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Abstract

In this paper we take a step toward addressing a pressing general
problem in the development of data visualization systems — how
to measure their effectiveness. The step we take is to define a
model for specifying the generation of test data that can be em-
ployed for standardized and quantitative testing of a system’s per-
formance. These test data sets, in conjunction with appropriate
testing procedures, can provide a basis for certifying the effective-
ness of a visualization system and for conducting comparative
studies to steer system development.
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1 Introduction

Data visualization has captured very high interest among scientists

and many commercial and public domain visualization systems have

appeared in recent years including, for example,AVS [Ups89], IBM's

Data Explorer, Silicon Graphics'Explorer, PV-Wave from Precision

Visuals,IDL from Research Systems,Khoros from the University of

New Mexico, andapE from Ohio State [Dye90]. All generally avail-

able visualization systems rely on conventional visualization tech-

niques based primarily on two-dimensional displays, or two-

dimensional surfaces in a three-dimensional world.

Considerable efforts have also been aimed at developing and proto-

typing non-traditional visualization techniques that attempt to present

multivariate and multidimensional data in effective ways. Many differ-

ent approaches have been demonstrated, and their potential value in nu-

merous areas of application have been touted. Some examples include

work by Grinstein et al. [PG 88, GPW89, SBG91], Beddow [Bed90],

LeBlanc et al. [LWW90], Inselberg and Dimsdale [ID 90], Beshers and

Feiner [BF92, BF93], Keim et al. [KKS93, KK 94], and Mihalisin

[MTS 91]. Lacking in all this activity is any quantitative evidence of

just how effective the techniques are. Until we develop a basis for eval-

uation, we will not be able to get beyond this current demonstrational

stage. To progress, we need to know with certainty what is working and

what adjustments are leading to improvement.

The general purpose of a visualization system is to transform numer-

ical data of one kind or another into pictures in which structures of in-

terest in the data become perceptually apparent. By encoding and

formatting the data into just the right kind of pictorial array, the struc-

tures, so the hope goes, will make themselves perceptually apparent.

Conceivably, one might find a kind of coding and formatting that re-

veals many different kinds of structures in the data. But it is also con-

ceivable that some structures might require very narrowly tuned

codings and formats to become perceptible.
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One of the big weaknesses of our present state of understanding is

that we hardly know what we mean bystructure in the data. We know

something about, and even have a precise language for describing, some

familiar and simple statistical structures. We turn to this familiar do-

main of structures for the test data sets proposed in this paper. But the

field is in great need of a broader conception and language of structure.

We need a taxonomy to inventory the world of structures that visualiza-

tion systems might need to address. Creating an awareness of this lack

of understanding is, indeed, one of the ancillary goals of this paper.

Visualization systems are actually just another instance of technol-

ogy in science for detecting, analyzing and interpreting signals —albeit

signals (what we are calling structures) of a rather broad and often ill-

defined type. The need to provide a basis for quantitative evaluation of

systems for signal detection and recognition is well recognized in many

areas of science and technology. Evaluation of medical diagnostic sys-

tems provides a good case in point. Medical imaging systems are sub-

ject to various objective certification tests with standardized “phantom”

images to verify that they can reveal the details of images that have to

be resolvable for certain types of diagnoses. Even beyond such general

certifications are standardized evaluations to determine how well the

whole system, including the radiologist who does the reading of the im-

ages, performs in detecting and diagnosing particular diseases. In those

situations, sets of test patterns (images of real cases) are assembled, and

standardized tests are conducted to measure exactly how well the sys-

tem performs (see [SP82]). The need for, and approach to, evaluating

visualization systems is almost exactly analogous. We want to know

how well a given visualization system does in helping a scientist to de-

tect and interpret a structure in his or her data. We need a standard set

of test data sets and a standardized testing procedure. In this paper, we

provide a start toward building this needed resource.

Our goal is to generate test data sets with characteristics similar to

those of real data sets. Unlike real data sets, however, the characteristics
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of artificially generated data sets may be varied arbitrarily. We may, for
example, vary the correlation coefficient of two dimensions, the mean
and variance of some of the dimensions, the location, size and shape of
clusters, etc. Varying the data characteristics in a controlled manner is
crucial for evaluating different visualization techniques. For example,
controlled test series allow us to find the point where data characteris-
tics are perceivable for the first time, or the point where they are no
longer perceivable. Also, the same test data may be used in comparing
different visualization techniques, helping to determine their strengths
and weaknesses.

2 Scientific Data

We are interested in generating test data that have characteristics
similar to those of typical scientific data. Scientific data is characterized
by itsdata type, the way in which it isorganized, and the way in which
the values relate to each other (thedistribution).

Data Types

Scientific data can consist of multiple values of various data types,
which are typically described using terminology from programming
languages, such asfloat, integer, andstring. For our purposes we are
more interested in the generic characteristics of the data types. These
are best identified using terminology from the statistical domain, which
defines the following standard types:

nominal — data whose values have no inherent ordering
ordinal — data whose values are ordered, but for which no mean-

ingful distance metric exists
metric — data which has a meaningful distance metric between

any two values.

Organization of the Data

Scientific data is often highly organized in that data values have
some inherent physical or logical relationship to other data values,
which might be called itsneighbors. This organization is usually called
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its data structure. Note the distinction between the data structure (the
structureof the data) and the patterns of values in the data that we are
trying to see with a given visualization technique (the structuresin the
data). We are primarily interested in scientific data that is organized
with only limited inherent structure —in particular, we consider here
only data that can be represented in arrays. This restriction omits engi-
neering-style data that is most naturally represented with more complex
data structures.

The least-structured form of data is a set of records which have no
particulara priori ordering among themselves. Conventional database
records satisfy this requirement. Although there may be many fields in
the records thatcould be used to order the records, there is no pre-de-
fined ordering that is inherent in the data. Database keys which are used
to uniquely identify and access database records, also do not provide a
natural ordering since in most cases they only induce an artificial order-
ing of the records. Data sets having no inherent structure or organization
can be considered to be 0-dimensional arrays.

Other data has underlying structure or organization, such that each
data record has an inherent uniqueposition relative to the other records.
Often the record’s position is related to a location in some geometric do-
main, or to a point in time. Such data can be generated by sampling of
physical phenomena or from simulations and is commonly represented
as arrays (perhaps multidimensional). A record can now be identified
and accessed by its relative position in the data set which corresponds
to the indices into its position in the (multidimensional) array. If this po-
sition is determined by the coordinate values of its placement in the geo-
metric and/or time domain, these coordinate values are likely to be
explicitly included in the data record. However, if the data elements are
uniformly distributed over the range of indices of the array, their values
can be computed from the indices of the record into the array, and need
not be explicitly stored. If a data variable maps to an index into the data
set’s storage array, we say that that variable represents anarray dimen-

sion of the data set.
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Regardless of how the data is initially defined, the visualization may

choose whether or not to place a record’s visual representation on the

display in a way that is consistent with the record’s position in the data

set. For example, consider a data set composed of carbon and nitrogen

measurements on a two-dimensional x-y grid. A straightforward visual-

ization might show the carbon value as a color or intensity at each po-

sition on the x-y grid; i.e., the x-y grid of the data is mapped to the x-y

coordinates of the display. However, it might also be useful to produce

a visualization in which the values of the carbon and nitrogen are

mapped to the x-y coordinates of the display and the y-value of the grid

is mapped to the intensity. (Note that this mapping need not produce a

single-valued function: there may be multiple y-values for one pair of

carbon/nitrogen values. If the visualization technique must have only a

single value, some choice has to be made.)

Examples for Typical Data Sets

Our model of the data and the data generation process allows us to

handle a wide range of types of data in a uniform way. In the following,

we provide examples for typical data sets that may be generated using

our model.

Statistical Data

We use the term statistical data to describe data sets whose data val-

ues are best defined by statistical parameters such as distribution func-

tions, correlation coefficients, or cluster descriptions. Statistical data

may have an arbitrary number of dimensions with none of them being

an array dimension. The data may be scattered arbitrarily in multidi-

mensional space and, in general, even duplicate data items are allowed.

Examples of this kind of data are financial databases, product databases,

personal databases, databases that record banking transaction, tele-

phone calls or other events, and scientific databases (e.g., observations

or simulations). Most of these data sets are typically stored in relational

database systems.
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For evaluating different visualization techniques, it is interesting to

study how well different visualization techniques represent statistical

patterns described by some statistical parameter. For controlled studies

of this type, the statistical parameters should first be varied one at a

time. After understanding their effects on the visualizations, more real-

istic test data sets may be built by using multiple statistical parameters

to describe the test data. Examples of data sets that are best described

by distribution functions include deviations of norm values which are

best approximated by normal distributions, radioactivity which may be

described by an exponential distribution, or periodic events which may

often be assumed to follow a uniform distribution. Single dimensions

with such distribution characteristics may be specified easily.

If something about the relationship between multiple dimensions is

known, the data may be better described by correlation coefficients and

functional dependencies. The relationship of solar radiation and tem-

perature, for example, may be described by a high correlation coeffi-

cient and some functional dependency. Since there are usually complex

relationships between multiple dimensions in real data, we also provide

the ability to specify correlations between multiple parameters and

complex functional dependencies. An example of a more complex rela-

tionship is the interdependencies between temperature, humidity, solar

radiation, precipitation and wind speed.

Local correlations are also important features of many data sets. In

a local correlation the correlation coefficient is much higher in a specif-

ic region than in the whole data set. One way of describing this kind of

relationship is to specify the different partitions of the data space sepa-

rately. Another way of describing complex relationships is to consider

them to be multidimensional clusters in an otherwise homogeneous,

possibly empty multidimensional data space. Examples of data sets that

can be best described by a base data set and a set of clusters are data sets

that contain a portion of data items having some clearly distinguishable

properties. We may also have time series of statistical data. In most cas-
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es, the time dimension is an array dimension. This means that the cardi-

nality of the data set is given by the considered time frame and no

duplicate data items may occur.

Image Data

Another important class of test data is image data. Image data is two-

dimensional in nature. In terms of our test data generation, normal two-

dimensional image data is generated by setting the total number of di-

mensions to 3 and the number of array dimensions to 2. Depending on

the application, however, image data may have a much higher dimen-

sionality since multiple values for each point of the two-dimensional ar-

ray may occur or different types of images for the same region may

exist. In earth observation science, for example, researchers record

many images at different wavelengths. To specify the test data, first the

ranges for the array dimensions need to be specified. The ranges of the

array dimensions determine the total number of data items. Then, the

specific characteristics of the data can be specified using distributions,

functional relationships, (local) correlations or cluster descriptions.

Note that only the characteristics of the non-array dimensions may be

specified since the array dimensions are dense and their values are given

by the range definitions. In many cases, however, the distributions,

functional relationships, (local) correlations or cluster descriptions in-

clude some dependency on the array dimensions. We may further have

time series of image data which requires a third array dimension.

Other Data

Image data may be easily extended to volume data by using an ad-

ditional array dimension for the third dimension of the volume. Volume

data and other types of data such as geographic, geometry, molecular,

fluid dynamics or flow data have specific characteristics which can only

be specified by our method to a very limited extend. For molecular data,

we may, for example, generate a set of atoms and some random 3D

structure. However, for such molecule data to be realistic, many physi-
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cal, chemical, and biological constraints apply which have to be mod-
eled explicitly. In general, generation of arbitrary realistic test data sets
would require lengthy descriptions or complex simulations reflecting
all constraints and interdependencies.

At this point, we want to stress that our goal is to test and compare
visualization techniques for statistical and image data. We do not intend
to produce test data sets that are completely realistic for some applica-
tion domain. Instead, we want the test data sets to have only a few char-
acteristics of real data sets. Important, however, is the possibility to vary
the characteristics of the test data gradually. Although real data sets are
very important in testing and comparing visualization techniques, we
believe that an in-depth evaluation of their strengths and weaknesses is
only possible with generated test data sets whose characteristics can be
precisely controlled.

3 Structures in the Data

In order to generate large amounts of data, we need to have an auto-
matic mechanism for generating the data with carefully controlled sta-
tistical variations. In some cases, we want to generate the values of a
particular data field without regard to other neighboring values, or val-
ues of other fields; more often we want to model actual data that has
some kind of correlation among the various data fields.

Probability Distributions, Correlations and Functional Dependencies

A test generation utility needs to support the ability to specify that
data generation should be driven by a variety of probability distribu-
tions, including at least the well-known distributions such as poisson,
gamma, gaussian, etc. [Dev 87]. These distributions require the user to
specify parameters such as the maximum, minimum, mean, and stan-
dard deviation.

More complicated (and more realistic) data generation requires that
the values of different fields in the data have some functional relation-
ship to values of other fields. In fact, the quintessential goal of scientific



- 10 -

data visualization is to assist the scientist in determining the nature of

some phenomenon by understanding the relationships present among

the data values that represent that phenomenon. By generating test data

containing known relationships, we hope to be able to evaluate visual-

ization techniques to see if these relationships produce a distinctive rec-

ognizable pattern in the visual presentation of the data.

The standard measure of correlation used in today’s statistics pack-

ages is thecorrelation coefficient which is defined as a measure of the

linear relationship between two variables. As useful as this measure is,

it does not serve to identify more complicated relationships such as non-

linear dependencies and dependencies based on 3 or more variables si-

multaneously. Since we are generating new data, rather than analyzing

existing data, we can easily generalize the notion of correlation coeffi-

cients to specify more complex interrelationships. The basic mecha-

nism for controlling the generation of interrelated data fields is to have

the user define functional dependencies among these data fields. The

functional dependencies allow the user to specify a formula to generate

a set ofinitial values for a data record, but the user can also specify that

a random perturbation should be applied to these values in order to ap-

proximate real data more realistically. The randomizing function pa-

rameters are under user control.

Data Clusters

Our model of a visualization evaluation environment is based on the

notion that the test data set should contain subsets that have data char-

acteristics which are distinctive from the rest of the data. The visualiza-

tion test then presents the data (perhaps in a variety of formats) to see

whether the distinctive subset produces a distinctive and recognizable

visual effect. We use the termdata cluster to refer to a subset of data

with distinctive data characteristics. The specification of a data cluster

requires the specification of a region of the data space as well as the data

generation parameters to be used for generating data in that region.
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In its most general form, aregion is any contiguous subset of the n-
dimensional data space defined by the set of fields in the data records of
the data set. In its simplest form, we can define arectangular region by
identifying a specific range of data values of a subset of the fields. For
example, a 2-dimensional rectangular region could be defined by spec-
ifying 23 ≤ x ≤ 45 and 102≤ y ≤ 150, for the fields x and y.

A precise definition of the notion ofdistinctive data characteristics

is difficult to achieve and perhaps not even desirable. What constitutes
significantly different data characteristics in one domain may not be
significant in another. For our purposes we simply allow a user to des-
ignate adifferent set of data generation parameters for each region.

There are two major categories of data clusters as defined by the
data generation parameters —value clusters and density clusters. A
value cluster occurs when the differentiation of data characteristics is
determined byvalues of fields of the data records defined in the region.
For example, the values of the temperature field inside the cluster could
be defined to have a mean of 34.5 with a standard deviation of 2.3,
whereas outside the region, the mean might be 46.4 with a standard de-
viation of 5.6. A density cluster, on the other hand, is defined when the
number of data records defined in the region has a significantly different
density than the number of data records defined outside the region. For
example, a cluster region could be defined by a range of temperatures
between 0 and 32 degrees, such that the resulting data set should have
approximately 3 data records per unit temperature range inside this re-
gion, but should average only 1 data record per unit temperature outside
the region.

Formalization

Most scientific data can be described as unordered sets of multidi-
mensional data. For the purpose of test data generation, we therefore as-
sume a test data set to be an unordered set of n-dimensional data vectors
(or data elements). Each data element can be seen as a point in n-dimen-
sional space being defined along dimensions x1, x2, ..., xn.
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A cluster inside such test data sets can be defined as a set of points

with some common characteristics that differ from the remaining

points. A cluster may also be defined as a region in n-dimensional space

with each of the data points inside the region having some characteris-

tics that are clearly distinguishable from the rest of the data set. In this

case, the cluster may be defined as a connected geometric object using

a subset of the data dimensions. Sometimes, there may be no sharp bor-

der between the cluster region and the remaining data set. In this case,

a threshold may be used to determine whether a data item belongs to the

cluster or not. The dimensions that are used in the definition of a region

are called region dimensions. If the region is defined by m dimensions,

we call it an m-dimensional cluster where 0 ≤ m ≤ n.

In addition to region dimensions, we also identify the dimensions

that have the property of being dense such as the x and y coordinates in

image data or the time dimension in time series data. We call such di-

mensions array dimensions. Without loss of generality, we assume that

the first k data dimensions are the array dimensions (x1,...,xk) and the

dimensions xk+1, ..., xn are the non-array dimensions. For each of the ar-

ray dimensions (i=1..k), a range [xi
l; xi

h] is defined with the number of

data values in the range being ni. Note that for each value (v1, ..., vk) in

the cross product of the ranges [x1
l; x1

h] x ... x [xk
l; xk

h], there is exactly

one data item in the data set that has v1, ..., vk as the values for its first

k dimensions. In other words, the first k dimensions are array dimen-

sions if the projection of the n-dimensional data set onto the k array di-

mensions is bijective and the projection yields a k-dimensional

rectangle covering each value inside that rectangle. In the case of using

array dimensions, the number (N) of data items in the data set is given

by the number of array dimensions and their ranges. It is the product of

the ni:

.N ni
n 1=

k

∏=
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The array dimensions only contain information on the position of a

data item inside the k-dimensional rectangle spanned by the ranges of

the k array dimensions. By imposing an ordering on the data items and

using the ni as well as their ordering as meta-information, the same in-

formation is available without storing the array dimensions as part of

the data vectors. For space efficiency reasons, many formats for storing

data with array dimensions (e.g., image data) use some kind of conven-

tion which allows the array dimensions to be omitted.

In testing existing data sets for array dimensions, a necessary pre-

condition that is easy to test is to get the ranges of each possible array

dimension, to multiply the corresponding ni, and to compare it with the

number of data items in the data set. The sufficient condition for several

dimensions to be array dimensions is much harder to test. It also re-

quires a check for duplicate combinations of values in the possible array

dimensions. In cases where no array dimensions can be identified, it

may be interesting to extend or reduce the data set to allow some dimen-

sions to be array dimensions. For this purpose, additional data items

may be introduced using interpolation techniques or unnecessary and

redundant data items may be omitted (or averaged). In some cases, it

may even be desirable to turn data items with varying intervals between

values into array dimensions. This can be done by artificially introduc-

ing an array dimension according to the ordering of the data items. The

same can also be done for ordinal types whose data values are ordered

but have no constant interval between values.

For visualization purposes, often a subset of the array dimensions is

mapped to the dimensions of the visualization. Image data (#ArrayDi-

mensions ≥ 2), for example, is usually mapped to the two dimensions of

the display; time series of image data (#ArrayDimensions ≥ 3) are usu-

ally mapped to the two dimensions of the display plus time; time series

of three-dimensional geometric data (#ArrayDimensions ≥ 4) are usu-

ally mapped to three display axes plus time, and so on. In these exam-

ples, the mappings are natural, but there are many other mappings
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possible, especially if k» 4 or n» k, which means that there are many
more array dimensions than the three dimensions of the display plus
time or that there are many non-array dimensions which are difficult to
visualize if only the array dimensions are mapped to the three dimen-
sions of the display plus time. For low array dimensionality (k< 4) or
no array dimensions (k =0), the task of visualizing the data is to find
some meaningful mapping from non- array dimensions to the dimen-
sions of the display plus time (which are basically all metric array-like
dimensions in the visualization domain).

4 Test Data Generation

In generating multidimensional test data sets, it is important to dis-
tinguish data sets according to the number of array dimensions, the
number of clusters, and the method used for describing them (data, val-
ue cluster or density cluster regions). All three aspects are important not
only for determining the data generation parameters but also for the data
generation process itself, especially for the constraints that apply in gen-
erating the data.

Constraints

Constraints in generating the data are especially important if one or
more array dimensions are involved. One constraint is that the number
of data items is given by the number and ranges of the array dimensions.
Also, the number of data items for each data value in one array dimen-
sion is given as the product of the ni of the remaining array dimensions.
Similar constraints apply to any combination of the array dimensions.
The constraints may also be expressed in terms of uniqueness and cov-
erage of the value combinations for all array dimensions. The easiest
way to fulfill these constraints is to generate the test data in an ordered
fashion covering the allowed ranges for all array dimensions uniquely.
An independent generation of the array dimensions would require
checking the constraints for each generated data item which is compu-
tationally intensive. Still, in some cases it may be necessary to check
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some constraints. For example, if multiple region clusters are defined

using array and non-array dimensions, then conflicts between the clus-

ter definition and the constraints introduced by the array dimensions

may occur.

Data generation parameters

Independently from the method used to describe the clusters, several

data generation parameters are needed. Among the basic data genera-

tion parameters, there are the overall number of dimensions (n), the

number of array dimensions (k) and their ranges, the number of clusters,

and, in case k = 0, the number of data items. In order to generate test da-

ta, we need at least some more information about the non-array dimen-

sions, namely their distribution function (uniform, normal, gaussian, ...)

in case it is an independent dimension, or the correlation coefficient or

functional dependency in case it is a dependent dimension. Array di-

mensions are considered independent dimensions which allows them to

be used in defining the dependent ones. The different distribution func-

tions are defined by specifying the necessary parameters: lower and up-

per limit for the uniform distribution, mean and standard deviation for

the gaussian distribution, rho and lambda for the gamma distribution,

and so on. Functional dependencies may be defined by an arbitrary

function plus a randomness factor which is used to perturb the results of

the functional dependency.

Cluster regions

A different way of describing the characteristics of the test data set

is to explicitly define the cluster regions and their properties. Depending

on the kind of clustering used, we distinguish between value cluster and

density cluster regions. Value cluster regions are defined by identifying

the region dimensions, defining the geometric shape of the region, the

number or percentage of data items in the region, and the distribution

function, correlation coefficient or functional dependency plus random-

ness factor for each region dimension. In our test data generation, re-
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gions are m-dimensional rectangles in n-dimensional space. This allows
the regions to be defined by specifying some range for each region di-
mension.Density cluster regions are defined by identifying the region
dimensions, defining the geometric shape of the region, and the density
of elements in the region. The actual number of data items that are in
each region and outside all regions is determined relative to each other.

The data items belonging to non-overlapping regions can be gener-
ated independently from each other. Regions that partially overlap with
other regions require special consideration. The specified data charac-
teristics for overlapping regions may be conflicting and may not be sat-
isfiable by any data set. In order to interpret overlapping region
specifications unambiguously, the order of defining the regions deter-
mines a priority ordering for the regions. The regions that are defined
first have the highest priority. In case of cluster density regions, the re-
gions which have the highest priority are filled with data items accord-
ing to the desired density. For subsequent cluster density regions, only
the non-overlapping part of the region is filled with data items accord-
ing to the desired density.

We define thebase region as the region in multidimensional space
that includes all other regions. Assume, that the range of each region for
dimension i is given by [li, hi]. Then, the base region includes at least
the multidimensional space defined by

[min{l 1}, max {h1}] x . . . x [min{l n}, max {hn}].

If some dimension is not used in any region definition, the range for
that dimension is arbitrary. Note that in general, the base region is
sparse since the number of data items may be low compared to its vol-
ume — it may even be empty.

Clusters that are defined using distribution functions such as normal
or gaussian distributions provide smooth transitions into the region.
Other cluster definitions, including density clusters may result in rather
sharp transitions into the region. Such transitions may need to be
smoothed to resemble real data. Defining smooth transitions into re-
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gions is not always straightforward, especially in the case of overlap-
ping regions. We do not address this issue at the present time.

5 Examples

Tools that partially implement the described test generation facili-
ties have been implemented at the University of Munich and the Uni-
versity of New Hampshire at Durham. The tool developed at the
University of New Hampshire is described in a related paper in this vol-
ume [WB 94]. It is primarily oriented towards generating what we iden-
tified as image data. The tool developed at Munich focuses on the
generation of statistical data as described in section 2. In the case of sta-
tistical data, the number of array dimensions is assumed to be zero. Dif-
ferent kinds of relationships may be defined between different
dimensions in each of the clusters and the base region. Figure 1 shows
visualizations produced by the VisDB system [KKS 93] using generat-
ed test data. The data of the four dimensions is generated such that only
the first of the four dimensions is independent; the other three dimen-
sions are functional dependant on dimension one. Dimension two is lin-
ear, dimension three quadratic, and dimension four is cubic dependant
on dimension one. The generated data set consists of 6000 data items
and the distribution of values for the independent dimension is uniform
in the range [0, 100]. The data used to produce figure 1a has a random-
ness factor of zero which is increased to 0.5 in figure 1b and to 1.0 in
figure 1c. Despite the linear functional dependency between dimension
one and two, the corresponding visualizations in figure 1a are identical.
This is due to the normalization and mapping of the different value
ranges to a fixed color range. The main difference between dimension
one and the dimensions with a higher order functional dependency is
that the region of light coloring is larger. This is due to the unequal dis-
tribution of values in the extended value ranges of dimensions two and
three. The increasing randomness factor results in some distortion of the
visualization which also induces minor distortions in the visualization
for dimension one. This results from a different ordering of data items
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which is caused by data items that have a high deviation from the func-
tional dependency. More visualizations produced by the VisDB system
using generated test data with different base region and cluster sizes can
be found in a related paper of this volume [KK94].

6 Conclusions and Future Work

In this paper we have described a model for test data generation that
can be used to evaluate visualization techniques. The data sets are con-
structed from specifications that identify clusters of data that have dif-
ferent characteristics. Users can define clusters based on the density of
data in the region or based on the values of the data. Statistical distribu-
tions, correlations, and functional dependencies can be used to deter-
mine the characteristics of the data in each region. Aspects of our model
have been incorporated into two different systems for generating test
data.

Our intent in defining our test data generation model is to begin to
develop tools that can be used to provide support for rigorous evaluation
of visualization techniques — especially those that present multivariate
and/or multidimensional data. Our work is just a small step in this di-
rection. The kinds of data sets that we can generate do not necessarily
represent any particular kind of ‘real data’. There are many other kinds
of distributions that may be needed in order to provide truly meaningful
tests for a particular domain. It would be nice provide arbitrarily shaped
regions, to develop rigorous definitions of alternative interpretations of

Figure 1: Visualizations from Test Data with Functional Dependencies

a. Randomness Factor = 0.0 b. Randomness Factor = 0.5 c. Randomness Factor = 1.0
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how to handle overlapping regions and to define smooth transitions

across region boundaries. Finally, the most difficult work is the devel-

opment a complete methodology for evaluating the effectiveness of vi-

sualization techniques.
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