cations on a 3D surface and some transformation is required to project the relationships between
locations specified in this way on a plane. Besides, depending upon the cartography used, various
characteristics of the relationships between locations are either preserved or lost. After the projec-
tion, the geographical data can be stored as two-dimensional data with X-Y-dimensions. X-Y-plots
are a typical method for showing two-dimensional data and maps are a special type of X-Y-plot
for showing geographical data. Figure 2.1(b) displays a world map with 600 “world wide web
accesses” to theCartoDrawweb site [76] during 6 months.

• Multi-dimensional data- such as relational tables
Many data sets consist of more than three attributes and therefore do not allow a simple visualiza-
tion as 2-dimensional or 3-dimensional plots. Examples of multidimensional (or multivariate) data
are tables from relational databases, which often have tens to hundreds of columns (or attributes).
Since there is no simple mapping of the attributes to the two dimensions of the screen, more sophis-
ticated visualization techniques are needed, such as parallel coordinates[59], or e.g. the scatterplot
matrix in figure 2.2. The figure shows 3085 items of the continental U.S. election 2004 data where
the attributes are(longitude, latitude, area, vote% (for Kerry), #electors).

• Text & hypertext- such as news articles and web documents
Not all data types can be described in terms of dimensionality. In the age of the World Wide Web,
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Figure 2.2:Data type to be visualized: multi-dimensional data – color brushing: red - Bush; blue - Kerry
– label brushing: B - Boulder, Colorado; H - Harris, Texas; M - Morris, New Jersey

one important data type is text and hypertext, as well as multimedia web page contents. These
data types differ in that they cannot be easily described by numbers, and therefore most of the
standard visualization techniques cannot be applied. In most cases, a transformation of the data
into description vectors is necessary before visualization techniques can be used. An example for
a simple transformation is word counting which is often combined with a principal component
analysis (PCA) [40, 91] or multidimensional scaling (MDS) [123, 12] to reduce the dimensionality
to two or three. Figure 2.3 is a result of a MDS of all keywords in this thesis which have a frequency
of more than twenty. A distance matrix was computed using the minimal distance between the text
positions of each pair of words. The size of the words is scaled according to their inferred relevance
and the distances between each pair of the plot reflect the connectivity of the research keywords.
The terrain color map visualizes a 2D kernel density estimation[128] of the word location.

• Hierarchies & graphs- such as network data
Data records often have some relationship to other pieces of information. These relationships may
be ordered, hierarchical, or arbitrary networks of relations. Graphs are widely used to represent such
interdependencies [6]. A graph consists of a set of objects, called nodes, and connections between
these objects, called edges or links. Examples are the e-mail interrelationships among people, their
shopping behavior, the file structure of the hard disk or the hyper links in the world wide web. The
graph in figure 2.4 reflects 1,224,733 IP addresses and 2,093,194 IP links, (immediately adjacent
addresses in a traceroute-like path) of skitter data from 21 monitors probing approximately 932,000
destinations spread across over 75,000 (70%) of globally routable network prefixes [14].
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Figure 2.3:Data type to be visualized: text & hypertext

Figure 2.4:Data type to be visualized: Hierarchies & graphs (Courtesy ofc©CAIDA, University of Cali-
fornia, 2000).
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2.3 Classification

There are a large number of visualization techniques that can be used for visualizing data. In addition
to standard 2D/3D-techniques such as X-Y (X-Y-Z) plots, bar charts, line graphs, and simple maps, there
are a number of more sophisticated classes of visualization techniques. The classes correspond to basic
visualization principles that may be combined in order to implement a specific visualization system. The
visualization techniqueare:

• Geometrically-Transformed Displays- aim at finding “interesting” transformations of multidimen-
sional data sets. This class of geometric display methods includes techniques from exploratory
statistics such as scatterplot matrices [23] and techniques that can be subsumed under the term
“projection pursuit” [56].

• Iconic Displays- The idea is to map the attribute values of a multi-dimensional data item to the
features of an icon. The most famous techniques are Chernoff faces [19]

• Dense Pixel Displays- The basic idea of dense pixel techniques is to map each dimension value to
a colored pixel and group the pixels belonging to each dimension into adjacent areas.

• Ordering of Dimensions- The problem is often how to order the dimensions of multidimensional
data in the visualization technique [69].

• Stacked Displays- Stacked display techniques are tailored to present data partitioned in a hierarchi-
cal fashion. In the case of multi-dimensional data, the data dimensions to be used for partitioning
the data and building the hierarchy have to be selected appropriately. An example of a stacked
display technique isDimensional Stacking[92].

In addition to the visualization technique, for an effective data exploration it is necessary to use one
or more interaction techniques.Interaction techniquesallow the data analyst to directly interact with the
visualizations and dynamically change the visualizations according to the exploration objectives. In addi-
tion, they also make it possible to relate and combine multiple independent visualizations. Theinteraction
techniquesused are:

• Dynamic Projection- Dynamic projection is an automated navigation operation. The basic idea is
to dynamically change the projections in order to explore a multi-dimensional data set. A classic
example is the GrandTour system [4].

• Interactive Filtering - Interactive filtering is a combination of selection and view enhancement. In
exploring large data sets, it is important to partition the data set interactively into segments and
focus on interesting subsets.

• Zooming - Zooming is a well-known view modification technique that is widely used in a number
of applications. In dealing with large amounts of data, it is important to present the data in a highly
compressed form to provide an overview of the data, but at the same time, allowing a variable
display of the data at different resolutions. Zooming does not only mean displaying the data objects
larger, but also that the data representation may automatically change to present more details on
higher zoom levels.

• Distortion - Distortion is a view modification technique that supports the data exploration process
by preserving an overview of the data during drill-down operations. The basic idea is to show
portions of the data with a high level of detail while others are shown with a lower level of detail.
Popular distortion techniques are hyperbolic and spherical distortions [93]. For an example for a
combination of zooming, distortion, and filtering techniques see [65].
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• Brushing and Linking - Brushingis an interactive selection process that is often, but not always,
combined withlinking, a process to communicate the selected data to other views of the data set.
There are many possibilities to visualize multi-dimensional data, each with their own strengths
and weaknesses. The idea of linking and brushing is to combine different visualization methods
to overcome the shortcomings of individual techniques. Scatterplots of different projections, for
example, may be combined by coloring and linking subsets of points in all projections. In a sim-
ilar fashion, linking and brushing can be applied to visualizations generated by all visualization
techniques described above. As a result, the brushed points are highlighted in all visualizations,
making it possible to detect dependencies and correlations. Interactive changes made in one visu-
alization are also automatically reflected in the other visualizations. Note that connecting multiple
visualizations through interactive linking and brushing provides more information than considering
the component visualizations independently. Typical examples of visualization techniques that have
been combined by linking and brushing are multiple scatterplots (see figure 2.2), bar charts, parallel
coordinates, pixel displays, and maps.

A more detailed discussion of the classification is given in [87, 88].

2.4 Phenomena of Geo-Related Visualization

Geo-related data is different from other kinds of data in the way that geo-related data describes objects
or phenomena with a specific location in the real world. Large spatial data sets can be seen as a result of
accumulating samples or readings of phenomena in the real world while moving along two dimensions in
space. In general, spatial data sets are discrete samples of a continuous phenomenon. Nowadays, there ex-
ist a large number of applications, in which it is important to analyze relationships that involve geographic
locations. Examples include global climate modeling (measurements such as temperature, rainfall, and
wind-speed), environmental records, customer analysis, telephone calls, credit card payments, and crime
data. Because of this special characteristic, the visualization strategy for spatial data is straightforward.
We map the spatial attributes directly to the two physical screen dimensions. The resulting visualization
depends on the spatial dimension or extent of the described phenomena and objects. Spatial phenomena
may be distinguished according to their spatial dimension or extent:

• point phenomena- have no spatial extent, can be termed zero-dimensional and can be specified by
longitude and latitude coordinate pairs with a statistical value z. Examples are census demograph-
ics, oil wells, and crime data. (see figure 2.1(b))

• line phenomena- have length, but essentially no width, can be termed one-dimensional and can
be specified by unclosed series of longitude and latitude coordinate pairs for each phenomenon.
Examples are large telecommunication networks, internet, and boundaries between countries. (see
figure 2.4)

• area phenomena- have both length and width, can be termed two-dimensional and can be specified
by series of longitude and latitude coordinate pairs that completely enclose a region and a statistical
value z for each phenomenon. Examples are lakes, and political units such as states or counties.
(see figure 1.2 and the figures in chapter and 7)

For each of the phenomena, several visualization approaches have been developed over the last years.
More details about spatial visualization and cartography can be found in [107, 95, 27, 112, 88, 33].
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2.5 PixelMap– A Pixel Based Visualization Technique for Large Geo-Related Data

2.5 PixelMap – A Pixel Based Visualization Technique for Large
Geo-Related Data

High resolution displays are of value for exploring extremely large data set. However, there exists data
where more sophisticated visualization techniques are required.

Varying degree of pixel overlap depending on screen resolution - even with a screen resolution of
1600×1200, the degree of overlap is about 0.3; 30% of our sample of data points (about 12000 points)
from the U.S. Year 2000 Census Household Income database cannot be directly placed without overwrit-
ing already-occupied pixels

Sample with 30.000 data points of the U.S. Year 2000 Census Household Income Database
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Figure 2.5:Pixel overlap on varying screen resolution using the U.S. Year 2000 Census Household In-
come database

Pixel visualizations are technique where each data item is represented by exactly one pixel on the com-
puter screen.PixelMapis one of these techniques.PixelMapsolves the problem of displaying dense point
sets on maps, by combining clustering and visualization techniques [82].

First, the Fast-PixelMap algorithm [81, 85, 82, 111] approximates a two-dimensionalkernel density
estimation(KDE) in the two geographical dimensions performing a recursive partitioning of the dataset
and the 2D screen space by using split operations according to the geographical parameters of the data
points and the extensions of the 2D screen space. The goal is

1. to find areas with density in the two geographical dimensions and

2. to allocate enough pixels on the screen to place all data points of dense regions at unique positions
close to each other.

The top-down partitioning of the dataset and 2D screen space results in distortion of certain map regions.
That means, however, virtually empty areas will be shrinking and dense areas will be expanding to achieve
pixel coherence.

For an efficient partitioning of the dataset and the 2D screen space and an efficient scaling to new
boundaries, a new data structure called Fast-PixelMap is used. The Fast-PixelMap data structure is a
combination of a gridfile and a quadtree [42] which realizes the split operations in the data and the 2D
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screen space. The Fast-PixelMap data structure enables an efficient determination of the old (boundaries
of the gridfile partition in the dataset) and the new boundaries (boundaries of the quadtree partition in
the 2D screen space) of each partition. The old and the new boundaries determine the local rescaling of
certain map regions. More precisely, all data points within the old boundaries will be relocated to the
new positions within the new boundaries. The rescaling reduces the size of virtually empty regions and
unleashes unused pixels for dense regions.

In a second step, the Fast-PixelMap algorithm approximates a three-dimensionalkernel density est-
imation-based clustering in the three dimensions performing an array based clustering for each dataset
partition. After rescaling of all data points to the new boundaries, the iterative positioning of data points
(pixel placement step) is done, starting with the densest regions and within the dense regions the smallest
cluster is chosen first. To determine the placement sequence, we sort all final gridfile partitions (leaves of
the Fast-PixelMap data structure) according to the number of data points, they contain. The clustering is
a crucial pre-processing step to make important information visible and to achieve pixel coherence1 with
respect to the selected statistical parameter.

The final step of the pixel placement is a sophisticated algorithm which places all data points of a
gridfile partition to pixels on the output map in order to provide visualizations which are as position-,
distance-, and cluster-preserving as possible.

An example based on the U.S. Census income data set is displayed in Figure 2.6. Figure 2.6(a) shows a
traditional map. Even on a high-resolution display overplotting obscures data points. The next approach
is a 3-D–point clouds visualization of the longitude,latitude, and the statistical value. For that picture we
used a random sampling of 1% of the whole data set.

PixelMapshows 100% of the data without overplotting. An example is illustrated in figure 2.6.

1Pixel coherence means similarity of adjacent pixels, which makes small pixel clusters perceivable.
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2.5 PixelMap– A Pixel Based Visualization Technique for Large Geo-Related Data

(a) Conventional Map
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(c) X–Y–level plot

(d) PixelMap

Figure 2.6:Comparison of Traditional Map versusPixelMap - New York State - Year 1999 Median
Household Income. This map displays cluster regions e.g. on the East side of Central Park in
Manhattan, where inhabitants with high income live, or on the right side of Brooklyn, where
inhabitants with low income live.
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2 InfoVis Scope, Techniques and Opportunities for Geovisualization

2.6 High Resolution Display Walls

There are several ways for visualizing all this massive data mentioned in the beginning of this chapter.
We can reduce the data by sampling, aggregating the data, averaging them, or some other ways of data
pre-processing. Alternatively, we can increase the resolution of the display device usinghigh resolution
displays2.

High resolution displaysare a new area in research [57, 132, 104]. Because the resolution of existing
LCD is restricted or the size of the pixel is too small to make use of them, researchers began to build
up so-calledpowerwalls. Thesepowerwallsconsist of more than one single display to arrange one large
virtual screen. The virtual screen is realized by a backward projection using projectors. The projectors
are ordered in a matrix layout on the other side of the projection wall to avoid shade redraws of the users.
Existing powerwall layouts can be seen in figure 2.7.

(a) AT&T Global Network Operation Center (b) 4 x 2 projectors AT&T’s Info Wall

Figure 2.7:High resolution walls (c©IEEE, Courtesy of Stephen C. North, AT&T Shannon labs)

To achieve the highest visualization quality as possible the main features of the output device should
be ahomogeneous screenwhich means:

• there is an electronic and opticedge blendingbetween the overlapping projections,

• all projectors take the intersection of all projectors color spaces, and

• the brightness of all linked projectors is monitored and adjusted to the lowest value.

To achieve ahomogeneous screenit is necessary that the projectors are able to communicate their operat-
ing parameters to each other. Additionally, it is important that the projectors

• have a high contrast ratio (≥ 1 : 1000),

• geometry correction, and

• stereo visualization facilities.

Beside the projection properties, the system should serve for many different research projects and re-
searchers. Therefore the system must feature to run existing software application without modification
and no new compilation of the source code on a wide range of operation systems.

2Note that large size printers and plotters are also alternatives devices and they are not to underestimate. Because of their
nature they do not allow an interactive exploration of the data and we need a lot of time and other resources to obtain a
result.
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2.6 High Resolution Display Walls

Based on the experience with the AT&T Info Wall and on related research during the last four years, at
the beginning of 2005 the computer science department at the University of Konstanz started to install a
high resolution display wall system.

The “wall” consists of eight Barco single chip DLP-projectors [5] with a matrix layout of 4×2 pro-
jectors having a resolution of 1280×1024 pixels and an overall netto resolution of 4640×1920≈ 9·106

pixels. A 13600×6000mm2 large room is separated by a 5000×2150×6mm3 (w×h×d) large projection
wall into one 6000×3600mm2 large projector and technique room and a demonstration and presentation
room. The pixel size results by

4640·1920
5000·2150

[
pixel
mm2

]
≈ 0.8

pixel
mm2 (2.1)

The system was primary designed for visualizing a wide variety of applications known from the infor-

Figure 2.8:High resolution 4×2 Barco DLP based projector (≈ 9 ·106 pixels) i-wall at the University of
Konstanz

mation visualization and data mining community which are

• pixel based visualizationasVisDB, PixelBarChart, PixelMap

• large graphs, maps and networks

• visualization system asSplus[29], Xmdv[129], WALDO [83], MineSet, HD-eyes, ESRI ArcGIS-
Labkit [37, 38]

Therefore the hardware should support interactions with the visualization software.
Secondary, the system should also serve as high-resolution 3D graphic device which devours magni-

tudes of more computing performance.
However these are two different application domains and therefore two different hardware configura-

tions are needed. For the primary application domain as graphic system we experimented with an xentera
GT 8 single slot 8 port PCI graphic board using ATI Mobility Radeon 9000 chipsets[118] and eight Nvidia
6800 Ultra graphic boards. Both graphic boards run a virtual screen on Windows XP and XFree86 using
the XINERAMA extension [119]. As hardware serves an Intel Dual–XEON 3.3GHz clocked system with
4GB RAM.

Beside the single PC solution as base system, for our second application domain we plan to build
a OpenGL Chromium based Cluster-System[104] consisting of eight cluster nodes and a cluster super
node.

17



2 InfoVis Scope, Techniques and Opportunities for Geovisualization

2.7 Conclusion

Visualization of massive data is a challenge. Fortunately, there exist a large number of visualization
techniques for different data to be visualized. On the example of geo-related data, we demonstrated
that the visualization of this kind of data using traditional maps has several drawbacks if we use them
from the information visualization point-of-view. We considered an example of dense point clouds and
introduce thePixelMapalgorithm which re-organizes the screen space to avoid overlapping of the data
items by retaining the relative geo-position of the data item as much as possible and place the data item
with similar values as close as possible together (clustering). Because the visualization goals are contrary
constraints, either all pixels are visualized but the recognition of the map is poor or recognition of the
map is good, but not all data are displayed. High resolution walls seem promising as extension for the
visualization process. Both, high resolution output devices and visualization techniques can improve the
quality of large data exploration. High resolution display walls are relative new technologies and almost
always they are unique configurations and since those do not exist as standardized solutions they need a
lot of technical effort.
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3 Cartogram Drawing

In this section, we introduce a few basic concepts that underlie cartogram drawing. First, we formally
define several variants of the problem. Then, we discuss the complexity and theoretical limitations of
potential solutions and review the solutions which have been proposed in the literature. Finally, we
outline some key observations that are the basis for a new, effective and efficient solution.

3.1 Problem Definition

We assume that the input is a map defined by a set of connected simple polygons (a polygonal mesh)
P , and a parameter vectorX that gives the desired values for the area of each polygon. Our goal is to
generate contiguous cartograms and therefore, the desired output is a set of connected simple polygons
P as well. Let|p| denote the number of vertices,A(p) the area, andS(p) the shape of a polygonp, and
T(P ) the topology of a set of polygons. Then, the ideal solution of the contiguous cartogram drawing
problem can be defined as:

Definition 1 (Contiguous Cartograms - Ideal Solution).A contiguous cartogram of a set of connected
polygonsP = {p1, . . . , pk} with respect to the parameter vectorX = {x1, . . . ,xk}, (∀ j x j > 0) , is a
visualization of the transformed set of polygonsP , where

T(P ) = T(P ) (3.1)

S(p j) = S(p j),∀ j = 1, . . . ,k (3.2)

A(p j) = x̃ j ,∀ j = 1, . . . ,k. (3.3)

The desired areãx j of a polygon pj is defined as

x̃ j = x j ·
∑k

i=1A(p j)

∑k
j=1x j

. (3.4)

To simplify the description, the assumption is made that we have only one set of connected polygons
(such as the continental United States) and not multiple unconnected sets (such as a world map1) Let vi

j

denote thei-th vertex of polygonp j , αi
j the angle at thei-th vertex,ei

j thei-th edge,|ei
j | the length of edge

ei
j , andCE(v) the cyclic order of edges at vertexv (see figure 3.1).
If we assume that the transformed polygons have the same number of vertices (i.e.,|pi | = |pi |), then

one way of formalizing the topology and shape preservation constraints is the following:

Definition 2 (Topology Preservation - Preservation of Connecting Vertices).
The topology preservation T(P ) = T(P ) means that for each vertex v∈ P the cyclic order of edges re-
mains the same as inP . More formally,

∀vi
j ∈ P , j = 1, . . . ,k; i = 1, . . . , |p j | : ∃vi

j ∈ P , j = 1, . . . ,k; i = 1, . . . , |p j | : CE(v j
i ) = CE(v j

i ) (3.5)

1These definitions may be easily extended to multiple polygonal meshes.
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3 Cartogram Drawing

Figure 3.1:Cyclic order of edges

If the cartogram construction algorithm does not provide a mapping to the original polygon set, topol-
ogy preservation is difficult to test, because as a first step, the isomorphism problem between the two
corresponding graphs must be solved. Graph isomorphism is a difficult problem and not known to be
polynomial if the graph is not planar. Therefore efficient solutions have to maintain the topology of the
original polygon mesh or provide a mapping to the original polygon mesh.

(a) 2×2 checkerboard (b) Relaxed Topology (c) Relaxed Shape

(d) 3×3 (e) Relaxed Topology (f) Relaxed Topology
and Shape

(g) Relaxed Shape

Figure 3.2:Checker board example

Definition 3 (Shape Preservation - Preservation of Edge Length Ratios and Angles).Shape preser-
vation S(pi) = S(pi) means that the edge length ratios of the polygons and the angles are preserved

∀ j = 1, . . . ,k ∃c j ∈ R : |ei
j |= c j |ei

j |, i = 1, . . . , |p j |,ei
j ∈ P ,ei

j ∈ P (3.6)

∀ j = 1, . . . ,k,∀i = 1, . . . , |p j | : αi
j = αi

j . (3.7)

Now let us consider a simple example. Assume that we have a map with the topology of a checker
board (see Figure 3.2) and that we want to resize the map according to the color of the fields, scaling
white fields by a factor of 2 and black fields by a factor of 0.5. This rescaling is impossible without
changing the topology or shapes. So, in general it is impossible to achieve the ideal solution. We state
this observation in the following lemma.
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3.2 Solvability and Complexity of the Problem

Lemma 1 (Impossibility of the Ideal Solution). The cartogram drawing problem of Definition 1 is
unsolvable in the general case, i.e. there exist sets of polygons and parameter vectors such that it is
impossible to obtain an ideal solution.

Proof. Figure 3.2 provides examples of sets of polygons, which do not have ideal cartogram solutions
according to Definition 1.

Constaints single-polygon all-polygon minimum
Topology ∀ j : dT(p j , p j) = 0 ∑dT(p j , p j) = 0 -

Area ∀ j : dA(x̃ j ,A(p j))≤ ε ∑dA(x̃ j ,A(p j))≤ ε ∑dA(x̃ j ,A(p j))
!→min

Shape ∀ j : dS(p j , p j)≤ ε ∑dS(p j , p j)≤ ε ∑dS(p j , p j)
!→min

Table 3.1:Possible constraints for cartogram drawing

To derive feasible variants of the problem, we need to relax some of the feature preservation conditions.
Thetopology erroris measured by the topology distance functiondT

dT : (.× .)→ N (3.8)

If topology is the most important property to maintain, the only other conditions left to relax are the shape
and area constraints. But there are many ways to go about this. We can explore that in terms of two
distance functions - an area distance functiondA

dA : (.× .)→ R (3.9)

which measures the distance of the area of a polygon from the desired size, typically, difference in area in
the Euclidean plane and a shape distance functiondS

dS : (.× .)→ R (3.10)

which measures the similarity of two shapes. Table 3.1 is an enumeration of possible constraints. The
first column lists constraints that require a maximum distance for each polygon, the second column lists
constraints that require a maximum distance for the sum of the distances of all polygons, and the third
column lists minimum constraints for the sum of distances. By combining the different area and shape
constraints in table 3.1 we can construct variants of the cartogram drawing problem. A useful combination
would be, for example, a restriction of the solution space to solutions where the shape of each polygon
has at least a certain similarity to its original shape and the sum of all area differences is minimal. In the
following, we discuss the different variants of the problem and their complexity.

3.2 Solvability and Complexity of the Problem

As shown by Lemma 1, in general it is impossible to find an ideal solution of the cartogram drawing
problem. If we now consider the variants that may be constructed by a combination of the constraints in
table 3.1, it turns out that a large number of these are also unsolvable in the general case.

Lemma 2 (Impossibility of the Solution of Problem Variants). Any variant of the cartogram drawing
problem that involves the single-polygon area constraint or the all-polygon area constraint is unsolvable
in the general case, i.e. there exist sets of polygonsP and parameter vectorsX , such that for anyε the
problem variants do not have a valid, topology-preserving solution.
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3 Cartogram Drawing

(a) (b)

Figure 3.3:Impossible cartogram drawing problem

Proof. In figure 3.3a, we show an example of a symmetric cartogram consisting of 7 polygons. If the
parameter vector for scaling the polygons requires the white polygons to become larger and the black
ones to become smaller, we can easily construct an impossible case. Due to the symmetric construction
of the polygons, without loss of generality we can assume that one angleγ≤ π

3. Thus,

α = 2π−2β− γ≥ 2π−2β− π
3

(3.11)

For the above mentioned resize requirements (triangleA very large and trianglesB very small),β→ 0 and
therefore

α≥ 2π− π
3

=
5
3

π =⇒ α > π (3.12)

and thus the topology can not be preserved as shown in figure 3.3b.

This means that only variants of the problem that use the minimum-area condition are solvable and
this is true for any combination with a shape constraint. The solvability is trivial to see since there is
at least the identity solution which has a perfect shape preservation but a rather bad value for the area
difference. As the following lemma shows, the determination of the actual solution with the minimum
area difference, however, is a computationally hard problem.

It is likely that the cartogram problem with the minimum-area condition represents aN P–hard opti-
mization problem.

In using this variant of the problem one easily observes that there is little freedom to improve the second
important parameter, namely the shape. In most cases, the minimum area condition will provide some
solution which is best optimized according to the area condition but does not take the shape similarity
into account. There might be, for example, a solution which much better preserves the shape but is
a little bit worse concerning the area condition. To allow the shape constraint to have an impact on the
solution, we have to adapt our constraints. In principle, there are two possibilities. The first is to determine
the minimum area difference which is possible and then, allow a certain maximum deviation from this
minimum difference for finding the best shape. More formally, this may be defined as follows.

Definition 4 (Variant 1 of the Contiguous Cartogram Problem).
Given a set of polygonsP , a parameter vectorX , and an error valueε, the Contiguous Cartogram

problem may be defined as a transformed set of polygonsP for which the following two conditions hold:

k

∑
j=1

dA(x̃ j ,A(p j))≤
MIN

P
(dA(x̃ j ,A(p j))+ ε (3.13)

k

∑
j=1

dS(S(p j),S(p j))
!→min (3.14)
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3.2 Solvability and Complexity of the Problem

A second possibility is to normalize the area and shape distances and to use a weighted mean of the
normalized distances as a combined optimization criterion.

Definition 5 (Variant 2 of the Contiguous Cartogram Problem).
Given a set of polygonsP , a parameter vectorX , and importance factors for the area and shape distances
(wa,ws≥ 0), the contiguous Cartogram problem may be defined as the transformed set of polygonsP for
which

wa ·
k

∑
j=1

dA(x̃ j ,A(p j)) (3.15)

+ ws ·
n

∑
j=1

dS(p j , p j)
!→ min

wa,ws≥0
. (3.16)

There are other meaningful and solvable variants of the problem which, for example, also include the
single-polygon constraints (see table 3.1). Most currently available algorithms try to solve the problem
according to definition 4 or definition 5. This seems sufficient for some applications but there are others
where additional constraints seem necessary. In the following, we discuss some important observations
which are the basis for our final definition and also the key to an efficient solution of the problem.

(a) 3D map [120] (b) Non-contiguous cartogram [60] (c) Non-contiguous cartogram [27]

(d) Circle cartogram
[134]

(e) Tobler [121] (f) Selvia [109]

(g) Zade & Tikunov [53] (h) Kocmoud & House [90]

Figure 3.4:Cartogram drawing methods
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3 Cartogram Drawing

3.3 Related Work

Cartographers and geographers have used cartograms long before computers were available to make dis-
plays [106, 107, 58]. References date back as far as 1868 (see remarks on Levasseur in [47] on page 355).
A short historical overview can be found in [27, 122].

The basic idea of a cartogram is to distort a map by resizing its regions by some geographically-
related parameter. Example applications include population demographics [120], election results [90],
and epidemiology [54].

Because cartograms are difficult to make manually, the study of programs to draw them is of interest.
Cartograms can made by contiguous or non-contiguous distortions. The non-contiguous case is much

easier, since the input map topology does not have to be preserved. As seen in figure 3.4, hand-made non-
contiguous cartograms have been drawn with overlapping or touching circles, by eliminating some of the
original map’s adjacencies, or even by drawing disconnected shapes over the original regions [60, 134].

Most previous attacks on automated drawing of contiguous cartograms do not yield results comparable
to good hand–made drawings. One reason, first pointed out by Dent [25, 26], is that straight lines, right
angles and other features considered important in human recognition of cartograms are obliterated. Meth-
ods that are radial in nature such as the conformal maps proposed by Tobler [120], the radial expansion
method of Selvin et. al. [109] and the line integral method of Guseyn-Zade and Tikunov [53] do not
provide acceptable results, since the shapes of the polygons are heavily deformed (see figure 3.4). Like-
wise, the pseudo-cartograms of Tobler expand the lines of longitude and latitude to achieve a least root
mean squarearea error [121]. Very similar drawings are made by approaching the problem as distortion
viewing by nonlinear magnification [64, 99, 17, 66]. Jackel [60] applied radial forces to change the size of
polygons, moving the sides of each polygon relative to its centroid, but the solver runs very slowly (tak-
ing 90 minutes to perform 8 iterations on a map of 6 New England states of the U.S.) and seems to have
problems with non-convex input polygons and with self-intersections in the output, which is consistent
with our early experiments with a similar approach.

Another family of approaches operates on a a grid or mesh imposed on the input map. The ,,piezopleth”
method of Cauvin, Schneider and Cherrier transforms the grid by a physical pressure load model [18].
Dorling’s cellular automaton approach trades grid cells until each region achieves the desired number of
cells [30]. The combinatorial approach of Edelsbrunner and Waupotitsch [35] computes a sequence of
piecewise linear homeomorphisms of the mesh that preserve its topology. While the first method is good
at preserving the shape of the polygons, the second method allows a very good fit for area but only poor
shape preservation.

A synthesis of both approaches was recently described by Kocmoud and House, who propose a force-
based model and alternately optimize the shape and thearea error [90]. Although the results are better
than most other methods, the complex optimization algorithm has a prohibitively high execution time.
Kocmoud and House report a time of 18 hours for a modest-sized map with 744 vertices. An other
cartogram approach based on diffusion equation currently appeared in [50]. Since the distortion depends
of a spacial point set as input (similar to Tobler’s Pseudo cartograms [121]) the shape of the polygon can
not be taken into account and therefore the approach is different to our one. In figure 3.4, we present
population cartograms generated by several of the methods we have mentioned.

3.4 Important Observations

The current solutions have two major problems: first, the high time complexity of the algorithms restricts
their use to static applications with a small number of polygons and vertices. Second, they have very
limited shape preservation. Although the recent work by Kocmoud and House provides nice results,
some effectiveness problems remain. One problem is the significant deformation of the global shape. In
evaluating the different heuristic solutions which have been proposed so far, we found that the insufficient
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3.4 Important Observations

preservation of the global shape is one of their major problems. According to our experience, however,
the global shape is one of the most important factors for cartograms to be effective, and it is certainly at
least as important as the preservation of interior polygon shapes. In our definition of cartogram drawing,
besides the shape and area constraints of table 3.1 we therefore explicitly include a global shape constraint
which may be again either a single-polygon, all-polygon, or minimum constraint for the global shape.
There may be multiple global shapes as they occur, for example, on a world map. So there is one global
polygon for each connected component of the map. If that is the case we denote each component of a
mapP with an indices. IfGPi = GP(Pi) denotes the set of global polygons which may be derived from
the set of polygonsPi . GP(P ) is defined as follow:

GP(P ) = {v∈ P : |edges(v)|> |polygons(v)|}. (3.17)

The global shape constraints may formally be described as given in table 3.2. Our final definition of the
cartogram drawing problem uses a weighted minimum of area, shape, and global shape constraints.

Definition 6 (Variant 3 of the Contiguous Cartogram Problem). Given a set of polygonsP , a param-
eter vectorX , and importance factors for the area, shape, and global shape constraints wa,ws, and wgs,
the contiguous Cartogram problem may be defined as a transformed set of polygonsP for which

wa ·
k

∑
j=1

dA(x̃ j ,A(p j)) (3.18)

+ ws ·
k

∑
j=1

dS(p j , p j) (3.19)

+ wgs·∑
r

dS(GP(P ),GP(P )) !→ min
wa,ws,wgs≥0

(3.20)

single-polygon ∀r : dS(GP(Pr),GP(P r))≤ ε
all-polygon ∑r dS(GP(Pr),GP(P r))≤ ε
minimum ∑r dS(GP(Pr),GP(P r))

!→min

Table 3.2:Global polygon constraints for cartogram drawing

Let us now focus on some important observations which are crucial for an efficient solution of the
problem. One important observation is that in practice only very few vertices are actually important for
defining the shapes of the polygons. Considering the US map, as an example, we found that in addition to
a restricted number of outer vertices, only a limited number of interior vertices are actually relevant. Note
also that the importance of polygons and their vertices largely depends on their size (which is directly
related to the parameter vector) and on the length of the edges and the angles between them. In our new
algorithm, we give special consideration to these facts and determine the importance of vertices based
on these observations. A second observation is that – in order to obtain good results – theshape error
has to be controlled explicitly, which is not done sufficiently in previous approaches. A last observation
is that the high time complexity of most algorithms proposed previously is due to a complex and time-
consuming optimization. In most cases, however, it is possible to locally reposition vertices and improve
thearea errorwhile retaining the shape. To obtain good solutions, our algorithm iteratively repositions
vertices based on scanline-defined locality measures with an explicitshape errorcontrol function.
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3 Cartogram Drawing

3.5 Map Simplification

3.5.1 Introduction

Map simplification is an important task for the cartogram generation. Beside our observations in the last
chapter, maps consists often of thousands of points [31, 7, 36]. But only some hundred are needed for
visualization on a regular display. This high concentration of points is negative for a fast computation.
Furthermore, large points can induce varieties in special cases which have to be studied. In this section
we introduce our approach for reducing inner and outer nodes of a map.

The Table 3.3 gives an overview of the size of segments, nodes, and polygons for some maps used in
this thesis.

Map Segments Node Polygons

U.S. state-level 1286 808 48
U.S. county-level 20901 7609 3085
Texas county-level 1581 599 254
Germany state-level 16984 8478 15
Germany county-level 50748 25879 434
Germany block-level 125402 60139 NA
World state-level 33182 25624 NA
Afrika 4411 2590 46

Table 3.3:Number of segments, nodes, and polygons for some maps used in this thesis.

The studying of polygon line simplification algorithms goes back to the seventies. The most famous
procedure is the Douglas-Peucker algorithm [31]. Douglas-Peucker works as follows. As input a polygon
line and a tolerance value is given. The algorithm starts with the two end points and iterates over the point
set of the polygon line. If the point with the maximum distance between the two end points is greater than
the given tolerance value, the point belongs to the reduced polygon line. Furthermore, the polygon line
is split into pieces, and the algorithm continues recursiv. If all points are closer than the tolerance value,
the points are not important and they can be reduced. Because our motivation is based on the study of
[25, 26] (see section 3.3 of this chapter) we used a more straightforward approach as an alternative.

3.5.2 Reduction of Global Polygon

As mentioned in section 3.4, preserving the global shape is very important in making recognizable car-
tograms. This is taken into account by the decimation algorithm by simplifying the global and inner
polygons differently.

A key observation is that the importance of the vertices of a polygon can greatly vary. Vertices on
angles close to 180 degrees and those with short edges make almost no noticeable difference in the shape
of a polygon, while others with sharp angles or long edges have a significant effect. The basic idea of the
global polygon reduction algorithm is to rate the importance of each vertex according to these criteria.
Then, iteratively, the least important vertices are removed. To maintain the topology, only vertices that do
not belong to multiple polygons are removed. To formalize the global reduction algorithm, we first define
the notion of a vertex’ importance as

I(v,σ) = Sig(αv,σ) · |ev
1| · |ev

2| (3.21)

whereev
1 andev

2 are the two edges of vertexv andSig(αv,σ) is a function denoting the significance of
the angleαv at vertexv. The significance functionSig(α,σ) is important because different angles have a
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3.5 Map Simplification

specific impact on the shape of the polygons. Sharp angles and angles close to 90◦ are more important
than obtuse angles (c.f. [25, 26]) and the significance function therefore assigns higher values to sharp
angles and lower values for obtuse angles. For our algorithm, we use

Sig(α,σ) = ∑
µ∈{0, π

2 , 3π
2 ,2π}

exp−
(α−µ)2

2σ2 (3.22)

as the significance function. This function has peaks forα = 0, π
2, 3π

2 ,2π and is close to zero forα = π.
The function is defined forα∈]0,2π[ andσ is chosen to be 0.2·π. Figure 3.5 shows a plot of this function.

alpha

S
ig

(a
lp

ha
,s

ig
m

a)

0 pi/2 pi 3*pi/2 2*pi

0.
0

0.
5

1.
0

1.
5

sigma=0.1*pi
sigma=0.2*pi
sigma=0.3*pi
sigma=0.4*pi

Figure 3.5:Mesh reduction significance function – The plot illustrates the described significance function.
The red curve showsSig(αv,σ) if we useσ = 0.2·π.

To formalize the global reduction algorithm, we first define the global polygon as a subset of the vertices
of P . For each polygon(p j) j=1...k, the portionGPj of the global polygonGP were defined in chapter 3
in equation 3.17

The global polygon is defined asGP =∪k
j=1gpj . The algorithm for the reduction of the global polygon

is shown in figure 1. Note that vertices are only considered for removal if they do not belong to multiple
polygons (see initialization ofV in figure 1) and they are only removed if the induced area difference is
smaller than a given constantMaxAreaDi f f. Note also that the areaAs(p) of a polygonp is determined
as if the polygon is perfectly scaled according to the parameter vectorX .

3.5.3 Reduction of Inner Polygons

To position interior vertices, we can use again an iterative vertex removal process. A more efficient alter-
native is based on the observation that for most maps only the connecting interior vertices are important.
Instead of iteratively removing unimportant vertices, we therefore take a more direct approach and remove
all vertices not common to more than two polygons (non-connecting vertices). In some cases, the shape
deformation and area error introduced by this reduction is unacceptably high. We therefore re-introduce
a few additional vertices. See figure 2 for the complete algorithm.
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3 Cartogram Drawing

ReduceGlobalVertices(P , GP, MaxAreaDi f f) {
/* Only consider vertices if they are not part of multiple polygons */
V = {v∈ gpj | v /∈ gpm for m 6= j}
do {

/* Determine the least important vertex */
v̄ = {v∈V | MIN

v∈V I(v)}
/* Determine the polygon containing the least important vertex */
j = { j ∈ {1. . .k} | v̄∈ p j}
if (|As(p j \{v̄})−As(p j)| ≤MaxAreaDi f f)

p j = p j \{v̄};
V = V \{v̄}

} while V 6= {}
}

Algorithm 1: Reduction of global vertices

Figure 3.6 shows an example polygon (see figure 3.6a), a polygon reduced of its interior vertices com-
mon to more than two polygons (see figure 3.6b), and the final polygon after re-introducing a few ad-
ditional vertices (see figure 3.6c). In practice only few polygons need the additional vertices, so the
likelihood of re-introducing vertices that were removed is low (see figure 3.6).

3.6 Conclusion

The theoretic work and the study on that chapter is the base for the cartogram algorithm on the following
pages.

The algorithms for map simplification proposed in this chapter work very well for our input data as
it can be seen in the application part of the thesis. The reduction algorithm are also efficient as it is
demonstrated in the next chapter on page 41. Nevertheless, further improvements can be made. First, to
amplify the quality we can make use of the shape similarity function (see appendix A) for an extra test
which has to be passed during the reduction process. The reduction of a global or local node is only made
if the shape error between both polygon are less than a given threshold.

Second, since on cartograms we want to stress polygons with a high statistical value, the circumference
is larger as well and therefore the shape thresholds for this polygons should be set more sensitive. Both
reduction procedures in that chapter can be easily adapted when we weight the desired value of an area
with the significance of a map node.
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3.6 Conclusion

ReduceInnerVertices(P , GP, MinAreaImpr) {
/* all interior vertices */
I V = ∪

j=1...k{v | v∈ p j}\ ∪
j=1...k{v | v∈ gpj}

/* connecting interior vertices */
CV = {v∈ I V : |edges(v)|> 2}
/* remove all non-connecting vertices */
forall (p j ∈ P )

p j = {c∈ p j | c /∈ (I V \CV )};
/* reintroduce important non-connecting vertices */
forall (p j ∈ P ) {

/* Assume that the adjacent inner vertices{v1, . . . ,vm} ∈ (I V \CV ) have been removed
between vertexvs andve of polygonp j in step 1. */

forall ((vs,ve) removed in step 1) {
n = MIN

n∈1...m( MAX
(vi1,...,vin)∈{v1,...,vm},vil 6=vik

|As(p j ∪{vi1, . . . ,vi j})−As(p j)|)
ptmp = p j ∪ {vi1, . . . ,vin : MAX

(vi1,...,vin)∈{v1,...,vm},vil 6=vik}
|As(p j ∪ {vi1, . . . ,vi j}) − As(p j)|

}
if (|As(ptmp)−As(p j)| ≥ MinAreaImpr)

p j = ptmp;
}

}

Algorithm 2: Reduction of interior vertices
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3 Cartogram Drawing
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(a) Un-reduced traditional U.S. map (#nodes: 808, #edges: 1286)
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(b) Without inner connecting vertices (#nodes: 487, #edges: 644)
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(c) Reduced Map (#nodes: 413, #edges: 736) whereI(v,0.2)≥ 0.37 andMaxAreaDi f f= 0.1

Figure 3.6:U.S. map simplification – green - reducible inner node, red - reducible global nodes
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4 CartoDraw : A Fast Algorithm for Generating
Contiguous Cartograms

4.1 Introduction

The main objective of our new cartogram drawing algorithm is a fast generation of cartograms of ac-
ceptable quality. Because input maps often have far more vertices than are needed to compute good
cartograms, the first step is an intelligent decimation and has been described in the previous chapter. The
reduction step is now followed by the central heuristic, scanline-based repositioning of vertices. We first
reposition vertices of the global polygon(s), and then interior vertices. Scanlines can be restricted to ver-
tical and horizontal lines determined automatically, or may be arbitrarily positioned line segments of any
length, entered interactively. This follows the human-guided local search paradigm proposed by Marks et
al [3]. In each step, the shape of the modified polygon mesh is controlled by theshape errorfunction. The
last step is the fitting of the undecimated polygons to the decimated mesh to obtain the output cartogram.
By exploiting the potential for pre-computation and fast local optimization, our algorithm runs quickly
enough to support dynamic displays with high update rates on maps having dozens of polygonal regions.

4.2 Problem Definition

We can pose cartogram generation as a map deformation problem. Therefore we have to give a formula-
tion of how to determine a near optimal cartogramP which can be computed from a given planar mapP .
The input map is a planar polygon mesh, and a value associated with each region (face) that is its desired
fraction of the total cartogram area. The goal is to deform the map so that the area of each region is close
or equal to the target while preserving the map’s connectivity and the shapes of its faces, including the
outermost one.

4.2.1 Constraints

When determining the cartogramP we have to assure that the topology of the map regions is preserved.
We call a cartogram feasible if the topology is preserved and denote the set of feasible cartograms byM .

4.2.2 Objective Functions

Assuming the topology of the map is preserved the quality of the resulting contiguous cartogram depends
on two aspects: First, is the map recognizable and second, does the area reflect the statistical value. Both
requirement are difficult to comply since area and shape preservation are conflicting goals. The functions
measure topology, area and shape are described as follows:

Topology Error Function Topology preservation means thatP andP must be homeomorphic. This
may be defined in terms of Betti numbers [15, page 97], or by explicitly testing that there is one –
to – one mapping of faces fromP to faces ofP that preserves adjacencies as stated in equation 4.1.
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4 CartoDraw: A Fast Algorithm for Generating Contiguous Cartograms

ψ : P (V)→ P (V) with

∀v,w∈ P (V) : v 6= w⇒ ψ(v) 6= ψ(w)∧ψ−1(ψ(v)) = v (4.1)

The algorithm in that chapter strictly retains the topology of the map regions. Behind that it is possible
to get a measure for topology violations. This can be done by summing up the differences of the cyclic
ordersCE(v) andCE(ψ(v)) of a nodev∈ P .

dT = dT(P ,P ) (4.2)

=
1
2 ∑

v∈P

|CE(v)|

∑
i=1

dCE
(
CE(v)(i),CE(ψ(v))(i)

)
(4.3)

wheredCE : N×N→{0,1} is defined as:

dCE(a,b) =

{
0 if a = b

1 otherwise
(4.4)

Note thatCE(v) gives an ordered set as result1.

Area Error Function The objective of cartogram generation is to obtain a set of polygons where the
area of the polygons corresponds to values given in a data vectorX . In each step of the algorithm, the
area error function is needed to determine the reduction of thearea errorachieved by applying a given
scanline. The relativearea errord̃A(p j) of a polygonp j can be computed as:

d̃A(x̃ j , p j) =
|x̃ j −A(p j)|
x̃ j +A(p j)

(4.5)

Hence, thearea error dA for the set of polygonsP is defined as

dA = dA(X̃ ,P ) (4.6)

=
|P |

∑
j=1

d̃A(x̃ j , p j) ·
x̃ j

∑|P |
j=1 x̃ j

 (4.7)

Shape Error Function In addition to reducingarea error, the cartogram generation process also aims
at retaining the original shapes. To assess shape preservation, we need a shape similarity function that
compares the new shape of a polygon with its original shape. Defining a useful shape similarity function
is in itself a difficult problem, since the similarity measure should be:

• translation-invariant,

• scale-invariant, and

• partially rotation-invariant.

From CAD research it is known that the Euclidean distance in Fourier space is useful for measuring
shape similarity [67, 8]. The Fourier transformation approach which we used in for theCartoDraw [75]
algorithm is described in chapter A.

In the following we want to describe a variant which use some advantages of our transformation. Since
the topology of the mesh does not change we can use equation 4.1 for theshape errorcomputation. The
shape errorof to isomorph polygons can be determined as follows:

1We implementψ asnode array using the LEDA library [97].
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4.2 Problem Definition

d̃S(p, p) =
1
2π

|p|

∑
j=1
|]v j	1v jv j⊕1︸ ︷︷ ︸

∈p

−]ψ(v j	1)ψ(v j)ψ(v j⊕1)︸ ︷︷ ︸
∈p

| (4.8)

Theshape error dS of theP is:

dS = dS(P ,P ) (4.9)

=
|P |

∑
i=1

d̃S(pi , pi) (4.10)

4.2.3 Formulation of the Optimization Problem

After the observations mentioned in chapter 3 and having introduced the constraints and the objective
functions, the Contiguous Cartogram Problem can be stated as optimization problem:

Definition 7 (The Contiguous Cartogram Optimization Problem).
Input: A planar polygon meshP consisting of polygons p1, . . . , pk, valuesX̃ = (xi)i=1,...,k with xi >

0,∑k
i=1xi = 1, and∀i, j ∈ {1, . . . ,k}∧ i ≤ j → xi ≥ x j , i.e. the elements of̃X are sorted by non-increasing

values. Let A(pi) denote the normalized area of polygon pi with A(pi) > 0,∑A(pi) = 1.

Output:A topology-preservingpolygon meshP consisting of polygonsp1, . . . , pk such that the function f
is minimized, where

f = wt ·dT +wa ·dA +ws ·dS+wgs· d̃S(GP(P ),GP(P )) (4.11)

Alternatively, topology-preserving in that manner means thatdT = 0. Using the weightswt ,wa,ws and
wgs with (wt ,wa,ws,wgs≥ 0) the user has an explicit control ofarea errorandshape errorfunctions.

We can not expect that the problem defined in definition 7 has an ideal solution. Of course not as
discussed in chapter 3 this can only appear if the parameter vector equals to the areas of the map regions.
A cartogramP is called optimal if all objective functions are minimized simultaneously. Figure 4.1 shows
the region of objective function values[101] where for illustration only thearea error dA and theshape

error dS are observed and we assume that the maps topology is preserved. The cartogramP ideal
would

be an ideal solution. On that mapshape errorandarea errorequals zero. The problem instance on the
figure does not show an optimal solution but it shows two efficient pointsP ′

andP ′′
. P ′

minimize the
area errorwhereP ′′

minimize theshape error. P ′′
is a local minimum.

-
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Figure 4.1:Region of the objective function
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4 CartoDraw: A Fast Algorithm for Generating Contiguous Cartograms

Behind all that constrains, as stated above, the computation time is a very important factor for cartogram
generation. It does not make sense to find an optimal solution after hours or days, if we can find a solution
close to the optimal solution after seconds or minutes. Especially in information visualization, were
the users have many interactions with the visualization tools, we need a very fast cartogram generation
procedure which allows us to get the result in a very short time period.

4.3 The CartoDraw Algorithm

4.3.1 Basic Idea

The main idea of theCartoDraw algorithm is to incrementally reposition the vertices along a series of
scanlines. A scanline is a line segment of arbitrary length and position. Each scanline defines a scan
section, orthogonal to the scanline. All points within a scan section are repositioned in a single step.
For each section on a scanline, a target scaling factor for each of its polygons is determined according
to their area error factors. Vertices are then repositioned according to the polygon scaling factors and
distances to the scanline. The repositioning may be parallel or orthogonal to the scanlines. If theshape
error introduced by applying a scanline exceeds some threshold, its candidate vertex repositionings are
discarded.

Scanlines should be applied to parts of the map where thearea error is large and there is still po-
tential for improvement. A simple approach to scanline generation is to use horizontal and vertical line
segments positioned on a regular grid. Significantly better results can be obtained by a manual scanline
placement, guided by the shape of the input polygons and the local potential for improvement. Note that
the incremental repositioning of vertices per scanline application is intentionally small, compared to the
expected change in area. This means the same scanline may need to be applied many times to make large
adjustments in an area.

Before we describe the main CartoDraw algorithm, we first introduce thescanline algorithm.

4.3.2 Scanline Algorithm

The key to theCartoDraw algorithm is the scanline heuristic, which incrementally repositions vertices
along scanlines. A scanlinesl is a line segment of arbitrary position and length and is partitioned inton
portions of length|sl|

n . The scanline section points(spi)i=0,...,n definen+1 sections of the polygon mesh,
which are orthogonal to the scanline (see figure 4.2(a)). In one step of the scanline algorithm, all vertices

(a) Scanline section (b) Scanline section with limited range

Figure 4.2:Scanline algorithm notations and overview

v ∈ Vi within a certain distance(ξ = |sl|
2n ) of l i are considered for incremental repositioning (see figure

4.2a). LetSPi be the set of polygons (by index number) which have at least one vertex in scanline section
(i)i=0,...,n.
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4.3 The CartoDrawAlgorithm

Then, the scaling factorSFi is determined according to thearea errorof all polygonsp in sectioni:

SFi = const· ∑
r∈SPi

(
x̃r −A(pr)
x̃r +A(pr)

· x̃r

∑n
l∈Si

x̃l

)
. (4.12)

Next, we have to determine the directiono(v) of a vertexv and apply the scaling factorSFi to reposition
the vertex. The repositioning can be done either in the direction of the scanline(direction= scanline)
or in the direction of the section linel i . The algorithm is shown in algorithm 3. Note that the scanline
sections always span the full range orthogonal to the scanline of the polygon net. If we want to restrict
the changes to be local in both directions, we can optionally limit the considered polygons to those close
to the scanline (see figure 4.2(b)). This option is not reflected in the algorithm shown in algorithm 3. A
demonstration of the scanline algorithm functionality is given in figure 4.3.

Scanline(P , X̃ ,sl){
/* set of scanline section points which lie onsl */
foreach sp∈ {spi | spi = s+ i

n(t−s), i = (0. . .n)} {
/* section line */
l i = sp⊥~sl
/* verticesv in scanline sectioni, i.e. closer thanξ to l i */
Vi = {v∈V | |l i −v| ≤ ξ)}
/* numbers of polygons which contain at least one vertex fromVi */
SPi = { j ∈ N | ∃v : v∈Vi ∧v∈ p j}
/* compute scaling factor */

SFi = const·∑r∈Si

(
x̃r−A(pr )
x̃r+A(pr )

· x̃r
∑n

l∈Si
x̃l

)
foreach v∈Vi {

if (direction= scanline)

o(v) =
−−→
v⊥l i
|
−−→
v⊥l i |

· sl
|sl|

else
/* direction = section linel i */

o(v) =
−−→
v⊥sl
|
−−→
v⊥sl|

· l i
|l i | ;

v = v+SFi ·o(v)
}

}
}

Algorithm 3: Scanline

4.3.3 The CartoDraw Main Algorithm

Having defined the components of the CartoDraw algorithm, we can now describe its main procedure.
The algorithm assumes as input a set of polygonsP , a scaling vector of the desired statistical parameter
X̃, and a set of scanlinesSL, which can be determined automatically or manually (see subsection 4.3.4).
Output is the modified set of polygonsP which describes the cartogram. The algorithm works as follows
(see figure 4). For each scanline, the algorithm applies the scanline transformation and checks the results.
If the area differencedA introduced by the scanline transformation is below a certain thresholdεA and the
shape distortion is below a certain thresholdεs, then the changes are retained and otherwise discarded.
Then, the algorithm proceeds with the next scanline until all scanlines are applied in the same way. At
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(b) Inverse contraction

Figure 4.3:A demonstration of thescanlineidea in two different situations – In the figures, the green
lines indicates the scanline and the grey lines indicates the eleven section lines. The red
areas have to be contracted 4.3(a) in contrast to blue areas were the direction of the scanline
transformation is reversed to stretch the mesh in each section line step 4.3(b).

this point, the algorithm checks whether in applying all scanlines an improvement of thearea errorhas
been obtained. If this is the case, the algorithm applies all scanlines again and repeats the entire procedure
until no further improvement is reached (area improvement belowε). Since thearea error improvement
must be positive and above the thresholdε in each iteration, thearea error is monotonously decreasing
and termination of the algorithm is guaranteed. Note that in applying an individual scanline, we allow the
algorithm to potentially increase thearea error, to allow escaping local optima. Also, notice that after
applying a scanline, all the other ones remaining to be processed must be transformed as well, so that they
correspond properly to the transformed map.

CartoDraw (P , X̃ ,SL,εNumberOfIteration){
do{

AreaError =dA(X̃ ,P );
foreach (sl ∈ SL){

P = ScanLine(P , X̃ ,sl);
/* make persistend iff topology, shape and area tests are passed */

if (dT == 0 and dS(P ,P ) < εs and AreaError−dA(X̃ ,P ) > εA)
P = P ;

}
}while (

/* no further area error improvement */
AreaError−dA(X̃ ,P ) ≥ ε and
/* area error falls below a given threshold */
dA(X̃ ,P ) > εAreaError and
/* loop reaches the maximal number of allowed iterations */
IterationCount++< εNumberOfIteration);

return (P );
}

Algorithm 4: CartoDraw

4.3.4 Automatic versus Interactive Scanline Placement

So far we assumed that the set of scanlinesSL used by the CartoDraw algorithm are given. In this
subsection, we discuss how the scanlines can be obtained. Our implementation allows them to be defined
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4.3 The CartoDrawAlgorithm

automatically or interactively. Theautomatic generation of scanlinesuses a fixed grid of horizontal and
vertical scanlines (see figure 4.4(a)). The grid’s resolution can be varied, but within reason this has only
a minor influence on the result. Because only those scanlines that do not induce a higher shape andarea
error are applied, generating many useless scanlines causes a potential loss in efficiency, but does not
affect the quality of the result.

The best cartograms seem to be obtained when the scanlines are well adapted to the shape of the input
polygons and are placed in areas with a high potential for improvement. Automatic placement based on
these criteria is difficult to achieve, so we allow the user tointeractively position the scanlinesdepending
on the result of the previous steps. We can store all the scanlines specified by the human in generating a
specific cartogram, and re-apply them later to different data on the same map. This makes it practical to
generate a continuous time series of cartograms, without user interaction in each step. In our experience,
manual positioning of scanlines is not difficult and can be done quickly. Figure 4.4(b) shows an example
of a set of manually placed scanlines. It took about 5 minutes to enter these scanlines. Note that parts of
the map that need large changes have many scanlines of varying lengths, while other parts have hardly
any scanlines.2

Figure 4.5 shows a few intermediate steps of incrementally applying the automatic scanlines shown in
figure 4.4a to the U.S. population cartogram problem. Thearea error is encoded in red for polygons that
should be smaller and blue for polygons that should be larger. The algorithm quickly provides nice results
in some areas which are well adapted to horizontal and vertical scanlines (e.g., the mid-western states
and New England states). In other areas, the improvement that can be reached by global horizontal and
vertical scanlines seems limited (e.g. California or New York & Pennsylvania).

Figure 4.6 shows a similar sequence applying the interactive scanlines shown in figure 4.4b to the U.S.
population cartogram problem. The local non-orthogonal scanlines specified interactively allow a better
adaption of the algorithm to the shape andarea errorof the polygons, and therefore provide better results.
The residualarea errorobtained from interactive scanline placement is much lower than that obtained by
automatic placement, with both having about the sameshape error. A detailed comparison of shape and
area errorof the automatic versus interactive scanline placements is provided in section 4.3.5.

4.3.5 Evaluation of the Algorithm

The algorithm as described in the previous section has been implemented in C using the LEDA library [97]
and run on a number of different example applications. Unless noted otherwise, the tests were performed
on a 1 GHz Pentium computer with 128 Mbytes of main memory. In this section, we report and discuss
the results and compare the effectiveness and efficiency of the different approaches. Although our focus is
on efficiency, the examples show that ourCartoDrawalgorithm also provides results of very high quality.

2A construction video sequence can be accessed here [76]

(a) Automatic scanlines (b) Interactive scanlines

Figure 4.4:Automatically versus interactively placed scanlines
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(a) Step 0 (b) Step 12 (c) Step 21 (d) Step 30 (e) Step 36

Figure 4.5:Cartogram construction steps with automatically placed scanlines

(a) Step 0 (b) Step 10 (c) Step 20 (d) Step 40 (e) Step 60

(f) Step 80 (g) Step 100 (h) Step 120 (i) Step 140 (j) Step 149

Figure 4.6:Cartogram construction steps with interactively placed scanlines

For most of the examples, we continue to use a state map of the continental U.S. as a running example.

Time Complexity Let n corresponds to the number of map nodes. In each iteration of theCartoDraw
main loop and on eachsection linestep each nodev∈ P has to be accessed on time. Since the number of
iteration and section line steps is constant the time complexity is at mostO(n).

Comparison with Previous Methods Figure 4.7 shows population cartograms generated by our al-
gorithm and by the techniques proposed by Tobler [121] and by Kocmoud and House [90]. A visual
comparison shows that our approach offers comparable if not better visual results, with the geography of
the United States being clearly perceivable.

(a) Tobler [121] (b) Kocmoud & House [90] (c) Scanline-Based algorithm

Figure 4.7:Comparison of cartogram drawing algorithms

To evaluate the results analytically, figure 4.8(a) shows the totalarea error dA for all three approaches.
Figure 4.8(a) shows that our proposal provides even better results than the complex optimization-based
approach by Kocmoud and House [90]. Since the totalarea error is basically an average over the state-
wise area error , in figure 4.8(b) we show thearea error state by state, sorted according to thearea
error. Figure 4.8(b) reveals that for most states our approach provides a much betterarea error than the
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4.3 The CartoDrawAlgorithm

Tobler cartogram and a slightly betterarea error than the Kocmoud & House cartogram, with very few
exceptions.

(a) Total area error (b) Area error state-wise sorted (c) Efficiency comparison

Figure 4.8:Area errorand efficiency comparison (1980 U.S. population cartogram)

In terms of efficiency, our approach is much faster than existing techniques. While previous approaches
need hours or even days to compute a solution, our implementation runs in a matter of seconds. Figure
4.8(c) shows that our scanline-based heuristic needs about 25 seconds while the Kocmoud & House
approach needs about 16 hours, making our approach about 2000 times faster.3

Comparison of the CartoDrawVariants One important aspect of theCartoDrawalgorithm is the spec-
ification of the scanlines. As mentioned previously, we allow scanlines to be determined automatically or
interactively. In this subsection, we compare these two approaches with respect to effectiveness (quality
of the results) and efficiency (time needed to produce the results).

(a) Traditional (b) Automatic scanlines (c) Interactive scanlines

Figure 4.9:The figure display U.S. population cartograms as results ofCartoDraw with automatically
and interactively placed scanlines. Thearea errors dA in 4.9(a), 4.9(b), and 4.9(c) are 0.36,
0.21, and 0.1, respectively.

Effectiveness In figure 4.9, we show the original U.S. map (figure 4.9(a) with the results of theCarto-
Draw algorithm using automatically generated scanlines (figure 4.9(b)) and interactively generated scan-
lines (figure 4.9(b)). Both approaches provide high quality cartograms. Figure 4.9 shows that thearea
error dA is much lower for the interactive scanlines, but shape distortion seems to be higher.

3The comparison assumes that both algorithms run on a 120 MHz computer with 32 Mbytes RAM.
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(a) State polygons (b) Global polygon

Figure 4.10:shape errorversusarea errorcomparison (interactive scanlines)

To measure the shape distortion, we use the Fourier-based shape similarity function (see subsection
4.2.2). In figure 4.10, we compare the tradeoff between area andshape errorfor each incremental step of
the algorithm. Each point in figures 4.10a and b corresponds to one intermediate result of theCartoDraw
algorithm (with interactive scanlines). The result shows the trade-off betweenarea errorand shape dis-
tortion: In the beginning, there is a largearea error dA = 0.36. By applying a scanline, thearea error is
improved but the shape becomes more distorted. It is therefore natural that the curve goes from the lower
right to the upper left until the area error is small enough or the shape distortion reaches some threshold.
A similar behavior can be observed for the global shape. There is however a slight difference: While the
area errorstill improves from one step to the next, the distortion global shape in some cases does not get
worse.

Figure 4.11:Comparison of automatic and interactive scanlines

Comparing thearea error–shape errortradeoff of interactive versus automatic scanlines reveals some
interesting properties of our algorithm (see figure 4.11). In the beginning, both approaches have a similar
trend in shape-area error tradeoff. At a certain point, however, the automatically generated scanlines
lead to a deterioration inarea error which subsequent scanlines are not able to improve. In case of
interactively generated scanlines, thearea errorcontinues to improve by smaller and smaller increments.
Note the jump inshape errorfor anarea errorof aboutdA = 0.15. At this point we switched the direction
from scanlineto section line(see scanline algorithm in subsection 4.3.2), which leads to a continued
improvement of thearea errorbut a considerable deterioration of theshape error.

Efficiency We also performed extensive experiments to evaluate the efficiency of theCartoDrawalgo-
rithm. The time needed to run the algorithm on the U.S. population data is about 2 seconds. If we change
the parameter vector, the time needed for the reduction step of chapter 3.5 versus the scanline execution

40



4.4 M-CartoDraw–Using Medial Axes as Skeleton

varies slightly between 40% and 60%. Figure 4.12(a) shows the percentages needed for the two steps of
the algorithm for nine different parameter vectors, namely long-distance telephone call volume data by
state for nine time steps during a day. Note that the reduction step can be pre-computed so that it does not
have to be re-run each time the algorithm is executed.

(a) Reduction versus scanline step (b) No. of scanlines (U.S. states) (c) No. of polygons

Figure 4.12:Efficiency tests

We also analyzed the effect of changing the length of scanlines. Figure 4.12(b) shows the results for
the 144 interactively defined scanlines for the U.S. population data. The time needed to process a scanline
depends only on the number of scanline sections which in turn depends only on the length of the scanlines.
This means that a steep increase corresponds to long scanlines and a shallow increase corresponds to short
scanline. Figure 4.12(b) reveals that shorter scanlines are more likely toward the end of the process and
are used for fine tuning some portions of the polygon. Nevertheless, some shorter scanlines are applied
regularly in the process as indicated by the irregularities in the curve.

Our final efficiency analysis was aimed at testing the dependency of theCartoDraw algorithm on
the number of polygons. Since we do not have many different real data sets with a widely varying
number of polygons, we generated synthetic data sets, namely checker boards with an increasing number
of rectangular polygons. We then used random numbers for initializing the parameter vectors. Figure
4.12(c) shows the results of these tests, revealing, as expected from the time complexity analysis above, a
clear linear dependency on the number of polygons. The algorithm needs about 16 seconds for a polygon
net consisting of 90,000 polygons. Note, however, that in this case the number of vertices per polygon is
very low (four) and a reduction of vertices is not necessary.

4.4 M-CartoDraw –Using Medial Axes as Skeleton

CartoDrawcan compute cartograms using manual placed scanlines or by running the the scanline method
over a regular grid. In this part of the chapter we want to introduce an extension, calledM-CartoDraw, to
compute cartograms fully automatic.

The basic idea of our algorithm is to incrementally reposition the vertices of the polygon mesh using
medial axis segments as scanlines. The medial axis or skeleton of a 2D region are the loci of the centers
of its maximal inscribed circles. There are many publications and equivalent definitions of the medial
axis transformation [11, 13, 103, 20, 97, 24, 20, 28]. For example, is is also defined as the centers of the
circumcircles of a Delaunay triangulation. A more intuitive definition is the prairie fire transformation
[103]. Imagine that the interior of the polygon is dry grass and the exterior is unburnable wet grass.
Suppose a fire is set simultaneously at all points on the polygon’s boundary. The fire propagates at
uniform speed toward the middle of the figure. At some points, however, different fire fronts meet and
extinguish each other. These points are called quench points of the fire; the set of quench points defines
the skeleton of the figure.

The medial axes can be gained by generalizing the Voronoi diagrams (see [103, page 179] and [34, page
319]) allowing infinite set of points on the boundary of the polygons. This generalization is illustrated in
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figure 4.13.
To illustrate the application of medial axis to cartograms, figure 4.14(a) shows a U.S. map and its

medial axis. We will use census population data for the target area vectorV . Area error is encoded with
a bipolar red/blue colormap. Blue regions should be larger, red regions smaller. Color intensity indicates
magnitude.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n)

Figure 4.13:The picture displays 12 different levels of the medial axes computation (4.13(a) – 4.13(l))
of a sample polygon. On each figure, we computed the Voronoi diagram (red segments, see
[97, 24] for details) of the black points on the border of the polygon. All edges which lie
completely inside the bounded region form the medial axes (green segments) of the polygon.
Subfigures 4.13(m) and 4.13(n) show the resulting “skeleton” for the sample polygon and
the U.S. boundary, respectively.

4.4.1 Basic Idea

Consider a line (called a scanline) drawn inside a polygon. Our algorithm computes line segments (called
section lines) perpendicular to the scanline at regular intervals. Consider the two edges on the boundary
of the polygon intersected by a section line on either side of the scanline. These edges divide the polygon
boundary into two chains. If the polygon is to be expanded, the algorithm applies a translationparallel
to the scanline to each vertex on chains (in opposite directions) to stretch the polygon. If it is being
contracted, the direction of translation is reversed.

Our algorithm repeatedly applies medial axis segments as scanlines, thus using the shape of the polygon
to make local expansions or contractions. Figure 4.14(c) shows three examples of this process. In the
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(a) Map with area error and medial axes (b) Example section lines (c) Stretching and contracting the
global polygon

Figure 4.14:The basic idea of the cartogram algorithm

mid-west a section line contracts the global shape while in the north-east and Florida the global shape is
stretched. The section lines are inserted in regular intervals on the medial axis which are the “scanlines”
of the algorithm. Figure 4.14(b), shows a few section lines at six different map locations.

4.4.2 The M-CartoDraw Main Algorithm

Beside the description of theM-CartoDraw algorithm in [77], in this thesis we will make use of the
previous section.

The processing of a single medial axis segment is one scanline step as described in Algorithm 3. As
mentioned earlier, the scanline function determines whether the mesh is to be stretched or contracted, and
the amount of adjustment. It is computed as a weighted average of thearea errors of the polygons cut by
the section line, weighted by their scale factors. Note that the algorithm does not calculate new positions
of all vertices for each section line. Instead, it aggregates the distortion vectors for each point and applies
the aggregate vector after all section lines of a medial axis segment have been considered.

The basic structure ofM-CartoDraw is presented in Algorithm 5. The main function takes as input
the polygon meshP and the desired parameter vectorX . The main loop iterates until thearea error falls
below a given thresholdεAreaError. In each iteration, the medial axes of the global polygon is determined
and assigned to set of scanlinesSL. Next, the main loop calls theCartoDraw function using only one
iteration to stretch and contract the polygon mesh however it depends on the parameter vector.

The function can be extended by a control over theshape errorof all polygons and theshape error
of the global polygon. SinceCartoDraw itself checks the shape error and because to be sparingly with
computation time, further “check” are dispensable at that branch of the code.

Furthermore it is possible to call different variants of theCartoDraw function.4 An alternative car-
togram transformation could be, that we just stretch and contract the global polygon of the input map
and after that we use a bilinear interpolation to transform the inner nodes of the mesh. An advantage of
that method is that the transformation is a very smooth especially for a cartogram sequence. This variant
of CartoDrawhas been used for the AT&T call volume series which can be seen in chapter 7 (see also
[75, 76]).

Observe that in processing an individual medial axis segment, we allow the algorithm to potentially
increase thearea errorto escape local minima. However, in each iteration of the main loop thearea error
decreases monotonically, so termination is guaranteed.

Figure 4.15 shows a few steps in incrementally applyingM-CartoDrawto a U.S. population cartogram.
As before, the blue polygons should be larger, and red ones smaller. The algorithm quickly provides
nice results in areas which are well suited to the proposed approach(e.g. the Midwest, New England,
California, New York, and Pennsylvania).

4It should be mentioned that we have experimented with at least ten differentCartoDraw and scanline variants and sub-
variants during the last four years. In this thesis we will only present the most two successful versions.
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M-CartoDraw (P , X̃ ){
/* since the area error is larger than a given threshold */
while(dA(P , X̃ ) ≥ εAreaError){

/* compute the global polygon */
G =computeGlobalPolygon(P );

/* compute the medial axes of the global polygon */
SL=computeMedialAxes(G);

P =CartoDraw (P , X̃ ,SL,1);
}
return (P );

}
Algorithm 5: M-CartoDraw

(a) red–blue bipolar colormap indicatingarea error

(b) Step 0 (c) Step 1 (d) Step 2 (e) Step 3 (f) Step 4 (g) Step 5

(h) Step 6 (i) Step 7 (j) Step 8 (k) Step 9 (l) Step 10

Figure 4.15:M-CartoDrawconstruction series;area error in step 10 is less than 3%.
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4.4.3 Robustness and Stability

Medial axis transforms are susceptible to problems due to noise and error in the input data set. Although
a treatment of this is outside the scope of our work, practical solutions based on pruning strategies and
simplification have been studied extensively[45]. Also, as noted by several authors, it is reasonable to
generate cartograms from decimated maps, mitigating some of these issues.

4.4.4 Extensions of the Cartogram Algorithm

One problem with the proposed algorithm is that the medial axis of the global polygon may not allow
local adjustment of certain regions, though they may have higharea error. An example of this in the
United States map can be found in the upper Midwest (see figure 4.14(a)). Previous experiments with an
interactive scanline-based cartogram algorithm suggest that manually placing additional scanlines in such
regions can improve the resulting cartograms.

• Clustering Regions
One approach is to cluster regions that havearea errors in the same direction,i.e. they all need
to expand or contract (see figure 4.16(b)). We compute medial axis for each such cluster and then
apply Algorithm 3. The cluster regions are processed in order of decreasing aggregatearea error.

• All Polygons
The cluster-based approach can be extended further by computing the medial axis of each polygon
in the input map. Figure 3 shows the polygons and their scanlines. Again, the scanlines of each
polygon are considered in order of decreasingarea error.

(a) Interactive scanlines (b) Cluster region medial axis (c) All polygon medial axis

Figure 4.16:Extensions of the cartogram algorithm

4.4.5 Evaluation of the Algorithm

The algorithm described above was implemented inC++ using the LEDA library [97] and runs on Mi-
crosoft Windows and Linux. Tests were performed on a 1,5 GHz Intel Xeon server with 4 GBytes of
main memory (although only 15MB were needed) under Linux. In this section, we discuss the results and
compare our approach with some alternatives.

On the whole, our method provides cartograms competitive with previous approaches (see figure 3.4),
with the geography of the United States being clearly recognizable.

Time Complexity Let m corresponds to the number of global nodes of the meshm = |GP(P |). For
getting the medial axes5, M-CartoDraw needs to compute the Voronoi-diagram. This can be done in
O(mlogm). Since the number of medial axis segments depend linearly on the number of global nodesm
of the input set and the number of iteration is constant, the algorithm for generating the cartogram needs
at mostO(mlogm+n·m) time.

5Assuming simple polygons, there are also solutions for getting an approximation of the media axes in linear time [20].
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(a) Red–blue colormap used to demonstrate thearea error

(b) 0:00 am (EST) (c) 6:00am (EST) (d) 12:00pm (EST) (e) 6:00pm (EST)

Figure 4.17:U.S. telephone call volume data over 24 hours. The color of each polygon represents the
area error. White polygons are distorted with anarea errorclose to 0, blue polygons should
be made larger and red polygons should be made smaller.

Effectiveness Figure 4.17 shows the output ofM-CartoDraw with call usage in the U.S. The picture
shows cartograms of volume of a telephone service at four different time points (midnight, 6 a.m., noon,
6 p.m. EST) of one day.

All the cartograms provide high quality in the sense that the geography of the U.S. is clearly recogniz-
able, while thearea error is less than 5% in each. The color of each polygon represents thearea error.
White polygons are perfectly distorted with anarea errorclose to 0, blue polygons should be larger, and
red should be smaller. The visualizations show interesting patterns of phone service usage that reflect the
different time zones of the U.S.
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Figure 4.18:Effectiveness and efficiency comparison using the U.S. state map

Compared to thescanlineapproach in section 4.3,M-CartoDrawyields better results in relation to the
areashape errortrade–off as can be seen in figure 4.18(c).

To measure shape distortion, we employed the Fourier–based method introduced in [75]. In figure
4.18(c), each point corresponds to the intermediate solution found in oneM-CartoDraw step. At the
beginning, thearea error is larger than 36% for all maps. With increasing number of iterations, thearea
error decreases and theshape errorgrows due to distortions that are introduced. As expected, the curve
traces from the lower right corner up to the left corner until thearea error is small enough, thearea error
difference is less than its threshold, or the shape distortion is larger than a given threshold. In most cases,
shape errorandarea errorhave an inverse relationship. The diagram also shows that the finalshape error
depends on thearea error at the beginning. That is because maps starting with a higharea error need
to be distorted more heavily than those with lowerarea error. The diagram also implies that the slope
of the curve corresponding toM-CartoDraw is much more constant than that of thescanlineapproach of
section 4.3, which can be attributed to extensive human interactions. Figure 4.18(a) shows the totalarea
error for M-CartoDraw(with 3%area error) and [75, 90]. This figure shows that the proposed approach
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is preferable to the in section 4.3 described technique and to the hybrid optimization-based approach of
[90].

The multi panel plot [21] on figure 4.19 demonstrates the state wise trade off betweenshape errorand
area errorover the number of iterations usingM-CartoDraw for the distortion and the U.S. population
data as input. On each panel (bottom to top) we doubled the displayed number of iterations starting with
the initial map (bottom) with noshape errors. Each point on the figure represents one state. All states
which has to be smaller (which means that ˜x j −A(p j) ≤ 0) were colored red and blue otherwise. The
plot reverifies the theoretic work in chapter 3. It can be seen that it is impossible to eliminate thearea
error without allowingshape error. For some states it is even impossible to get thearea errorbelow a
threshold. Furthermore, on an increasing number of iteration thearea error improvement decrease.
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Figure 4.19:Shape errorversusarea error–On an ideal plot, on the top panel, all points have been moved
in the middle with noshape error.

Efficiency We performed experiments to evaluate the efficiency of the proposed algorithm. For this
study we did not include the computation time needed to simplify (decimate) the input map, because we
treat this an external one-time pre-computation. The main advantage of our approach is its low running
time; timings range from six seconds for the U.S. state map to five minutes for the U.S. county map
(with about 3000 polygons). Finding the medial axis is about half the total running time. This compares
favorably with the prior best known approach [90], which (adjusted for current CPUs) takes about two
orders of magnitude longer to compute a cartogram. This is demonstrated in figure 4.18(b), comparing
M-CartoDraw’s running time with that of [90]. The test assumed that the algorithm runs on a 120MHz
computer with 32MByteRAM. Note that theY scale is logarithmic.

4.5 Conclusions

In this study we analyzed and discussed the problem of efficient contiguous cartogram drawing, and
proposed two optimistic algorithm that outperforms previous techniques by orders of magnitude and
provides results that are at least as correct.

The first algorithm is enhance by a medial axis-based techniques which is used for computing a skeleton
of the input mesh.
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4 CartoDraw: A Fast Algorithm for Generating Contiguous Cartograms

Experiments show that the proposed algorithms offers good results for a variety of applications and
scales to a large number of input polygons. For medium sized data sets, the performance is sufficient for
an interactive display of network traffic levels in telecom applications.

Although the proposed algorithm is a significant step toward fast, reliable, and effective cartogram
generation, there remain several promising directions for further research, including the dependency of
the results on the selected scanlines and the improvement of automatic scanline placement.

It would be interesting to study general methods for computing amorph (homotopy) with specified
boundary properties that optimizes some function of the interior. Our method of using medial axis seg-
ments as scanlines can be further generalized (for example, applying vectors in the direction of flow from
the medial axis to the boundary).

The proposed algorithm can be enhanced in the 3D space for graph layouts.
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5 RecMap : An Algorithm for Generating
Rectangular Map Approximations

5.1 Introduction

Contiguous cartograms are marvelous and their main advantages is that shape of the map is preserved
as much as possible. Nevertheless, as it was proven in chapter 3, there exist maps and parameter values
where it is impossible to reduce thearea error. PracticallyCartoDraw works well for map up to 100
polygons. If we have more than 500 map regions it becomes more and more difficult to reduce thearea
error.

Especially for data analysts it is important to have an accurate presentation of the data. Therefore, we
will introduce a new cartogram technique calledRecMapto compute cartograms with – noarea error–
and we will give a wide variety of constrains to the user to produce high quality visualizations.

Cartographers and geographers usedcartogramsor value–by–area mapslong before computers were
available (see the introduction by Daniel Keim and Stephen North in [77]). As mentioned earlier the basic
idea of a cartogram is to distort a map by resizing its regions according to some external geography–
related parameter. First hand-made cartograms can be found in [107, pp. 216–217]. Because constructing
cartograms manually is a very cost-intensive and time consuming task, researchers oversimplified the
shapes of the map. The map of figure 5.1 shows a partitioning of the U.S. into rectangles. Here, the area
of a region corresponds to its population in 1958. A detailed description of how to construct rectangular
cartograms manually can be found in [107].

Figure 5.1:Erwin Raisz’s hand-madevalue–by–area cartogramshows the population of the U.S. in 1958,
(Erwin Raisz, Principles of Cartography, 1962, McGraw-Hill Book Company, Inc., Fig. 21.4
permission by courtesy ofc©McGraw-Hill Education)
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The construction of cartograms is a very difficult task because, on the one hand, one has to resize the
regions according to their geo–spatial statistical values and, on the other hand, one has to take into account
that the (original) shapes of the regions and their neighborhood relationships (topology) are preserved as
much as possible.

Consequently, the study of automated methods for drawing cartograms is of considerable interest. In
the meantime, many automatic visualization techniques have been developed (for an overview see chapter
3). In the following we will give a short overview of related cartogram techniques and space filling
visualization techniques.

Circular cartograms[30] (see figure 5.2(a)) ignore the shape of the input polygons completely and
represent them as circles. In many cases, the area and topology constraints have to be relaxed, too. The
general applicability of this technique is open to question.

Tree-Maps[62], which are a well–known information visualization technique, are an appropriate me-
thod to display data with a given hierarchic order. They divide the display area into rectangles such that
the area of each rectangle corresponds to its statistical value. Figure 5.2(b) displays an example where
Tree-Maps1 are used for visualizing U.S. census data. To the best of our knowledge there do not exist any
automatic procedures which compute the split hierarchy of the map. This work has to be done by the user
via interaction.

(a) Circle cartograms[30, 32] (b) Tree-Map[102]

CA

TX FL

NY

(c) Quad trees[108]

(d) Hand drawn rectangular cartogram (Borden D.
Dent, Cartography: Thematic Map Design, 1999,
McGraw-Hill Book Company, Inc., Fig. 11.10 per-
mission by courtesy ofc©McGraw-Hill Education)
[27].

(e) Automatic generated rectangular cartogram (permission
by courtesy of Bettina Speckmann) [125, 127].

Figure 5.2:Related work onRecMapusing the U.S. map and the corresponding population data as input.

Quad trees[42, 108, 24] are well known from the computational geometry and used for storage and
retrieval for higher dimensional points. In Figure 5.2(c) the faces in theQuad treecorresponds to the

1We thank Catherin Plaisant for preparing theTree-Mappicture in figure 5.2(b)
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statistical value. The computation of the tree structure is linear in the number of nodes. A drawback of
that technique is that it does not take into account the regions neighborhoods and their shapes (aspect
ratios).

An interesting approach of computing rectangular cartograms has been currently introduced [125, 127]
and can be seen in figure 5.2(e). This approach is based on existing VLSI layout algorithms. The basic
idea of the algorithm works as follows. In a first step the cartogram procedure creates a4-connected
triangulated plane graphof its pseudo dualinput map2. The second step computes the rectangular layout
by employing a linear time rectangular edge labeling REL algorithm by He and Kant[63]. While the REL
algorithm computes an arbitrary layout without taking the desired area values, aspect ratio, and polygon
neighborhood into account, the generated layout has to be stretched or contracted perpendicular to the
x and y axes according to a given parameter vector in the final step. Therefore Speckmann and van
Kreveld implemented asegment moving heuristicwhich is similar to theCartoDrawalgorithm described
in the previous chapters. Since the quality of the REL algorithm result depends on the triangulation of
the 4TP graph, several rectangular map partitions are possible. There are some major drawbacks with
this technique. First in general thearea errorof the in [125, 127] cited approach can not be eliminated
completely which means that there exists a polygon mesh and a parameter vector so that the resulting
map has at least one region where the area does not reflect the statistical value. Since our motivation of
approximating the regions by rectangles is based on eliminating thearea error, the techniques is not an
improvement in the sense of information visualization. Furthermore it seem that the algorithm induces a
large set of possible solutions (more than 4000 for the U.S. map which are more than 40 time more then
whatRecMapproduces) which have to be evaluated. The computation time for that can be very high and
it should therefore not be underestimated. Figure 5.2(e) shows a population cartogram of the U.S. using a
modified variant which provides almost no area error [126, 127].

Most of the techniques which have been presented so far do not take the shape and the topology of
the map into account, e.g., [42, 102, 30], or the area error in contiguous cartograms cannot be eliminated
completely, e.g., [75, 125].

The idea of this work is to approximate familiar land covering map region by rectangles and to find
a partition of the available screen space where the areas of these rectangular regions are proportional
to given statistical values. In order to support the understanding of the information represented by a car-
togram we try to place the rectangles as close as possible to their original positions and as close as possible
to their neighbors. We define two variants of this optimization problem and present two corresponding
algorithms calledMP1 andMP2 which generate space filling partitions of the screen space with respect
to the given geo–locations. Both algorithms construct cartograms where the area of each rectangle of the
cartogram is proportional to its area within the map. The difference between these construction proce-
dures is that the first method does not allow empty space, whereas the second one preserves the shapes of
the polygons. Both algorithms runs within a meta heuristic.

The remainder of this chapter is organized as follows: Section 5.2 is devoted to a formal description of
the (variants of the)map partition problemor cartogram problem. In Section 5.3, we present two solution
procedures. The efficiency of our new approach is shown in Section 5.4. Applications of this work will
be shown in chapter 7.

5.2 Problem Definition

In this section, we give a formulation of the problem of determining a near–optimal cartogramP =
{p1, . . . , pR} for a given mapP = {p1, . . . , pR} consisting ofR polygonsor regionsand vectorX̃ =
(x̃r)r=1,...,R of spatial data valuesx̃r ≥ 0 with ∑R

r=1 x̃r = 1. For this, we first refer to the constraints

2A 4-connected triangulated plane graph, also called 4TP graph, is a graph where each inner face is a triangle, the exterior
face is a quadrangle, and the degrees of all inner nodes is at least four [63].
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5 RecMap: An Algorithm for Generating Rectangular Map Approximations

which have to be met during the optimization process. Hereafter, we turn to the single components of the
objective function.

5.2.1 Constraints

When determiningP we can choose among several possibilities of representing the regions ofP . We
have decided to use rectangular polygons as in this way the expressiveness ofP is not impaired by
insignificant details of the shapes of the polygons ofP . As indicated before, we name this type of
cartogramrectangular map. Hence, we have to meet the following constraints in any case:

• P is planar,

• each polygonp∈ P is a rectangle, and

• each polygonp∈ P is neighbor of at least one different polygonp′ ∈ P .

A cartogramP obeying these constraints is calledfeasible. The set of feasible cartograms is denoted
by M .

5.2.2 Objective Function

The quality ofP depends on two aspects: First, we have to evaluate whether the polygons ofP can be
easily recognized inP . Second, the areas of the polygons ofP have to reflect the geo–spatial data values
given byX . In general, these requirements represent conflicting goals. Based on these aspects, we use
five criteria in order to evaluate the quality ofP . These criteria, which correspond to the components of
the objective function, are presented in the following.
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Figure 5.3:The figures show the adjacency graphs of the U.S. map (left) and a corresponding map parti-
tion (right). The red colored segments indicate the topology error.

Area

The quality ofP w.r.t. the criterion “area” is measured similar to equation 4.7 using equation 4.5 by the
area error dA with

dA = dA(X̃ ,P ) (5.1)

=
R

∑
j=1

(
d̃A(x̃ j , p j) ·

x̃ j

∑R
j=1 x̃ j

)
(5.2)
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5.2 Problem Definition

Shape

Theshape error dS reflects the average relative deviation of the shape of a polygonpr ∈ P from that of
its corresponding polygonpr ∈ P and is determined as follows:

dS = dS(P ,P ) (5.3)

=
1
R
·

R

∑
r=1

|s(pr)−s(pr)|
s(pr)

. (5.4)

The shapes(pr) or s(pr) of a polygonpr ∈ P or pr ∈ P is measured by the ratio of its maximum
extension in horizontal direction and its maximum extension in vertical direction, respectively.

Topology

Thetopology error dT is an indicator of the deviation of the neighborhood relationships given byP from
those given byP . To obtaindT , we first have to compute theadjacency graphsor pseudo dual graphsGa

andGa of P andP , respectively. An adjacency graph reflects the neighborhood relationships between the
polygons of a polygon mesh (see [101], p. 267). To obtain that graph, we first introduce a vertex for each
polygon of the polygon mesh. Next, for each pair of neighbored polygons, we add an edge between the
corresponding vertices.

dT = dT(P ,P ) (5.5)

=
|Ea\Ea|+ |Ea\Ea|

|Ea∪Ea|
, (5.6)

whereEa andEa denote the set of edges ofGa andGa, respectively. Thetopology errorreflects the number
of neighborhood relationships being solely contained in one of both polygon meshes and is normalized to
the interval[0,1]. An example for the calculation ofdT is given by figure 5.3.

Relative Polygon Positions

An important criterion for the recognizability of the polygons inP are their relative positions. But since
they are only partially reflected by the adjacency graph we use the (relative) position errorwith

dR = dR(P ,P ) (5.7)

=
2

R· (R−1)
· 1
180◦

·
R−1

∑
r=1

R

∑
ρ=r+1

αr,ρ, (5.8)

which is normalized to the interval[0,1]. αr,ρ = arccos(~ur,ρ ·~ur,ρ)/(|~ur,ρ| · |~ur,ρ|) measures the deviation
of the relative positions of polygonspr and pρ from those ofpr and pρ with the help of vectors~ur,ρ =
c(pρ)− c(pr) and~ur,ρ = c(pρ)− c(pr) wherec(pr) andc(pr) stand for the centers of gravity ofpr and
pr , respectively.

Empty Space

As we make use of rectangular maps it might happen thatP contains “holes” orempty spacewhich com-
prises those areas which are completely surrounded by filled space, i.e. by polygons ofP . Consequently,
we also measure the quality ofP by theempty space error dE(P ) with
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5 RecMap: An Algorithm for Generating Rectangular Map Approximations

dE = dE(P ) (5.9)

=
At(P )−Af (P )

At(P )
, (5.10)

which equals the share of empty area in the total areaAt(P ) of P . At(P ) stands for the space being
enclosed by the boundary ofP . Again,E(P ) is normalized to the interval[0,1].

5.2.3 Formulation of the Optimization Problem

To give the user full control over the visualization goals we have developed two variants of the map
partition problem each of them focussing on different components of objective function

f (P ) = (dA,dS,dT ,dR,dE)T (5.11)

.

Variant 1 ( MP1) Since one of the most important aspects w.r.t. the expressiveness of cartograms is that
spatial data is represented by area, we require thatdA equals zero. In order to use the full screen space,
we demand thatdE equals zero, too. Hence, using the constraints and the components off which have
been introduced above, we can state the first variant of the map partition problem being considered in this
paper as the followingvector minimum problem:

Min. f (P ) (5.12)

s.t. P ∈M , dA = 0, and dE = 0. (5.13)

Variant 2 ( MP2) Like for (MP1), we demand that no area error occurs. Second, in order to take the
recognizability of the polygons into account, we do not allow any shape error. Consequently, we obtain
the following optimization problem:

Min. f (P ) (5.14)

s.t. P ∈M , dA = 0, and dS = 0. (5.15)

It is likely that (MP1) and (MP2) representN P–hard optimization problems. Recently aN P–hard
proof appeared for a rectangular cartogram problem variant [10].

5.3 The RecMap Algorithm

In the following, we are going to present heuristic solution procedures for both variants of the map parti-
tion problem. First, we refer to a heuristic for (MP1). Hereafter, we present a method which computes a
near–optimal solution for (MP2).

To obtain cartograms of high quality, we repeat the construction of cartograms using agenetic algorithm
(see [51], 2000) which guides the optimization process. In each iteration of thismeta heuristic, a set or
generationof cartograms orindividuals is generated. An individual is characterized by three aspects:
thegenotype, theconstruction algorithm, and thephenotype. The genotype stands for the information
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5.3 The RecMapAlgorithm

needed to generate the corresponding phenotype using a certain construction algorithm. In our context,
the genotype corresponds to an array of nonnegative integers and the phenotype to a (feasible) cartogram.

The individuals of a generation are evaluated by means of a weighted objective functionf̂ which is
derived fromf . Then, weselecta predefined number of best individuals and determine the next generation
out of their genotypes by applyingreplicationandmutation. This process is repeated until a predefined
number of generations has been generated or a given amount of time has elapsed. The best cartogram
which has been found so far is returned.

RecMapMeta-Heuristic()

/* STEP 1(initialization step) */

CreateI0; I? = (−1, . . . ,−1); F̂? := ∞
/* STEP 2(main step) */

FOR ν := 0 TO n DO

FOR I ∈ Iν DO

/* compute a candidate cartogram */

DetermineMP1 P (I)

IF f̂ (P (I)) < f̂ ? THEN

I? := I ; f̂ ? := f̂ (P (I))

IF ν < n THEN

CreateIν+1

RETURN I?

Algorithm 6: Genetic algorithm

The weightsws,we,wt ,wr of f̂ can be set by the user according to her or his visualization goals. In
this way, the user gains control over the visualization process and result. The effect of different weights
on the resulting cartograms is demonstrated in figure 5.4 w.r.t. our heuristic for (MP2). For example,
figure 5.4(a) shows the cartogram which is obtained if the weight fordT is set to one and the other
weights are set to zero. (Figures 5.4(b) and 5.4(c) have to be interpreted in an analogous manner.) The
cartogram of figure 5.4(d) is obtained if all weights are set to one.

5.3.1 Variant 1

Basic Idea

In order to achievedE = 0, our heuristic is based on the procedure of [79] which — starting with a single
rectangle — computes a sequence ofpartial cartogramsP̃ by adding a rectangle in each step in such a
way that no empty space can occur. In the following, we first give a detailed description of this basic
procedure which serves as the construction algorithm within our genetic algorithm.

Initialization Step

In the initialization step, we first draw the initial partial cartogram which consists of a rectangle, denoted
by p1, with an horizontal extension of

dx = max
r=1,...,R

max
i=1,...,nr

xr
i − min

r=1,...,R
min

i=1,...,nr
xr

i (5.16)
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Figure 5.4:Cartograms resulting from different weights for the components off̂

and a vertical extension of

dy = max
r=1,...,R

max
i=1,...,nr

yr
i − min

r=1,...,R
min

i=1,...,nr
yr

i . (5.17)

(nr stands for the number of nodes ofpr and(xr
i ,y

r
i ) for the position of theith vertex ofpr in clockwise

order.) Second, we compute the center of gravityc(pr) for each polygonp∈ P and plot this point into
the starting rectangle. In the following, the polygons ofP are represented by their centers of gravity.

Main Step

In the main step, we perform a sequence of so–calledsplits. Each split refers to a rectangular polygon
p∈ P̃ , which contains at least two centers of gravity, and divides it into two new rectangular polygons,
each of them containing at least one center of gravity. In this way, we construct a sequence of partial
cartograms̃P with no empty space error. Eachp∈ P̃ represents the aggregation of those polygons ofP
which correspond to the centers of gravityc(pr) being contained inp (i.e.c(pr) ∈ p).

The main step ends, when each rectangle contains exactly one center of gravity and hence no further
split can be done. Consequently, afterR− 1 splits we obtain a partial cartogram̃P with R polygons.
This final (partial) cartogram corresponds to a (complete) cartogram:P = P̃ . The polygons ofP have
to be re–numbered because, as indicated before, a rectanglep∈ P represents that polygonpr ∈ P which
corresponds to the single center of gravity being included inp. Therefore,p gets the indexr.
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5.3 The RecMapAlgorithm

We differ between two types of splits: ahorizontal splitand avertical split. A horizontal (vertical) split
introduces a horizontal (vertical)splitting line into the rectanglep∈ P̃ to be split, which results in two
new polygonsp′ andp′′ with p′ being below (left) ofp′′. Splitting is done in such a way that, after each
split, we have for the current partial cartogram̃P

A(pr)
|P̃ |
∑

ρ=1
A(pρ)

= ∑
c(pr )∈p

x̃r (r = 1, . . . , |P̃ |), (5.18)

i.e. the area ofpr ∈ P̃ is proportional to the sum∑c(pr )∈p x̃r of the spatial data values of the polygons

pr ∈ P being associated withc(pr) ∈ p (r = 1, . . . , |P̃ |). We try to split a polygonp ∈ P̃ as equally as
possible: If we do a horizontal (vertical) split, we scan the pointsc(pr) ∈ p from bottom to top (left to
right), and add them top′ until we have

∑
c(pr )∈p′

x̃r ≥
1
2
· ∑
c(pr )∈p

x̃r . (5.19)

Those centers of gravity ofp which have not been added top′ are added top′′. If p contains two centers
of gravity, we stop after having scanned the first. Provided that we perform a horizontal or vertical split
of pr ∈ P̃ , the splitting line is placed intopr such that the height or the breadth ofp′ equals

∑c(pr )∈p′ x̃r

∑c(pr )∈p x̃r
· (yr

3−yr
1) or

∑c(pr )∈p′ x̃r

∑c(pr )∈p x̃r
· (xr

3−xr
1) , (5.20)

respectively3.

The RecMap –Algorithm for Variant 1

A major drawback of the procedure described in the previous section is its rigidity. This means, that the
polygons resulting from a horizontal split have to be split vertically in any case and vice versa. But in this
way, no special attention is paid to the shapes of the polygons and the neighborhood relationships between
them. For example, if the majority of the polygonsp∈ P possesses a longish shape (i.e.s(p) < 1) the
procedure might lead to seriously deformed cartograms, i.e. cartogramsP with high values fordS anddT .
In such a case, it would be indicated to prefer vertical splits.

This drawback can be avoided by usingsplit sequences. For example, let a cartogramP be obtained
by performing a horizontal split and two vertical splits afterwards. If we associate a horizontal split with
0 and a vertical split with 1, we get the split sequence(0,1,1). This split sequence can be conceived as
the genotype ofP . In general, the genotype of a cartogram is a vector(Iλ)λ=1,...,R−1 of (binary) values
Iλ ∈ {0,1}.

To use the construction algorithm described above w.r.t. a given split sequence(Iλ)λ=1,...,R−1, it has
to be adapted accordingly. For this, we introduce variableλ which stands for the split position which
is currently considered.Iλ represents the splitting type to be chosen for theλth split. At the end of the
algorithm,λ equalsR−1. The adapted construction algorithm is given by Algorithm 7.

The split sequence can be also represented as a tree (see figure 5.5(a)). Each node of the tree represents
one polygon. The leaf-nodes represents the final cartogram and all other nodes represents one polygon
during the construction process. In this example the split type is encoded as red/black color. The node

3Please note, that the notation of a spacial data value ˜xr differs from the(xr ,yr) location of the center of gravity of a polygon
pr ∈ P .
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5 RecMap: An Algorithm for Generating Rectangular Map Approximations

Determine MP1 (P (I))

/* STEP 1(initialization step) */

P̃ := {p1}; S := {p1}; λ := 1

/* STEP 2(main step) */

WHILE S 6= /0 DO

Removep from S
IF |{pr ∈ P |c(pr) ∈ p}|> 1 THEN

IF Iλ = 0 THEN

Split p horizontally intop′ andp′′

ELSE

Split p vertically into p′ andp′′

S := S ∪{p′′}; S := S ∪{p′}

P̃ := P̃\{p}; P̃ := P̃ ∪{p′, p′′}
λ := λ+1

RETURN P̃

Algorithm 7: TheRecMap MP1 construction procedure

with the number 1 is the root of the tree. While red nodes force vertical splits, black nodes force horizontal
splits. The split sequence for our demonstration is defined as follows:

(Iλ)λ=1,...,R = (1,2,3,4,5,6,7,8,9,10, (5.21)

11,12,13,14,15,16,17,18,19,20, (5.22)

21,22,23,24,25,26,27,28,29,30, (5.23)

31,32,33,34,35,36,37,38,39,40, (5.24)

41,42,43,44,45,46,47) (5.25)

Please note, that the split sequence is usually not as regular as in the example above. The applied split
sequence onMP1 can be seen in figure 5.5(b) using the U.S. state population data set.

5.3.2 Variant 2

Basic Idea

In literature, we find an optimization problem in the context ofinner–plant layout planning(see [101],
p. 255 et seqq.) which shows certain similarities to (MP2). Thislayout problemcan be roughly stated as
follows: We are given a rectangular site, a set of machines (being described by their ground plans), and
the amounts of material which have to be transported between them. The objective is to find alayout, i.e.
a plan with the positions of the machines on the site, such that the transportation costs are minimized, i.e.
that machines with a high transportation intensity in between are located as close as possible. The map
partition problem considered here is similar to the layout problem in so far as there are also given a set of
rectangular areas (i.e. polygons) which have to be placed such that the distances between them are taken
into consideration.
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(a) The figure displays the split tree of the figure 5.5(b). Red nodes indicate horizontal and black nodes indicate
vertical splits. The tree has been drawn using thedot program fromGraphviz[49].

(b) All 47 MP1 splits for a alternatingx–y splitting sequence.

Figure 5.5:A demonstration ofRecMap MP1’ construction using U.S. census 2000 population data on
state level and a regular split sequence.

The construction algorithm of our heuristic for (MP2) relies on two ideas of the procedure of [46]
which is derived from a graph theoretical model of the layout problem. First, in theinitialization step, we
choose a specific polygon, called thecore polygon pc, to be the center of thelayoutor cartogram. Second,
in themain step, we construct a sequence ofpartial layoutsor partial cartogramsP̃ , i.e. starting withpc,
the remainingR−1 polygons are placed around it one after the other until we have found a (complete)
cartogramP = P̃ .

Initialization Step

As thearea errorand theshape errorought to be zero, the breadthb(pr) and heighth(pr) of each polygon
pr ∈ P are given by

b(pr) =
√

x̃r ·∑R
r=1a(pr) ·s(pr) and (5.26)

h(pr) =

√
x̃r ·∑R

r=1a(pr)
s(pr)

, (5.27)
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5 RecMap: An Algorithm for Generating Rectangular Map Approximations

respectively. The core polygonpc is determined with the help of an extensionGax of Ga which is obtained
by introducing an additional nodeR+1 for the outer region ofP . pc corresponds to a polygonpr which
has the maximum distancedr,R+1 from the outer regionpR+1 where the distance between two polygons is
measured by the minimum number of edges between their corresponding nodes inGax.

Main Step

As indicated before, the main step consists ofR−1 partial steps. In each of these steps, we choose an
index r among the set of indices of those polygons which have not yet been created and added toP̃ . Let
Q denote the set of indices of the polygonspr ∈ P̃ . Then, the index of the newly created polygon has
to be taken from{1, . . . ,R}\Q. Since the maintenance of the neighborhood relationships ofP is of high
importance w.r.t. the recognizability of the polygons ofP , we have a look atGa in order to determine
the indexr ′ of the polygon to be added next. We demand that the corresponding polygonpr ′ ∈ P is
a neighbor of at least one of those polygonspr ∈ P the indices of which are contained inQ because
otherwise, the adjacency graph of the resulting partial cartogramP̃ would not be connected and we could
no longer guaranteeP ∈M for the final cartogramP . Let N (pr) denote the set of neighbors ofpr in P ,
i.e. N (pr) = {pρ|(r,ρ) ∈ Ea}. If there are several indices which could be selected, we choose the lowest
one. Thus, we set

r ′ = min{r ∈ {1, . . . ,R}\Q|pr ∈
[

ρ∈Q
N (pρ)}. (5.28)

After the determination ofr ′ we have to decide where to place the corresponding polygonpr ′ . In
general, there exists an infinite number of possible positions forpr ′. In order to keep the computational
time low, we have to restrict ourselves to a finite subset.

Pretests have revealed that the following procedure is favorable: We scan the edgese of the boundary
E of P̃ and determine a setΠe of possible positions forpr ′ w.r.t. e. For example, we add the end points
and the middle point ofe to Πe as possible positions of the lower left corner ofpr ′. To keep the number
of possible positions low and to exclude infeasible positions, each position(x,y)∈Πe is checked within a
multi–stage test. For instance, we remove those positions fromΠe which cause a violation of the planarity
or which could lead to unacceptable high values ofdT or dR.

Subsequent to the determination of the setsΠe we select the best position(x?,y?) and createpr ′ at that
position.(x?,y?) is found as follows: LetΠ denote the set of all feasible positions which have been found
so far. For each position(x,y) ∈Π, we temporarily extend̃P by adding the newly created polygonpr ′ at
(x,y) and compute a weighted sum̂f (P̃ ) of the values of the components off . The position associated
with the minimum value of̂f equals(x?,y?).

The RecMap –Algorithm for Variant 2

As the order in which the polygons are added toP̃ is of high importance we have to encode this infor-
mation by the genotype ofP which equals a vector(Iλ)λ=1,...,R of valuesIλ ∈ {1, . . . ,R} with Iλ 6= Iλ′ for
λ 6= λ′ (λ,λ′ ∈ {1, . . . ,R}). For the use within our genetic algorithm–based heuristic, we have to adapt the
choice ofr ′ accordingly. This means, that among the set of indices of those polygons which are neighbors
of polygonspr with r ∈Q, we select that indexr ′ which is the first of them inI . Hence, (5.28) has to be
modified as follows:

r ′ = min{λ ∈ {1, . . . ,R}|Iλ ∈ {1, . . . ,R}\Q and

pIλ
∈

[
ρ∈Q

N (pρ)}. (5.29)

The construction algorithm is given by algorithm 8. An example sequence for generating an U.S. state
population cartogram can be seen figure 5.6.
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5.3 The RecMapAlgorithm

Determine MP2 (P (I))

/* STEP 1(initialization step) */

CreateGax

r ′ := min{r ∈ {1, . . . ,R}|dr,R+1 = maxρ=1,...,Rdρ,R+1}
Createpr ′ at (0,0); P̃ := {pr ′}; Q := {r ′}; pc := pr ′

/* STEP 2(main step) */

WHILE Q 6= {1, . . . ,R} DO

r ′ := min{r ∈ {1, . . . ,R}\Q|pr ∈
S

ρ∈QN (pρ)}
Π := /0; Q := Q∪{r ′}
FOR e∈ E DO

DetermineΠe; Π := Π∪Πe

f̂ ? := ∞

FOR (x,y) ∈Π DO

Createpr ′ at (x,y); P̃ := P̃ ∪{pr ′}

IF f̂ (P̃ ) < f̂ ? THEN

(x?,y?) := (x,y); f̂ ? := f̂ (P̃ )

P̃ := P̃\{pr ′}

Createpr ′ at (x?,y?); P̃ := P̃ ∪{pr ′}
RETURN P̃

Algorithm 8: TheRecMap MP2 construction procedure
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5 RecMap: An Algorithm for Generating Rectangular Map Approximations

Figure 5.6:The maps display all 49 partial cartograms ofRecMap MP2 construction procedure starting
with Kansas as core polygon.

5.4 Evaluation of the Algorithm

The algorithm described above were implemented inANSI–Cand hence it runs on a various architectures
(Intel’s 386, Apple’s PPC, and SUN’s SPARC64) and operating systems (Microsoft Windows, OpenBSD,
and Linux)4. The tests were performed on a 1.5 GHz Intel XEON compute server with 4 GB main memory
under Linux (only 1 MB was needed by the algorithms). In this section, we will show some results using
the U.S. census data base and U.S. election data.

5.4.1 Effectiveness and Efficiency

Time Complexity The most expensive parts of the algorithms are the computation of the relative posi-
tion error (see equation 5.8) which takesO(n2), wheren is the number of polygons. The error function has
to be computed in each iteration of the meta heuristic. The number of iterations is constant. Therefore,
the complexity for theMP1 procedure isO(n2). Since the error function has to be computed for each of
n partial cartograms usingMP2, the complexity here isO(n3).

Real data Figure 5.7 shows, for each generation within the meta heuristic ofRecMap, the best car-
togram which has been found by the construction procedureMP2. Figure 5.8 illustrates the respective
values of the errors for both construction procedures. The scatterplot shows the conflicting goals of the
error functions. The whole computation time for 10 iterations equals 0.33 seconds for (MP1) and for
11 iterations 55 seconds for (MP2) using a 2.5GHz clocked Intel XEON CPU. Each iteration step of one
RecMapvariant need the same time. SinceRecMapgives us a useful visualization even after the first iter-
ation a dynamic exploration of the data is guaranteed (see the cartogram yielded after Step 1 in figure 5.7).

Figure 5.9 shows how computational time and several errors such as the topology and shape error
depend on each other. The items being considered here are the time span which has elapsed since
the start of the optimization process (“time”),dT (“topologyError”), R(P ) (“relativePositionError”),dE

4For an overview see figure 6.13 on page 87
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Step 1 Step 2 Step 3 Step 4

Step 5 Step 6

No improvement
in steps {7,8,9,10}.

Step 11

Figure 5.7:This figure demonstrates the continuous improvement of the feasible solutions for (MP2) with
increasing number of generations. The computation time for each iteration equals 5 seconds.

“emptySpaceError”, and̂f (P ) (“weightedError”). As the values ofdA anddS are constant, we have omit-
ted them in this visualization. From this plot, we can conclude, that — as expected — the amounts of
improvements decrease over time. Furthermore, from the plot w.r.t.dT (x–axis) anddE (y–axis) we can
conclude that these components are negatively related (which confirms our finding in the theory part of
this chapter). The results of the experiments with different parameter setting ofRecMap’s meta heuristic
(see Algorithm 6) for theMP1 construction procedure and theMP2 construction procedure are illustrated
by figures 5.10(a) and 5.10(b), respectively. This kind of visualization is calledlevelplot[21, pp. 264].
It consists of two parts: On the left-hand, a matrix is shown, where the x–axis and the y–axis correspond
to selection rate and mutation rate, respectively. The value of a combination is represented by a color.
On the right-hand, a bar shows which value (in per cent) is associated with a color: The best value is
represented by the color magenta and the worst by the color cyan. In this way, we can easily identify the
best combination and — what is also important — “regions” of good and bad combinations. For theMP1
construction procedure, the best value forf̂ (P ) equals 0.243 with

dA = 0 (5.30)

dS = 0.524 (5.31)

dT = 0.582 (5.32)

dR = 0.109 (5.33)

dE = 0 (5.34)

which is obtained for a selection rate of 0.8 and a mutation rate of 0.4 after 0.3 seconds. For theMP2
construction procedure, the best value forf̂ (P ) equals 0.064 with

dA = 0 (5.35)

dS = 0.0 (5.36)

dT = 0.245 (5.37)

dR = 0.070 (5.38)

dE = 0.006 (5.39)

which is obtained for a selection rate of 1.0 and a mutation rate of 0.1 after 60.7 seconds.
As we can see in figure 5.10(a), good and bad combinations are nearly evenly distributed. We can

merely conclude that combinations with a selection rate of 0.0 and a mutation rate of 0.0 tend to yield
bad results. For theMP1 based procedure, we have decided to fix the selection rate 0.8 and the mutation
rate at 0.4. Whereas in figure 5.10(a) no region of good combinations can be identified, we can do so
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Figure 5.8:The scatterplot display the errors over the number of iteration yielded by the (MP1) and (MP2)
heuristics for U.S. state level.

in figure 5.10(b): These are those combinations where the selection and mutation rates are in[0.1,0.4]×
[0.1,0.4]. From this figure, we can also clearly conclude that bad values are associated with regions where
the selection rate is 0.0 and mutation rate is 1.0, i.e. where cartograms have been created randomly. On
the other hand, it is important that the genotypes are “refreshed” to a certain degree, because combinations
with a mutation rate of zero also tend to yield bad results. If we do not use only the best individuals of a
generation but all of them (i.e. selection rate is 1.0), we mostly obtain bad values, too.

Finally, figure 5.11 illustrates the input and the results for theMP1 andMP2 construction procedures.
We used the U.S. state level map and the census [124] population data. The selection and mutation rates
are 0.4 and 0.3. The weights of the weighted objective function arews,e,t,r = {1.0,0.3,0.3,1}. Many
application examples using different data and maps ofRecMapcan be found in chapter 7.

Synthetic data Beside “real world maps” we usedRecMapto gain artificial maps. First we generate
a regular 3× 3 checker board (see chapter C). We tried all combination of parameter settings for the
soft constraints topology, relative position, and empty space for theMP2 construction procedure. As
postulated earlier, on all rectangular cartograms in figure 5.12 the hard constraints area and shape were
abided, which means there is noarea errorand noshape errorin the resulting map. The core polygon
on the 3×3 checkerboard map is obviously the region with the id five. All polygons are placed around
it. The parameter setting of figure 5.12(e), 5.12(f), and 5.12(h) achieve the best results. However the
parameter setting needs some experience with the algorithm. Since we get a visual result after a couple
of seconds, an interactive visualization is guaranteed.

In figure 5.13 we increased the number of regions up to 49 and generated rectangular cartograms using
the MP1 andMP2 construction procedures. On the mesh the core polygon is the region assigned with
number 25. The computation time is the same as for the U.S. map. Using arbitrary sized maps we were
able to analyze the computation time dependency of the number of map regions. The result can be seen
in figure 5.14. The charts shows that in contrast toMP1 the computation time forMP2 increase non
linear. This can be explained by the increasing search space for theMP2 construction procedure and the
complexity of the relative position error function.
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Figure 5.9:The figure illustrates the scatterplot matrix ofRecMap MP2 using U.S. state map and the U.S.
census population data.

5.4.2 Discussion

RecMapis a very fast algorithm for computing rectangular cartograms. Nevertheless, further improve-
ments can be made. The following guideline will give some ideas for a further improvement of computa-
tion time.

First, a genetic algorithms, as Algorithm 6 is, are perfectly practical for parallel computing. Inside the
meta heuristic we can run each candidate transformation call on one node. Often modern compute servers
have Intel XEON systems and furthermore they have more than one single CPU. So here we can run each
candidate transformation as single thread. Assuming a four processor XEON System, the same input, and
the same parameter setting as in figure 5.11 we will get a result after 4 seconds.

Additionally, we can reduce the search space ofMP2 by using hierarchical layouts. This is especially
useful if we have a high number of map regions (see U.S. county level mesh in the application chapter).
This can be done when we group the map into subregions, e.g., assuming the U.S. map, we divide it into
northeast, south, Midwest, etc. Or we use a hierarchy layout. e.g., using the U.S. map, we compute a state
level cartogram and inside each state we draw a county level cartogram of the corresponding state. This
grouping reduces the computation and it will make the resulting cartogram easier to understand.

The results, especially the computation time, are promising to use theMP1 as split procedure for the
PixelMap-algorithm (see chapter 2) for generating high quality pixel maps.

5.5 Conclusion

In this study we have analyzed and discussed the problem of efficient map partitioning and have proposed
two automatic, scalable, and flexible algorithms calledRecMapfor generating rectangular map partitions.
Here, the user has an explicit control of all visualization constraints. Our approach is novel because its
features (no area error, explicit control of shape, topology, empty space, and relative position constraints)
are not provided by previous approaches. This new technique enables interactive views of detail at various
levels to find very fast interesting patterns or subsets.

The experiments show that our algorithms offer good results for a variety of applications, and their
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Figure 5.10:Analysis of the genetic based meta heuristic – Levelplots show the results of the selection-
and mutation rate parameters. The weighted objective function is encoded by color.

(a) U.S. map

AL
AZ

AR
CA

CO

CT

DE

FLGA

ID IL IN

IA

KS

KY

LA

ME

DC

RI

MI

MN

MS

MO

MT
NE

NV

NH
NJ

NM

NY

NC

OH

OK

OR PA MA

SC

TN
TX

UT

VTWA
WV

WI

(b) MP1

AL

AZ

AR

CA

CO
CT

DE

FL

GA

ID

IL

IN

IA

KS

KY

LA

ME

DC

RI
MI

MN

MS

MO

MT
NE

NV

NH

NJ

NM

NY

NC

OHOK

OR
PA

MA

SC

TN

TX

UT

VT

WA

WV

WI
MI

(c) MP2

Figure 5.11:Results ofRecMapfor the U.S. population data

speed even allows an interactive display.
Further research could comprise the combination of our approach and other visualization techniques

such as pixel–oriented techniques (where the pixels could be placed directly into their corresponding map
partitions). Such a combination would allow to visualize areas with high information density. Additional
material (e.g., an executable file) and ongoing work can be found on our web sitehttp://dbvis.inf.
uni-konstanz.de/˜panse/recmap.
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Figure 5.12:RecMap MP2 on a regular 3×3 checkerboard map using different weights – 5.12(a) the input
map; 5.12(b) topology preserving; 5.12(c) empty space preserving; 5.12(d) relative position
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Figure 5.13:RecMapon synthetic 7×7 checkerboard map
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Figure 5.14:The figure displays the time versus number of polygon comparison for a single construction
step for both construction heuristics using different sizes of checker boards as input mesh.
The test has been performed on a Intel Pentium M 1.6 GHz CPU using 10 geno and 10 pheno
types.
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6 Extensions and Combinations

6.1 The Visual Points Solution

TheVisual Pointssystem [71] was developed to address the problem of over-plotting spatially referenced
data. It works by moving points that would be drawn on already-occupied pixels to nearby unoccupied
pixels, instead of over-plotting them.Visual Pointsassumes a hierarchical partitioning of the data space,
to support efficient repositioning of the data points while preserving their distances and positions. In this
study, we show how a similar idea calledVP-Cartocan be applied to efficient cartogram generation. The
basic idea is to insert multiple points for a polygon, whose count is proportional to its target area. The
points are inserted into the hierarchical data structure, and the distortion implied by the data structure is
then applied to reposition the vertices of the map. Several different pixel insertion strategies are described,
yielding different cartograms. Parts of this section have been published in [80].

6.1.1 The VP-Carto Algorithm

In each step of theVP-Cartoconstruction, the data set is recursively partitioned into four subsets contain-
ing the data points in four equally-sized subregions. Since the data points may not fit into the four equally
size subregions, we have to determine new extensions of the four subregions (without changing the four
subsets of data points) such that the data points in each subset can be visualized in its corresponding sub-
region. For an efficient implementation, a quadtree-like data structure manages the required information
for the recursive partitioning. The partitioning is determined as follows. Starting with the root of the
quadtree, in each step the data space is partitioned into four subregions. The partitioning is made such
that the area occupied by each of the subregions (in pixels) is larger than the number of pixels belonging
to the corresponding subregion (see figure 6.1).

6.1.2 Generating Cartograms with VP-Carto

To adapt theVP-Cartotechnique to cartogram generation, a few changes need to be made to the original
algorithm. The modified algorithm is shown in algorithm 9. The most important changes will be explained
in more detail.

(a) Example data (b) Horizontal (c) Vertical

Figure 6.1:OriginalVP-Cartoalgorithm
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(a) Horizontal (b) Vertical

Figure 6.2:VP-Cartoalgorithm for cartograms

Partitioning Strategy In cartogram generation we are interested in distorting maps instead of placing
pixels, so the modified algorithm has a differentpartitioning strategy. In the originalVP-Cartosystem,
the borders between the quadtree partitions are only shifted as much as needed to accommodate all pixels
in the quadrant. For cartogram generation, the borders are shifted according to the ratio of the number
of pixels in the neighboring quadrants. For example, with the originalVP-Cartoalgorithm, there is no
change in the first step of figure 6.1(b), since there is enough space (18 pixels) in the left partition to
accommodate all twelve data points. In the modified algorithm, the border shifts proportionately to the
number of data points, i.e. in a ratio of 12:2 resulting in the partition shown in figure 6.2(a). Note that the
result of the second step is also different (compare figure 6.1(c) and 6.2b).

VPcarto(P , X̃){
Quadtree Q; /* empty initialized Quadtree */
foreach (polygons P∈ P ){

point cur= FindStartPoint(P);
while (pc< P.DesiredArea(X )){

/* area is represented as pixels */
now= P.ComputeNextPosition(cur); /* depends on insert strategy */
Q.InsertQuadtree(cur);
pc= pc+1;

} /* while */
} /* foreach */
Trans f ormQuadtree(Q);
/* moves the borders of the quadtree */
foreach (polygons P∈ P ){

foreach (point p∈ P){
qnode node= Q.FindNode(p);
p = scale(node, p);

/* depends on new height and width of node */
} /* foreach */

} /* foreach */

Algorithm 9: VPCarto

No Pixel Placement. A second difference between the original and the modifiedVP-Cartoalgorithm is
that pixels don’t need to be positioned. They are only needed to determine an optimal partitioning of the
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6.1 The Visual PointsSolution

modified quadtree for the subsequent transformation of map polygons. It is also no longer necessary to
search for free space to avoid overlapping pixels. Since pixels don’t need to be positioned, we can further
optimize the space and time complexity of the algorithm by storing a pixel at a given position only once.

Pixel Insertion Strategies. To scale the polygons according to their desired size, we represent the poly-
gons by pixels. If a polygon needs to shrink, we insert fewer pixels than what its shape accommodates,
thus creating free space; if a polygon needs to expand, an excess of pixels are inserted, leading to overlap-
ping pixels. The idea is to distort the map such that all pixels can be placed without overlap. In the best
case the overlapping pixels of the growing polygons use the free space of neighboring shrinking polygons.
The pixel insertion strategy determines where the pixels are placed for growing and shrinking polygons.
We tried the following strategies:

• Bottom – Top: Shrinking polygons are filled with pixels starting at the top and going downward
until all pixels are set, and the overflow pixels are positioned at the top of the expanding polygons
(see figure 6.3(a)).

• Left – Right: Shrinking polygons are filled with pixels starting on the left going right, and the
overflow pixels are positioned at the right sides of the expanding polygons (see figure 6.3(b)).

• Center – Outside: Shrinking polygons are filled with pixels from the center going outward, and
the overflow pixels are positioned at the edges of the expanding polygons (see figure 6.3(c)).

Observe that pixels are only used to construct the quadtree-like data structure but are not actually
positioned as in the case of theVP-Cartosystem, so the exact position of each pixel is not important. As
figure 6.3(a–c) shows, the pixel insertion strategy is of great importance for the quality of the resulting
cartograms, especially with respect to the shape of the polygons and the overlap of edges. The differences
result from the different partitioning of the quadtree induced by the insertion strategies.

Determination of the Polygon Mesh After the quadtree is constructed, it is applied to distort the ver-
tices of the polygon mesh. Each vertex is repositioned separately: First, the cell of the quadtree containing
the vertex is found. Then the new position of the vertex is calculated by scaling the cells of the quadtree
on each level according to the desired size of the cells (corresponding to the number of pixels). By
repositioning each vertex, we iteratively construct the distorted polygon mesh.

6.1.3 Efficiency and Effectiveness

The CartoDraw algorithm described in chapter 4 was implemented inC++ using the LEDA library
[97] and theVPCartoalgorithm described in section 6.1 was implemented in Java. The tests reported
in this section were performed on a 1 GHz Pentium computer with 512 Mbytes of main memory. In
the following, we report and discuss the results and compare the effectiveness and efficiency of both
approaches.

Figure 6.4 shows the measured efficiency and effectiveness results. The total run time was 3 seconds
for the newVP-Cartoapproach, 25 seconds for the automatic scanline approach, and 16 hours for the non-
linear optimization approach by Kocmoud and House [90] (The comparison assumes that all algorithms
run on a 120 MHz computer.). Note that the scale on the y-axes of figure 6.4 is logarithmic. TheVPCarto
approach is more than four orders of magnitude faster than the Kocmoud and House approach, about
two orders of magnitude faster than the interactive scanlines, and about one order of magnitude faster
than the automatic scanlines. Since theVPCarto algorithm has no explicit notion of shape, its shape
preservation is not as good as that ofCartoDraw. Figure 6.4(b) compares shape versus area error for
population cartograms made withVPCartoand interactive scanlines, measured on the four population

71



6 Extensions and Combinations

(a) Top – bottom

(b) Left – right

(c) Center – outside

Figure 6.3:Insertion strategies

cartograms. The results clearly indicate that the shape error of theCartoDraw (interactive scanlines) is
always considerably better than that of theVPCartoresults, and slightly worse for the area error. Since the
total shape error is basically an average over the state-wise area error, figure 6.4(c) shows the shape error
by state, sorted by shape error. Figure 6.4(c) reveals that theCartoDrawalgorithm consistently provides
a lower shape error than theVPCartoalgorithm.
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(a) Run time comparison

(b) Shape error versus area error

(c) Sorted shape

Figure 6.4:Efficiency and effectiveness results
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6.2 HistoScale

6.2.1 Introduction

In addition to the classical applications mentioned in the chapter above, a key motivation for cartograms
as a general information visualization technique is to have a method for trading-off shape and area adjust-
ments.pseudo-cartogramsprovide an efficient and convenient approximation of contiguous cartograms,
since a complete computation of cartograms is expensive. In this section, we propose an efficient method
calledHistoScaleto compute Pseudo-Cartograms. Parts of this section have been published in [78].

6.2.2 HistoScale Approach

The basic idea of theHistoScalemethod is to distort the map regions along the two Euclidean dimensions
x andy. The distortion depends on two parameters, the number of data items which are geographically
located in this map area, and the area covered by this map region on the underlying map. The new pixel
position(x,y) of a geo-location(λ,φ) can be computed by solving the integrals (see Tobler [121])

x =
Z λ

−π
dx(λ)dλ (6.1)

y =
Z φ

−π
dy(φ)dφ. (6.2)

The distortion operations can be efficiently performed by computing two histograms with a given num-
ber of bins in two Euclidean dimensionsx andy to determine the distribution of the geo-spatial data items
in these dimensions. The two histograms are independent from each other, that means, the computation
of the histograms can be random. The two consecutive operations in the two Euclidean dimensionsx and
y realize a grid which is placed on the map. The number of histogram bins can be given by the user.

Lets consider an example here we want to transformation along ax direction. Asinput we have a
polygon meshP and a parameter vectorX = (xi)i=1,...,n wherexi = (λi ,φi ,zi).

The area of each bin corresponds to the statistical value. The transformation is separated into two steps.
In a pre-processing step the histogramhx is computed by summing up the statistical values. The his-

togram bins are realized as an integer array. Next, we cumulate the cells of the integer array and achieve
dx.

In a second step, the transformation of the map is to be done. For each data point of the mesh the new
position is determined. The transformation of each point is made by a bilinear interpolation between the
histogram binshx and the cumulated histogramdx (similar to theScanline-step ofCaroDraw).

As outputwe achieve a map transformationP here the area of each region is approximated according
to the histogram bins.

For a practicable visualization we suggest a number of 256 histogram bins for both histograms.
Figure 6.5 demonstrates the idea ofHistoScale.

6.2.3 Evaluation

The resulting output maps are referred to as pseudo-cartograms, since they are only approximations to the
true cartogram solution. On the other hand our approach generates interesting maps and good solutions
in least square sense.

Efficiency The computation of pseudo-histograms using ourHistoScalealgorithm can be done in real-
time (see figure 6.6). Due to the run time behavior,HistoScalecan be used as a pre-processing step for
other cartogram algorithms. The complexity of theHistoScaleapproach isO(|P |+ |X |).
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HistoScale-longitude(P ,X ){
/* STEP 1 */
for(i = 0;i ≤ |X |; i ++){

h[round(λi ] = h[round(λi)]+zi ;
}
for(i = 1;i ≤ |h|; i ++){

d[i] = h[i]+d[i−1];
}
/* STEP 2 */
foreach((λ,Ψ) ∈ P ){

(x,y) = cmptBlnrntrpltn(h,d,(λ,Ψ));
print(x,y);

}
}

Algorithm 10: HistoScale

Figure 6.6 shows, that the computation time of theCartoDrawalgorithm can be reduced without losing
any quality. In the application part of this thesis (see chapter 7) the reader will find several interesting
applications using ourHistoScalealgorithm.

The world population pseudo-cartogram shows clearly, that China and India are the most populated
world regions. This fact has e.g., an important influence on the evolution of epidemics such as SARS, as
unknown epidemics in such areas can be dangerous for the whole world population.
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Time [Seconds]

*HistoScale

CartoDraw *HistoScale

CartoDraw Automatic

CartoDraw Interactive

Kocmoud and House

Tobler Pseudo Cartogram

VisualPoints

10^1 10^2 10^3 10^4 10^5

Figure 6.6:Time comparison - we have assumed a 120MHz Intel CPU to compute the U.S. state car-
tograms
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6.3 HistoMap : A Combination of HistoScale and RecMap

Often data analysts have only x-y-location as input and want a value-by-area cartogram as visualization.
We can combine theHistoScaleandRecMapapproaches and get a new method calledHistoMap.

The visualization goals are as follows:

1. using the full screen size for the visualization (no holes),

2. each location should be realized as a rectangle or at least as a display pixel,

3. the relative geographic position of each location should be preserved, and

4. the aspect ratio of each box should be equalized.

6.3.1 Problem Definition

As input we have a point setP = {p1, . . . , pn} and(pi)i=1,...,n ∈ R2 and a vectorX of statistical values
whereX = (xi)i=1,...,n with xi > 0 andxi ∈ N.

The quality ofP depends on two aspects. First, we want a space filling visualization where the area of
each rectangle corresponds to the statistical value of each location and second, the “map” should be easily
recognized as inP .

These goals can be achieved using three objective functions which are:
Theabsolute point positiondistance measures the difference between the x-y-location and the center of
the resulting rectangle. Theabsolute point position dAP can be expressed by

dAP = dAP(P ,P ) (6.3)

=
n−1

∑
i=0
|pi − p̃i | (6.4)

and therelative point position

dRP = dRP(P ,P ) (6.5)

=
n−1

∑
i=0

n−1

∑
j=0, j 6=i

(|pi − p j |− |p̃i − p̃ j |)2 (6.6)

which may be used as measures for the achievement of the neighborhood. Theaspect ratio error dAR

reflects the average relative deviation of the aspect ratios of the rectangles inP and can be determined as
follows:

dAR = dAR(P ,P ) (6.7)

=
1
n
·
n−1

∑
i=1
|1− dyi

dxi
| (6.8)

The distance function|pi − p j | can be defined by anLm-norm (m= 1 or 2)

|pi − p j | = m
√

(px
i − px

j)m+(py
i − py

j)m. (6.9)

Theoutputcan be defined as an optimization problem. Theoutputis a

• non-overlapping,

• planar, and
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6.3 HistoMap: A Combination of HistoScaleand RecMap

• space filling

map partitionP where{wrp,wap,war} ∈ R, wrp +wap+war = 1, {wrp,wap,war} ≥ 0, and

n−1

∑
i=1

A(p̃) = xi (6.10)

wrp ·dRP+wap ·dAP+war ·dAR is minimized. (6.11)

6.3.2 Solution

We provide two solutions for the problem mentioned above. The first solution is based on the previously
describedHistoScaleapproach. The algorithm is extended in that way, that we have an arbitrary number
of histogram bins which divide the screen space. For each bin we alternate between horizontal and vertical
direction of the binning until each bin corresponds to one x-y-location and the area to the statistical value.
In each binning step we have a flexible number of binning. Using a meta heuristic as described in the
RecMapchapter it is possible to minimize to the weighted position and aspect constraints.

Our second approach based completely on theRecMap MP1 construction procedure. Hence we com-
pute a candidate splitting sequence of all x-y-location, determine the map partition, evaluate the candidate
transformation. The transformation with the lowest error of all candidate transformations will be made
persistent.

6.3.3 An Example

As in many research groups, the communication in our group is based on emails. First, we applied the
solution to email data. We visualized all emails which have been classified as SPAM [113] during the last
two years. Therefore, we had to determine the x-y-location of the senders address. For that we used a
Geo-IP-DB [96]. The result can be seen in figure 6.7

Figure 6.7:This image shows the distribution of SPAM mail reached our IMAP server. Each country has
a unique color. The brightness is adjusted to the number of SPAM mails. (Thanks to Florian
Mansmann for implementation and generation.) [72]
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6.4 Combining PixelMap and RecMap

The RecMaptechnique is useful for data exploration. The map is distorted in a way that each area
corresponds to a first statistical value and hereafter, color is used for expressing quantities of a second
statistical value.

If we have a high number of x-y-locations, we can combineRecMapcartograms with thePixelMap
technique which is a pixel-based visualization (see also [111] or chapter 2). This combination is useful
because a major drawback of thePixelMaptechnique is that from the resulting pixel visualization it can
be difficult to identify the shape of the input map regions.

The combination described here combination is promising because on one handRecMapproduces
a set of rectangles as layout and on the other handPixelMapcan only place pixels inside a rectangle.
Furthermore, usingRecMapwe have a user control to achieve the relative position of the map regions
which can be useful for a fast exploration. Our experience withRecMaphas shown that users are able to
recognize familiar regions very quickly.

The input data has to be separated into regional categories. The input map must be distorted according
to the number of pixels multiplied by a positive constant number.

Next, for each region thePixelMapprocedure is used to place each x-y-location in the pre-defined
rectangle. As an additional parameter we givePixelMapthe aspect ratio of the map region.

Figure 6.8 shows a result for the U.S. state California. The area corresponds to the number of house-
holds (multiplied by 1.5) while each pixel in figure 6.8(b) represents one single household. The pixels are
placed according to the median household income of the U.S. census data base [124]. The uni-polar color
map identifies eight different income classes. The here described combination has one drawback that can

LA

(a) Rectangular cartogram (b) Combination ofPixelMapandRecMap

Figure 6.8:PixelMap-cartogram of California

also be seen in the figure. SinceRecMap’ layouts depend on the axes parallel transformation screen place
is squandered if we have a diagonal direction of the map regions.
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6.5 Texture Cartograms

6.5.1 Introduction

Usually most people are not very familiar with maps drawn from unknown territory. If there is an addi-
tional distortion on the map, probably a lot of people do not understand the visualization. Textures can
help to fix this problem. On a texture the user has an additional orientation to navigate through the map
and find well-known positions. These can be for example mountains, rivers, lakes, or even big streets;
things which can be seen from the birds perspective.

Furthermore, apart from generating traditional cartograms it is of interest what happens to the relief
after the distortion. Let’s consider a population cartogram which would enlarge the relief surface where
people live and contract these parts of the relief where less people live. Figure 6.10 shows the reliefs
during the construction steps of the cartogram. It can be seen that during the construction the mountain
regions are contracted in contrast to the coastline where the relief has been extracted.

Another application could be the design of route maps algorithms. In this case population cartograms
could be used again for drawing street details. Areas with a high number of street crossings could be
enlarged and undeveloped area could be contracted. Using cartograms it is possible to get an overall view
of the map.

6.5.2 The Algorithm

Texture Mapping The technique is well known from the computer graphics [135, 44, 131]. Textures
can indicate rendering informations such as contours, colors, or even images. These so-called textures
can be pinned on arbitrary surfaces. As an example one could put an image on a wall in an ,,info cube”
as it can be seen in figure 6.9(a).

Texture Mappingtechniques can be applied in 1D, 2D, 3D or even in higher dimensions. For our usage
we are just interested in2D-Texture Mapping. Texture mapping first maps theimage spaceto thetexture
space. In a second step thetexture spacehas to be mapped to theobject space. The mapping can be done
by bilinear interpolation.

Cartogram Texture Mapping The techniques can be used in combination with any topology preserving
contiguous cartogram drawing algorithm. The mapping described above can be done using the mapping
function:

fC : R2→ [0,1]× [0,1] (6.12)

where fC is basically that what our cartogram algorithm does and has the following properties:

fC(p) = p′↔ p∈ P ∧ f−1
C ( fC(p)) = p. (6.13)

fC can transform each point of the meshP into its new position. In practice the mapping can be realized
using an array which stores for each point of the mesh the new position.

With help of this function we are now able to compute the texture cartogram in two steps.

1. In a pre-processing step we first have to pin each point of the meshP onto the texture which is in
our case an image. An result of that step can be seen in figure 6.9(b) where the mesh of the U.S.
has been pinned on a checker board texture.

2. After that initialization we iterate over each polygonP∈ P . In a second loop we map each point
p∈ P to its new positionp′ using fC.

Thetexture mappingof the graphic library has to ensure that the texels are right placed on the resulting
visualization.
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6 Extensions and Combinations

(a) Info cube (b) Step 1: pinning the U.S. on a
checker board

(c) Step 2: Transform the mesh

Figure 6.9:Demonstration ofTexture Mapping

Implementation Texture mappingare supported by many computer graphic libraries. We have used
OpenGL, Version 1.2 [135] andANSI-C[89].

The algorithm reads as input an arbitrary SGI formatted image with a resolution of 2i ×2i wherei ∈
{1, . . . ,12} and a file which contains the polygon meshesP andP ′ as well as the one-to-one mapping
function fC. In the file the points of the polygons are saved line by line. The one-to-one mapping is
realized by savingp andp′ in one line separated by a delimiter.

In a pre-processing step the image has to be read into the texture buffer. It has to be ensured that the
texture has been clipped with the minimal bounding box toP ; Using the method shown in algorithm 11
thecartogram texture mappingcan begin.

Please note:OpenGLdoes not support rendering concave filled polygons. Before the rendering non
convex polygon has to be tessellated.OpenGLhas routines doing that. Because of clearance we did not
include that in algorithm 11. Alternatively, the cartogram drawing algorithm can give a triangulate mesh
as output.

Example Figure 6.10 displays amulti-transformation viewof the U.S. population data using a relief
map.

Figure 6.10:The figure shows 16 of 100 frames of amultitransformation viewof the U.S. population data
using a relief map [41]. All 100 frames can be downloaded as mpeg stream from [76]

6.5.3 Conclusion

In that section, we described how we can applytexture mappingto cartogram drawing. We also give an
implementation of the algorithm. Apart from that, we have seen thattexture mapping cartogramsare a
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6.5 Texture Cartograms

static void drawTextureCartogram()
{

FILE *CartogramMappingFile;
float x, y, vx, vy, x2, y2, vx2, vy2;

determineMinMax();

if ((CartogramMappingFile = fopen(MappingFileName, "r")) != NULL) {
glEnable(GL TEXTURE 2D);
glBindTexture(GL TEXTURE 2D, texName[1]);

glBegin(GL POLYGON);
/* foreach (polygon P∈ P){foreach (point p∈ P){...}} */
while (fscanf(CartogramMappingFile, "%f %f %f %f", &x, &y, &x2, &y2) != EOF) {
if (x != NA && y != NA) {

/* Normalize p = (vx,vy) ∈ [0,1] and (vx2,vy2) = fC(p) ∈ [0,1] */
vx = (x - xmin) / (xmax - xmin); vy = (y - ymin) / (ymax - ymin);
vx2 = (x2 - xmin2) / (xmax2 - xmin2); vy2 = (y2 - ymin2) / (ymax2 - ymin2);

glTexCoord2f(vx, vy);
if (ORGINALMAP == 1)

glVertex2f(vx, vy);
else

/* draw( fC(p)) */
glVertex2f(vx2, vy2);

} else {
glEnd();
glBegin(GL POLYGON);
}

}
glEnd();

fclose(CartogramMappingFile);
glDisable(GL TEXTURE 2D);
} else {
printf("Can’t open file %s", MappingFileName);
exit(1);
}

}
Algorithm 11: This algorithm computes the cartogramtexture mappingusing theOpenGL, Version 1.2
library. The texture mapping routine assumes that all polygon are convex. If that is not the case, the
polygon tessellation must be used (see [135, pp. 467] for more details)
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powerful tool formulti-scale viewingwhich can help the user for an inductive orientation. Some examples
of the techniques described above can be seen in the application part of this thesis.
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6.6 CartoDraw -System

6.6.1 The Graphical User Interface

All of the described algorithms are integrated into onegraphical user interface (GUI)calledCartoDraw-
System. Figure 6.11 demonstrates a screen-shot of theCartoDraw-System.

The main goal of this design was to have a handy program where the user can select the input data and
determine the desired algorithm to compute the cartogram transformation.

Because of the development history we used the LEDA [97] window and panel objects for realizing the
GUI 1.

An additional feature of LEDA is that we have a very powerful graph editor for debugging the input
map. An extraordinary fast processor and a high resolution wall (see 2.6) are of value, especially for the
“graphical debugging” of large maps as the U.S. continental county map.

The GUI provides standard input and output file-system browsing menus, many menus for parameter
settings (see e.g., figure 6.11(a), 6.11(b)), and a graphical representation of the map. All data can be
labeled. One of the main features is the color map setting. We have implemented the linear, logarithmic,
square-root, and area error color mapping functions (see chapter B). Using a quantile function it is
also possible to stress some polygons using brightness. Because of the fact that humans have different
perceptional taste concerning color our frame work can load arbitrary color maps. The standard color
maps which are included into theCartoDraw-Systemcan be see in chapter B.

Furthermore, the GUI provides several pre-processing scripts, such as data consistence checks, and
several drawing routines.

6.6.2 Extensions

During the development of algorithms we were interested to integrate our software into existing GIS com-
ponents to make it usable for a wide range of users. Beside a number of open source projects [48, 116, 52],
a well-known commercial product is GIS ArcView from ESRI [39]. In a feasibility study we developed
a routine which can export and import the desired format that ourCartoDraw-Sytem understands. A
result can bee seen in figure 6.12 were we used theRecMapalgorithm and the U.S. population data in
combination with some ESRI bar chart visualizations.

6.6.3 System Portability

SinceCartoDraw uses the LEDA-library the portability is restricted to the systems where LEDA runs.
CartoDrawruns on a number of architectures (SUN’sparc64, i386, SGI’MIPS) and a number of operation
systems (SUNOS 5.8, SUNOS 5.9, SGI’IRIX, Linux, OpenBSD, MS’Windows) using the GNU’g++
and Microsoft’vc compiler. RecMapwas implemented later and the designer decided to useANSI-Cas
programming language to make it as portable as possible. Figure 6.13 illustrates a time comparison using
different platforms and operation systems.

6.6.4 Outlook

To make the described algorithm and pre-processing steps accessible we have designed a client server
based architecture. The idea is that users can send the input data via a remote procedure call to an
application server which computes the cartogram. The dot-net environment seems to be a promising tool.
Further information about ourCartoDraw-System, including downloadable maps and data are available
from http://cartodraw.org. Future developments will also be posted to this site.

1Since all algorithms can be run from the command prompt (see chapter C) we can use any GUI environment, e.g.,
TCL/TK[43]
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(a) Color setting (b) RecMapsettings

(c) CartoDraw-System – main window

Figure 6.11:CartoDraw–System: The figure displays theCartoDraw-system in action. Figure 6.11(c)
shows a rectangular cartogram where the area is proportional to the cumulated call volume
of an U.S. phone company. The color indicates the proportion between customers and call
volume. In white areas the call volume is proportional to the number of customers. Blue area
indicates unexhausted regions while red regions highlights region where the call volume is
extraordinary high. The visualization shows directly the locations of interest which can never
be achieved by a regular visualization such as a quantile-quantile-plot. The usability can be
enhanced by standard labeling of interesting regions or by using specialized color mappings.
For a more efficient data analysis the geo-visualization in the window of sub-figure 6.11(c)
can also be combined with classical information visualization techniques such as scatter
plots (including q-q-plots), parallel coordinates and interaction techniques such as zooming,
linking, and brushing.
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Figure 6.12:ESRI ArcMap plugin usingRecMapand the U.S. population data (thanks to Tobias Müller
for the implementation)
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Figure 6.13:The graph plots the run time for several cartogram algorithms on various architectures. Even
on a 486 CPU (75MHz clocked)CartoDraw it is two magnitudes faster the the best-known
approach (upper panel) running on a i586 CPU (120MHz clocked).
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7 Evaluation and Application

The algorithms described in the previous chapters have been implemented inANSI-C[89] andC++ using
the LEDA library [97] and were run on a number of different example applications.

In this section, we report and discuss the results, the quality, the effectiveness and efficiency of the
different approaches.

Although our focus is on efficiency, the examples show that our proposed algorithmsCartoDraw, M-
CartoDraw, HistoScale, andRecMapalso provide results of very high quality.

In some cases checker board examples are used. We continue to use a state map of the continental U.S.
and the population data for the comparisons.

7.1 Comparison of the Quality with Previous Methods
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(a) Traditional map (b) Tobler’s pseudo cartogram (c) Kocmoud and House

(d) Edelsbrunner (e) CartoDraw (f) M-CartoDraw

Figure 7.1:Comparison with related contiguous cartogram drawing methods.

Figure 7.1 and 7.2 show U.S. population cartograms generated by our algorithm and by the techniques
proposed by Tobler [121], by Kocmoud and House [90], by Dorling [30], and van Kreveld and Speckmann
[126]. A visual comparison shows that our approach offers comparable if not better visual results, with
the geography of the United States being clearly perceivable.

For theRecMapapproach we can use an additional quality measure. Since each polygon is represented
by a rectangle the question arises how good the polygon region can be approximated. Two possible
layouts are presented in figure 7.3.
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(a) Circle cartogram (b) RecCarto
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(c) RecMap(MP1)
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Figure 7.2:Comparison with related cartogram drawing methods.
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7.1 Comparison of the Quality with Previous Methods
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(a) U.S. map
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(b) MP1
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(c) MP2

Figure 7.3:RecMapthe map regions were approximated by rectangles. The area of each rectangle com-
plies to the area of the original polygon.
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simulated annealing O(n2)
M-CartoDraw O(m· logm+m·n)
RecMap-MP1 O(p2)
RecMap-MP2 O(p3)
HistoScale O(n)

Table 7.1:Time complexity of introduced cartogram methods with number of map nodesn= |V|, number
of nodes of the global polygonm= |GP(P )|, number of polygonsp = |P |

7.2 Overall Effectiveness and Efficiency Comparison

Table 7.1 shows an overview of the time complexities of the introduced cartogram methods. Run time
comparison for some input examples can bee seen in table 7.2. To evaluate the results analytically, figure
7.4 shows the total area errordA for all approaches. Figure 7.4 shows that our proposal provides even
better results than the complex optimization-based approach by Kocmoud and House [90].
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Figure 7.4:The comparison of all cartogram drawing methods assumes an U.S. state level map, the U.S.
population data and an i386 120 MHz clocked CPU.

In terms of efficiency, our approaches are much faster than existing techniques. While previous ap-
proaches need hours or even days to compute a solution, our implementations runs in a matter of seconds.
Figure 7.4 shows that our scanline-based heuristic needs about 25 seconds while the Kocmoud & House
approach needs about 16 hours, making our approach about 2000 times faster. Please note that the time
axis on the plot is in logarithmic scale.

Furthermore, figure 7.4 demonstrates the trade-off between the area constraint and the computation
time.
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7.3 Application of Self-Generated Data

map algorithm |V| |E| |P | |GP(P )| dA(X ,P ) dA(X ,P ) time(secs)
US-state M-CartoDraw 808 1286 49 429 0.38 0.05 16
US-county M-CartoDraw 7609 20901 3085 474 0.63 0.33 223
NY-county M-CartoDraw 204 443 62 88 0.67 0.05 3
Germany M-CartoDraw 3510 6010 433 1877 0.55 0.23 466
US-state RecMap-MP1 - - 49 - 0.38 0 � 1
US-county RecMap-MP1 - - 3085 - 0.63 0 NA
CA-county RecMap-MP1 - - 59 - 0.63 0 � 1
TX-county RecMap-MP1 - - 255 - 0.66 0 10
7x7 board RecMap-MP1 - - 49 - 0.28 0 � 1
US-state RecMap-MP2 - - 49 - 0.38 0 50
US-county RecMap-MP2 - - 3085 - 0.63 0 ≈ 48·3600
CA-county RecMap-MP2 - - 59 - 0.63 0 180
TX-county RecMap-MP2 - - 255 - 0.66 0 240
7x7 board RecMap-MP2 - - 49 - 0.28 0 40

Table 7.2:Run time of computed cartograms

7.3 Application of Self-Generated Data

(a) 2×2 checkerboard (b) Preserved topology
(CartoDraw)

(c) No empty space (RecMap MP1) and preserved shape
(RecMap MP2)

1

2

3

4

5

6

7

8

9

(d) 3×3 checkerboard

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

(e) Preserved shape (RecMap MP2)

Figure 7.5:Checker board examples for different construction procedures.

Figure 7.5 shows the result when we use self-generated checker boards as discussed in chapter 3. In
this thesis we introduced three different solution procedures. Hence, we have a wide range of possible
configurations. On all maps in figure 7.5 the size of the black regions has to be one area unit and the size
of the white ones has to be four area units. On the input maps in sub figures 7.5(a) and 7.5(d) the areas are
proportional to two units. Figure 7.5(b) shows a topology-preserving solution using ourM-CartoDraw
algorithm and the 2×2 checker board as input. On the map the medial axes of the global polygon are the
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diagonals of the quadrat. Please note that theCartoDrawcan not distort the mesh so that the area is equal
to the desired area. This intention would be aimless since we do not allow to insert additional points on
the polygon lines.RecMapapproximates polygons by rectangles so that thearea errorof the map regions
is avoided completely. Two different constraint configurations can be seen in figure 7.5(c). The first one
avoids empty space where the second one preserve the shape of the regions. A regular 3 checker board is
difficult to handle usingCartoDrawsince the scanline function takes the amount of the parameters of a
given sized sector as factor for the transformation. In contrast,RecMapworks well. Figure 7.5(e) shows
two possible layouts for the 3×3 checker board map. Both layouts are shape-preserving. The different
layouts can be explained by different parameter setting for the topology and empty space weights.
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7.4 Application – Geographic Related Data

7.4 Application – Geographic Related Data

We ran the algorithms introduced in this thesis on a number of different maps and parameter vectors.

7.4.1 Environmental and Health Data

(a) Traditional map of the U.S. including
Alaska and the Hawaii islands
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(b) A X-Y-Plot shows the area of each state
versus the number of endangered species
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(c) The cartogram has been distorted using ourM-CartoDraw algorithm. The area on that
visualization corresponds to the number of endangered species in each state.

Figure 7.6:The graphic displays the U.S. proportion of endangered species usingM-CartoDraw (data:
courtesy of Environmental Defense Fund).
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7 Evaluation and Application

7.4.2 U.S. Election Cartograms

Election data are another application for cartograms.

2000 – Bush versus Gore

The maps in figure 7.9 display visualizations of the presidential race in the year 2000. The areas in
Figures 7.9(b), 7.9(c), and 7.9(d) correspond to the electoral voters. The red and blue color depict which
candidate has won each state. The candidate who covers the most area of the map in figures 7.9(b), 7.9(c),
and 7.9(d) has won the vote.

(a) Traditional map which can be archived
from http://www.nytimes.com/specials/
election2000/results-pres.html

Results of the Dez. 7, 2000
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Figure 7.9:U.S. election 2000 analysis (area: #electors; red: Bush; blue: Gore)

2004 – Bush versus Kerry

Figures 7.10, 7.11, 7.12, 7.13, 7.14, and 7.15 are visualizations of the 44th presidential election of the
United States. On the value-by-area cartograms 50 states and 3085 continental counties, respectively,
were approximated by rectangles. The aspect ratio of each county is the same as on the traditional map.
The area of each rectangle corresponds to the number of population. The blue (Kerry) and red (Bush)
colors show which candidate got the majority of each county. The brightness indicates the shortage of
the vote. The visualization demonstrates clearly that the election was a head-to-head race, the county
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7.4 Application – Geographic Related Data

level cartograms illustrate the election behavior between high populated cities and low populated area
region. The source of the election data ishttp://www.personal.psu.edu/users/a/c/acr181/2004_
Election.zip. The input U.S. maps are fromhttp://www.census.gov/.
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Figure 7.10:U.S. 2004 election analysis usingRecMap MP2 on state level (area: #electors; red: Bush;
blue: Kerry)
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7.4 Application – Geographic Related Data
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7 Evaluation and Application
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7.4 Application – Geographic Related Data

7.4.3 Visualizing Sequences – AT&T Call Volume Analysis

(a) 0:00 am (EST) (b) 6:00am (EST) (c) 12:00pm (EST) (d) 6:00pm (EST)

Figure 7.16:Analyzing long distance call volume data usingCartoDraw(dA ≤ 0.20)

As mentioned at the outset, we developed theCartoDrawalgorithm for displaying telephone call vol-
ume data, which needs to be continuously monitored and visualized. Since the underlying polygon data
does not change, the vertex reduction needs to be run only once. This provides a significant speed-up,
making interactive display with an update rate of about one second feasible. Figure 7.16 shows the results
of the normalized telephone call volume at different times during one day. The resulting visualizations
clearly reflect the different time zones of the U.S., and show interesting patterns of phone usage as it
proceeds during the day.

00:00 01:50

03:50 02:00

04:00 05:50

07:50 06:00

08:00 09:50

11:50 10:00

12:00 13:50

15:50 14:00

16:00 17:50

19:50 18:00

20:00 21:50

23:50 22:00

Figure 7.17:The graphics illustrate 24 hours call volume analysis in a mirrowed S-curve starting in the
upper left corner.

On a dynamic map things that move probably attract more than things that do not [95, page 280].
Based on this concept figure 7.17 displays 144 time frames during one single day, one time frame every
ten minutes. As already mentioned in chapter 4.4.2 on page 43, for this sequence we have used bilinear
interpolation inside theCartoDraw algorithm to place the inner nodes of the mesh. As a result of this
features, the transitions between two frames are very smooth. The video, thedynamic map, is accessible
from theCartoDrawweb site [76]. On the background of the video the medial axes of the global polygon
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7 Evaluation and Application

are drawn and colored according thearea error of each region. The direction of the transformation is
aligned to the color parameter of this skeleton to form the cartogram.

7.4.4 Texture Mapping Cartograms

Figure 7.18 is another example in which we apply texture maps to visualize geography-related data. Fig-
ure 7.18(a) shows an undistorted map of the U.S. relief. Figure 7.18(b) illustrates the mesh distortion from
M-CartoDraw. On that map the relief is distorted in relation to proportion of the number of inhabitants.

(a) Original map

(b) FromM-CartoDrawdistorted map

Figure 7.18:U.S. population cartogram with texture (source of the texture:http://fermi.jhuapl.edu,
January 9, 2003)

The relief of the continental U.S. is stretched where huge amounts of people live, e.g. coast lines, and
it is shrunk e.g. on the mountain areas. The stretching and shrinking of the map regions can be more
stressed on the construction movie[76].
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7.4 Application – Geographic Related Data

Figures 7.19(a) and 7.19(b) show a texture cartogram of New York state (U.S.), using an almost zero
area errorcartogram transformation. The cartogram emphasizes the proportion of New York City in the
total population. Another candidate example would be a map transformation in which we distort the map
according to a given route to highlight its most interesting features.1 The graphics in figure 7.19(b) show
two different kinds of distortions. In this case the basic continuous vertical and horizontal distortion of
theHistoScaleis of value in contrast to figure 7.19(b). The advantage is in the distribution of the data.

(a) HistoScale (b) M-CartoDraw

Figure 7.19:The graphics show two distorted map of NYC with almost zero area error.

1The quality of thecartogram texture mappingis restricted by the resolution of the given textures. Vector graphic data
would overcome that problem. Since organizing vector data containing interesting material is very difficult or at least very
expensive we are not able to applycartogram texture mappingon them.
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7 Evaluation and Application

7.4.5 Population Cartograms

First, we used an U.S. population cartogram to show some statistic data obtained from the U.S. census
database [124]. In figures 7.20(a) - 7.20(c), the color shows different statistical parameters on top of the
population cartogram: Figure 7.20(a) shows the number of persons with German ancestry, figure 7.20(b)
the median household income in 1989, and figure 7.20(c) the percentage of unpaid family workers. Since

(a) Persons with German inheri-
tance

(b) Median household income in
1989

(c) Unpaid Family Workers

Figure 7.20:The population cartogram shows census data statistics (dA = 0.10) using theCartoDraw
algorithm.

the area of the states corresponds to their population, the shaded areas in the figures directly correspond
to the number of people with those properties. It is interesting that the highest percentage of people
with German inheritance is in the northern Midwest (with some higher numbers also in Philadelphia and
East). In the median income cartogram it is interesting that the areas with small income are basically all
states with a rather small population (middle of the non-coastal east of the U.S.), and in the unpaid family
workers cartogram, the numbers are high in the northern Midwest with some additional high numbers in
Florida, Texas, and California. To show that our algorithm works with arbitrary polygon meshes, we also

Figure 7.21:Population cartogram of middle Europe (CartoDraw)

applied the algorithm to the population data of Europe, as shown in figure 7.21.
Figure 7.22 illustrates trends in U.S. population during the ten decades of the 20th century. Each decade

is colored according to population increase or decrease. The colormap (figure 7.22(a)) can be interpreted
as follows: dark blue - extremely large immigration, light blue - low immigration, white - no changes in
population, and light red - low migration. For example, we can see the rapid decrease of the fraction of
the population of the western states. Note that the area of the U.S. does not reflect the absolute number
of inhabitants each year. Figure 7.22(l) accounts for this by scaling the whole polygon mesh according to
the number of U.S. inhabitants. The global polygon of the U.S. in 2000 with 270 millions inhabitants is
colored in black, and the global polygon of the population in 1900 with 76 millions is colored in grey.

A key goal forM-CartoDraw is to handle large maps. Now we want to use it for maps with a high
number of polygons.
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(a) Used color map

(b) 1910 (c) 1920 (d) 1930 (e) 1940 (f) 1950

(g) 1960 (h) 1970 (i) 1980 (j) 1990 (k) 2000

(l) Com-
pare19002000

Figure 7.22:Population trends over the last 100 years. Each decade is colored according to population
increasing or decreasing. The colormap (figure7.22(a)) can be interpreted as follow: dark
blue-high rate of immigration, light blue-low immigration, white-no change, and light red-
low emigration (M-CartoDraw)

Figure 7.23 shows the quantile plot of the U.S. census county population data set. The y-axis was scaled
logarithmically. Furthermore, we used a color to link the statistical value to the maps. On the map we
labeled the three highest populated counties and linked them to their data items. The resulting cartograms
for the M-CartoDraw algorithm can be seen in figures 7.24 and 7.25. Figures 7.28 and 7.29 graph the
results for the rectangular approach.

Often geo-related data are hierarchically structured e.g. on the U.S. map we have a state level, county
level, track etc. Both county cartograms in figures 7.24 and 7.25 demonstrate two of three possible
hierarchy layouts for contiguous cartograms.

On the U.S. county map all polygon lines are assigned with a five digit number. The first two digits
indicate the U.S. states and the rest three digits indicate the counties inside each U.S. state. For example
the county08013 can be interpreted as follows: The first two digits stand for the U.S. stateColoradoand
the other tree digits stand for the county calledBoulder. This description is generic and therefore it works
for all hierarchies. The state boundaries can be achieved if we draw all segments of the map thicker which
are adjacent to edges where the two first digits are different. Notices that each polygon is a closed line
loop: Therefore, each to be drawn edges occurs twice and can be eliminated

Often the hierarchy order of the map can not be out-formed as clear as when we use the census map
as input data. Therefore on the second approach the higher level map (in this case the U.S. state map)

109



7 Evaluation and Application

0.0 0.2 0.4 0.6 0.8 1.0

1e
+

03
1e

+
04

1e
+

05
1e

+
06

1e
+

07

f−value

U
.S

. c
ou

nt
y 

po
pu

la
tio

n

Harris

Cook

Los Angeles

Figure 7.23:The graph shows a quantile plot of the U.S. census county level population data set. Each
box on the graph represents one part of the quantile plot.

is pinned on the county mesh and we used the same cartogram transformation as for the county level
map. The result can be seen in figure 7.25. The previously described technique was used for the Germany
example in figure 7.27.

If both variants are not applicable, thecartogram texturetechnique described in 6.5 on 81 can be used.
Figure 7.26(c) shows a U.S. county level population cartogram. On that transformation only the state

level borders were drawn. It can be clearly seen that finer granular statistical values have formed the shape
of the new mesh (e.g. NYC region).

On all maps in figures 7.25, 7.24, 7.27, 7.29, 7.30, 7.31, 7.32, and 7.33 a logarithmic color mapping is
used which can be computed as follows:

ci =
log(x̃i +1)− log(mini(x̃i +1))

log(maxi(x̃i +1))− log(mini(x̃i +1))
(7.1)

Figures 7.27(a) and 7.27(b) show the population of Germany on a map with about 400 polygons. We
used the unipolar colormap shown in figure 7.27(a) to visualizes the population data. The cartogram
helps to focus attention on highly populated regions. The area error of the three largest polygons as
well as the area error of the yellow polygons in the northwest are almost zero; cities and other highly
populated regions are clearly visible. Since the underlying polygons do not change dramatically in each
step, especially when the algorithm is close to termination (see figure 4.19 on page 47), the medial axis
is not recalculated on each iteration to save time. Note thatM-CartoDraw took less than five minutes to
compute the cartogram in figure 7.27(b) and less then ten minutes to compute the cartogram in figure 7.24,
respectively. The computation time for this is only one magnitude higher than that needed to compute the
U.S. state cartogram.
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7.4 Application – Geographic Related Data

(a) U.S. map

(b) State level cartogram

(c) County level cartogram

Figure 7.26:Cartogram on state and county level; only state poly lines were drawn.
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7.4 Application – Geographic Related Data
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Figure 7.30:California county population cartogram usingRecMap
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7 Evaluation and Application
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Figure 7.31:New York U.S. census 2000 county population cartogram usingRecMap
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7.4 Application – Geographic Related Data
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Figure 7.32:Texas county population cartogram usingRecMap

119



7 Evaluation and Application
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Figure 7.33:Population data from U.S. Census Bureau on various levels for the year 2000 – The area
of each map partition corresponds to the number of people living there. The colormap of
Figure 7.33(a) indicates the number of people living in each region (yellow: high popula-
tion; brown: low population) and is a link from the traditional maps 7.33(b),7.33(c) to the
corresponding cartogram 7.33(d)–7.33(i).
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8 Conclusions

The work presented in this dissertation introduces two completely new methods for generating value-by-
area cartograms calledCartoDrawandRecMap. Both algorithms cover a wide range of user requirements
(area, topology, shape, empty space, and computational time) which can be directly maintained by the
user. The first algorithm strictly retains the topology and shape of the map regions while minimizing the
area error. The second algorithm approximates the map regions by rectangles focussing on an exact area
approach.

Both algorithms are fast enough to be used in interactive systems which is important to be used as
information visualization technique.

The thesis is attended by many extensions such astexture mapping cartograms, pseudo value-by-area
cartograms (HistoScale), and pixel based cartograms (Visual Points) as well as useful combinations with
other visualization techniques such as theHistoMapapproach.

All algorithms have been implemented and compared (visual, effectiveness, and efficiency) to state-of-
the-art existing methods. The results of our novel algorithms are comparable if not better than existing
ones. The algorithm were bundled into one application calledCartoDraw-System.

Furthermore, theCartoDrawalgorithm has been designed to generate cartograms for maps with a high
number of polygons in an adequate computational time. Both algorithms,RecMapandCartoDraw, are
scalable enough to make cartograms for the 3000 counties of the United States map.

The application of our techniques is shown by many cartograms using different input maps and data.
We used real world maps as well as self-generated data.

The work is based on a theoretical analysis which shows that the cartogram problem is unsolvable in
the general case. To achieve feasible solutions we have to relax some constraints.

This work opens a new area in the flexibility of cartogram generation. Never before users have had
such a wide flexibility of user constraints.

Also, this thesis provides some new research directions.

• Value-by-area cartograms are just one of many cartogram types. We can formally define many car-
togram variants. For some cartogram types there exist polynomial time algorithms (e.g choropleth
maps). For other types of cartograms there exist heuristics because no polynomial time algorithm
are known. A complexity classification of cartogram types does not exist and neither does theN P C
proof. To the best of our knowledge for some types there exist just hand-made visualizations (e.g.
isochrones).

• Behind the theoretical goals there are some practical issues. A further promising application of
the scanline-technique used inCartoDraware the generation of route cartograms as it can be seen
in figure 8.1. Existing work does not take the relative positions and angle between the edges into
account. For the problem of route cartograms similar constraints can be defined as for the cartogram
drawing problem presented in this thesis.

• UsingCartoDrawandHistoScalewe can compute world cartograms. As mentioned earlierHist-
Scalecomputes only a pseudo-cartogram transformation.CartoDrawcan minimize thearea error
of the map regions. A possible problem withCartoDraw is that there exist several non-connected
map components of the world map. During the scanline transformation the particular map com-
ponents move over the “map space”. Therefore, it is not guaranteed that the transformation is
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8 Conclusions

free of overlapping. A pre-processing algorithm for generating an acceptable starting position is
needed. This can be done similar toRecMapby formulating an optimization problem that com-
putes an overlap-freemulti component cartogram (MCC)where the area of the component regions
are proportional to the cumulated statistical map regions of each component. TheMCC algorithm
minimize the relative position error as well as the aspect ratios of the map components.

• An algorithm is just approved if it is a steady component of widely-distributed and often-used soft-
ware. The complete integration of the described methods into existing GIS software is of interest.
Difficulties are the existence of several different geographic formats.

• One possible future application ofCartoDrawcould be an application as“route guide” similar to
the famousLineDrive[1]. UsingCartoDraw, the map transformation can be done by thescanlines.
Thescanlinesare guided by the route. The advantage to the methode of Agrawala and Stolte [1] is
that the maps topology and relative position are preserved and the “driver” has additional landmarks
for orientation. However, to realize this project we need complex new cost functions to evaluate the
results. Figure 8.1 gives an impression of this idea.

Figure 8.1:Maps and cartograms have always been used by humans to encode valuable and important
information. These visualizations were often drawn on light materials to have a handy device
to carry. The picture shows a possible future application ofCartoDrawas“route guide” of
NYC on a PDA.
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A Measuring the Shape Error by Fourier
Transformation

A shape similarity function compares the new shape of a polygon with its original one. Beside measuring
the shape error by summing up angle differences of the input and output mesh (see chapter 4), we can
also use a more general Fourier transformation based approach. The advantage here is we do not need
a graph isomorphism between the two meshes. Defining a useful shape similarity function is in itself a
difficult problem, since the similarity measure should be translation-invariant, scale-invariant, and at least
partially rotation-invariant. From CAD research it is known that the Euclidean distance in Fourier space is
useful for measuring shape similarity [67, 8]. To gain invariance against translation, rotation, and scaling,
we use the Fourier transformation of the differential geometric curvature of the polygons, instead of the
polygons themselves, and normalize the arc length of the polygons to 2π. Using the curvature guarantees
translation- and rotation-invariance, and normalizing the arc length guarantees scale-invariance.

In the following, we assume that the polygons are transformed into a normalized parameterized polygon
contour functionp : [0,2π]→ R2. Then, we can define the curvatureC of the polygons as

C : (R→ R2)−→ (R→ R2). (A.1)

The Fourier transformationF is a transformation

F : (R→ R2)−→ Rd, (A.2)

determining the Fourier coefficients for a given curvature function ind-dimensional Fourier space. The
shape similarity of two polygonsp andp can then be defined as

d̃S(S(p),S(p)) = dEuclid(F(C(p)),F(C(p))). (A.3)

In the following, we describe the curvature transformationC and the Fourier transformationF in more
detail.

Determining the Curvature of a Polygon

In general, the curvature of a polygon defined as a parameterized function is mathematically undefined
because the second derivative is not continuous. We can avoid this problem by approximating the polygon
by replacing each vertex with very small circular arcs as shown in Figure A.1. This yields a new geometric
object of which the first derivative is continuous. The curvature of this structure is defined in sections;
concatenating these sections we obtain the curvature as a square wave function.

To describe the curvature transformation in more detail, let us focus on two subsequent edgesei−1 and
ei . These edges coincide in vertexvi with an angleαi . For the polygon containingvi , we may easily
compute the curvature functionci(t), describing the differential geometric curvature of the approximated
polygon because the curvature of a circle segment with radiusr is a constant function1r and the curvature
of a straight line is a constant zero function. We may calculate the arc length of the circle segment
substituting vertexvi by bi = |αi | · r. Forci(t), we therefore obtain

ci(t) =

{
1
r if (tvi −bi/2 > t > tvi +bi/2)
0 otherwise

(A.4)
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A Measuring the Shape Error by Fourier Transformation

(a) Original polygon (b) Approximated polygon (c) Curvature

Figure A.1:Approximation of a polygon

(a) Two polygons (b) Curvature of the two polygons

Figure A.2:Curvature transformation

The curvature of an arbitrary polygonp is c(t) = ∑|p|−1
k=0 ck(t). Figure A.1c shows the graph of the

curvature functionc(t) for the approximation of the polygon section in figure A.1a. Figure A.2 shows the
curvature functions for two polygons which are identical under translation-invariance, rotation-invariance,
and scale-invariance.

The approximation of the original polygon, and in particular the choice ofr, influences the curvature
function. If we reduce the radiusr of the circle segment,1r will be increased whilebi will be decreased.
This causesc(t) to become more narrow and the amplitude of square waves to become higher, while
the approximation of the polygon converges against the polygon itself. On the other hand,c(t) becomes
difficult to handle numerically. An adequate value forr which has proven useful for our application isπ

50
for polygons with a normalized length of 2π. As our experiments show, the similarity function is quite
robust against a suboptimal choice ofr, as long asr is smaller than half of the length of the shortest edge
since otherwise individual square wave functions may overlap.

Fourier Transformation

The next step is computing the Fourier transformationF of the curvature. The principle of the Fourier
transformation is to approximate a function by summing up sine and cosine functions with certain pa-
rameters. The quality of the approximation is improved by increasing the degreed of the Fourier ap-
proximation, which means to successively sum up cos(x),sin(x),cos(2x),sin(2x), ...,cos(x),sin(x). More
formally, the Fourier approximation of a functionf with a period of 2π is defined as

F(x) =
a0

2

n

∑
k=1

(ak cos(kx)+bk sin(kx)) (A.5)

where the coefficientsak andbk are defined as

ak =
1
π

Z 2π

0
f (x)cos(kx)dx and (A.6)

bk =
1
π

Z 2π

0
f (x)sin(kx)dx (A.7)

In general, integrals of the form
R

f (x)sin(x)dx are difficult to solve analytically. For the special case
where f (x) is a square wave function, however, the integral can be easily determined. Let us assume that
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f (x) has a value of1r in the interval[u,v] and is zero elsewhere. Since the value of the integral is zero
outside of[u,v], we just have to integrate fromu to v. Therefore, we are able to calculateak andbk as:

ak =
1

πkr
(sin(kv)−sin(ku)) and (A.8)

bk =
1

πkr
(cos(kv)−cos(ku)) (A.9)

To determine the Fourier coefficients of the curvature functionc(t) of the whole polygonp, we only have
to sum up the above formulaci(t) for all verticesvi of the polygon. We obtain the following formulas for
the Fourier coefficients:

ak =
1

πkr

|p|−1

∑
i=0

αi

|αi |

[
sin

{
k ·
(

ti +
|αir|

2

)}
−sin

{
k ·
(

ti −
|αir|

2

)}]
(A.10)

bk = − 1
πkr

|p|−1

∑
i=0

αi

|αi |

[
cos

{
k ·
(

ti +
|αir|

2

)}
−cos

{
k ·
(

ti −
|αir|

2

)}]
(A.11)

The calculation ofak andbk can be done inO(|p|) time, and the calculation of all coefficients can be
done inO(|p| ·d), whered is the degree of the Fourier sum. Note that we are able to compute the coef-
ficients of the Fourier sum analytically, and therefore do not run into numerical problems such as finding
the right sample rate. Experimental results show that the Fourier transformation provides a good approx-
imation of the polygons and their curvature function even for rather smalld. For a detailed discussion of
Fourier theory see [133].
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B Color Maps Employed

Color is a powerful tool for decoding information in visualization. Instead of using color as assemble for
categories, we use it regarding to our cartograms as perception of the order of quantities to the statistical
values linked to the map regions. The quantities in our cartograms are often population data, election
results, or area error. For that issue we need a sequence of contiguous color values, called color map,
which can be obtained by going in a smooth curve through a color model. A good color map has a
continuously monotonic increasing or decreasing of the brightness. As a second criteria a perfect color
map should use a wide range of brightness.

Since all computer graphic displays use the additive RGB (R: Red, G:Green, B:Blue) color model, all
color values have to be convert into the RGB color model (see [44]). In the following we will shortly
explain the idea behind some color maps used in this thesis.

Color map1; #FF80FF; (255, 128, 255)
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(b) Bipolar-RGB
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(c) Uni-polar-HSV
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(d) Uni-polar-HSI
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(e) Uni-bipolar-HSI

Figure B.1:The plot displays the color maps and their corresponding color values used in this thesis. The
color maps obtained from various color models have been converted into RGB color values.
The black curves and the grey color maps indicate the brightness on a non-color device.

Trellis – color map This bipolar color map (see figure B.1(a)) has been introduced by [22]. This color
map has been created for color ink printers. Since color ink printers use cyan, magenta and yellow as
basic colors, all other colors can be obtained by mixing the 3 basic color. It becomes clear, if we use the
cyan – magenta color map, we do not have to mix the colors and we will get a very clear result. This color
map is the standard color map in theS-PlusandRsoftware package (see [29, 105]).

Bipolar – color map We used that bipolar color map to indicate the area error of the map regions. The
red color indicates if the area error is negative and the area of that region has to be smaller. The opposite
is true for the the blue color. The area error can be obtained by the function

fAreaError : R×R→ [−1,1] ∈ R. (B.1)
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B Color Maps Employed

A single color value can be determined by

γAreaError : R×R→ ([0,255], [0,255], [0,255]) ∈ (N×N×N) (B.2)

as follows:

cvalue = (1− fAreaError) ·255 (B.3)

γAreaError =

{
(cvalue,cvalue,255) fAreaError > 0

(255,cvalue,cvalue) otherwise
(B.4)

Figure B.1(b) shows the whole color map, where we used a sequence of reals in the interval[−1,1] instead
of fcolor.

Uni-polar – HSI color maps The HSI (H: Hue, S: Saturation, I: Intensity) color model has been intro-
duced by [68] and is a variation of the HSV (H: Hue, S: Saturation, V: Value) color model where a circular
cone is used instead of a hex cone.

The advantage of HSI model is that a monotonically increasing/decreasing color map can be con-
structed (see the black curves on figure B.1(d) of the HSI color maps).

In contrast to a color map using the HSV model, the brightness ranges continuously from light to dark
as it can be seen in figure B.1(d) This ,,HSV”-phenomena can be observed in figure B.1(c). It can be seen
that the HSV color map has at least 3 local minima and maxima in contrast to the HSI color map which is
monotonically decreasing. For both color maps we used similar start and end settings for hue, saturation,
and intensity. To map the HSI and HSV color values to RGB color values we have used the HSI to RGB
converter operator described in [68, page 99].
Furthermore, using the HSI/HSV model three perceptional attributes can be expressed. In practice, only
two are useful.

Uni-bipolar color maps Both uni-polar and bipolar color maps can be combined. A possible result can
be seen in figure B.1(e).

For generating useful color maps, we have developed a color map construction tool, where the user can
walk through different color models with several start and end configurations. Using this tool, the user
can chose between RGB, HSV, and the HSI color models. The tool was implemented inJavaand it can
be run asJava-applet [2] and can be used from allJavasupporting web-browsers.
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C Scripts and Tools for Generating
Cartograms

Beside the graphical user interface GUI of the CartoDraw-System on page 85 we have developed several
scripts and command line programs for generating cartograms as well as input data. The drawback of
the GUI version is that it is difficult to run the algorithm as remote job. This is necessary whenever we
want to compute cartograms at the same time e.g. if we have to compute cartogram sequences or if we
have massive input mesh where the number of polygons is larger than 500. Additionally, it is useful for
benchmarks. In the following appendix we describe some of the tools.

Generating a Checker Board Mesh First of all we need data to feed the algorithms. Often data are
copy righted, difficult to achieve, or the data often contain digitizing errors. These problems are neither
motivating nor gratifyingly.

Based on the idea of our beginning checker board examples in chapter 3 we wrote a script solving this
difficulty. createChecker.pl is a small perl script, that will create arbitrary sized checker board meshes
in the LEDA graph-file format as well as a parameter vector file. This script is especially useful for our
RecMapalgorithm introduced in 5.

1 #!/usr/bin/perl -w
2 use strict;
3 sub createCheckerBoard{
4 my $ncount=1; my $ecount=1;
5 my $n = shift (@_);
6 if (!defined ($n))
7 { $n = 2;}
8 open(LOG, ">/tmp/checker.log");
9 my $nn = ($n-1) * ($n-1);
10 print LOG "$nn\n";
11 my %map;
12 open(FILE, ">/tmp/checker.gw");
13 print FILE "LEDA.GRAPH\npoint\nint\n";
14 # compute nodes
15 print FILE $n*$n;
16 print FILE "\n";
17 for (my $i = 0 ; $i < $n; $i++)
18 {
19 for (my $j = 0 ; $j < $n; $j++)
20 {
21 print FILE "|{($i,$j)}|\n";
22 $map{$i."|".$j} = $ncount++;
23 }
24 }
25 # compute edges
26 print FILE 4*($n-1)*($n-1);
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27 print FILE "\n";
28 for (my $i = 0 ; $i < $n-1; $i++)
29 {
30 for (my $j = 0 ; $j < $n-1; $j++)
31 {
32 print FILE $map{$i."|".$j}; print FILE " ";
33 print FILE $map{($i+1)."|".$j}; print FILE " ";
34 print FILE "|{$ecount}|\n";
35
36 print FILE $map{($i+1)."|".$j}; print FILE " ";
37 print FILE $map{($i+1)."|".($j+1)}; print FILE " ";
38 print FILE "|{$ecount}|\n";
39
40 print FILE $map{($i+1)."|".($j+1)}; print FILE " ";
41 print FILE $map{$i."|".($j+1)}; print FILE " ";
42 print FILE "|{$ecount}|\n";
43
44 print FILE $map{$i."|".($j+1)}; print FILE " ";
45 print FILE $map{$i."|".$j}; print FILE " ";
46 print FILE "|{$ecount}|\n";
47 $ecount++;
48 }
49 }
50 close (FILE);
51
52 open(FILE, ">/tmp/checker.dat");
53 for (my $k = 1; $k < $ecount; $k++)
54 {
55 if ($k%2 == 0)
56 { print FILE "$k 4\n" }
57 else
58 { print FILE "$k 1\n" }
59 }
60 close (FILE);
61 }
62 #main
63 if ($#ARGV == 0)
64 {
65 my $n = $ARGV[0];
66 print "creating a $n x $n checkerboard in /tmp/ ... \n";
67 createCheckerBoard($n+1);
68 } else { print "error\n"; }

If, for example, we need a 2×2 checker board as it can be seen in figure 3.2(a) on page 20, we could run
the perl script as follows:

% ./createChecker.pl 2
creating a 2 x 2 checkerboard in /tmp/ ...

The contents of the files is this:
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% cat /tmp/checker.gw
LEDA.GRAPH
point
int
9
|{(0,0)}|
|{(0,1)}|
|{(0,2)}|
|{(1,0)}|
|{(1,1)}|
|{(1,2)}|
|{(2,0)}|
|{(2,1)}|
|{(2,2)}|
16
1 4 |{1}|
4 5 |{1}|
5 2 |{1}|
2 1 |{1}|
2 5 |{2}|
5 6 |{2}|
6 3 |{2}|
3 2 |{2}|
4 7 |{3}|
7 8 |{3}|
8 5 |{3}|
5 4 |{3}|
5 8 |{4}|
8 9 |{4}|
9 6 |{4}|
6 5 |{4}|
% cat /tmp/checker.dat
1 1
2 4
3 1
4 4

createChecker.pl generates two files in/tmp. checker.gw contains the LEDA graph-file consisting
of nine nodes and sixteen edges. Each edge is assigned with the polygon id its belongs to. The other file,
namedchecker.dat, stores the parameter value for each polygon inchecker.gw.

So the idea of the parameter setting is that every second polygon has too be half sized and the other
ones have to be doubled of the area of the original polygons.

Computing a Rectangular Cartogram For generating a rectangular cartogram as described in chapter
5 we can now use the following command.

% recmap
usage: ./recmap <gw-file-path>\

<gw-file>\
<gw-file-suffix>\
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<dat-file-path>\
<dat-file>\
<dat-file-suffix>\
<output dir>\
<number of iterations>

usage: ./recmap --help
usage: ./recmap -?

If we run recmap without arguments we will get the above as result. To gain a cartogram of our self
generated mesh we have to runrecmap as follows:

% recmap /tmp/ checker gw /tmp/ checker dat /tmp/ 10

recmap will save the result in various formats under the/tmp path.

Plotting the Resulting Map To plot our result we use theR program, see [105] for more details.R
has attractive graphic devices such as postscript and pdf which are very useful especially for studying
extremely large maps. A possibleR-script for plotting our rectangular cartogram could look like this:

1 #R
2
3 # read the polygon
4 polys<-read.table("/tmp/recmap2_checker.polygon",sep="|");
5 dx<-max(polys$V1,na.rm=T)-min(polys$V1,na.rm=T)
6 dy<-max(polys$V2,na.rm=T)-min(polys$V2,na.rm=T)
7
8 myheight<-20
9 mywidth<-dx/dy*myheight
10
11 # keeps aspect ratio of the map
12 pdf("/tmp/carto.pdf",width = mywidth, height = myheight)
13
14 my.grey<-rgb(0.5,0.5,0.5)
15
16 op<-par(mar=c(0,0,0,0),bg=my.grey);
17
18 plot(polys,type="n", axes=F, xlab="", ylab="");
19 polygon(polys, border="black",col="white");
20
21 dev.off()

Finally, to run the script and to view the resulting pdf file we type the following command in a shell:

% cat plotCartogram.R | R --no-save && gv /tmp/carto.pdf
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Because our map contains polygonal information we can easily extent theR script to fill the polygons
with color using a color mapping described in the previous chapter to indicate a second statistical value1.
As it can be seen in the application chapter beginning on page 89 there is also the possibility to label the
cartogram regions.

Computing a Continuous Cartograms Finnaly, we want to demonstrate thecartodraw command line
program. The algorithm described behind the command has been introduced in chapter 4. The usage is
similar to therecmap command. The only difference is that we will get a continuous cartogram as result.

% cartodraw --graph-file us.gw\
--stat-file us-pop.psv\
--iterations 8\
--output-directory /tmp

The current version of the program does not provide us with an easy to plotting polygon file. So we must
use an other program, calledgw2polygon, to map the resulting LEDA graph-file into a polygon file which
is easily understood byR.

% cat /tmp/cartodraw.gw | gw2polygon > /tmp/cartodraw.polygon

For the plotting we can use again ourR-script listed on page 132.

1Usually the first statistical value is represented by the area of each cartogram region.

133



C Scripts and Tools for Generating Cartograms

134



D Symbols

Symbol Description Chapter

P input set of connected simple polygons3
|P | number of polygons inP 3
p input polygonep∈ P 3
|p| number of point inp 3
X input parameter vector 3
xi element ofX 3
X̃ a vector of desired area of a region 3
x̃i element ofX̃ 3
P output set of connected simple polygons3
p output polygonep∈ P 3
P̃ partial cartograms 3
|p| number of point inp 3
GP(P ) global polygon ofP 3
I(v,σ) vertex’ importance 3
Sig(αv,σ) significance of the angle 3
A(p) area of a polygonp 3
S(p) shape of a polygonp 3
T(P ) topology of a set of polygons 3
vi

j i-th vertex of a polygonp j 3
ei

j i-th edge of a polygonp j 3
|ei

j | the length of edgeei
j 3

CE(v) cyclic order of edges at vertexv 3
dT topology distance function 4, 5
dA area distance function 4, 5
dS shape distance function 4, 5
dR relative position distance function 5
dE empty space distance function 5
M set of feasible solutions 4
f objective function 4, 5
f̂ weighted objective function 5
fC cartogram mapping function 6
c(p) centers of gravity ofp 5
ψ mesh to mesh mapping function 4
Iλ construction sequence 5
λ split position 5
N (pr) neighbors ofpr in P 5
wt ,wa,ws... weights 3, 4, 5
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