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Figure 1: Comparing a Hilbert and Morton curve on the 400 districts of Germany (GER). The Hilbert curve has fewer trustworthiness errors
but exhibits a discontinuity rift where geographical neighbors are distant in the ordering A . The Morton curve performs slightly better regarding
discontinuity at the cost of larger jumps in the ordering whenever the diagonal quadrant is switched B C . The geographical neighborhood of a
selected polygon D is better preserved in the Hilbert layout, indicated by shorter connecting lines of geographical neighbors E .

Abstract
One-dimensional orderings of spatial entities have been researched in many contexts, e.g. spatial indexing structures or visualiza-
tions for spatiotemporal trend analysis. While plenty of studies have been conducted to evaluate orderings of point-based data,
polygonal shapes, despite their different topological properties, have received less attention. Existing measures to quantify errors
in projections or orderings suffer from generic neighborhood definitions and over-simplification of distances when applied to
polygonal data. In this work, we address these shortcomings by introducing measures that adapt to a varying neighborhood size
depending on the number of contiguous neighbors and thus, address the limitations of existing measures for polygonal shapes. To
guide experts in determining a suitable ordering, we propose a user-steerable visual analytics prototype capable of locally and
globally inspecting ordering errors, investigating the impact of geographic obstacles, and comparing ordering strategies using our
measures. We demonstrate the effectiveness of our approach through a use case and conducted an expert study with 8 data scientists
as a qualitative evaluation of our approach. Our results show that users are capable of identifying ordering errors, comparing
ordering strategies on a global and local scale, as well as assessing the impact of semantically relevant geographic obstacles.

CCS Concepts
• Human-centered computing → Geographic visualization; Visual analytics;

1. Introduction

The mapping of spatial entities to a one-dimensional (1-D) ordering is
a valuable technique that enhances spatial data analysis by improving
efficiency in spatial indexing structures [Gut84, Sam84] or revealing

spatiotemporal patterns in visualizations [BJC∗19, FMKK21].
Nevertheless, an ordering of spatial entities inevitably produces
errors, i.e., spatially close objects are placed far apart in the ordering
sequence [BP92]. Finding the most suitable ordering heavily depends
on the intended use case and becomes a non-trivial task, considering
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that the number of possible orderings grows factorially with the
number of elements (N!). While the exploration of all solutions is
computationally unfeasible, designated algorithms such as simulated
annealing [GS96], agglomerative hierarchical clustering [GG06], spa-
tial indexing structures [BJC∗19], or space-filling curves [FMKK21]
aim to approximate a near-optimal result heuristically.

To globally evaluate the quality of a 1-D ordering of point-based
geometries, various measures have been introduced [MD86, DM94,
BP92, GS96, VK01, GG06]. However, many spatio-temporal
trends, such as the development of socio-economic indicators or
the spreading of epidemical cases, are captured with polygons as
their underlying spatial representation [TJMM20, JSS∗22]. While
polygonal shapes can be simplified to points using the centroid, this
abstraction results in an oversimplified representation since the conti-
guity between polygons is neglected. Previous studies emphasize that
precise measures of topography and similarity are crucial for obtain-
ing reliable evaluation results [GS96], hence we argue for a distance
computation based on shared border percentages to account for the
topological property of contiguity. As seen in Fig. 2, centroid-based
distance measures struggle to accurately capture spatial coherence of
polygons, as they assign different nearest neighbor ranks compared to
a contiguity-based approach, especially in the presence of natural ob-
stacles such as rivers. The neighborhood preservation also plays an im-
portant role when defining such measures, where existing approaches
employ the k-nearest neighbor strategy [BP92, GS96, VK01, GG06].
Since real-world polygon-based datasets embody a complex con-
figuration of polygons, we argue that a constant neighborhood size k
for all polygons results in an oversimplification of irregular neighbor-
hoods (see Fig. 2). To mitigate this, we present an approach where the
neighborhood is defined by all contiguous, neighboring polygons.

Global error measures provide an overall assessment of an
ordering, but they often fail to capture local nuances and individual
discrepancies crucial for accurate error tracking. Since mapping
errors are inevitable, it is essential to identify their geographical
locations and their impact within the 1-D ordering. Depending on
the use case, certain errors may be tolerable in some regions, but
in other areas, even minor discrepancies can lead to misleading
interpretations. Visual analytics can play a pivotal role in this context
to effectively identify and explore mapping errors on a local scale.

While visual methods to investigate projection-based errors have
been proposed [SvLB10, MCMT14, MMT15], they typically assume
a 2-D target space, e.g. 2-D scatterplots. In contrast, a 1-D order map-
ping introduces distinct challenges due to the strict linear, sequential
arrangement of only one single dimension. This limits the capability
to preserve spatial clusters or neighborhood structures, thus necessi-
tating a customized approach for this specific scenario. To address the
limitations of the existing approaches, we contribute the following:

• Novel measures that apply a distance measure based on shared
border percentages and utilize varying neighborhood sizes.

• A visual analytics interface designed to support geographic
visualization experts in comparing various ordering strategies and
identifying mapping errors within them.

• A qualitative expert study and an exemplary use case to evaluate
the effectiveness of our approach.

• A comparison of established ordering strategies across spatially
diverse datasets from which we derive design considerations.

2. Related Work

In this chapter, we explore aspects essential to understanding the
landscape of 1-D spatial orderings: generation methods, quantitative
and qualitative evaluation techniques, and their applications.

Generating 1-D Orderings – Spatial indexing structures such as R-
Tree [Gut84] or Quad Trees [Sam84] yield an ordering when using a
depth-first search. Space-filling curves (SFC) such as Hilbert or Mor-
ton curves create an ordering by traversing all points in a given space
in a continuous sequential path, where context-based [DCOM00]
or data-driven [ZJW21, WGDS22] variants offer a more refined
solution. Agglomerative hierarchical clustering (AHC) methods can
also be leveraged to generate a 1-D ordering by traversing the leaf
nodes of the dendrogram [GG06]. Various dimensionality reduction
methods [EMK∗21] are also capable of transforming spatial entities
into a 1-D encoding. Aside from strictly spatial input topologies, the
Traveling Salesman Problem (TSP) [LK75] provides a 1-D ordering
by connecting spatial objects through the shortest path and removing
the longest link to create a Hamiltonian path. When transforming
the underlying spatial topology into a sparse adjacency matrix, the
Cuthill-McKee algorithm [CM69] can be applied to minimize its
bandwidth and hence produce an ordering where connected nodes are
placed closer together in the sequence. We do not directly contribute
to generating 1-D orderings, but leverage these techniques to create
candidates for validation and refinement by our approach.

Quantitative Evaluation of 1-D Orderings – The minimal path
length, inspired by the TSP, measures the total length of the line that
is formed in the input space when all entities are connected in sequen-
tial order of the output sequence [MD86]. Minimal wiring is a concept
that aims to minimize the number of connections required to form a
1-D sequence from a 2-D grid [DM94]. Bauer and Pawelzik define
the topographic product to quantify neighborhood preservation in
self-organizing maps [BP92], which penalizes large-scale order viola-
tions between input and output while neglecting ranking differences
within the neighborhood. Goodhill and Sejnowski introduce the C
measure as the product of the input and output distance summed over
all objects [GS96]. The authors show that many quadratic assignment
problems are expressable by the C measure, and use it to evaluate
and compare different solutions for the square-to-line problem. The
above-mentioned approaches only measure the discontinuity of a pro-
jection, penalizing objects that are close in the topographical input but
distant in the output space while overlooking objects that are distant
in the original space but close to each other in the ordering space.

Venna and Kaski introduce the concept of trustworthiness in the
context of neighborhood preservation [VK01], which evaluates
if objects that are close in the output space are also close in the
topographical input space. The authors define two rank-based mea-
sures M1 and M2 to determine the trustworthiness and discontinuity,
respectively. Guo and Gahegan follow this notion and provide Key
Similarity (KS) and Spatial Similarity (SS) measures [GG06], which
can be defined as either distance-based or rank-based, depending
on the specific use case. Numerous evaluation measures exist for
assessing the quality of dimensionality reduction techniques that,
for example, incorporate high- and low-dimensional properties such
as neighborhoods. For a detailed overview of such methods, we defer
to an exhaustive survey of Thrun et al. [TMS23].
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A B C

Figure 2: Neighborhoods and nearest neighbor ranks of polygons
(x) determined by contiguous borders and fixed k (=6) nearest
neighbors . consider only neighbors on the same side of obstacles
like rivers A & C and prevent underestimation B or overestimation
C when the number of contiguous neighbors differs from k.

All of the presented approaches are designed for point-based data.
To the best of our knowledge, no evaluation measure designed for 1-D
orderings exists that incorporates the topological properties of poly-
gons into the distance calculation. While topological attributes have
been leveraged to arrange layouts of small multiple maps [MDS∗17],
they have not been incorporated into measures assessing the quality
of 1-D orderings. Furthermore, most existing methods rely on a fixed
parameter (k) that defines the neighborhood with a fixed size in terms
of its k-nearest neighbors and do not consider the possibility of a
varying neighborhood size among the objects in the dataset.

Qualitative Evaluation of 1-D Ordering Errors – The existing
literature indicates that errors in the ordering introduce artifacts
that can stipulate significant misinterpretations, labeled as phantom
splits [BJC∗19], artificial splits [WBM∗21], or referenced as
inconsistent visual patterns [FMKK21]. In the domain of dimen-
sionality reduction various layout enrichment techniques have been
proposed to visually investigate errors or distortions in the projected
layout. These include space-filling background encodings of uncer-
tainty [WM15], neighborhood preservation [MCMT14, MMT15],
projection precision [SvLB10], or colored Voronoi cells to visualize
distortions [LA11]. Additionally, individual data points can be
enriched by color encoding uncertainty [WM15], halos representing
errors [SDMT16], or connecting graphs indicating high-dimensional
neighborhoods [CVLD19]. However, all of these enrichment
techniques are designed for 2-D target space, and a visual framework
that facilitates the comparison of mapping errors within 1-D
orderings does not exist to the best of our knowledge.

Applications of 1-D Spatial Orderings – Speckmann et al. present
Necklace Maps, where spatial regions are projected on a 1-D curve,
essentially generating a circular 1-D ordering [SV10]. Kriskograms
also order regions to visualize migration flows, where the ordering
is obtained either by geographic orientation (i.e. east-west), or demo-
graphic criteria such as the population rank [XC09]. In an example
application on analyzing traffic accidents, Guo and Gahegan con-
ceptually highlight the potential of spatial orderings and encodings
to either sort visual displays or to engineer a spatial similarity feature
variable [GG06]. Buchmüller et al. use an ordering strategy based on
the Hilbert curve to create MotionRugs, a space-efficient technique
for visualizing moving groups of entities [BJC∗19]. The ordering
is recomputed for each timeframe, possibly introducing undesired

A B C

Figure 3: Number of contiguous neighbors for different datasets. The
number remains constant (excl. edges) for regular grids A , whereas
real-world examples ( B : NYC, C : GER) show a higher variance.

visual jumps of entities in the visualization. To mitigate this issue,
Wulms et al. introduce Stable Principal Components as a tradeoff
between the spatial quality and temporal stability in computing
such orderings [WBM∗21]. Franke et al. investigate spatio-temporal
phenomena through a matrix-like visualization, where the columns
represent the spatially ordered entities, and each row corresponds to a
time step [FMKK21]. Valdrighi et al. employ 1-D orderings to analyze
moving regions and generate a storyline-based visual summary useful
in detecting intersections in object tracing or hurricanes [VFP24]. As
these applications inherently suffer from the previously mentioned
mapping errors, we aim to contribute an interactive tool to help
determine suitable orderings for various application cases.

3. Quantifying Errors in 1-D Polygon Orderings

Based on existing literature, we derive design goals for visually deter-
mining the quality of a 1-D ordering of contiguous spatial polygons.

[G1]Contiguous Neighborhood Preservation – Previous studies
about quantifying mapping errors emphasize the importance of
preserving neighborhoods [BP92, GS96, VK01]. In this context,
elements within a neighborhood are classified as either: (1) True
(consistent in both spaces), (2) Missing (absent in output but present
in input space), or (3) False (present in output but absent in input
space) [MCMT14, MMT15].

Existing measures [BP92,VK01,GG06] define the neighborhoods
by the k-nearest neighbors, based on a fixed number k, in both input
and output space. However, we argue that this is an oversimplification
in the context of contiguous spatial polygons and argue for a locally
varying neighborhood size defined by the number of contiguous
polygons. In tessellated grids, the neighborhood size will be constant
(except at the edges), but in real-world examples, the impact of a more
complex and variable neighborhood configuration becomes apparent
(see Fig. 3). In the 1-D output space, each object typically has two
directly adjacent neighbors, positioned at an equal distance. Hence,
the neighborhood size shall be even to ensure directional balance.

[G2]Error Locality Exploration – According to Martins et
al. [MMT15], projection errors can be captured on different levels
of detail, ranging from global measures that compute an aggregate
value [Ken38, Tor52, Kru64] to measures that capture the errors
locally, i.e., for every single object [GS96, VK01, GG06]. While
global scores are relevant for overall comparison tasks, a local
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investigation provides more detailed insights into the quality of
the mapping. Previous studies [SvLB10, MCMT14, WM15] have
highlighted the importance of both global entropy error quantification
and local error identification on an entity level. Depending on the
use case, certain geographical subregions can be of particular interest
and shall contain only minor mapping errors, reinforcing the need
for a local inspection of mapping errors.

[G3]Polygon Distance Assessment – Any error quantification
of topographic mapping algorithms is heavily influenced by the
employed similarity measure [GS96]. Distances between points are
straightforward to calculate in Euclidean space or with the Haversine
formula, but polygonal shapes introduce additional complexity that
existing measures designed for point-based data cannot handle.
Using the centroid as a reference point simplifies calculations but
introduces biases, as centroids can lie outside irregular polygons and
larger polygons have greater centroid-border distances, even if they
are contiguous [MT20]. Minimal point distances between polygons
mitigate these issues but treat all contiguous polygons as equally
distant. For such cases, the length of the shared border can serve as
a measure of contiguity and contribute to the distance assessment.
Further polygonal properties such as the area or perimeter could
also function as distinction criteria. However, they do not contribute
to spatial coherence as they do not capture relative positioning or
connectivity between polygons.

[G4]Geographic Boundary Interaction – Geographic boundaries,
whether topographic (e.g., rivers, mountain ranges) or anthropogenic
(e.g., train tracks, major roads) can impact distance calculations
between spatial entities [Wan20] and, therefore, affect the quality
assessment of a 1-D ordering. Such properties have been handled by
using a visibility graph [THH01] or Delaunay triangulation [ECL04].
However, implementing these approaches requires prior knowledge
of obstacle details, and the impact of barriers such as rivers, mountain
ranges, cliffs, or forests varies depending on the use case. In this
context, Visual Analytics provides an interactive approach to
examining obstacles, allowing users to flexibly interpret spatial
barriers based on their specific application requirements.

4. Error Measures

In this section, we review existing measures that have been employed
to quantify errors in 1-D orderings and assess their alignment
with our design goals established in Sec. 3 (see Eq. 1a-d in the
supplementary material for formulas). In light of their shortcomings,
we introduce novel measures. For formal notations, we define i, j∈P
as polygons in geographical space and the ordering respectively.

4.1. Existing Measures

M1 & M2 – Venna and Kaski propose the M1 and M2 measures to
capture the trustworthiness and discontinuity of a projection, respec-
tively [VK01], which have been applied by Franke et al. [FMKK21].
Dependent on a fixed neighborhood of size k∈N+, these rank-based
measures determine the f alse and missing neighbors for every object.
The distance in ranks is computed for each of these neighbors, and the
sum of all rank differences yields the final score. The formulas permit
a deconstruction to the local entity level and hence fulfill[G2].
However, the globally fixed neighborhood size k does not properly

Name Description

knngeo(i) The k-nearest neighbors of i in geographical space.
knnorder(i) The k-nearest neighbors of i in the ordering.
dgeo_centr(i, j) The geographic centroid distance between i & j.
dgeo_min_pt(i, j) The geographic minimum point distance between i & j.
dorder(i, j) The distance between i & j in the ordering.
rgeo(i, j) Nearest-neighbor rank of j in relation to i in the geography.
rorder(i, j) Nearest-neighbor rank of j in relation to i in the ordering.

Table 1: Relevant definitions and notations for the error measures.

capture the varying neighborhoods in real-world datasets and for
an odd k may introduce a directional bias, i.e., ⌊k/2⌋+1 neighbors
on the left and ⌊k/2⌋ neighbors on the right, while the polygon might
be placed on either side in 1-D orderings, thus violating[G1]. The
authors define neighborhoods simply by the closest objects which
is ambiguous in terms of spatial polygons[G3]. Furthermore, all
neighbors are weighted equally, meaning that the error for the most
distant neighbor is just as important as that for the closest neighbor.

KS & SS – Guo and Gahegan provide several Key Similarity (KS)
and Spatial Similarity (SS) measures and employ them to assess
the quality of various 1-D ordering strategies [GG06]. The largest
difference to M1 and M2 is a weighting term w(i, j) that can either
be defined by geographical distances (denoted by KSnd & SSdn) or
neighbor ranks (denoted as KSnn & SSnn). While these measures may
diminish the impact of more distant neighbors through a user-defined
weighting factor, the issue with a globally constant neighborhood
size k [G1]remains. All four measures are designed for point-based
data, so they lack a proper assessment of polygon distances[G3].

4.2. Error Measures for Varying Neighborhood Sizes

As none of the existing measures properly fulfill all design goals
we established in Sec. 3, we adapt the formulas of Venna and
Kaski [VK01, VK06] and define a set of novel measures. To sat-
isfy[G1], we determine an even neighborhood size k for every poly-
gon based on its contiguous neighbors from the set of all polygons P:

k(i) :=⌈ |{ j∈P\{i} :dgeo_min_pt(i, j)=0}|·0.5⌉·2 (1)

To determine distances between polygons[G3], we rely on the
minimum point distance instead of the centroid. We introduce an
additional term based on the shared border percentage to retain
distance variations between contiguous polygons, where the
minimum point distance will be zero:

dgeo(i, j) :=
dgeo_min_pt(i, j)

max
x,y∈P

dgeo_min_pt(x,y)
+

(
1−

borderlength(i, j)
bordersum(i)

)
(2)

In accordance with Venna and Kaski [VK01] we determine the
k-nearest neighbors in the geographical space using Eq. 2 and
ordering space as knn_geo(i) and knn_order(i), respectively. We
exclude true neighbors present in both neighborhoods, reducing
the objects in knn_geo(i) to missing neighbors and objects in
knn_order(i) to f alse neighbors. The M1 and M2 measures
consider all neighborhood violations of these objects as equally
important. We argue that the closest neighbors shall have a higher
influence, especially in larger neighborhoods, and account for that
by introducing a weighting factor. A geographical weighting can be
obtained by calculating the border percentage (Eq. 3). This ensures
that non-contiguous polygons (in the case of an odd number of
contiguous polygons, the closest non-contiguous polygon will be

© 2025 The Author(s).
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A B C D

Figure 4: A Highlighting a long ordering path between 2 contiguous polygons. B Drawing a polyline along the Harlem River and determining
the crossings with the current ordering. ( C & D ) Using the lasso to determine a better local ordering for a subregion.

part of the neighborhood to ensure it is even) will not contribute to
the error score, and the sum of all weights results in 1. To achieve
the same behavior for the order weighting, we define Eq. 4 as a term
that decays symmetrically with increasing order distance (dorder).

weightgeo(i, j) :=
borderlength(i, j)

bordersum(i)
(3)

weightorder(i, j) :=
(1+ k(i)

2 )−dorder(i, j)

(1+ k(i)
2 )· k(i)

2

(4)

Similar to Guo and Gahegan [GG06], we multiply the weighting with
the rank distance in the geographical or ordering space. However, we
subtract the neighborhood size k from the rank distance to account
for larger neighborhoods, essentially computing the distance from
the neighborhood bound of i to j. The discontinuities dpoly of the
geographical neighborhood for a given polygon i is hence defined as:

dpoly(i) := ∑
j∈missing(i)

weightgeo(i, j)·((2·dorder(i, j)−1)−k(i)) (5)

As rank distances in an ordering cannot be uniquely resolved (there
are always 2 objects with the same distance and rank), we use twice
the distance in the ordering space (dorder). The trustworthiness error
tpoly of the corresponding ordering is defined as:

tpoly(i) := ∑
j∈ f alse(i)

weightorder(i, j)·(rgeo(i, j)−k(i)) (6)

These measures allow for a detailed inspection of mapping errors,
enabling traceability down to individual polygons and further
relationships between two polygons[G2]. Since these measures
include asymmetric terms, they do not satisfy the properties of
a metric space. Hence, they are unsuitable for algorithms that
require symmetric distance functions such as AHC, TSP, and certain
dimensionality reduction methods.

To obtain a global measure for a given ordering strategy, the sum of
all objects is taken, where the multiplication with the neighborhood
size (k(i)) acts as a scaling factor to ensure global measures between
different datasets are comparable. Dividing by N results in the
average quality of a polygon for the given ordering:

dsum :=
1
N

N

∑
i=1

k(i)·dpoly(i) (7) tsum :=
1
N

N

∑
i=1

k(i)·tpoly(i) (8)

5. Visual Analysis Prototype

In accordance with the design goals from Sec. 3, we propose a
visual analytics framework consisting of multiple linked views

to investigate errors in ordering strategies. The prototype can be
accessed under: assess.1d-poly-order.dbvis.

Orderings – In Sec. 2, we outlined algorithmic methods to generate
1-D orderings from spatial datasets. We focus on AHC-based meth-
ods and SFCs, as they have provided promising results in previous
studies [GG06, FMKK21]. Different orderings can be generated by
rotating the initial orientation of SFCs (see Fig. 5). Hence, we provide
four orderings for these curves as different initializations may alter the
discontinuity and trustworthiness error results. The TSP relates to our
problem of generating a 1-D ordering of spatial entities, as a Hamil-
tonian path can be obtained from the cycle by removing the longest
connection. We further include an ordering obtained from the Cuthill-
McKee algorithm, initially designed to permute a sparse matrix to
reduce its bandwidth. From a set of polygons, we create a binary dis-
tance matrix that captures if polygons are contiguous or not. Then, we
apply the Cuthill-McKee algorithm to obtain our ordering sequence.

Figure 5: Depending on the orientation, different SFC orderings with
locally different properties can be generated.

5.1. Geographical Map View

To visually assess mapping errors within the geog-
raphy, we provide a map component consisting of
several layers that can be interactively toggled. To
investigate the distribution of discontinuity dpoly
and trustworthiness tpoly errors across the geogra-
phy, we employ a choropleth map where mapping

errors of every polygon are encoded by color (see Fig. 4). To visualize
both errors simultaneously, we opted for a bivariate colorscale and
followed the guidelines of Brewer [Bre94], using complemental hues
of orange and blue (resulting in a grayscale diagonal). Polygons with
no error are thus colored in white and thus less conspicuous than
problematic ones. When hovering over a polygon, its geographical
neighborhood is indicated by a dotted line[G1]. A click on a poly-
gon selects this region and anchors the neighborhood visualization,
and a subsequent hover on another polygon indicates the path in the
ordering between these objects (see Fig. 4 A ).

© 2025 The Author(s).
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Figure 6: Schematic of Order Sequence Plot. Upper bars encode
discontinuity, lower bars trustworthiness error. In between, the geo-
graphic and ordering neighborhood of one polygon (x) is depicted.

Ordering Path – The entire geographical path of the ordering can
be visualized as a line, resembling the minimal path length [MD86]
(see Fig. 5). The width of each line segment is scaled according to
its length, highlighting undesired long geographic distances between
ordering neighbors. The color is determined by the ordering index
and mapped to the Viridis color scale, where darker colors indicate
segments at the beginning of the order, and lighter colors segments
at the end of the order. This allows the user to easily depict large
distances in the ordering between spatially proximate polygons.

Interactions – While a certain ordering strategy might produce the
smallest global errors, it still contains local errors that might make
it unsuitable depending on the use case. Using a lasso, the user can
make a geographical selection to obtain local error scores dlocal and
tlocal for the selected subregion. These scores then support finding
an optimized ordering for this subregion (see Fig. 4 C & D )[G2].
Geographical barriers such as rivers or mountain ranges impose a
natural obstacle that an optimal ordering shall circumvent in certain
cases[G4]. To explore such barriers, the user can draw a polyline
across the map, for which the number of crossings ncross with the
ordering path is computed and depicted on the map (see Fig. 4 B ).

5.2. Ordering Sequence Plot

Visualizations of 1-D sequences are found in Kriskograms [XC09]
or arc diagrams [Wat02], where nodes are ordered along a single
axis and rcs indicate links between entities. We draw inspiration
from these concepts and visualize all objects along a horizontal axis,
ordered according to the currently selected ordering strategy. The
design space of the Ordering Sequence Plot (Fig. 6) has three parts:
the discontinuity, trustworthiness, and the neighborhood of an object.

Discontinuity & Trustworthiness – Given a specific ordering strat-
egy, we can obtain discontinuity and trustworthiness error scores for
every polygon according to Eq. 5 and Eq. 6 respectively. We employ
two bar charts where the values of the error scores are encoded for
every object in the sequence of the currently selected ordering [G2].
The bars are colored using shades of orange and blue, aligning with
the bivariate colorscale used for the choropleth map. This encoding
directs attention to objects with higher error scores, while perfectly
projected regions become imperceptible.

Neighborhood – Between the two barcharts, we allocate space for a
local inspection of a specific neighborhood[G1]. Similar to Krisko-
grams or arc diagrams, we model the results from our error measures
pairwise as links between different objects. Instead of arcs, we chose
rectangular connecting lines and only show the links of one single ob-
ject on hover to reduce visual clutter. The geographical neighborhood

Figure 7: PCP plot showing the global (dpoly & tpoly), as well as
local scores (dlocal , tlocal & ncross, obtained using the interactions
visible in Figure 4 ( B & C )) for different orderings for the NYC
dataset.

of a selected object (x) is visualized adjacent to the discontinuity er-
rors, where every neighborhood member is indicated by connecting
lines. The longer this line, the larger the distance of these geograph-
ical neighbors in the ordering. The error value corresponding to a
given link is encoded on the height of a gray rectangle, allowing the
user to identify the most critical relationships. Since true neighbors
do not produce an error, no rectangle will be visible and only the
connecting line is drawn. The ordering neighborhood is depicted
adjacent to the trustworthiness error bars and is visually enclosed to
indicate its bounds. Again, true neighbors do not produce an error and
are hence invisible. Ideally, both neighborhoods overlap and encom-
pass the same objects, indicating that only true neighbors are present.
Fig. 6 shows the neighborhood of object x, which is unbalanced as
all geographical neighbors lie to the right and thus have a higher
ordering index. The ordering neighborhood therefore features three
false neighbors to the left, which are indicated by gray rectangles.

5.3. Strategy Comparison Plot

To compare ordering strategies on a global level, we employ a parallel
coordinate plot, where every axis represents a measure, and every
line represents an ordering strategy. Clicking on a line will select the
respective ordering strategy and update the Map and the Ordering
Sequence Plot. Aside from the measures we defined in Eq. 7 and
Eq. 8, the local subregion error scores (dlocal , tlocal) and number
of crossings (ncross) are also available as axes [G3]. The different
strategies are colored according to their algorithm family (AHC, SFC,
Network & Projection-based) and can be toggled with a button click.

6. Evaluation

We quantitatively compare the measures established in Sec. 4, and
provide a case study to outline the workflow of the prototype intro-
duced in Sec. 5. We further performed an expert user study.

6.1. Correlation Analysis

To compare our measures against the existing literature, we conduct a
correlation analysis on synthetic and real-world datasets to establish
in which scenarios our measures provide different results.

Methodology – Correlations between the measures vary depending
on the applied ordering strategy. Orderings that provide good results

© 2025 The Author(s).
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Discontinuity (dpoly) Trustworthiness (tpoly)
Dataset k σ KSnd KSnn M2 SSdn SSnn M1

HEX 6 1.02 .9789 .8428 .9500 .9698 .9808 .8772

SQR
8 1.35 .7589 .8270 .5986 .9650 .9753 .8967
4 1.35 .9845 .9126 .9717 .9033 .9110 .9229

ITA 4 1.60 .8488 .8489 .7273 .9311 .9664 .9130
AUS 6 1.86 .8716 .9336 .7845 .9351 .9524 .8837
CHI 4 1.87 .7879 .7999 .7345 .8634 .9489 .8971

NYC 4 1.95 .7868 .7954 .7025 .9200 .9465 .8410
GER 6 2.23 .6355 .8159 .6839 .9294 .9413 .8222

WOR 2 2.70 .5580 .6539 .6562 .9339 .9348 .9351

Table 2: Correlation of our scores against existing literature obtained
from 1000 random orderings on synthetic (top) and real-world (bot-
tom) datasets. The number after the k indicates the standard deviation
σ of the number of contiguous neighbors.

produce fewer errors and thus naturally exhibit a higher correlation.
To alleviate this, we compute random orderings, which are expected
to perform poorly and produce high error scores. To ensure a stable
basis for comparing these correlations, we iterate this procedure and
compute 1000 orderings for every dataset, from which we take the
average. As comparative measures we select the measures introduced
in Sec. 4: M2 and M1 [VK01], as well as KSnd , KSnn, SSdn and
SSnn [GG06]. Since these measures expect a parameter k to indicate
the size of the neighborhood, we estimate this by taking the mean of
contiguous polygons and rounding it to the nearest even number.

Datasets – Franke et al. [FMKK21] provided two application scenar-
ios to showcase their prototype: World countries (WOR) and a tes-
sellated grid of squares spanning over southeastern Australia (AUS).
We include both of these datasets in our analysis and further selected
geographical regions with different characteristics. The districts of
Germany (GER) consist of 400 polygons, whereas larger cities mani-
fest their own district. These city districts are often fully encapsulated
by their surrounding neighbor. The country of Italy (ITA) resembles
a boot and further includes the two islands Sicily and Sardinia. This
dataset was chosen for its irregular, non-squared shape comprising
107 polygons representing the provinces. Chile’s (CHI) narrow and
elongated country shape also largely deviates from a square, where
we selected the communal level, consisting of 341 regions. New York
City (NYC) features a complex topography segmented by bays and
rivers. We selected the 262 Neighborhood Tabulation Areas that form
the geographical basis for the American Community Survey [Uni24].

Since polygons are often the result of aggregation tasks in geospa-
tial data mining [BZP22, SE21, WD23], we further include two syn-
thetic, tessellated datasets similar to Fig. 3 A : a 16x16 square grid
(SQR) and a 187-tile hexagon grid (HEX).

Results – Tab. 2 provides the correlations of our measures against
existing methods for the above-mentioned datasets. Regarding the
discontinuity, we can observe the strongest correlation for the HEX
dataset, which is expected since the neighborhood size remains con-
stant throughout the dataset except for the borders of the grid. While
this is also the case for the SQR dataset, the correlation here is amongst
the lowest when we consider k = 8. Since our weighting factor de-
pends on the shared border percentage, the four diagonal (bishop)
neighbors will not produce an error as they are merely tangent. We
obtain the expected correlation when we change to k=4 (rook neigh-

bors). Since the AUS dataset contains holes in the tessellated grid,
the estimated k reduces to 6, which decreases the correlation factor.
For every dataset except WOR, the correlation to the KS measures is
higher, although our dpoly measure originates from the M2 formula.
While the latter does not perform any weighting of the objects in
the neighborhood, the former measures incorporate a weighting by
dividing the nearest neighbor rank in the ordering by the geograph-
ical distance. The KSnn measure exhibits the highest correlation to
our dpoly measure, which we attribute to the fact that both are rank-
based and include a geographical weighting factor. The tessellated
regular grid datasets (HEX , SQR) are an exception to this case, as
rankings between objects within the neighborhood are ambiguous, as
they all share the same distance. Real-world datasets generally show
lower correlation values, attributed to variable neighborhood sizes,
particularly in datasets with many enclaves or islands (GER, WOR).
This indicates that our method for determining neighborhood size
significantly impacts discontinuity errors.

For trustworthiness errors, Tab. 2 reveals substantially higher cor-
relations overall, with the gap between grid and real-world datasets
remaining, though less pronounced. Similar to the discontinuity mea-
sures, the correlations against the SS scores tend to be higher than
the M1, which does not feature a weighting factor for the objects in
the neighborhood. This effect is more pronounced for larger neigh-
borhood sizes (AUS, GER, 6) and understandably not as apparent for
smaller neighborhoods (WOR, 2).

Consequently, using a varying neighborhood size for every poly-
gon does not have as considerable an impact on trustworthiness error
measures as it does on discontinuity. For the discontinuity, the geo-
graphical neighborhood is of importance, where a semantic meaning
of direct neighbors can be established with the number of contigu-
ous polygons. Inversely, the ordering neighborhood determines the
trustworthiness errors, where the number of direct neighbors is al-
ways 2, and larger neighborhood sizes merely contribute to smoothly
distributing the error across the neighboring objects.

6.2. Case Study

To provide insights about household income development throughout
New York City, a data scientist is tasked to develop a matrix-based
dense-pixel visualization that captures trends in local neighborhoods.
The growth over time shall be depicted along the columns, leaving one
row for every Neighborhood Tabulation Area. The ordering of these
rows shall reflect geographical proximity to capture spatio-temporal
trends within the dense-pixel visualization. Initially, the trustworthi-
ness property is determined as a more important property than the
discontinuity since the ordering neighbors in the resulting visualiza-
tion shall be interpretable with respect to geographical proximity.
The Strategy Comparison Plot (Fig. 7) reveals that the T SP ordering
accumulates the lowest global trustworthiness error (tpoly). The Or-
dering Sequence Plot (Fig. 9 A ) confirms this, but further exhibits
grave discontinuity errors. Fig. 9 1 shows the neighborhood for the
polygon with the highest error, and the connecting lines indicate that
5 geographic neighbors have very large ordering distances.

The four Hilbert curve orderings are the next best strategies con-
cerning trustworthiness errors, but the analyst wants to make a more
locally based decision, focusing on the subregion of Manhattan. For
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Figure 8: Map view of the T SP ordering on the NYC dataset.
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Figure 9: Ordering Sequence Plot of the T SP on NYC.

this, he draws a polyline along the Harlem River to inspect crossings
with the ordering line (see Fig. 4 B ) and selects the entire island
using the lasso (see Fig. 4 C ). From the Strategy Comparison Plot
(see Fig. 7) it can be observed that most Hilbert curve orderings
score among the worst in terms of local discontinuity (dlocal). The
AHCcentroid ordering, although worse globally (tpoly), is on par with
the Hilbert orderings in terms of trustworthiness errors (tlocal), and
outperforms them with regard to ncross. Therefore, the strategy is
selected for a more detailed inspection.

Fig. 11 1 shows the neighborhood for the polygon with the highest
error, where the connecting lines are much shorter compared to the
T SP ordering. This comes at the cost of multiple trustworthiness er-
rors, indicated by blue spikes ( A B C ). These jumps can be clearly
identified when looking at the ordering path on the map (see Fig. 10)
and mostly occur when the ordering is transitioning from one bor-
ough (district) to another. Hence, the analyst is satisfied with the
tradeoff between discontinuity and trustworthiness errors and selects
the AHCcentroid ordering for his visualization.

6.3. Expert User Study

To qualitatively evaluate the effectiveness of our prototype, we con-
ducted pair analytics sessions [AHKGF11] with potential endusers.

Participants – 8 participants (E1 – E8) aged between 20-35, par-
took in the study, most being PhD students in data science who had
previous experience in developing spatiotemporal data visualizations.

Procedure – The study began with a video of the prototype intro-
ducing all components and interactions. All tasks were performed
on a synthetic dataset first, serving as a test condition. Given the
HEX dataset and the AHCcomplete ordering, participants had to locate
the polygons with the highest discontinuity and trustworthiness er-
ror and identify all their missing and false neighbors respectively
as a first task[G1]. Next, they had to compare the best and worst-
performing global strategies for both measures and comment on any
visual patterns they encountered. Then, the participants had to assess
the quality of all orderings within a subregion spanning the left half

A

B

C1

AHCcentroid AHCcentroid

Figure 10: Map view of the AHCcentroid ordering on the NYC dataset.

A BC

1

AHCcentroid

Figure 11: Ordering Sequence Plot of the AHCcentroid on NYC.

of the hexagon grid and compare the results with the global discon-
tinuity and trustworthiness error scores [G2]. As a last task, the
participants had to find the ordering strategy with the least number of
crossings along a vertical line through the center of the layout[G4].
All tasks were repeated on a real-world dataset (NYC), where the sub-
region was defined as Manhattan and the crossing line corresponded
to the Harlem River (akin to Fig. 4). The study concluded with an
interview in which the participants shared their feedback regarding
usability, faced challenges, and suggestions for improvement.

Results – E1, E6, and E8 detected recursive patterns of SFC order-
ings, which were more apparent and predictable in the HEX dataset
compared to NYC. The lasso and crossing-line interactions were
deemed as useful, E8 stated they integrate geographic semantics
into the analysis process. E3, E5, E7 occasionally faced semantic
confusion, mixing up the terms for discontinuity and trustworthiness.
E5 labeled a geographic jump in the ordering as a discontinuity in the
ordering path. E1 – E8 found that the bivariate colorscale was benefi-
cial for identifying poorly mapped polygons and could distinguish
between the mapping errors, E3 and E8 suggested highlighting the
hovered polygon on the colorscale legend. E2 and E4 raised concerns
that with higher error scores and saturation levels, distinguishing
between errors becomes more difficult, and suggested using texture
shading as a mitigation. Many participants relied on the Ordering path
on the map to identify ordering patterns. E4 stated that the path based
on centroids is ambiguous as contiguous polygons will also generate a
line even though they share a border. E1, E3, and E7 reported that the
map component can suffer from overplotting; however, they further
stated that this can be effectively addressed by deactivating certain
layers. As additional features, E1, E4, E7 desired the possibility to
slightly modify the orderings to relocate critical mapping errors. E5
suggested an axis reordering feature for the Strategy Comparison Plot.
E8 proposed to determine subregions and crossing-line candidates
algorithmically instead of manually drawing them on the map.

7. Discussion and Design Considerations

In this section, we discuss adjustments made to the prototype in re-
sponse to the feedback from the study participants and reflect on

© 2025 The Author(s).



Rauscher et al. / Visually Assessing 1-D Orderings of Contiguous Spatial Polygons 9 of 12

Dataset AHCcomplete AHCward AHCcentroid AHCsingle Morton Hilbert TSP Cuthill-McKee MDS
HEX 3.14 0.39 3.44 0.65 3.26 0.44 2.28 1.70 2.16 0.75 2.75 0.16 5.40 0.41 2.32 1.93 11.57 5.71
SQR 2.46 0.49 2.32 0.45 2.85 0.42 1.62 1.71 1.57 0.65 2.02 0.12 4.79 0.44 1.79 2.69 22.01 7.56
ITA 0.95 0.37 1.26 0.44 1.06 0.38 4.31 0.77 1.05 0.58 1.54 0.32 1.56 0.27 0.93 1.29 12.78 4.28

AUS 1.20 0.36 1.45 0.33 1.06 0.34 2.22 0.85 0.70 0.44 1.32 0.15 3.17 0.48 1.40 1.74 1.01 1.28
CHI 1.84 0.53 1.55 0.40 1.58 0.48 7.60 1.52 4.29 1.76 7.66 1.61 8.98 0.27 3.22 1.54 22.92 4.06

NYC 3.01 0.84 2.91 0.82 2.01 0.62 7.64 2.11 2.14 1.00 4.01 0.30 6.89 0.26 3.01 2.27 20.15 6.70
GER 4.98 0.51 5.10 0.59 4.81 0.70 12.77 2.73 3.90 1.14 4.88 0.26 9.76 0.28 4.92 3.97 39.03 8.41

WOR 4.67 0.73 3.65 0.85 5.94 1.15 9.42 1.82 6.42 2.04 7.19 1.16 8.52 0.46 11.52 3.59 56.79 21.71

Table 3: Global results for our evaluation measures for different ordering strategies applied to various datasets. The first number corresponds to
the discontinuity error dpoly, and the second to the trustworthiness error tpoly. The best strategy for every dataset is highlighted in bold.

the effects of our novel evaluation measures for discontinuity and
trustworthiness errors. Furthermore, we contribute a numerical com-
parison of various ordering strategies on the datasets introduced
in Sec. 6.1, derive design considerations for their usage, and outline
limitations as well as future research opportunities.

7.1. Study Implications

The expert study results show that our prototype can effectively sup-
port analysts in identifying mapping errors and comparing ordering
strategies on a local and global scale. Based on the qualitative feed-
back from the study participants, we made minor adaptations to the
prototype (see Fig. 1 in the supplementary material). To mitigate over-
plotting issues on the map, we reduced the opacity and dash the line
of true neighbors in the ordering path. Although the path is still drawn
through the centroids, only links with larger geographic distances
are accentuated, where the difference to the minimum point distance
is negligible. Furthermore, the subregion as well as the crossings
are also displayed in the Ordering Sequence Plot. This supports the
visual investigation of the fracturedness of a subregion as well as
determining at which ordering locations the crossings occur.

7.2. Measures

Sec. 6.1 provides a comprehensive comparison between our novel
measures and the existing literature. We manifested that our mea-
sures are capable of capturing characteristics of complex polygon
datasets with highly varying neighborhood sizes, while established
methods tend to overgeneralize these circumstances. These effects
are more dominant when measuring discontinuity errors, where a
precise definition of the geographical neighborhood is imperative to
obtain reliable results. Since the trustworthiness errors are computed
by investigating neighbors in the ordering, using the number of con-
tiguous polygons to define the neighborhood size is less semantically
grounded. We decided to adhere to the concept of varying neigh-
borhood sizes to maintain consistency between the measures and
to ensure that the neighborhood sizes for a given polygon are equal
for both formulas. However, the results of our correlation analysis
indicate that a constant, even number will yield comparable results.

The differences between our measures and existing methods vanish
for polygon datasets arranged in a regular, tessellated grid structure.
Such aggregation techniques are commonly used in the analysis of
geospatial point data [BZP22,SE21,WD23]. We argue, however, that
for real-world datasets with complex polygonal arrangements, our
measures provide a significant contribution to capturing the neigh-
borhood preservation of the 1-D ordering more accurately.

Computational Complexity – Our measures are computationally
more expensive than existing approaches due to the use of dgeo_min_pt ,
which operates in O(n · log n) compared to O(n) for centroid dis-
tances [TB83], where n represents the number of points per polygon.
This can pose scalability challenges for large datasets with detailed
polygons, as polygon simplification is not a viable solution due to the
risk of compromising contiguity. A practical solution is precomput-
ing an asymmetric distance matrix (complexity O(N2 ·n·log n)) once
for efficient lookups. Since k is not a fixed parameter, the worst-case
of neighborhood sizes can be N−1. However, Tab. 2 indicates that
typical average values range between 2 and 6.

Choosing the right measure – A promising application area of 1-D
spatial orderings is dense-pixel visualizations that are able to visu-
ally expose trends over space and time. In previous works [BJC∗19,
WBM∗21], orderings were selected with respect to exhibiting low
trustworthiness errors. These strategies are preferable for visual-
izations that provide a global overview of the entire dataset, as a
large geographical gap in the ordering can result in visual patterns
that are not reflected in the underlying geography. In contrast, for
visualizations that focus on local details within a geographical sub-
region, orderings with a lower discontinuity score are preferable, as
they better preserve the local original neighborhood. This facilitates
the identification of dynamic phenomena, such as trendsetters and
spreading events, as visual patterns within the visualization.

7.3. Ordering Strategies

Tab. 3 provides the results of our global comparison scores defined
in Eq. 7 and 8 for various established ordering strategies on the
datasets introduced in Sec. 6.1. From these values, we can confirm the
statement from Guo and Gahegan [GG06, p. 252] that “very often, an
ordering or encoding method works well on one group of measures
but performs poorly against the other.”, since no ordering strategy
excels in both measures for a given dataset.

SFCs excel in squared layouts – For tessellated, grid-based layouts
(HEX , SQR, AUS), SFCs provide the most optimal results, where the
Morton curve is more beneficial for generating orderings with mini-
mal discontinuities and the Hilbert curve produces a more trustworthy
result. They also perform well on layouts that can be approximated
with a square (GER) but encounter problems with more elongated
shapes (CHI). The recursive nature of these algorithms inherently in-
troduces discontinuity rifts: lines where geographic neighbors exhibit
large ordering distances (see Fig. 1). Due to their recursive, predictive
structure, given regions will consistently occupy similar ordering po-
sitions (i.e. southwestern regions at the start and southeastern regions
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at the end of the ordering). Depending on the initial orientation of the
curve, these ordering positions and the location of rifts can be shifted.

AHC accomplish a tradeoff – AHC-based methods provide mostly
balanced results, with the exception of the single-linkage method. For
regular, tessellated grid layouts, single linkage provides better results
concerning discontinuity but performs significantly worse otherwise.
The remaining AHC-based methods achieve a reasonable tradeoff
between discontinuity and trustworthiness errors, and all exhibit
very similar results with only minor variations. Compared to SFCs,
these methods tend to align better with a complex, irregular layout.
However, they are similarly susceptible to discontinuity rifts with the
disadvantage that the location of these rifts is not as deterministic and
can vary when the input data changes slightly. Hence, if stability of
the ordering is desired, SFCs are a more viable option.

TSP provides most trustworthy orderings – Regarding real-world
datasets, the TSP ordering strategy consistently yields among the
lowest trustworthiness error scores and is able to align with complex
layouts as it outperforms the Hilbert curve on irregularly shaped
datasets (ITA, CHI, NYC, WOR). This comes at the cost of high dis-
continuity scores, as the preservation of the geographic neighborhood
is not considered. A noteworthy drawback is the geographic proximity
of the first and the last object in the ordering sequence (see Fig. 8)
since the TSP essentially computes a cycle where every object is
visited exactly once. The Hamiltonian Path is then generated by
removing the longest connection from the cycle. While undesired for
1-D orderings, this might be beneficial for circular layouts [SV10].

Cuthill-McKee minimizes variance of discontinuity – Orderings
based on the Cuthill-McKee algorithm exhibit low discontinuity val-
ues and, therefore, look promising to utilize when geographic neigh-
borhoods shall be depicted. Upon closer inspection, we can observe
that the variance between the discontinuity errors is lower compared
to other strategies, which is achieved by spreading out the geographic
neighbors along the ordering sequence (see Fig. 12). Hence, geo-
graphic neighborhoods are rarely perfectly represented, and numer-
ous geographic jumps are introduced resulting in the highest trust-
worthiness errors aside from the projection-based MDS ordering.

Figure 12: Ordering Sequence Plot of a Cuthill-McKee ordering,
where the geographic neighborhood is spread along the ordering.

8. Limitations and Future Work

Errors Inside Neighborhood – While our measures incorporate the
relative importance of its neighbors to determine an error score, a
score is only computed if we consider it either a f alse or missing
neighbor. Akin to Venna and Kaski [VK01], we do not assign errors
for true neighbors. This does not account for mapping errors inside
the neighborhood, i.e., when the closest geographical neighbor is
placed as the third closest in the ordering. This can be mitigated by
also computing an error value for true neighbors, and only considering
the error as zero if the neighbor is placed in the correct position.

Ordering Possibilities – For a dataset with N objects, the number of
available 1-D orderings can be calculated by N!. We only consider

solutions generated by established algorithms to generate such order-
ings, resulting in a solution set that is far from exhaustive. While these
algorithms are optimized to provide the best possible results, it is not
guaranteed that the global minimum for any measure is contained
in this set. This limitation is magnified when locally investigating
regions, as only the precomputed solutions are available to choose
from. Implementing further ordering strategies, such as simulated
annealing [KGV83] or data-driven SFC [ZJW21] could prove to be
fruitful in determining semantically coherent solutions.

Local Ordering Improvements – As demonstrated in Sec. 6.2, our
prototype can expose suboptimal sections within an ordering, but is
not capable of resolving such minor local issues. Providing means to
make changes to an existing ordering coupled with direct feedback
through our measures can be an effective workflow to iteratively
improve an ordering locally that was requested by study participants.

Further Validation of Measures – Our correlation analysis showed a
weaker alignment of our measures with existing point-based methods
for irregular real-world polygon datasets. To further validate our
approach, a more in-depth comparison across diverse layouts and
orderings could strengthen their validity and usefulness. Additionally,
performance evaluations on diverse datasets will help assess the
computational trade-offs.

Distance functions – Several algorithms, such as AHC, TSP, and di-
mensionality reduction methods, can be supplied with a dissimilarity
function to obtain a 1-D ordering. Since these algorithms expect a
metric dissimilarity function, our proposed distance function is un-
suitable as it is neither symmetric nor satisfies the triangle inequality.
Hence, we generated these orderings using the Haversine distance
between the centroids of the polygons, which is known to introduce
biases [MT20]. Since our prototype is capable of comparing different
ordering strategies regarding discontinuity and trustworthiness errors,
the influence of different dissimilarity functions can be examined in a
similar fashion. Future research may explore the effects of alternative
dissimilarity measures on the generation of 1-D orderings.

9. Conclusion

This work introduces evaluation measures tailored to capture the
neighborhood preservation and trustworthiness of 1-D orderings
of spatial polygon datasets by adapting spatial distance functions
to polygonal shapes and incorporating varying neighborhood sizes
based on contiguous neighbors. We further present a user-steerable
visual analytics application to support users in identifying various
mapping errors and determining suitable ordering strategies. We
demonstrate its capabilities with a use case and further provide a
qualitative expert study showing that users are able to assess the
effects of local subregions and semantically meaningful obstacles.
By means of our measures, we examine and discuss the results of
established 1-D ordering strategies for a number of synthetic and
real-world datasets and provide design considerations for their usage.
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