
Abstract

In this paper, we present a query translation al-
gorithm which allows object-oriented queries to
be automatically translated into a relational que-
ry language. Our goal is to provide a unique and
powerful query interface supporting the cooper-
ation of information systems, particularly under
the aspect of migrating existing systems without
changes into the cooperation. Translation algo-
rithms, like the one proposed in this paper are es-
sential parts of CISs to mediate between the com-
mon global query language and the query
languages of participating components. Our
query translation algorithm ensures a fully auto-
matic translation of object-oriented queries into
equivalent SQL queries for the original relation-
al schema in all cases where a direct translation
is possible. In all other cases, it generates SQL
queries providing a superset of the desired data
and a sequence of ‘formatting’ functions that
transform the data into the desired result.

1. Introduction
Nowadays, many private, commercial and re-

search information services are publicly accessible
over wide area networks ranging from simple file
distribution, e.g. via ‘anonymous ftp’, to information
systems (IS) with more complex query interfaces,
e.g. ‘mosaic’ or library systems with text retrieval fa-
cilities. However, often people do not know where to
find relevant data, how to retrieve data, or even do
not know about the existence of a system useful for
solving their information needs. On the other hand,
even within one company or institute, numerous het-
erogeneous information systems with various data
models, query languages and interfaces are used in
research and industry to perform different tasks or
simply for historic, market or individual preference
reasons. Many tasks, however, require access to

more than one of these information systems at a time.
For example, in a hospital, the treating doctor needs
information from previous examinations stored in
various systems, e.g. an image from the X-ray image
database, blood data from the system of the patholo-
gy laboratory and the daily record of patient data
from the wards. To present another example, several
institutes record various types of environmental data;
it is very desirable to combine these flat data or to
combine them with maps of roads, industry, etc. pro-
vided by GISs to detect and evaluate complex inter-
actions.

The need to integrate or transparently access dif-
ferent systems has been realized by many people.
The naive solution of integrating all systems into one
fails in most cases for several reasons. It usually re-
quires a complete system change or migration mak-
ing it necessary to convert the existing databases in-
cluding all their application programs that have been
successfully used over the years. A further difficulty
in the migration process is that, in general, the sys-
tems are used on-line with many application pro-
grams running permanently on a daily basis. In
performing a system change or migration, most com-
panies fear the possible loss of data and the necessary
changes of application programs. Additionally, be-
cause of the diversity of tasks, one system often is not
capable of efficiently performing all of them. Finally,
the number and the autonomy of systems which are
accessible via worldwide networks prevents the de-
sired kind of integration. Among the current solu-
tions are specifically designed application programs
which access relevant systems in their own languages
and combine the results before further processing.
Also, most database vendors offer gateways that pro-
vide some kind of cross-database access [Syb 90,
Ing 92, Ora 92, Inf 92] allowing the use of specific
new database systems in conjunction with existing
relational ones. Another solution is data exchange by
flat files exported from one system and imported into
a target system. These solutions, however, have the

Query Translation Supporting the Migration of
Legacy Databases into Cooperative Information Systems

Research

Daniel A. Keim, Hans-Peter Kriegel, Andreas Miethsam
Institute for Computer Science, University of Munich

Leopoldstr. 11 B, D-80802 Munich, Germany
e-mail:{keim, kriegel, miethsam}@informatik.uni-muenchen.de

Component
Cooperative

Interface

Figure 1: Architectural Concept

Component
Relational DB

Legacy

Component
OODB

Legacy

Cooperative
Interface

Cooperative
Interface

query
translation

answer
conversion

communication module

access module

drawbacks of high development and maintenance
costs, as well as the lack of flexibility. Furthermore,
the resulting systems, i.e. the applications, are even
more proprietary than the integrated systems.

The common goal of research activities in the
fields of database systems, (intelligent) cooperative
information systems (CIS), interoperable systems,
multidatabase systems is the development of general
concepts supporting the migration or integration of
previously isolated systems into CISs, e.g. [BHP 92,
EJ 92, RPR 89, SL 90]. According to [BC 92], we
define

• an IS to be any system that allows shared
access to persistent data,

• a CIS to be an arbitrary number of
component ISs, that interact in some way to
execute joint tasks.

Particularly, the components must be able to inter-
operate directly or indirectly, i.e. to mutually send,
receive and understand(!) requests and results. We
additionally assume that

• the communication language is high level,
e.g. an object-oriented query language,

• information on the components (schema, lo-
cation) is globally available,

• the component ISs are at least able to re-
ceive requests and send back answers in a
client server fashion, i.e. play a passive role
in the cooperation.

• there exists at least one active component in
the CIS. Active components are able to
send, forward, distribute requests and to
combine results,

• existing ISs need not to be changed in order
to be integrated into the CIS, that means ac-
cess to these systems uses already existing
query interfaces.

Figure 1 shows a conceptual CIS architecture
meeting the above requirements. Especially impor-
tant in our opinion is that existing (legacy) systems
are integrated into the CIS by viewing them through
a ‘cooperative interface’. In this case, no change to
the legacy systems is necessary and previous applica-
tions may be preserved. Therefore, cooperative inter-
faces help to solve part of the overall migration prob-
lem which, in our notion, is a summation of problems
on several layers. These comprise among others how
to establish a communication between different net-
works, hardware platforms, and operating systems,
add client server facilities to components, provide
schema transformation and query translation mod-
ules, deal with the autonomy of the components (in
the integration as well as the operation phase). In
dealing with legacy systems which are heteroge-
neous with respect to their data models and query
languages, it is especially important to transform
their schemas into the global data model and make
them globally available. Furthermore, the coopera-
tive interfaces must be able to unify languages and
models in addition to controlling communication and

access. This means, for the cooperation of ISs mod-
ules are needed which translate requests in the global
language on objects represented in the global model
into requests in the local language and reformat re-
sults into the global language. For these tasks, the
cooperative interfaces must access the global infor-
mation to map between local and global object repre-
sentations. Further submodules of the cooperative
interfaces not listed in figure 1 comprise query de-
composition, result combination, optimization and
global transaction monitoring.

As a core technology for the integration of legacy
ISs into a CIS, in this paper we focus on the query
translation and answer conversion, specifically from
an object-oriented language to the relational SQL.
The object-oriented data model and language seem to
be well suited as global language for communicating
ISs because of its message passing paradigm, be-
cause of its rich semantics which allow representa-
tion of most other models as well as systems with op-
erational interfaces, and because of its availability in
the form of object-oriented databases. We choose
SQL as translation target language, since many in-
stances of relational systems are currently installed
and accessible using a standard SQL [ISO 92] inter-
face. To apply this approach to a real world environ-
ment with isolated, heterogeneous ISs, additional
translation modules have to be developed to adapt the
cooperative interface to non-relational components.

The rest of the paper is organized as follows: Sec-
tion 2 introduces the overall framework and gives a
brief overview of the schema enrichment and trans-
formation as well as a short introduction of our Struc-
tured Object Query Language (SOQL) which pro-
vides declarative query facilities for objects. In
section 3, we then present the steps that are necessary
in automatically translating SOQL queries for the
created object-oriented schema into equivalent SQL
queries for the original relational schema. In sec-
tion 4, we describe the formatting process that is
needed to transform the flat results provided by the
relational system into structured results that are spec-
ified by the object-oriented query. Section 5 summa-
rizes our approach, points out some problems and
gives directions of future research.

2. The Framework

In the following, we are going to briefly introduce
two prerequisites of our query translation algorithm,
namely the schema enrichment and transformation
algorithm on the one hand and the Structured Object
Query Language (SOQL) on the other hand.

2.1 Schema Enrichment and Transformation

Since, in general, object-oriented schemas contain
more semantics than corresponding relational sche-
mas, more input than the pure relational schema is
needed to produce adequate, well-structured object-
oriented class definitions. The needed additional se-
mantic information includes information on tables
representing relationships, the type of the relation-
ship (1:1, 1:n, n:m), attributes or groups of attributes
representing foreign keys and so on. This informa-
tion may either be provided by the database adminis-
trator or, in some cases, it may be deduced from an
underlying entity-relationship design schema. It is
stored as part of the meta information which includes
all information on the enriched relational schema, on
the created object-oriented schema and on the map-
pings between them. As we will see in the next sec-
tions, the meta information is crucial not only for the
schema transformation process but also for an auto-
matic translation of SOQL queries.

The basic steps of the schema transformation al-
gorithm are as follows. First, each relation is translat-
ed into a class definition with each relational attribute
becoming a member variable. Next, all functional re-
lationships are replaced by direct object references,
in one direction by a simple object reference, in the
other direction by a set-valued object reference. All
remaining n-ary relationships are translated into
methods with one method providing the set of tuples
that fulfill the relationship and one method for each
relationship attribute. The additional methods are
added to each class that is part of the relationship. In
figure 2, an example for a relational database Flight-
DB together with the corresponding object-oriented
schema is given. The details of the schema transfor-
mation algorithm are beyond the scope of this paper.
A formal description can be found in [KKM 93a].

At this point, it should be mentioned that the sche-
ma created by our schema transformation algorithm
may not provide a perfect object-oriented schema. It
does not use all object-oriented modeling features
(e.g. subtyping, inheritance) but it still provides a se-
mantically enriched, well-structured object-oriented
schema that allows SOQL queries to be significantly
shorter and more intuitive than corresponding SQL
queries using the original tables. Let us further em-
phasize that only object-oriented class definitions are
generated with the instances remaining in the rela-
tional database. Thus, access operations to instances
of object-oriented classes have to be translated into
accesses to the corresponding relational tuples which
is done by our query translation algorithm (c.f. sec-
tion 3).

2.2 Structured Object Query Language

In this subsection, we give a short introduction to
our Structured Object Query Language (SOQL).
SOQL is a declarative query language for querying
the created object-oriented schema. It is an easy-to-
use but powerful and orthogonal extension of SQL.
It is similar to other declarative query languages
for object-oriented database systems (O2SQL
[BCD 92], Object SQL [HD 91], OSQL [Fis 89],
OQL [ASL 89]) but provides additional features
such as the generalization of the dot-notation and
structured expressions. The basic query format of
SOQL can be indicated by the following description

select
{<range_var>{.<method>}*{.struct_expr}0/1 } +

for each
{<classname>{.<method>}* <range_var>}+

{ where <condition> }0/1 .

According to the expression in the ‘select’ clause,
a new (temporary) object class is automatically creat-
ed with all tuples fulfilling the condition being avail-
able as virtual instances of this class. The result is
also available as a (nested) set and can therefore be
directly used in nested queries. As indicated in the
query format definition, methods are applied to class
or range variables using dot-notation. Chains of
methods may be connected in dot-notation as long as

the methods are defined for the corresponding class.
The chaining of methods allow direct access of one
object class from another without explicitly joining
them. It is a form of schema navigation in the created
object-oriented schema. In the condition, all methods
including the created access methods to attributes
may be used as long as the result of the whole expres-
sion is of result type ‘Boolean’. Special features of
SOQL are structured expressions and the generaliza-
tion of the dot-notation. Structured expressions allow
an easier specification of queries with structured re-
sults by providing the possibility of defining the re-
sult structure by square brackets. The generalization
of the dot-notation to sets is an intuitive but powerful
extension of the normal dot-notation (c.f. section 3).
To provide the basic queries facilities that are avail-
able in SQL, a set of basic object classes (Boolean,
String, Numbers, Integer, Realand the generic class-
esSet andList) together with a set of basic methods
including the aggregate operationscount, avg, sum,
min, max (Set(Numbers)➞ Numbers) is predefined.
A detailed description of SOQL can be found in
[KKM 93b].

To further illustrate our query language, in the fol-
lowing we will give two examples for SOQL queries.
For the query examples, we use the transformed ex-
ample database as presented in figure 2. A simple
query selecting all passengers and their addresses

Class Passenger with
attributes

pid: Integer;
name: String;
address: String; key is (pid);

methods
departures:→ Set (Departure);
booking: Departure→ Date;

end;

Class Airline with
attributes

airline-id: String;
name: String; key is (airline-id);

methods
departures:→ Set (Departure);

end;

Class Departure with
attributes

did: Integer;
start: Date;
flight: Integer; key is (did);

methods
airline: → Airline;
plane:→ Plane;
passengers:→ Set (Passenger);
booking: Passenger→ Date;

end;

Class Plane with
attributes

serial-nr: Integer;
...

end; . . .

FlightDB:
Passenger (pid: Integer; name: String; address: String)
Departure (did: Integer; start: Date; flight: Integer; airline-id: String; plane-id: Integer)
Pass_Dept (did: Integer;pid: Integer; booking: Date)
Airline(airline-id: String; name: String)
Plane(serial-nr: Integer; ...) . . .

Figure 2: Example for the Schema Transformation

that fly with airline ‘Lufthansa’ on the ‘06/18/93’
would be expressed as

Example 1:
select P.name, P.address
for each Passenger P, P.departures D
where D.start = ‘06/18/93’ and

D.airline.name = ‘Lufthansa’

In the second query example, all passengers, their
addresses and flights with flight numbers, list of pas-
sengers for each of the flights and total number of
flights for each passenger are selected for all passen-
gers which have addresses containing ‘80802
München’.

Example 2:
select P.[name, address], P.departures.

[[did, passengers.name], count]
for each Passenger P
where P.address like ‘%80802 München%’

The query examples will be used in sections 3 and
4 to explain the query translation algorithm. Note,
that the result of the second query is of the complex
type

Set ([String, String],
[Set ([Integer, Set (String)]), Integer]).

Nested results may occur as answer for queries
with structured expressions or queries where the gen-
eralization of the dot-notation is used more than once
in a row. Furthermore, in corresponding SQL queries
additional information is needed to do the grouping
and aggregation (e.g. the counting of departures)
which is only implicit in the SOQL query. In general,
if the result for a query is a nested set with more than
one nesting level, there is no one-to-one translation to
an SQL query. Equivalent SQL queries for our query
examples are given as results of the query translation
algorithm in section 3.

To sum up, SOQL provides query facilities that
allow queries to be much shorter, easier to write and
understand and more intuitive than corresponding
SQL queries. Since the created class definitions are
more structured, in most cases joins do not have to be
specified explicitly and complex queries are avoided.
In addition, the results of SOQL queries can be arbi-
trarily structured and the application of methods in
dot-notation is generalized to work on sets.

3. Translation of SOQL Queries into
SQL-Queries

Since information is added during the schema
transformation process and SOQL has more expres-
sive power than SQL, it is obvious that all queries ex-
pressed in SQL over the relational schema (RS) can
also be expressed by SOQL queries over the created

object-oriented schema (OS). This section deals with
the translation of SOQL queries into standard SQL
[ISO 92] and the identification of formatting primi-
tives during the translation process which are needed
to restructure the result according to the complex an-
swer type given by the SOQL ‘select’ clause. To il-
lustrate the tasks of the translation algorithm, figure 3
shows an example for a small relational database and
the virtual instances of the corresponding object-ori-
ented schema. The virtual instances of the object-ori-
ented database ODB are created from the tuples of
the relational database RDB by avirtual instance
mapping vinst: (OS, RDB)|→ ODB. By the virtual in-
stance mapping, basically, each tuple of a non-rela-
tionship table of RDB is mapped to a virtual instance
of the respective class in ODB and each tuple or at-
tribute representing a relationship is mapped to a vir-
tual object reference. The basic idea of our instance
mapping is similar to the one presented in [Heu 89]
which has been proposed to formally describe sche-
ma equivalence of a semantic, a nested relational and
a relational data model. Executing the SOQL query
in figure 3 against ODB yields the structured result
{(Smith, {401, 403}), (Smith, {401})}. A corre-
sponding SQL query together with its result is also
given in figure 3. Although both query results seem
to be very similar, it is impossible to create the struc-
tured SOQL result from the flat result of the SQL
query if no additional information is available. How-
ever, by adding the key attribute P.pid of Passenger
to the SQL ‘select’ clause, we get the result {(Smith,
1, 401), (Smith, 1, 403), (Smith, 2, 401)} which can
easily be transformed into the desired format by
grouping the tuples according to P.pid, combining
the D.did attributes to sets and afterwards projecting
out the P.pid attribute. Selecting additional informa-
tion that allows to structure the results from the rela-
tional database into the desired format, is one of the
ideas which is used in our translation algorithm. The
main tasks of the translation algorithm are

• resolving chains of method applications by
suitable joins and subqueries on the rela-
tional side,

• flattening the nested structure while simul-
taneously creating the inverse formatting
operations,

• correctly replacing the SOQL condition part
by equivalent SQL constructs which may
involve handling of methods on structured
types, set operations and so on. However,
for the presentation of the translation algo-
rithm in subsection 3.2 we restrict ourselves
to SQL-like conditions and discuss feasible
extensions separately in subsection 3.3.

Before describing the query translation algorithm,
we first introduce the basic notions of ‘equivalence
of queries’ and ‘equivalence translations’.

3.1 Basic Definitions

As already indicated in the above example, in
many cases there is no translation of an SOQL to an
SQL query which provides exactly the same result.
Therefore in this context we have to introduce a
weaker notion of equivalence. Informally, our notion
of result equivalence means that the SQL query pro-
duces an answer which may be easily converted into
the desired result, particularly without further selec-
tion and join operations. The former ensures, that
only the necessary amount of data will be transferred

which is important for performance reasons, espe-
cially if the relational system is accessed via network,
and the latter ensures, that the query can be answered
by exactly one SQL statement.

Definition (Equivalence of queries)

Let RDB be the actual relational database with sche-
ma RS, ODB the virtual object-oriented database
with schema OS, res(S, RDB) the resulting table
when executing S on database RDB, andres(Q,
ODB) the result expected from an execution of Q on
ODB. Then we say, Q and S areresult equivalent up
to simple formatting operations if the following prop-
erty holds:

fQ(res(S, RDB)) =res(Q, ODB),(*)

(virtual) ODB:

Passenger = {o1, o2, o3, o4}

o1.pid = 1, o1.name = ‘Smith’, o1.address = ‘New York ...’, o1.departures = {o5, o7}

o2.pid = 2, o2.name = ‘Smith’, o2.address = ‘London ...’, o2.departures = {o6}

o3.pid = 3, o3.name = ‘Jones’, o3.address = ‘Paris ...’, o3.departures = { }

o4.pid = 4, o4.name = ‘Huber’, o4.address = ‘München ...’, o4.departures = {o5, o6}

Departure = {o5, o6, o7}

o5.did = 401, o5.start = ‘7-1-93’, o5.flight = ‘0815’ o5.passengers = {o1, o2, o4}

o6.did = 402, o6.start = ‘7-1-93’, o6.flight = ‘1414’ o6.passengers = {o4}

o7.did = 403, o7.start = ‘7-1-93’, o7.flight = ‘1017’ o7.passengers = {o1}

Figure 3: Instances of the Relational and the Virtual Object-Oriented Database

SQL:

select P.name, D.did
from Passenger P, Departure D, Pass_Dept Pd
where P.name=‘Smith’ and

P.pid=Pd.pid and Pd.did=D.did

result:

{(Smith, 401), (Smith, 403), (Smith, 401)}

SOQL:

select P.name, P.departures.did

for each Passenger P

where P.name=‘Smith’

result:

{(Smith, {401, 403}), (Smith, {401})}

RDB:

Passenger

pid name address ...

1 Smith New York. ...

2 Smith London ...

3 Jones Paris ...

4 Huber München ...

Departure

did start flight ...

401 7-1-93 0815 ...

402 7-1-93 1414 ...

403 7-1-93 1017 ...

Pass_Dept

pid did booking

1 401 ...

1 403 ...

2 401 ...

4 401 ...

4 402 ...

where the formatting functionfQ is composed by
structuring, grouping, projection, nesting and aggre-
gate operations (c.f. section 4).

Based on the above definition, we are able to de-
fine the notion of an ‘equivalence translation’ from
SOQL into SQL.

Definition (Equivalence translation)

Any mappingt, t: Q |→ (S, fQ) translating an
SOQL query Q into a result equivalent SQL
query S and providing a formatting function
fQ, such that (*) holds, is said to be anequiva-
lence translation.

Note, thatt is a partial mapping, because there are
SOQL queries, that can not be translated into SQL. It
would be desirable, however, fort to becomplete in
the following sense: If there exists an SQL query S’
and a formatting function f ’Q with

f ’Q(res(S’, RDB)) =res(Q, ODB)

for a given query Q, thent should return a pair (S,fQ)
with the same property as S’ and f ’Q.

Before presenting the translation algorithmt in
detail, we will formalize the following helpful obser-
vation that allows a uniform treatment of chains of
method applications:
Let Ri := flat_type(V.m1.m2.mi) be the flat class
type resulting from the successive method applica-
tion to V which may be uniquely determined since
our schema transformation algorithm produces no
subtype hierarchies. ChainsV.m1.m2.mn of meth-
od applications occurring within SOQL-statements
may be divided into the first k and the last n-k+1 sub-
chains,0 ≤ k ≤ n+1, such that: If0 ≤ i < k, thenRi
is a non-basic class type (e.g. Passenger, Departure
with a corresponding table in RS), and ifk ≤ i ≤ n,
then Ri is a basic class type (Boolean, String,
Integer, ...). A short example will illustrate this fact:

p.departures.passengers.namewhere p ranges
over classPassengerimplies k=3, n=3 with
R0 = flat_type(p) = Passenger
R1 = flat_type(p.departures) = Departure
R2 = flat_type(p.departures.passengers)

= Passenger
R3 = flat_type(p.departures.passengers.name)

= String

This observation ensures that chains of method
applications only have to be resolved until the first
basic class type is encountered as implicitly used in
transformation step 2 below. Loosely speaking, a
chain V.m1.m2.mk-1 indicates a join sequence.

3.2 Translation Algorithm

By providing a step-by-step algorithm for the
translation, in the following we constructively define
anequivalence translation t which translates SOQL
queries intoresult equivalent SQL queries. Since
SOQL queries can be more structured than SQL que-
ries, the result structure of an SOQL query needs to
be flattened before it can be processed by the rela-
tional system. To build the desired result structure, a
sequence of formatting operations is recorded during
the flattening process (c.f. section 4). In the follow-
ing, it is assumed that all class variables occurring in
the‘for each’ clauses of the query and all its subque-
ries have pairwise distinct names. Otherwise, they
will be consistently renamed. New variables intro-
duced during the transformation are denoted by Vi.

Before applying the steps of the translation algo-
rithm, we transform the considered SOQL query into
a nested set expression. The ‘select’ clause becomes
the result part of the set. The range and class variable
definitions of the ‘for each’ clause are transformed
into ‘element in set’ relationships. The ‘where’
clause is syntactically adapted to the set notation and
occurring subqueries are recursively transformed
into corresponding set expressions. In figures 4 and
5, the translation process is illustrated using the query
examples from section 2.

Step 1: Resolution of structured expressions and
generalized dot-notation

In this step, structured expressions and chains of
method applications using the generalized dot-nota-
tion are resolved. Chains of method applications

in the ‘select’ or ‘ for each’ clause are successively
resolved as

if m1 is a method defined for V and as

if V is set-valued andm1 is not defined forV. The
translation of generalized dot-notation occurring in
the ‘where’ clause is slightly different. In this case,
an existential quantification is introduced (c.f. trans-
lation step 1 in figure 4). The translation of more
complex conditions involving nested sets which can
not be expressed in SQL are described in subsec-
tion 3.3. Note, that the translation is possible since
chains of method applications have only to be re-
solved until the first basic class type is encountered
(c.f. observation in section 3.1).

Structured expressions

V.m1. … .mn

V.m1() . … .mn

v.m1 v V∈{ } .m2. … .mn

V. m11
. … .ml1

, …, mn1
. … .mln

Figure 4: Translation of Query Example 1

select P.name, P.address
for each Passenger P, P.departures D
where D.start = ‘06/18/93’ and D.airline.name = ‘Lufthansa’

≡ {(P.name, P.address) | P∈ Passenger∧ D ∈ P.departures∧ D.start = ‘06/18/93’ ∧
D.airline.name = ‘Lufthansa’ }

≡(step 1) {(P.name, P.address) | P∈ Passenger∧ D ∈ P.departures∧ D.start = ‘06/18/93’ ∧
∃ V1: V1 = D.airline∧ V1.name = ‘Lufthansa’ }

≡(step 3) {(P.name, P.address) |∃ V1: P ∈ Passenger∧ D ∈ Departure∧ join(P, D)∧ D.start = ‘06/18/93’ ∧
V1 ∈ Airline ∧ join(D, V1) ∧ V1.name = ‘Lufthansa’ }

≅ select P.name, P.address
from Passenger P, Departure D, Airline V1
where join(P, D) and join(D, V1) and D.start = ‘06/18/93’ and V1.name = ‘Lufthansa’

≅ select P.name, P.address
from Passenger P, Departure D, Airline V1, Pass_Dept V2
where P.pid = V2.pid and V2.did = D.did and D.airline-id = V1.airline-id and

D.start = ‘06/18/93’ and V1.name = ‘Lufthansa’

are also resolved successively as

if at least one of the is directly applicable to V and
as

if V is set-valued and none of the is defined onV.
Note, that structured expressions and chains of meth-
od applications may be nested into each other. There-
fore, both translation rules may have to be applied
alternately.

Step 2: Resolution of complex range variables
In this step, variables ranging over arbitrary path ex-
pressions are replaced by variables ranging only over
classes corresponding to relations. To select all pas-
sengers together with the sets of co-passengers for
each of their flights, we may write

select P.name, CP.name
for each Passenger P,

P.departures.passengers CP

In this case, the range variable CP ranges over sets of
passengers which cannot be directly expressed in
SQL. Therefore, the corresponding nested set expres-
sion

{(P.name, CP.name) | P∈ Passenger∧ CP∈
{V 1.passengers | V1∈ P.departures}}

is translated into

{(P.name, V1.passengers.name)| P∈ Passenger
∧ V1 ∈ P.departures} ≡(step 1)

V.m11
. … .ml1

… V.mn1
… .mln

,,

mi1

v. m11
. … .ml1

, …, mn1
. … .mln

v V∈{ }

mi1

{(P.name, {V2.name | V2 ∈ V1.passengers}) |
P∈ Passengers∧ V1 ∈ P.departures}.

More formally, the translation can be expressed as
{(x, y)| x ∈ X ∧ y ∈ {h(z) | z∈ Z ∧ p(x, z)} ∧ q(x, y)}
≡> {(x, h(z)) | x∈ X ∧ z ∈ Z ∧ p(x, z) ∧ q(x, h(z))}
with a subsequent resolution of generalized dot-nota-
tion (c.f. step 1).

Step 3: Resolution of object references
All remaining object references are resolved as fol-
lows.

V1 opX.m ≡>
V1 ∈ flat_type(X.m)∧ join(X, V1),

whereop = ‘∈’ or ’=’ depending on whether X.m is
set or single valued. In this step, join predicates
join(X, Vi) are introduced with the intended meaning:
join(X, Vi) is true if there is an object reference from
X to Vi.

Note, that in the previous steps path expressions in-
volving aggregate operations have not been resolved.
In this step, however, we want to resolve possible ob-
ject references that are part of such path expressions.
Since the aggregate operations are applied to sets, we
translate path expressions

with mn being an aggregate operation into

{v | v ∈ } .mn.

Then all object references in can
be resolved by join predicates as described above. In
some cases, however, no additional joins may have to

V.m1. … .mn

V.m1. … .mn 1–

V.m1. … .mn 1–

be introduced. In example 2, theP.departures comes
from a structured expression that already has been re-
solved and, therefore, we do not need to repeat the
part ‘V1 ∈ Departure∧ join(P, V1)’ but still useV1.

The result of the three steps of the translation al-
gorithm that have been described so far is semanti-
cally and structurally equivalent to the original query
but with all dot generalizations and structured ex-
pressions being resolved. In the following steps, the
result is changed either by adding attributes or by
flattening the result structure. Still, our notion ofre-
sult equivalence up to simple formatting operations is
preserved since the necessary formatting operations
are recorded.

Step 4: Resolution of nested result types
In this step, the nested structure of result tuples is re-
solved by shifting set conditions of the inner sets onto
the outer level and adding key information. The trans-
lation is done level by level starting outermost-left-
most. Key information which is necessary to recon-
struct the desired result structure is introduced for all
variables on the outer level (c.f. step 4a and 4b in
figure 5). At the same time, the formatting function
which reconstructs the intended result structure suc-
cessively (c.f. section 4) is extended by the inverse
structuring, grouping, projection and nesting opera-
tions. Aggregate operations coming from inner nest-

ing levels need to be removed (c.f. translation step 4b
in figure 5). Formally, the flattening of one nesting
level can be described as:

{(x, {y | y ∈ Y ∧ p(x, y)}) | x∈ X ∧ q(x,)} ≡>
{(x, key(x), y) | y∈ Y ∧ p(x, y) ∧ x ∈ X ∧ q(x)}.

This translation rule is applied until the nesting
structure of the result tuple is flat. Then, only the re-
maining tuple structure needs to be flattened (c.f.
translation step 4c in figure 5). Again, in this step the
formatting function is extended by the inverse opera-
tions and key information is added to the result list
instead of the omitted aggregate operations.

The remaining translation into a valid SQL query
is straightforward provided we restrict SOQL condi-
tions to permissible SQL conditions. More complex
condition parts may also be translated into SQL. In
subsection 3.3, some extensions of the condition part
are described that can be translated into permissible
SQL statements. Note, that replacing the join predi-
cates join(R, S) may introduce additional relations
which are necessary, e.g. Pass_Dept in example 2, to
establish m:n relationships.

3.3 Extensions of the Condition Part

Since SOQL has more expressive power than
SQL, there are some cases where SOQL queries do
not haveresult equivalent SQL queries. However, as

Figure 5: Translation of Query Example 2

select P.[name, address], P.departures.[[did, passengers.name], count]
for each Passenger P
where P.addresslike ‘%München% (cond:= ‘P.addresslike ‘%München%’)

≡ {([P.[name, address], P.departures.[[did, passengers.name], count]) | P∈ Passenger∧ cond}

≡(step 1a){((P.name, P.address), ({(V1.did, V1.passengers.name) | V1 ∈ P.departures}, P.departures.count)) |
P ∈ Passenger∧ cond}

≡(step 1b){((P.name, P.address), ({(V1.did, {V2.name | V2 ∈ V1.passengers}) | V1 ∈ P.departures},
P.departures.count)) | P∈ Passenger∧ cond}

≡(step 3) {((P.name, P.address), ({(V1.did, {V2.name | V2 ∈ Passenger∧ join(V1, V2)}) | V 1 ∈ Departure
∧ join(P, V1)}, {V 1}.count)) | P∈ Passenger∧ cond}

≅(step 4a){((P.name, P.address), P.key, ((V1.did, {V2.name | V2 ∈ Passenger∧ join(V1, V2)}), {V 1}.count)) |
P ∈ Passenger∧ V1 ∈ Departure∧ join(P, V1) ∧ cond}

≅(step 4b){((P.name, P.address), P.key, ((V1.did, V1.key, V2.name), V1.key)) | P∈ Passenger∧
V1 ∈ Departure∧ join(P, V1) ∧ V2 ∈ Passenger∧ join(V1, V2) ∧ cond}

≅(step 4c){(P.name, P.address, P.key, V1.did, V1.key, V2.name, V1.key) | P∈ Passenger∧ V1 ∈ Departure
∧ V2 ∈ Passenger∧ join(P, V1) ∧ join(V1, V2) ∧ cond}

≅ select P.name, P.address, P.pid, V1.did, V2.name
from Passenger P, Departure V1, PassengerV2, Pass_Dept V3, Pass_Dept V4
where P.pid = V3.pid and V3.did = V1.did and V1.did =V4.did and V4.pid =V2.pid

and P.addresslike ‘%München%’

we will show in the following, the condition part that
is permissible in SOQL queries while still guarantee-
ing an equivalence translation can be extended con-
siderably. Simpler extensions, for example, are meth-
ods on set types such as‘el in set’ which may be
replaced by computing the set in a subquery and ap-
plying the corresponding SQL constructs ‘el in
(select ...)’ to the result of the subquery. Some im-
portant extensions to be included into the translation
algorithm are:

Extension 1: Generalized dot-notation in
conditions

In the condition part of SOQL queries, set-valued
method path expressions like D.passengers.name
=‘Jones’ may occur at all positions where the SQL
syntax only allows simple column expression like
P.name=‘Smith’. According to the definition of the
semantics of method path expressions, the resolution
of set-valued method path expressions in conditions
would result in a set of booleans which has to be ‘flat-
tened’ to a single boolean value.

{x| x ∈ X} op y is defined by∃x: x ∈ X ∧ x op y,
if ‘op y’ is not applicable to the whole set.

Example:
D.passengers.name = ‘Jones’≡>
{V 1.name | V1 ∈ D.passengers} = ‘Jones’≡>
∃V1: V1 ∈ D.passengers∧ V1.name = ‘Jones’

Only applying the resolution according to the gener-
alization of dot-notation to

{V 1.name | V1 ∈ D.passengers} = ‘Jones’

results in

{V 1.name = ‘Jones’ | V1 ∈ D.passengers}

which is a set of booleans. Like in IRIS [Fis 89], in
SOQL sets of booleans in conditions are implicitly
‘or’-connected [KKM 93b] evaluating to true if at
least one element is true.

Extension 2: Set inclusion

Inclusion conditionsA ⊆ B with A = {x1 | p(x1)} and
B= {x2 | q(x2)} in the SOQL ‘where’ clause may be
transformed in the following way, providedA andB
can be processed by SQL subqueries.

A ⊆ B ≡> not exists{x1 |p(x1) and
not exists {x2 |q(x2) ∧ x2 =x1} }

Example:
D1.passengers.name ⊆ D2.passengers.name
≡> not exists{P1.name | P1∈ Passenger∧

join(P1, D1)∧ not exists

{P2.name | P2∈ Passenger∧
join(P2, D2)∧ P2.name=P1.name} }

Extension 3: Union, intersection, difference

Predicates like x∈ A ∪ B, x ∈ A ∩ B, x ∈ A − B in
the SOQL ‘where’ clause can be transformed to

x in { x1 | p(x1)} or x in {x2 | q(x2)},
x in { x1 | p(x1)} and x in { x2 | q(x2)} ,
x in { x1 | p(x1)} and x not in { x2 | q(x2)},

which can be transformed to SQL, if A and B can be
transformed to valid SQL subqueries.

Note, that the subqueries A and B in extensions 2
and 3 may only return unstructured results since oth-
erwise the nesting operators of SQL are not applica-
ble. Serious problems in the query translation process
may be caused by user extensions to the object-ori-
ented schema, such as additional attributes or user-
defined methods. In the case of using user-defined
methods in an SOQL query, the data necessary to
evaluate the query has to be retrieved iteratively from
the relational system before it can be used to execute
the methods. If classes are extended by additional at-
tributes, the data necessary to evaluate the condition
part of a query is retrieved partially from the relation-
al system and the additional data is retrieved from the
system managing the additional data. According to
the extended object-oriented schema, the correspond-
ing data of both sources is related to each other before
the condition is evaluated and the desired data is re-
trieved as specified in the ‘select’ clause. In both cas-
es, it may be necessary to transfer large amounts of
data, even in cases where the resulting data set is rath-
er small and, therefore, performance problems may
occur. Note, that the problems are only caused in cas-
es where there is no corresponding SQL query.

4. Transformation of the Result
As already mentioned, to automatically restruc-

ture the result flattened by the last steps of the trans-
lation algorithm a formatting function has to be gen-
erated. In each partial transformation of these steps,
formatting primitives are recorded which are com-
posed in the reverse order of their creation, such that
the last primitive is applied first to the result returned
by the generated SQL query.

This means for query example 2 in figure 5, that
the result returned by the final SQL query has to be
structured into subtuples after copying the V1.key at-
tribute twice to revert the last two steps. Then, the tu-
ples are partitioned into groups by equal values of the
attribute combination P.key, V1.key and for each
group, the values of V2.name are combined to form
the inner sets, i.e. for each person and one of its de-
partures, all passengers belonging to this departure

are grouped into a set. Now, the first V1.key can be
projected out. Next, the intermediate result is
grouped by P.key to be able to count each person’s
departures and to combine the information on each
person’s departures into a set. After projecting out
the second V1.key and P.key, the correct answer in
the desired result structure is reached.

In the following, the formatting primitives are de-
fined as generic functions which may be arbitrarily
composed:

• structure (attr_list1, ..., attr_listl):
Res → Res

combines the attributes of eachattr_listi
into a tuple (ai1 ..., aini

) and the whole
expression itself into a tuple
 ((a11, ..., a1n1

), ..., (al1, ..., alnl
)).

• group (by(attr_list1), op(attr_list2), ...,
op(attr_listl)): Res → Res

groups Res according to equal values of
by(attr_list). For each group, the attributes
listed inop(attr_list) are combined to sets if
op = nest, and aggregated using the
corresponding aggregate operator ifop =
min, max, count, avg, sum. In order to get
only one value per group, all attributes that
occur in none of theattr_list have to be
functionally dependent on the attributes in
by(attr_list).

• project(a_new1=a_old1, ...,
a_newl=a_oldl): Res → Res

projects Res onto the specified attributes
allowing attributes to be duplicated and
renamed. The assignmenta_newi = a_oldi
is only needed if attributes are duplicated or
renamed.

The formatting function is constructed as concat-
enation of the formatting primitives:

fQ = f0 ° f1 ° . . . ° f(n-1) ° fn
with f0 being theε−function. The formatting primi-
tives and their concatenation to the formatting func-
tion fQ are illustrated in figure 6 using query
example 2.

5. Summary and Conclusions
A major challenge in building a CIS is the integra-

tion of existing ISs. We propose the concept of a co-
operative interface to support the cooperation of iso-
lated systems without changes to these systems. The
main contribution of this paper is the query transla-
tion algorithm which is an important part of such an
interface. Our algorithm allows an automatic transla-
tion of SOQL queries issued against the created ob-
ject-oriented schema into ‘result equivalent’ SQL
queries for the original relational schema. In the que-
ry translation algorithm, first chains of method appli-
cations are replaced by appropriate joins and subque-
ries on the relational side, the conditions are replaced
by equivalent SQL conditions and, since SQL cannot
provide structured results, the nested structure of the
result is flattened but enhanced with additional key
information. Simultaneously, the inverse formatting
operations are created allowing reconstruction of the
desired result from the result of the SQL query.

We believe that our query translation algorithm is
easily applicable and thus, of high practical impor-
tance. It does not require any change to the relational
system, the data or existing applications and there-
fore, our schema transformation and query transla-
tion algorithm is a practical solution for the develop-
ment of cooperative systems. The implementation of
the schema transformation and operation translation
algorithms with complete support of user-defined
methods and additional object-oriented classes is
currently on the way, but not yet finished. One open

f0 =ε
f1 = project(P.name, P.address, V1.did, V2.name, (V1.key).count) (step 4a)

f2 = group(by(P.key),nest(V1.did, {V2.name}),count(V1.key)) (step 4a,4b)

f3 = project(P.name, P.address, P.key, V1.did, {V2.name}, V1.key) (step 4b)

f4 = group(by(P.key, V1.key), nest(V2.name)) (step 4b)

f5 = structure((P.name, P.address), P.key, ((V1.did, V1.key, V2.name), V1.key)) (step 4c)

f6 = structure(P.name, P.address, P.key, (V1.did, V1.key, V2.name), V1.key) (step4c)

f7 = project(P.name, P.address, P.key=P.pid, V1.did, V1.key=V1.did, V2.name, V1.key=V1.did) (final step)

Figure 6: Formatting Function for Query Example 2

problem is the optimization of queries which involve
user extensions to the schema, complex set opera-
tions or arbitrarily structured results. In such SOQL
queries which have no one-to-one correspondence to
an SQL query, the query optimization cannot be done
on the relational side. Therefore, we have to optimize
the query execution plan to reduce the amount of data
which needs to be transferred between the object-ori-
ented query interface and the relational system. Per-
formance issues will be of high importance for such
a system to be used in real world applications.

In our future work, we plan to extend the schema
enrichment and query translation algorithms to cover
the automatic detection and creation of subtype hier-
archies and to deal with complex methods. We will
try to find possibilities to translate complex condi-
tions involving set operations on structured results.
We will further work on the optimization issue trying
to provide an acceptable performance even in com-
plicated cases. Finally, we will investigate on the dis-
tribution of global queries and the combination of
their results.

References
[ASL 89] Alashqur A. M., Su S. Y., Lam H.:‘OQL: A

Query Language for Manipulating Object-oriented
Databases’,Proc. 5th Int. Conf. on Very Large Data
Bases, Amsterdam, 1989, pp. 433-442.

[BC 92] Brodie M. L. Ceri S.: ‘Intelligent and
Cooperative Information Systems’,in: [EJ 92], 1992.

[BCD 92] Bancilhon F., Cluet S., Delobel C.:‘A Query
Language for O2’ , chapter 11 in: [BDK 92], 1992,
pp. 234-255.

[BDK 92] Bancilhon F., Delobel C, Kanellakis P. (eds.):
‘Building an Object-Oriented Database System - The
Story of O2’ , Morgan Kaufmann, San Mateo, CA, 1992.

[BHP 92] Bright M. W., Hurson A. R., Pakzad S. H.:‘A
Taxonomy and Current Issues in Multidatabase
Systems’,Proc. IEEE Computer, 1992, pp. 50-60.

[EJ 92] Ellis C. A., Jarke M.:‘Distributed Cooperation
in Integrated Information Systems’,Proc. 3rd Int.
Workshop on Intelligent and Cooperative Information
Systems, Dagstuhl, Germany, in: Aachener Informatik-
Berichte, 92-18, 1992.

[Fis 89] Fishman D. H. et al:‘Overview of the Iris
DBMS’, chapter 10 in:Object-Oriented Concepts,
Databases and Applications by Kim W. and Lochovsky
F.H. (eds.), ACM Press Frontier Series, Addison Wesley,
Reading, MA, 1989, pp. 219-250.

[HD 91] Harris C., Duhl J.: ‘Object SQL’, chapter 11 in:
Object-Oriented Databases with Applications to CASE,
Networks, and VLSI Design by Gupta H. and Horowitz
E., Prentice Hall, 1991, pp. 199-215.

[Heu 89] Heuer A.: ‘Equivalent Schemes in Semantic,
Nested Relational, and Relational Database Models’,
Proc. 2nd Symp. on Mathematical Fundamentals of
Database Systems, Visegrád, Hungary, 1989, in: Lecture
Notes in Computer Science, Vol. 364, Springer, 1989,
pp. 237-353.

[Inf 92] Informix: ‘INFORMIX - TP/XA’, Informix
Software Inc., Menlo Park, CA, 1992.

[Ing 92] Ingres: ‘INGRES / Star’, Ingres, Frankfurt,
1992.

[ISO 92] ISO/IEC: ‘Database Language SQL’, ISO/
IEC 9075:1992 (German Standardization: DIN 66315).

[KKM 93a] Keim D. A., Kriegel H.-P., Miethsam A.:
‘Integration of Relational Databases in a Multidatabase
System based on Schema Enrichment’,Proc. Int.
Workshop on Research Issues in Data Engineering:
Interoperability in Multidatabase Systems (RIDE-IMS),
Vienna, Austria, 1993, pp. 96-104.

[KKM 93b] Keim D. A., Kriegel H.-P., Miethsam A.:
‘Object-Oriented Querying of Existing Relational
Databases’,Proc. 4th. Int. Conf. on Database and Expert
Systems Applications (DEXA’93), Prague, Czech
Republic, 1993, in: Lecture Notes in Computer Science,
Vol. 720, Springer, 1993, pp. 325-336.

[KL 89] Kim W., Lochovsky F.H.:‘Object-Oriented
Concepts, Databases and Applications’, ACM Press
Frontier Series, Addison Wesley, Reading, MA, 1989.

[Ora 92] Oracle: ‘ORACLE SQL*Connect’,Oracle,
München, 1992.

[RPR 89] Reddy M. P., Prasad B. E., Reddy P. G.:
‘Query Processing in Heterogeneous Distributed
Database Management Systems’,in: Integration of
Information Systems: Bridging Heterogeneous
Databases, Amar Gupta (ed.), 1989, pp. 264-277.

[SL 90] Sheth A. P., Larson J. A.:‘Federated
Database Systems for Managing Distributed,
Heterogeneous, and Autonomous Databases’,ACM
Computing Surveys, Vol. 22, No. 3, 1990, pp. 183-236.

[Syb 90] SYBASE: ‘Connectivity: Technical
Overview’,Sybase Inc., Emeryville, CA, 1990.

