
Abstract

An important goal of visualization technology is to support

the exploration and analysis of very large amounts of data. In

this paper, we propose a new visualization technique called

‘recursive pattern’ which has been developed for visualizing

large amounts of multidimensional data. The technique is

based on a generic recursive scheme which generalizes a

wide range of pixel-oriented arrangements for displaying

large data sets. By instantiating the technique with adequate

data- and application-dependent parameters, the user may

largely influence the structure of the resulting visualizations.

Since the technique uses one pixel for presenting each data

value, the amount of data which can be displayed is only lim-

ited by the resolution of current display technology and by the

limitations of human perceptibility. Beside describing the ba-

sic idea of the ‘recursive pattern’ technique, we provide sev-

eral examples of useful parameter settings for the various

recursion levels. We further show that our ‘recursive pattern’

technique is particularly advantageous for the large class of

data sets which have a natural order according to one dimen-

sion (e.g. time series data). We demonstrate the usefulness of

our technique by using a stock market application.

Keywords: Visualizing Large Data Sets, Visualizing Mul-

tidimensional and Multivariate Data, Visualizing Large Se-

quential Data Sets, Recursive Visualization Techniques,

Interfaces to Databases

1. Introduction

Having the right information at the right moment is cru-

cial for making the right decisions. Decisions based on ac-

curate and reliable information may lead to great success,

while decisions based on incomplete or incorrect informa-

tion may have serious consequences. In stock trading, for

example, having the right information at the right moment

improves the chances for a high profit, whereas having

some wrong information may mean losing everything.

One of the problems decision makers face today is the

rapidly increasing amount of information that needs to be

considered in decision making. As computers come to af-

fect more and more aspects of modern society, one by-prod-

uct is the growing amount of information that is captured in

a computer-readable form. The automation of activities in

all areas, including business, engineering, science, and gov-

ernment produces an ever-increasing stream of data. In

making decisions, we are often simply overwhelmed by the

quantity of information. As a consequence, every day mil-

lions of people make decisions without being able to ana-

lyze all the relevant information, which leads to decisions

that are often wrong or at least suboptimal.

To increase the amount of information that is considered

in making decisions, it is important to effectively use the

power of the available computer hardware and software.

However, even with the most advanced systems, finding the

right piece of information in a very large database remains a

difficult and time-consuming process. The process cannot

be fully automated since it involves human intelligence and

creativity which are (still) unmatchable by computers. Hu-

mans will therefore continue to play an important role in

searching and analyzing the data. In dealing with very large

amounts of data, however, humans need to be adequately

supported by the computer. One important way of support-

ing the human in analyzing and exploring large amounts of

data is to visualize the data. Visual representations of the

data are especially useful for supporting a quick analysis of

large amounts of multi-modal information, providing the

possibility of focusing on minor effects while ignoring

known regular features of the data.

Visualization of data which have some inherent two- or

three-dimensional semantics has been done even before

computers were used to create visualizations. In the well-

known books [Tuf 83, Tuf 90], Edward R. Tufte provides

many examples of visualization techniques that have been

used for many years. Since computers are used to create vi-

sualizations, many novel visualization techniques have been

developed by researchers working in the graphics field. Vi-

Recursive Pattern: A Technique

for Visualizing Very Large Amounts of Data

Daniel A. Keim, Hans-Peter Kriegel, Mihael Ankerst
Institute for Computer Science, University of Munich

Leopoldstr. 11B, D-80802 Munich
{keim, kriegel, ankerst}@informatik.uni-muenchen.de

Published in: Proc. Visualization ‘95, Atlanta, GA, 1995.

sualization of large amounts of arbitrary multidimensional

data, however, is a fairly new research area. Early approach-

es include scatterplot matrices [And 72, Cle 93], Chernoff

faces [Che 73], parallel coordinates [Ins 81], and others

[And 57, Bri 79]. Researchers in the graphics/visualization

area are currently extending these techniques to be useful for

large data sets, as well as developing new techniques and

testing them in different application domains. The tech-

niques can be classified into geometric projection tech-

niques (e.g., [Hub 85, ID 90]), iconic display techniques

(e.g., [Che 73, Bed 90, SGB 91, SBM 93]), hierarchical

techniques (e.g., [BF 90, LWW 90, MGTS 90, Shn 92]),

dynamic techniques (e.g., [MZ 92, MTS 91, AWS 92,

Eic 94]), and combinations hereof (e.g. [Asi 85, AS 94]).

The research also resulted in various prototype systems for

data exploration which implement some of the mentioned

techniques. Examples include statistical data analysis pack-

ages such as Data Desk [The 95], XGobi [SCB 92], and

Trellis [BC 95], and database oriented systems such as the

Information Visualization and Exploration Environment

(IVEE) [AW 95a, AW 95b].

In most of the approaches proposed so far, the number of

data items that can be visualized on the screen at the same

time is still quite limited (in the range of 100 to 5,000 data val-

ues). In our work, we focus on visualization techniques that

allow a visualization of much larger amounts of data. The ba-

sic idea of our techniques is to map each data value to a col-

ored pixel and present the data values belonging to each of

the dimensions in separate windows. Since in general our

techniques only use one pixel per data value, the techniques

allow us to visualize the largest amounts of data which are

possible on current displays (up to about 1,000,000 data val-

ues). If each data value is represented by one pixel, the main

question is how the pixels are arranged on the screen. Our

previous work focuses on supporting the data exploration

and data analysis process by providing query-dependent vi-

sualizations of the data, presenting the most relevant data

items in the center of the display [KK 94, Kei 94]. For a

wide range of applications, however, different arrange-

ments of the data seem to be more appropriate. Consider,

e.g., the large class of data sets which have an a-priori order-

ing such as time series data. If the data is visualized in a que-

ry-independent way, there is no reason to present certain

data items centered in the middle of the display. Instead, the

natural ordering of the data may be used to arrange the data

on the screen. In this paper, we propose a new visualization

technique called ‘recursive pattern’ which supports a highly

structured visualization of large data sets. The technique is

based on a generic recursive scheme which allows user-de-

fined parameter settings for the various recursion levels.

The ‘recursive pattern’ visualization technique generalizes

a wide range of pixel-oriented visualization techniques.

In the rest of this paper, we describe and evaluate our

‘recursive pattern’ visualization technique. Section 2 pro-

vides a detailed description of the technique including ex-

amples of useful parameter settings, which show the wide

range of pixel-oriented visualizations that can be generated

using our technique. We also describe how the system sup-

ports the user in determining adequate parameter settings

for the various recursion levels. In section 3, we demon-

strate the usefulness of the ‘recursive pattern’ visualization

technique by using an application from the financial domain

and compare our technique to standard techniques for visu-

alizing financial data. Section 4 summarizes our approach

and points out some of the open problems for future work.

2. The ‘Recursive Pattern’ Visualization

Technique

As already mentioned, the basic idea of our visualiza-

tion technique is to present as many data items as possible at

the same time with the number of data items being only lim-

ited by the number of pixels of the display. In dealing with

arbitrary multidimensional data without any 2D- or 3D-se-

mantics, one major problem is to find meaningful arrange-

ments of the pixels on the screen. Even if the data has a nat-

ural ordering according to one dimension (e.g., time series

data), there are many possibilities for arranging the data.

One straightforward possibility is to arrange the data items

from left to right in a line-by-line fashion (c.f. Figure 1a).

Another possibility is to arrange the pixels top-down in a

column-by-column fashion (c.f. Figure 1b). If these ar-

rangements are done pixelwise, in general, the resulting vi-

sualizations do not provide useful results. One possibility to

improve the visualizations is to organize the pixels in small

groups and arrange the groups to form some global pattern.

This strategy corresponds to a two step approach with a

first-order pattern formed by grouping the pixels and a sec-

ond-order pattern formed by the global arrangement. By

taking the result of the second order structure as the basic

building element for a third level structure, we may intro-

Figure 1: Simple Data Arrangements

a. line-by-line b. column-by-column

duce a third order pattern. This process may be iterated up to

an arbitrary level, forming a general recursive scheme. In

the simplest case, the patterns for all recursion levels are

identical. In many cases, however, the data has some inher-

ent structure which should be reflected by the pattern of the

visualization. Consider for example time series data, mea-

suring some parameters several times a day over a period of

several years. It would be natural to group all data items be-

longing to one day in the first level pattern, those belonging

to one week in the second level pattern, those belonging to

one month in the third level pattern, and so on. This, howev-

er, means that the technique must be defined in a generic

fashion, allowing user-provided parameters for defining the

structure of the patterns for the recursion levels. This re-

quirement is reflected by the generic definition of the ‘recur-

sive pattern’ technique.

Note that our technique does not necessarily require the

data to have some natural ordering. In searching for depen-

dencies between dimensions, one might sort the data ac-

cording to one dimension and use the ‘recursive pattern’ vi-

sualization technique for examining the dependencies to the

other dimensions. Consider, for example, a large database

of personnel data. If one wants to find dependencies be-

tween the parameter sales (of a person) and other dimen-

sions such as salary, age, and travel expenses, one might

sort the data according to the sales parameter and visually

examine the dependencies of the other dimensions.

2.1 Description

The ‘recursive pattern’ visualization technique is based

on a simple back and forth arrangement: First, a certain

number of elements is arranged from left to right, then be-

low backwards from right to left, then again forward from

left to right, and so on. The same basic arrangement is done

on all recursion levels with the only difference that the basic

elements which are arranged on level i are the patterns re-

sulting from level(i-1)-arrangements. Let wi be the number

of elements arranged in the left-right direction on recursion

level i and hi be the number of rows on recursion level i.

Then, the pattern on recursion level i consists of lev-

el(i-1)-patterns, and the maximum number of pixel that can

be presented on recursion level k is given by .

The recursive algorithm for generating ‘recursive pat-

tern’ visualizations is given in Figure 2. The algorithm is

initially called by ‘draw(0,0,max_level)’ with the

width and height of all recursion levels being stored in a

previously defined array. The recursion is terminated by re-

cursion level 0, in which case the algorithm actually draws

one pixel. For recursion levels i (i ! 1), the algorithm draws

wi level(i-1)-patterns hi times alternately to the right and to

the left.

The maximum number of recursion levels, which is nec-

essary to fill a screen of 1,024 x 1,024 pixels is 20, allowing

w
i

h
i

!

w
i

h
i

!

i 1=

k

"

void draw(x,y,level)
{if (level==0)

Setpixel (x,y,color);
else // level >= 1

{for (int h=1; h<=height[level]; h++)
{if (h%2) // odd height ?

{for (int w=1; w<=width[level]; w++)
{draw(x,y,level-1); // recursive call of the algorithm
x+=next_x[level-1];

}}
else // even height ?

{for (int w=1; w<=width[level]; w++)
{x-=next_x[level-1];
draw(x,y,level-1); // recursive call of the algorithm

}}
y+=next_y(level-1);
}

}

}

with: andnext_x[level] w
i

i 1=

level

"= next_y[level] h
i

i 1=

level

"=

Figure 2: ‘Recursive Pattern’ Algorithm

220 (#1,000,000) data values to be displayed. Note that in

this case the complete screen is filled with the visualization

of one data dimension. If all dimensions are to be displayed

on the screen, the number of data items which can be dis-

played is correspondingly lower. For 9 dimensions, e.g., the

number of data items that can be displayed is about 116,000

(=), which corresponds to a maximum of 17 recur-

sion levels. (The maximum number of recursion levels is

reached by alternating between (w, h) = (2, 1) and

(w, h) = (1, 2) on successive recursion levels.)

2.2 Examples of Possible Arrangements

As described above, one major difference between the

‘recursive pattern’ technique and other visualization tech-

niques is, that it is not based on a fixed algorithm for arrang-

ing the pixels, but on a generic algorithm allowing the user

(and/or application) to control the arrangement of pixels.

By specifying the height and width for each of the recursion

levels, users may adapt the generated visualizations to their

specific needs. This allows our ‘recursive pattern’ tech-

nique to be used for a wide range of tasks and applications.

The most simple data arrangement is the already men-

tioned line-by-line or column-by-column arrangement. An

easy way to obtain an arrangement similar to the line-by-

line arrangement is to use for the height and

width of recursion level one. This parameter setting results

in a line-by-line back-and-forth arrangement as denoted in

Figure 3a. To obtain the line-by-line orientation denoted in

Figure 1a, the user may use (w1,h1) = (,1)

and (w2,h2) = (1,), and to obtain the column-

by-column arrangement denoted by Figure 1b, the user

may use (w1,h1) = (1,) and (w2,h2) =

(,1). Although, in general, these arrange-

ments do not provide the best visualizations, the user may

still want to start with these kind of arrangements, especial-

ly if the user does not know the inherent structure of the

data and just wants to get a first impression of the data. The

resulting visualization may help the user to find some inher-

ent structure of the data, leading to more appropriate pa-

rameter settings using more recursion levels. Even if some

inherent structure of the data is known a-priori, it will often

be useful to start with a simple and straightforward arrange-

ment since it may reveal additional structure of the data.

In general, the visualizations get more expressive by us-

ing more than one recursion level. Even if the recursion lev-

els do not correspond to the inherent structure of the data,

the clustering of a certain amount of closely related data

items into a lower-level pattern helps to make data charac-

teristics visible. Even bigger is the advantage if there is a

1024

3

2

#data items

#data items

#data items

#data items

#data items

grouping of a constant number of data items as, e.g., in time

series data. Suppose, a data set consists of data values mea-

sured nine times a day for three consecutive weeks. To visu-

alize this data set using the ‘recursive pattern’ algorithm,

the user may enter the parameters (w1, h1) = (3, 3) and

(w2, h2) = (3, 7), with the level(1)-pattern describing a day

and the level(2)-pattern representing the three weeks

(c.f. Figure 3c). For larger data sets, the user may repeat this

procedure, either by enlarging the size of the second level

pattern (e.g. (w2, h2) = (28, 54), which corresponds to four

weeks per row) or by adding additional recursion levels de-

noting months, years, decades, and so on. The user may also

use a completely recursive arrangement which may be

achieved by using (wi, hi) = (c1, c2) for all recursion levels.

The arrangement resulting from a fully recursive arrange-

ment with (wi, hi) = (3, 3) for i=1..3 is shown in Figure 4.

The level(1)-patterns are shown by the small ‘S’-like pat-

terns, the ordering of level(2)-patterns is denoted by color

(light to dark colors), and the ordering of level(3)-patterns is

denoted by numbering the level(2)-patterns.

In experimenting with various parameter settings, we

found that the back-and-forth movement of higher level pat-

terns is sometimes a bit confusing. The reason is that in our

western culture we are used to read left-to-right in a line-by-

line fashion. In scanning the visualization, our focus there-

fore moves left-to-right in a line-by-line fashion starting in

the upper left corner. As reading is a frequent human activi-

ty, the perceptual system tries to ‘read’ the visualizations in

the same way. The generality of the ‘recursive pattern’ tech-

nique allows the user to specify parameter settings which

also support this natural fashion of ‘reading’ the visualiza-

tion. Instead of the arrangement presented in Figure 3c, the

user may use the parameter setting (w1, h1) = (3, 3),

(w2, h2) = (3, 1), (w3, h3) = (1, 7) to obtain the line-by-line

arrangement on the second recursion level as denoted in

Figure 3d. Note that the line-by-line left-to-right arrange-

ment should only be used for higher recursion levels where-

as on lower recursion levels the back-and-forth arrange-

Figure 3: Examples of Possible Arrangements

a. left-right

b. top-down c. back-and-forth loop d. line-by-line loop

ment is more appropriate to achieve a better clustering of

closely related data values. If different arrangements such

as top-down or bottom-up are more suitable for certain us-

ers (e.g., from a different culture) and/or applications, in

most cases the arrangements can easily be generated by us-

ing appropriate parameters.

2.3 System Support for Finding Adequate

Parameters

Since finding adequate parameters for the recursion lev-

els is not always straightforward, the system supports the

user in determining the parameters. The goal is to minimize

the user’s input in specifying the parameters and to maxi-

mize the screen utilization. In the first step, the system pre-

sents the number of data items as well as several standard pa-

rameter settings (e.g., line-by-line, column-by-column,

fully recursive with given (wi,hi) or fixed number of recur-

sion levels, etc.) to the user. If the user does not choose one of

the standard parameter settings, for each of the subsequent

recursion levels i, the system determines the number of lev-

el(i-1)-patterns (#pati-1) which are necessary to present all

data items. This number is important since, in general, the fi-

nal recursion level (wi,hi) should be chosen such that

and

.

Even if #pati-1 is provided by the system, the user still needs

to find adequate factors (wi,hi) whose multiplication is just

larger than #pati-1. The system supports this process by pro-

posing parameters which allow a good screen utilization.

After the user has specified the parameters for an arbitrary

recursion level, the system checks the condition

Figure 4: Fully Recursive Arrangement

1 2 3

4

7 8 9

6

w
i

h
i

! #pat
i 1–

w
i

1–" # h
i

!! !

w
i

h
i

! #pat
i 1–

w
i

h
i

1–" #!! !

w
i

h
i

!

i 1=

k

" #data items$

and as long as the condition is fulfilled, the user is asked for

the parameters for an additional recursion level.

3. Using the ‘Recursive Pattern’ Technique

for Exploring Financial Data

In this chapter, we provide example visualizations

which are generated using the ‘recursive pattern’ technique.

The considered databases are two stock exchange databas-

es. The first database contains the prices of the IBM stock,

Dow Jones index, and Gold as well as the exchange rate of

the US-Dollar, from Sep. ‘87 to Feb. ‘95 with nine data

items referring to one day. The database consists of 64,800

data values (16,200 data entries per stock). The second data-

base contains the stock prices of the FAZ index (Frankfurter

Aktien Index) from Jan. ‘74 to Apr. ‘95 on a daily basis. The

FAZ index contains 100 important stock prices which are

traded at the Frankfurter stock exchange. The database con-

sists of 532,900 data values1.

The traditional technique for visualizing financial data

are X-Y diagrams which effectively show the ups and

downs of stock prices. X-Y diagrams, however, only allow

the visualization of about 500 data items (c.f. Figure 5),

which for our first database corresponds to a period of less

than four months. The only possibility for displaying larger

data sets is to use sampling or aggregate (average, mini-

mum, maximum) techniques, which implies not to repre-

sent every data item.

Using the ‘recursive pattern’ technique, the user may

represent a much larger amount of data. Usually, it makes

sense to start with quite simple representations to get a first

general impression of the data. In case of the first database,

the user may, for example, start with the straightforward

line-by-line square arrangement using as

height and width. There are many other possibilities for vi-

sualizing the database including the parameter settings (w1,

h1) = (1,27), (w2, h2) = (634,1) for grouping three days

(27 data items) into the first level pattern and (w1, h1) =

(3, 3), (w2, h2) = (24, 1), (w3, h3) = (1, 80) for grouping one

day into the first level pattern and one month in the second

level pattern.

More useful, however, are arrangements with a higher

structure. One possibility for a highly structured arrange-

ment of the data is presented in Figure 6. The correspond-

ing parameters are (w1, h1) = (3, 3), (w2, h2) = (5, 1),

1. It turned out to be quite difficult to obtain stock data with more than
500 to 1,000 data entries (usually on a daily basis). This is due to the
fact that most data providers only store past data for presenting it using
the common x-y diagrams. For longer periods, they usually store only
the maximum, minimum, and average value per month since only this
data can be visualized by traditional techniques.

16200 128=

(w3, h3) = (1, 4), (w4, h4) = (12, 1) and (w5, h5) = (1, 8). In

this case, the level(1)-pattern represents one day, the lev-

el(2)-pattern one week, the level(3)-pattern one month, and

the level(4)-pattern one year. In the resulting visualization,

the eight horizontal bars correspond to the eight years and

the subdivision of the bars to the 12 months within each

year. By having this structure in the visualization, it is easy

to get detailed information from the dense pixel display.

The user may, for example, easily see that the gold price

was very low in the sixth year, that the IBM price quickly

fell after the first one and a half months, that the US-Dollar

exchange rate was highest in June 1989, etc. These are only

a few examples for useful information which can be direct-

ly seen in the visualization.

To recall, the data is sorted according to time which

means that the pixels to the left represent the older stock

prices and the pixels to the right the more recent ones. The

coloring maps high data values to light colors and low data

values to dark colors. The colormap used is based on a lin-

ear interpolation within the HSI color model using a con-

stant saturation, an increasing value (intensity), and a hue

(color) ranging from yellow over green, blue, and red to al-

most black. The HSI color model [Kei 94] is a variation of

the HSV model, which uses a circular cone instead of the

hexcone of the HSV model. The reason for using the HSI

over the HSV model is that linear interpolations within the

HSI model can be used to generate colormaps with a mono-

tonically decreasing brightness whereas linear interpola-

tions within the HSI model usually do not have this proper-

ty. At this point, it should be noted that the users may also

use their own colormaps.

Note that many other highly structured arrangements

are possible by using different parameter settings, e.g.,

(wi,hi) = (3,3) for all i to achieve a fully recursive arrange-

ment; (w1, h1) = (1, 18), (w2, h2) = (144, 1), (w3, h3) =

(1, 7) to get a grouping of two days in a vertical line and hor-

0

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

3700.00

3800.00

3900.00

4000.00

4100.00

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

370.00

375.00

380.00

385.00

390.00

DOW JONES GOLD.US$

Figure 5: X-Y Diagrams

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

1.35

1.40

1.45

1.50

1.55

1.60

0

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

105.00

110.00

115.00

120.00

IBM DOLLAR

izontal bars which correspond to the years; etc. Further-

more, note that our visualization technique can also be used

for data without a-priori sequential ordering.

Our second example database, the FAZ index from

Jan. ‘74 to Apr. ‘95, is presented in Figure 7. The chosen pa-

rameter setting is (w1, h1) = (1, 22) (w2, h2) = (243, 1), and

the coloring maps high values to light colors and low values

to dark colors. Since some of the stock prices do not exist

for the whole time period, the remaining space is filled with

the background color. It is obviously impossible to visualize

all the 532,900 data values using conventional techniques.

In contrast, with the ‘recursive pattern’ technique we are

able to visualize the whole database and reveal interesting

properties of the data. Interesting are, for example, the sim-

ilarities between different stock price developments. Using

the visualization, it is easy to find stocks with similar stock

price developments; for example, the stock price develop-

ments of the 1th, 4th, 8th, 10th, and 15th stock in the fourth

column (Südzucker, Thyssen, Veba, Volkswagen, Bayr. Hy-

pobank) are similar, although the companies are working in

completely different areas. Another example is the stock

price development of the 3rd- and 2nd-last stock in the third

column and the 4th- and 5th-last stock in the forth column

(Binding-Brauerei, Siemens, Lufthansa, Allianz), all four

having multiple peaks in ‘87, ’90 and ‘93. Also interesting

is that in more than 50% of all ‘price boxes’, there is a light

green stripe at nearly the same position, especially the bot-

tom boxes in the first and second columns and the top boxes

of the third column. This means that those stocks had their

peak price around the same time which was in spring ‘90.

From the visualization, it becomes obvious that many of

those stocks did not completely recover from the crash that

followed. Further interesting are the stocks which do not

follow the overall trend. An example is the 11th and 19th

stock in the first column (Daimler-Benz, DYWIDAG)

which did not have serious fluctuation over the last years

and continuously remained on the same relatively high price

level. Another example is the seventh and tenth stock in the

second column (Harpen, MAN ST), which have their peak

prices right at the beginning of the considered time interval

(about 20 years ago).

We also compared our visualizations with other tech-

niques for visualizing multidimensional data such as the

‘parallel coordinates’ technique [ID 90]. We found that the

parallel coordinates technique is quite useful to find depen-

dencies between data dimensions and deduce similar infor-

mation as in the case of the ‘recursive pattern’ visualiza-

tions. However, the number of dimensions that can be

visualized simultaneously is limited and there are also many

data characteristics which cannot be seen due to the overlay

of lines in the parallel coordinates technique. In general, the

parallel coordinate technique is only suitable for a limited

amount of data with limited dimensionality or for a focussed

search within a large data set, whereas the ‘recursive pat-

tern’ technique is able to provide an overview of very large

amounts of data and helps the users to direct their search.

4. Conclusions

In this paper, we presented the ‘recursive pattern’ visu-

alization technique as an approach for visualizing large

amounts of data which is more general than previous ap-

proaches. Using our technique, the user may generate visu-

alizations of very large amounts of multidimensional data,

which provide a good overview of the data. The number of

data items which can be visualized is only limited by the

number of pixels of the display. This means for our stock

price database that a user may, for example, get an overview

of more than 20 years of daily stock price data from one

hundred companies. A further advantage of our technique is

that it allows the user to control the arrangement of the data

values, which is important not only for sorted data sets but

also for data without inherent structure or natural ordering.

Our generic recursive algorithm allows the generation of

many different representations of the data, consisting of se-

mantically meaningful substructures. Our first results show

that our technique is very powerful for visualizing large

amounts of data and generalizes a wide range of pixel-ori-

ented arrangements. In our future work, we will investigate

space-filling curves such as the z-ordering or Hilbert curve

with respect to their suitability for visualizing large

amounts of multidimensional data. We will also apply our

technique in different applications to explore its strengths

and weaknesses in order to further improve the technique.

References
[And 57] Anderson E.: ‘A Semigraphical Method For The Analysis of

Complex Problems’, Proc. Nat. Acad. Sci. USA, Vol. 13, 1957,
pp. 923-927.

[And 72] Andrews D. F.: ‘Plots of High-Dimensional Data’, Biomet-
rics, Vol. 29, 1972, pp. 125-136.

[AS 94] Ahlberg C., Shneiderman B.: ‘Visual Information Seeking:
Tight Coupling of Dynamic Query Filters with Starfield Displays’,
Proc. ACM CHI Int. Conf. on Human Factors in Computing (CHI94),
Boston, MA, 1994, pp. 313-317.

[Asi 85] Asimov D.: ‘The Grand Tour: A Tool For Viewing Multidi-
mensional Data’, SIAM Journal of Science & Stat. Comp., Vol. 6,
1985, pp. 128-143.

[AW 95a] Ahlberg C., Wistrand E.: ‘IVEE: An Environment for Auto-
matic Creation of Dynamic Queries Applications’, Proc. ACM CHI
Conf. Demo Program (CHI95), 1995.

[AW 95b] Ahlberg C., Wistrand E.: ‘IVEE: An Information Visualiza-
tion and Exploration Environment’, Proc. Int. Symposium on Infor-
mation Visualization, Atlanta, GA, 1995.

[AWS 92] Ahlberg C., Williamson C., Shneiderman B.: ‘Dynamic Que-
ries for Information Exploration: An Implementation and Evalua-

tion’, Proc. ACM CHI Int. Conf. on Human Factors in Computing
(CHI92), Monterey, CA, 1992, pp. 619-626.

[BC 95] Becker R., Cleveland B.: ‘Trellis displays’, Proc. Workshop
on Design and Implementation of Data Analysis Systems, Heidelberg,
Germany, 1995.

[Bed 90] Beddow J.: ‘Shape Coding of Multidimensional Data on a
Mircocomputer Display’, Visualization ‘90, San Francisco, CA,
1990, pp. 238-246.

[BF 90] Beshers C., Feiner S.: ‘Visualizing n-Dimensional Virtual
Worlds with n-Vision’, Computer Graphics, Vol. 24, No. 2, 1990,
pp. 37-38.

[Bri 79] Brissom D.: ‘Hypergraphics: Visualizing Complex Relation-
ships in Art, Science and Technology’, Amer. Association for the Ad-
vance of Science, Westview Press, Boulder, 1979.

[Che 73] Chernoff H.: 'The Use of Faces to Represent Points in k-Di-
mensional Space Graphically’, Journal Amer. Statistical Association,
Vol. 68, pp 361-368.

[Cle 93] Cleveland W. S.: ‘Visualizing Data’, AT&T Bell Laborato-
ries, Murray Hill, NJ, Hobart Press, Summit NJ, 1993.

[Eic 94] Eick S.: ‘Data Visualization Sliders’, Proc. ACM UIST’94,
1994.

[Hub 85] Huber P. J.: ‘Projection Pursuit’, The Annals of Statistics,
Vol. 13, No. 2, 1985, pp. 435-474.

[ID 90] Inselberg A., Dimsdale B.: ‘Parallel Coordinates: A Tool for
Visualizing Multi-Dimensional Geometry’, Visualization ‘90, San
Francisco, CA, 1990, pp. 361-370.

[Ins 81] Inselberg A.: ‘N-Dimensional Graphics Part I: Lines & Hy-
perplanes’, IBM LA Science Center Report, # G320-2711, 1981.

[KK 94] Keim D. A., Kriegel H.-P.: ‘VisDB: Database Exploration
using Multidimensional Visualization’, Computer Graphics & Appli-
cations, Sept. 1994, pp. 40-49.

[Kei 94] Keim D. A.: ‘Visual Support for Query Specification and
Data Mining’, Ph.D. thesis, University of Munich, Juli 1994, Shaker
Publishing Company, Aachen, 1995, ISBN 3-8265-0594-8.

[LWW 90] LeBlanc J., Ward M. O., Wittels N.: ‘Exploring N-Dimen-
sional Databases’, Visualization ‘90, San Francisco, CA, 1990,
pp. 230-239.

[MGTS 90]Mihalisin T., Gawlinski E., Timlin J., Schwendler J.: ‘Visual-
izing Scalar Field on an N-dimensional Lattice’, Visualization ‘90,
San Francisco, CA, 1990, pp. 255-262.

[MTS 91] Mihalisin T., Timlin J., Schwegler J.: ‘Visualizing Multivari-
ate Functions, Data and Distributions’, IEEE Computer Graphics
and Applications, Vol. 11, No. 3, 1991, pp. 28-35.

[MZ 92] Marchak F., Zulager D.: ‘The Effectiveness of Dynamic
Graphics in Revealing Structure in Multivariate Data’, Behavior,
Research Methods, Instruments and Computers, Vol. 24, No. 2, 1992,
pp. 253-257.

[SBM 93] Sparr T. M., Bergeron R. D., Meeker L. D.: ‘A Visualization-
Based Model for a Scientific Database System’, in: Focus on Scientif-
ic Visualization, Hagen H., Müller H., Nielson G.M. (eds.), Springer,
1993, pp. 103-121.

[SCB 92] Swayne D.F., Cook D., Buja A.: ‘User’s Manual for XGobi, a
Dynamic Graphics Program for Data Analysis’, Bellcore Technical
Memorandum, 1992.

[SGB 91] Smith S., Grinstein G., Bergeron R. D.: ‘Interactive Data Ex-
ploration with a Supercomputer’, Visualization ‘91, San Diego, CA,
1991, pp. 248-254.

[Shn 92] Shneiderman B.: ‘Tree Visualization with Treemaps: A 2-D
Space-filling Approach’, ACM Trans. on Graphics, Vol. 11, No. 1,
1992, pp. 92-99.

[The 95] Theus M.: ‘Data Desk’, Proc. Workshop on Design and Im-
plemetation of Data Analysis Systems, Heidelberg, Germany, 1995.

[Tuf 83] Tufte E. R.: ‘The Visual Display of Quantitative Informa-
tion’, Graphics Press, Cheshire, CT, 1983.

[Tuf 90] Tufte E. R.: ‘Envisioning Information’, Graphics Press,
Cheshire, CT, 1990.

Figure 6: Five Level Recursive Arrangement (Sep. ‘87 - Feb. ‘95)

DOW JONES GOLD (US$)

DOLLAR

Figure 7: Stock Prices of the FAZ Index (Jan. ‘74 - Apr. ‘95)

IBM

