
Abstract

Most similarity search techniques map the data objects into some
high-dimensional feature space. The similarity search then corre-
sponds to a nearest-neighbor search in the feature space which is
computationally very intensive. In this paper, we present a new par-
allel method for fast nearest-neighbor search in high-dimensional
feature spaces. The core problem of designing a parallel nearest-
neighbor algorithm is to find an adequate distribution of the data
onto the disks. Unfortunately, the known declustering methods do
not perform well for high-dimensional nearest-neighbor search. In
contrast, our method has been optimized based on the special prop-
erties of high-dimensional spaces and therefore provides a near-op-
timal distribution of the data items among the disks. The basic idea
of our data declustering technique is to assign the buckets corre-
sponding to different quadrants of the data space to different disks.
We show that our technique - in contrast to other declustering meth-
ods - guarantees that all buckets corresponding to neighboring
quadrants are assigned to different disks. We evaluate our method
using large amounts of real data (up to 40 MBytes) and compare it
with the best known data declustering method, the Hilbert curve.
Our experiments show that our method provides an almost linear
speed-up and a constant scale-up. Additionally, it outperforms the
Hilbert approach by a factor of up to 5.

1 Introduction

The most important query type in multimedia databases are similar-
ity queries. A promising and widely used approach for fast similar-
ity searching in multimedia databases is to map the multimedia ob-
jects into points in somed-dimensional feature space. In image da-
tabases, for example, the images are mapped into complex feature
vectors consisting of color historgrams, shape descriptors, etc. and
queries are processed against a database of those feature vectors
[Fal 94]. Similarity of two images is defined as the proximity of

their feature vectors in feature space and the similarity query corre-
sponds to a nearest-neighbor query. Feature-based approaches are
taken in many other areas including CAD [MG 93], molecular bi-
ology (for the docking of molecules) [SBK 92], string matching
[AGMM 90], etc. Examples of feature vectors are color histograms
[SH 94], shape descriptors [Jag 91, MG 95], Fourier vectors
[WW 80], text descriptors [Kuk 92], etc. In many of the mentioned
applications, the databases are very large and consist of millions of
data objects with several tens to a few hundreds of dimensions. For
querying these databases, it is essential to use appropriate indexing
techniques which provide an efficient access to high-dimensional
data. Data structures which have been specifically developed for in-
dexing high-dimensional data include the TV-tree [LJF 94] and the
X-tree [BKK 96]. Experiments with the TV-tree and the X-tree
show significant performance improvements for point queries, but
unfortunately only limited performance improvements for nearest-
neighbor queries.

In this paper, we therefore propose a new parallel method for fast
nearest-neighbor search in high-dimensional feature spaces. In sec-
tion 2, we first define the nearest-neighbor search problem and
briefly review the relevant literature. The core problem of design-
ing a fast parallel nearest-neighbor algorithm is to find an adequate
declustering algorithm which distributes the data onto the disks
such that the data which has to be read in executing a query are dis-
tributed as equally as possible among the disks. Unfortunately, the
known declustering methods such as the Disc Modulo [DS 82], FX
[KP 88], and Hilbert [FB 93] have been designed to support differ-
ent query types (range queries and partial match queries). There-
fore, as we show in section 3, those techniques do not allow an op-
timal declustering for nearest-neighbor queries in high-dimensional
spaces. In contrast, our new declustering method has been opti-
mized based on the special properties of nearest-neighbor search in
high-dimensional spaces (cf. subsection 3.1) and therefore provides
a near-optimal distribution of the data items among the disks (cf.
section 3.2). The basic idea of our data declustering technique is to
assign the buckets which correspond to different quadrants of the
data space to different disks. We show that this problem is equiva-
lent to a graph coloring problem (cf. subsection 4.1). We then de-
velop a simple but efficient algorithm which solves the graph col-
oring problem and show that our algorithm - in contrast to other de-
clustering methods - guarantees that all buckets corresponding to
neighboring quadrants are assigned to different disks (cf. subsec-
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tion 4.2). A surprising result is that the number of disks necessary
for the near-optimal declustering is a linearly bound staircase func-
tion which is optimal up to rounding (cf. subsection 4.2). We then
provide extensions of our algorithm allowing for an arbitrary num-
ber of disks and highly clustered data distributions (cf. subsection
4.3). Finally, in section 5, we evaluate our method using large
amounts of uniformly distributed and real data (up to 40 MBytes)
with varying dimension, and compare it with the best known data
declustering method, the Hilbert curve. Our experiments show that
our method provides a near-linear speed-up and a constant scale-up,
and it outperforms the Hilbert approach by a factor of up to 5.

2 Nearest-Neighbor Search
in High-Dimensional Spaces

Nearest-neighbor search on high-dimensional feature vectors may
be defined as follows:

Definition 1: (nearest-neighbor search)
Given a data setDScontaining Nd-dimensional points v0 ... vN-1,

find the data pointNN from the data set which is closer to the given
query pointq than any other point in the data set. More formally:

.

Analogously, we can define a k-nearest-neighbor query as a
query for the k-nearest-neighbors. For simplification, we assume
without loss of generality that the extension of the data space is
[0..1]d. In the literature, various algorithms have been proposed to
search a spatial database for points, which are closer to a given
query point than any other point in the database. These algorithms
for nearest-neighbor search may be divided into two major groups:
partitioning algorithms and graph-based algorithms. Partitioning
algorithms partition the data space (or the actual data set) recur-
sively and store information about the partitions in the nodes.
Graph-based algorithms precalculate some nearest-neighbors of
points, store the distances in a graph, and use the precalculated in-
formation for a more efficient search. Examples for such algorithms
are the RNG* algorithm [Ary 95] and algorithms using Voronoi di-
agrams [PS 85].

A rather simple partitioning algorithm is the bucketing algorithm
of Welch [Wel 71]. The algorithm divides the data space into iden-
tical cells and stores the data items inside a cell in a list which is at-
tached to the cell. During nearest-neighbor search the cells are vis-
ited in order of their distance to the query point. The search termi-
nates if the nearest point which has been determined so far is nearer
than any cell not visited yet. Unfortunately, the algorithm is not ef-
ficient for high-dimensional data. A more practical approach is the
k-d-tree algorithm of Friedmann, Bentley and Finkel [FBF 77]. In
contrast to Welch’s algorithm, the order in which the k-d-algorithm
visits the partitions of the data space is determined by the structure
of the k-d-tree. Ramasubramanian and Paliwal [RP 92] propose an
improvement of the algorithm by optimizing the structure of the k-
d-tree.

Roussopoulos et.al. [RKV 95] propose a different approach for
nearest-neighbor search based on the R*-tree [BKSS 90]. The algo-
rithm traverses the R*-tree and stores for every visited partition a

list of subpartitions ordered by theirminmaxdist. Theminmaxdist of
a partition is the maximal possible distance from the query point to
the nearest data point inside the partition. If a point is found having
a distance smaller than the nearest point determined so far, all par-
tition lists may be pruned because all nodes with a largermin-
maxdist cannot contain the nearest-neighbor.

In [HS 95], Hjaltason and Samet propose an algorithm using
PMR-Quadtrees. In contrast to the algorithm of Roussopoulos
et.al., partitions are visited ordered by theirmindist. Themindistof
a partition is the minimal distance from the query point to any point
inside the partition P. The algorithmic principle of the method of
Hjaltason and Samet can be applied to any hierarchical index struc-
ture which uses recursive partitioning.

In [BKK 96], we applied the algorithm of Roussopoulos et.al.
[RKV 95] to the X-tree, an index structure for high-dimensional
data. The X-tree is an R*-tree-based index structure which avoids a
degeneration of the directory in high-dimensions using a special
split algorithm and variable sized directory nodes. In higher dimen-
sions, the X-tree outperforms the R-tree and other index structures
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Figure 1: Nearest-Neighbor Queries in High Dimensions
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Figure 2: Speed-Up of Parallel Nearest-Neighbor Search



for point queries by orders of magnitude. However, even the perfor-
mance of the X-tree degenerates for nearest-neighbor queries in
high-dimensions. Figure 1 shows the total search time of a 10-near-
est-neighbor query on an X-tree containing 100 MB of uniformly
distributed data. As further experiments showed, this observation
also holds for real data.

Friedmann et.al showed in [FBF 77] that the nearest-neighbor
search in high-dimensional data spaces is an inherently computa-
tionally intensive problem. In a recent paper, we refined the model
of Friedmann et al. for high-dimensional data spaces [BBKK 97]
and confirmed the inherent high complexity of high-dimensional
nearest-neighbor search. We believe that the use of parallelism is
crucial for improving the performance of nearest-neighbor queries
in high-dimensional space.

3 Parallel Nearest-Neighbor Search

The core problem of parallel nearest-neighbor search is the distri-
bution of data among the available disks which is usually called the
declustering problem. In the following, we denote the number of
disks byn and thei-th disk bydi.

The simplest method for distributing data isround robin where
each diskdi gets the data items . Figure 2 shows
the speed-up of a parallel nearest-neighbor search (referred to as
NN in all subsequent figures) and a parallel search for 10 nearest
neighbors (10-NN) using the round robin data distribution on
1 MByte of uniformly distributed 15-dimensional data and uni-
formly distributed query points. In our experiment, the speed-up in-
creases nearly linear with the number of disks. This simple experi-
ment shows that nearest-neighbor search can be improved consid-
erably by using parallelism.

More complex algorithms solving the declustering problem have
been proposed in the literature. Using an equi-distant grid, all these
algorithms divide the data space into equi-sized bucketsb which
may be characterized by the position of the bucket in the d-dimen-
sional grid (c0, c1, ..., cd-1). A bucket characterized by
b[c0, c1, ..., cd-1] describes a partition of the data space having the
shape of a hyperrectangle and containing a certain number of data
objects.1 A declustering algorithmDA can then be described as a
mapping from the bucket characterization to a disk number.

A rather simple declustering algorithm is the disk modulo
method of Du and Sobolewski [DS 82]. Thedisk modulo method
uses the mapping

.

Kim and Pramanik improved the disk modulo method and pre-
sented in KP 88] theFX distribution method which has been specif-
ically designed to support partial match queries. Kim and Pramanik
distribute the buckets using a bitwise XOR operation. Slightly sim-
plified, the FX method can be defined as the mapping

.

In [FB 93], Faloutsos and Bhagwat apply the Hilbert curve to the
declustering problem. The Hilbert curve maps ad-dimensional
space to a 1-dimensional space. For mapping a point in the data
space to a disk, the Hilbert value of the point is determined and the
data point is stored on the disk corresponding to the Hilbert value.
More formally, the i-th disk gets the bucket

Since the Hilbert curve preserves spatial neighborhood as far as
possible, the mapping provides a good declustering. Faloutsos and
Bhagwat compared their method to various methods such as the
disk modulo and the FX technique. The experimental results re-
ported in [FB 93] show that the Hilbert approach clearly outper-
forms the other methods for range queries in two-dimensional
spaces. However, to our knowledge, none of the methods has been
designed or tested for high-dimensional feature spaces and for near-
est-neighbor queries. Therefore, in our first experiments we used

the most promising technique, the Hilbert curve. The experiments
show that the Hilbert approach provides a much better declustering
for nearest-neighbor queries in high-dimensional spaces than the
round robin method. Figure 3 depicts the improvement of the Hil-
bert approach over the round robin declustering. Note that the im-
provement increases, both, with an increasing number of disks, and

1. Our notation is similar to the notation of Faloutsos and Bhagwat used in
[FB 93].
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with an increasing amount of data. In section 3.2, however, we
show that all the methods described in this section including the
Hilbert method do not provide an adequate data distribution for
nearest-neighbor queries in high-dimensional spaces.

3.1 Effects in High-Dimensional Spaces

To find a good declustering algorithm, we have to consider several
special effects occurring in high-dimensional spaces and their con-
sequences for nearest-neighbor queries. In this section, we there-
fore analyze nearest-neighbor query processing in high-dimen-
sional space and derive the requirements for an optimal decluster-
ing. For the following considerations, we assume uniformly
distributed data and uniformly distributed query points.

During nearest-neighbor search, any NN-algorithm has to exam-
ine all data pages intersecting the so-calledNN-sphere (cf.
Figure 4). The NN-sphere is ad-dimensional hypersphere having
the query point as the centre and a radius equal to the distance from
the query point to the nearest-neighbor. Unfortunately, according to
[BBKK 97], the radius of the NN-sphere increases rapidly with in-

creasing dimension of the data space1, and therefore, the number of
partitions any sequential algorithm has to access also increases rap-
idly.

Another important property (cf. section 3.2) of high-dimensional
data spaces is that most data items are located near the (d-1)-dimen-
sional surface of the data space. An example clarifies this effect:
Figure 5 (right partition) depicts the probability that a point in ad-
dimensional space is located near the surface where “near” means
that the distance of the point to the surface is less than 0.1:

.

As the figure shows, the probability grows rapidly with increasing
dimension and reaches more than 97% for a dimensionality of 16.

Declustering algorithms such as the disk modulo method or the
FX method assume a partitioning of the data space into buckets. In
the 2-dimensional case, the data space is partitioned many times in
each direction, for example to obtain 10,000 buckets, the space is
divided 100 times in x-direction and 100 times in y-direction. If we
consider a 16-dimensional space, a completebinary partitioning of
the space would already produce 65,536 partitions. Thus, in high-

1. The increase of the radius depends on the bucket size, the number of data
items and the dimension. However, the dimension is the most important
parameter.

dimensional spaces it is not possible to consider more than a binary
partitioning. In addition, the usage of a finer partitioning would pro-
duce many underfilled buckets. For the following considerations,
we therefore assume each dimension of the space to be split exactly
once. Thus, from our point of view, the buckets are the quadrants of
the data space. The bucket coordinates(c0, c1, ..., cd-1) can then be
seen as binary values and(c0, ..., cd-1) may be represented as a bit-
string. Note that (c0, c1, ..., cd-1) with ci ∈ {0, 1} corresponds to the
binary representation of the corresponding grid partition stored in
the bucket. We use this property to define an unambiguous bucket
number,bn, which will be the basis for our algorithm presented in
section 4.2.

Definition 2: (bucket number)
Given a bucketb characterized by (c0, c1, ..., cd-1) with ci ∈ {0, 1},

0 ≤ i < d. The bucket numberbn is defined as

.

3.2 Declustering for Nearest-Neighbor Search

The goal of each declustering algorithm is to distribute the buckets
which are involved in anarbitrary search to different disks. For the
parallel nearest-neighbor search, this means that the partitions in-
tersecting the NN-sphere should be distributed to different disks. If
all disks are equally involved in the search, the speed-up is maxi-
mal.

Figure 6 illustrates the effects of an increasing NN-sphere using
a two-dimensional example. Let us assume that the query point is
located in the upper left corner of the data space. If the radius of the
NN-sphere is less than 0.5, only the bucket containing the query
point has to be accessed (the upper left bucket in Figure 6). Thus,
only the disk which stores the bucket is involved in the search pro-
cess and any declustering technique provides the same result. If the
radius of the NN-sphere is 0.6, however, two other buckets are in-
volved in the search (the lower left and the upper right bucket in
Figure 6). Obviously, for obtaining a good speed-up, the three
buckets involved in the search should be distributed to different
disks. Note that in high-dimensional space, this observation holds
for most queries even if the query point is not located exactly in a
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corner of the data space but on a lower-dimensional surface, e.g. a

two-dimensional surface (cf. Figure 5).

Generalizing this result to thed-dimensional case, a good declus-
tering technique must assure that adjacent buckets are assigned to
different disks. From the example in Figure 6, we can derive that
not only directly adjacent buckets (such as the upper left and upper
right bucket) have to be considered, but also indirectly neighboring
buckets (such as the lower left and the upper right bucket). This can
be formalized as follows:

Definition 3: (direct and indirect neighbors)
Given two bucketsb andc.
b andc aredirect neighbors, b ~d c, if and only if

, where .

b and c areindirect neighbors, b ~i c, if and only if

where .

Intuitively, two bucketsb andc are direct neighbors, if their co-
ordinates differ in one dimension, and the remaining(d-1) coordi-
nates are identical. Note that this definition of neighborhood im-
plies that applying the binary exclusive-or-function (XOR) to direct
neighboring bucketsb andc results in a bitstring of the form 0*10* .
Analogously, applying the XOR function to indirectly neighboring
buckets results in a bitstring of the form 0*10*10* . Note further that
considering more than one level of indirection would produce a
huge amount of neighboring buckets. An algorithm consideringi
levels of indirection ind-dimensional space would have to assure
that

buckets are equally distributed over the disks. For two levels of
indirection in a 16-dimensional space, for example, the number of
buckets would be

.

We therefore restriced our definition of neighboring buckets to di-
rect and indirect neighbors. Another important observation is the
following. From the point of view of the surface of the data space,
direct neighbors share a common 1-dimensional surface of the data
space, whereas indirect neighbors share a 2-dimensional surface.

Using the above definitions, we can define anear-optimal de-
clustering as a declustering which guarantees that all direct and in-
direct neighboring buckets are assigned to different disks. We use
the termnear-optimal because an optimal declustering technique
would have to guarantee that arbitrary queries are handled by dif-
ferent disks. This however would require to consider arbitrary
neighbors− not only direct and indirect neighbors.

Definition 4: (near-optimal declustering)
A declustering algorithm DA is near-optimal, if and only if for any
two buckets b and c and for any dimension d of the data space:

 and .

As we show in our experimental evaluation, our definition of a
near-optimal declustering algorithm is close to the optimum, i.e. it
provides a high speed-up and a nearly constant scale-up. The fol-
lowing lemma shows that the known declustering techniques do not
provide a near-optimal declustering.

Lemma 1:
The disk modulo, the FX, and the Hilbert declustering techniques
are not near-optimal declustering algorithms.

The validity of lemma 1 can be shown by a simple three-dimen-
sional counter-example (cf. Figure 7). The numbers in the corner of
each cube denote the disk number the corresponding bucket is as-
signed to. The thick line in each cube shows indirect (c.f. 6) neigh-
bors which are assigned to the same disk. The right most portion of
Figure 7 demonstrates the existence of a near-optimal declustering.
Note that there exist more than one colliding pair of indirect neigh-
bors, which however are not shown in Figure 7.

4 Near-optimal Declustering
for Nearest-Neighbor Queries

In this section, we present a new declustering technique which is
near-optimal according to definition 4. The basic idea of our tech-
nique is to transform the declustering problem into an equivalent
graph-coloring problem so that buckets correspond to vertices,
neighborhood-relations to edges, and disks to colors. We then pro-
pose a simple but efficient algorithm for solving the graph-coloring
problem. To show that our declustering technique is near-optimal,
we prove that our graph-based algorithm assigns different colors to
connected vertices in the graph. The number of colors (disks) re-
quired by our algorithm is a linearly bounded staircase function
which is optimal up to rounding. Furthermore, we describe some
extensions of our method, allowing the method to be used in a wide
range of real applications, i.e. on data with various data distribu-
tions and dimensionalities, and an arbitrary number of disks.

Figure 6: Partitions Affected by the Nearest-Neighbor Search
when Increasing the NN-sphere
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4.1 Declustering as a Graph Coloring Problem
In order to transform the declustering problem into a graph coloring
problem, we first define the disk assignment graph. The disk as-
signment graph is an undirected graph in which buckets correspond
to vertices and neighborhood relationships between buckets to
edges.

Definition 5: (disk assignment graph):
The disk assignment graph Gd = (V, E) for a d-dimensional data
space is an undirected graph where V={0, ..., 2d-1} is the set of
bucket numbers and E = {(b, c) | b, c∈ V and b ~d c or b ~i c} is the
set of direct and indirect neighborhood relationships.

Since our definition of the edges includes both direct and indirect
neighbors, it is obvious that an algorithm which assigns different
colors to connected vertices, provides a near-optimal declustering.
Thus, we reduce the declustering problem to an equivalent graph
coloring problem.

Figure 8 shows the disk assignment graphG3 for a three-dimen-
sional data space. In the left partition of the figure, the data space
with the corresponding buckets is depicted. In the middle of the fig-
ure, the corresponding disk assignment graph is shown with thick
lines denoting direct neighbors and thin lines denoting indirect
neighbors. The disk assignment graphG3 may be colored using 4
colors. Transforming the graph back, we get a near-optimal declus-

tering of the space (cf. right part of figure 8). Obviously, a lower
bound ofd+1 colors is required to color a graphGd because each
vertex hasd directly neighboring vertices and at least all directly
neighboring vertices must have pairwise different colors. It is a
well-known fact from graph theory [Big 89] that the graph coloring
problem for arbitrary graphs (including the determination of the re-
quired number of colors) is a hard problem which has not been
solved in polynomial time yet and therefore, it is believed that the
problem is NP-complete. Nevertheless, we are able to exploit some
regularities in our graph to develop a simple but efficient coloring
algorithm.

4.2 The Vertex Coloring Algorithm

In this section, we introduce an algorithm to determine the vertex
color (i.e., the disk number) for a given vertex (i.e., bucket number).
After describing the algorithm, we prove that our algorithm assigns
different colors to connected vertices and we provide a formula for
the number of colors required by our algorithm.

The basic idea of our algorithm is to determine for a vertexb all
positions in its binary representation which equal to 1. Increment-
ing these positions by 1, each position can again be interpreted as a
binary number, and the positions are combined by the XOR func-
tion. Interpreting the resulting binary number as a decimal number,
we finally obtain the corresponding vertex color1.

Figure 7: Disk Modulo, FX and Hilbert are not Near-Optimal Declustering Techniques
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Let us, for example, assume a given vertexc = 5 = 1012 in a disk
assignment graphG3 (representing a 3-dimensional data space). As
the bitsc0 andc2 are set, the positions to be considered are 0 and 2.
Incrementing the positions by one, we obtain (2+1)=3 and (0+1)=1.
We then combine the binary representations 0112 (=3) and 0012
(=1) by the XOR function and obtain  0112 XOR 0012 = 0102. In-
terpreting this binary number as a decimal number, we get 0102=
210. The color of vertex 5 is therefore 2. Figure 9 shows the vertex
coloring algorithm in algorithmic pseudocode. It is obvious from
the algorithm that the color of an arbitrary vertex may be deter-
mined in O(d) time. The following formal definition provides a
very compact form of the algorithm.

Definition 6: (vertex coloring function):
Given a vertex numberc in binary representationcd-1, ...,c0. The

corresponding vertex color is

In the following, we show that our vertex coloring functioncol
guarantees that vertices which are connected in the disk assignment
graph are colored differently. Our proof is divided into three lem-
mata. First, we prove the distributivity of col and XOR. Then, we
prove that vertices which are connected by an edge representing di-
rect neighborhood are colored differently, and finally we prove the
same for edges representing indirect neighborhood.

Lemma 2 (distributivity of col and XOR):

: col(b) XOR col(c) = col(b XOR c)

Proof: cf. appendix.

Using Lemma 2, we now prove that vertices which are connected
by an edge representing direct neighborhood are colored differ-
ently. We make use of some algebraic laws which are valid for the
XOR function, especially the associativity, commutativity and the

1. We will motivate later why we have to increment the positions before
combining them using XOR. Intuitively, the reason is that otherwise the
information about dimension ‘0’ would not be considered by the vertex
coloring function.

following equivalences:
a XOR b = 0⇔ a = b
a XOR b = a ⇔ b = 0

Lemma 3: (coloring of direct neighbors)
Two verticesb andc which are connected by an edge representing
a direct neighborhood are colored differently.

Proof:
As the verticesb andc are differing in exactly one bit, say bitj, b
XOR c is of the form 0*10*  with only bit j set (cf. definition 3).
Therefore, using the definition of the vertex coloring function, we
may derive thatcol(b XOR c) = j + 1≠ 0. Thus,

col(c) =
= col(b XOR b XOR c) =

(sinceb XOR b = 0 and 0 XORc = c)
= col(b) XOR col(b XOR c) =

(according to lemma 2)
= col(b) XOR (j + 1)  =

(since only bitj is set inb XOR c)
≠ col(b)

(since otherwise, (j +1) would have to be 0)❏

Lemma 4: (coloring of indirect neighbors)
Two verticesb andc which are connected by an edge representing
an indirect neighborhood are colored differently.

Proof:
According to definition 3,b XOR c has the form 0*10*10*  with a
bit set at the positionsi andj, i ≠ j andcol(b XOR c) = (i+1) XOR
(j+1), which cannot be zero, sincei+1 ≠ j+1. Thus,

col(c) = col(b) XOR col(b XOR c)
= col(b) XOR (i + 1) XOR (j + 1)≠ col(b) ❏

Lemma 5: (col provides a near-optimal declustering)
The vertex coloring functioncol for the declustering of ad-
dimensional data space is near-optimal.

Proof:
According to definition 4, a declustering algorithm DA is near-
optimal, if and only if

and

.

We proved that our  algorithmcol assigns different colors to
connected vertices in the disk assignment graph. As vertices are
connected if the corresponding buckets are direct or indirect
neighbors, the functioncol guarantees that neighboring buckets are
assigned to different disks. ❏

So far, we have shown that our algorithm computing the vertex
color assigns pairwise different colors to all neighbors of any given
vertex and therefore provides a near-optimal declustering.

Now, we want to determine how many colors are necessary for a
d-dimensional data space. It seems to be obvious, that any vertex
coloring algorithm solving the disk assignment problem must use at
leastd+1 colors, since each vertex and itsd direct neighbors have
to be colored differently. This means that no algorithm exists which

Figure 9: vertex coloring algorithm

function col (c: integer): integer
var i: integer ;
begin

col := 0;
for i := 0 to dimension-1 do

if bit_set (i, c) then
col := col XOR (i+1);

endif
endfor

end

col c( )
d 1–
XOR
i 0=

i 1+ if ci 1=

0 otherwise



( )
 
 
 
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b c∀∀

b d c∼ DA b( ) DA c( )≠→

b i c∼ DA b( ) DA c( )≠→



is better than linear in the number of dimensions. We show in our
next lemma, that the number of colors provided by our algorithm is
a linearly bounded staircase function which is optimal up to round-
ing.

Lemma 6: (number of colors required by the color assignment
function)

The number of colors required by the color assignment function is
, where  denotes the rounding to the next-higher

power of two, in other words

.

Proof:

First, we prove, that our algorithm never generates a vertex corre-

sponding to a color greater or equal to:

According tocol, the color of a vertex is a XOR-combination of

some numbers from the set {1, ...,d} (cf. definition 6). The binary

representation ofd has exactly  bits. Therefore, the

XOR-combination cannot create a number with more bits, and the

highest-possible number with  bits is

.

Next, we prove that all color numbers in the interval

[0, ]

are generated by the color assignment function. According tocol,

the vertex of the origin (0, 0, ..., 0) has color number zero (col(0) =

0). For any other vertex colorc, bounded by the interval above, an

appropriate bucket numberb can easily be constructed, such that

col(b)=c by the following algorithm: If bitj is set inc, then set also

bit 2j-1 in b and reset all other bits inb. The result is a valid bucket

number for thed-dimensional hypercube, as can be seen from the

following argumentation: We know that

and therefore,b has less than  bits,

and thus .

As b has to be smaller than 2d in order to be a legal vertex number

for ad-dimensional hypercube,

.

This is guaranteed, since a power of two is always between a num-

ber and its double:

.

 cannot be rounded up to anything above 2d. If the bits

with the numbers  for somej i are set inb, then according to

definition 6, the color numbercol(b) is

,

which combines toc. Altogether, we have proven that our algo-

rithm uses exactly the colors with the numbers

. ❏

The number of colors required to solve the vertex coloring prob-
lem is a staircase-function (cf. figure 10) above the line (d + 1)
which has already been identified to be a lower bound for the num-
ber of colors. For lower dimensions, we have verified by enumerat-
ing all possible color assignments, that there is no method which
uses fewer colors than our staircase function. We conjecture that
this is also true for higher dimensions. In any case, we are able to
give the linear upper and lower bounds for the staircase function.
As already mentioned, the lower bound isd+1. The upper bound is
2d, as may be seen with the same argument already used in lemma
6: There is always a number corresponding to power of two be-
tween a numberd and its double 2d. Therefore,  cannot
be higher than 2d for .

4.3 Extensions of our Declustering Technique
In this section, we propose two extensions of our declustering tech-
nique. First, we describe an adaptation of our method for supporting
an arbitrary number of disks and second, we describe an extension
of our method for highly clustered data.

An important requirement  for any parallel approach is to support
an arbitrary number of processing units (disks). For our problem,
this means that we have to adapt our algorithm to work with an ar-
bitrary number of disks, since our vertex coloring functioncol re-
quires the optimal number of 2i disks. We now describe a simple
method for reducing the number of disks required; in a first step by
a factor of 2 (preserving that direct neighbors are assigned to differ-
ent disks), and in a second step to an arbitrary number.

As we can easily derive from the 3-dimensional example in
figure 8, there exists no near-optimal declustering algorithm using
less than 4 disks for the 3-dimensional case. As a consequence, re-
ducing the number of colors generated by our functioncol may in-
duce that indirectly neighboring buckets are assigned to the same
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disk. Our extension of the functioncol, however, guarantees that
most directly neighboring buckets are still assigned to different
disks. The extension reduces the number of required disks by a fac-
tor of 2. The basic idea of our extension is to map one half of the
colors to their binary-complementary color. For example, to declus-
ter an 8-dimensional data space, the functioncol requires
disks numbered from 0 to 15. In our first reduction step, we map the
colors 8..15 to the colors 0..7 such that 8 is mapped to 7, 9 is
mapped to 6, ..., and 15 is mapped to 0. Obviously, our extended al-
gorithm requires a total number of  disks. Note that, this
mapping guarantees that most directly neighboring buckets are still
assigned to different disks. Intuitively, we map the colors to their
complement because complementary colors have the maximal
Hamming distance, i.e. differ in a maximum number of bits.

In the general case, let us assume that we haven disks available,
where . If , we map each colorc, which is larger
than  to its binary complement. Thus, we have only  col-
ors left. Note that the most significant bit of these  colors is the
bit 0. If n is smaller than , we again map the colors greater than

 to their complement, while, however, ignoring the most sig-
nificant bit. This process is repeated until . The number
of colors required by the algorithm is now . In order to ob-
tain exactlyn colors, we again map the highest  colors
to their complement. Recording the mappings in a table, we are able
to determine the disk number from the color numbercol by a single
table look-up.

Another extension of our declustering techniques focuses on
highly clustered data. In real applications, high-dimensional data is
usually not distributed uniformly. If the data points are highly clus-
tered, i.e. most data points are located in one quadrant of the hyper-
cube, our technique as described so far would assign most data
points to a single disk. Although in most applications such an ex-
treme case will not occur, we have to consider data distributions
where many points are assigned to a few disks, i.e. the amount of
data stored on the disks differs largely.

A first solution to this problem is to use a statistical measure, the
α-quantile, to divide the buckets. Instead of splitting each dimen-
sion in the middle, we determine the0.5-quantile of each dimension
and use the values as split values for determining the bucket bound-
aries. One may argue that we do not know the data distribution a
priori and are therefore not able to determine the correct0.5-quan-
tile in advance. To solve the problem, we dynamically adapt the
0.5-quantile by recording the distribution according to the previous
0.5-quantile, i.e. counting the number of data points below and
above the split value. If the ratio of these two numbers extends a
certain threshold, we reorganize our data distribution using the new
0.5-quantile for each dimension.

If the data points are highly correlated, the usage of a one dimen-
sional quantile is not sufficient. This situation is detected if the one-
dimensionalα-quantile does not change but the disks are loaded
unbalanced, nonetheless. Our strategy for this case is to recursively
decluster the overloaded buckets of the data space. The optimal de-
clustering means to decluster all overloaded buckets. This, how-
ever, would require an amount ofO(2d) of storage space which can-
not be handled for higher dimensions. Our approach therefore re-

cursively declusters all buckets of a single disk in one step using our
col declustering function (cf. Figure 11), which means a transfer of
the affected data to another disk. Note that we may have to apply
the recursive declustering more than once if necessary. As first ex-
periments show, permuting the colors using a simple heuristic when
going to the next level of recursion provides good speed-ups (cf.
Figure 16).

Note that our parallel nearest-neighbor search is completely dy-
namical. This means, that we are able to support insertions, updates,
and deletions without any a priori knowledge of the data. However,
for highly clustered or correlated data a reorganization of the data
may be necessary.

5 Experimental Results

In order to show the efficiency and practical relevance of our de-
clustering technique, we performed an extensive experimental eval-
uation of our technique and compared it to the Hilbert declustering
which is the most promising declustering method designed for low-
dimensional data spaces. All experiments have been computed on a
workstation cluster of 16 HP710 workstations, each having 32
MBytes of main memory and several hundred MBytes of secondary
storage. All programs have been implemented in C++ as templates
to support different types of data objects. In order to analyse our
method, we integrated our declustering technique and the Hilbert
declustering into a parallel version of the X-tree [BKK 96].
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Figure 11: Recursive Declustering
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In our experiments, we used three types of data: Fourier points
corresponding to contours of industrial parts (d=8..15), text data
corresponding to substrings of a large set of texts (d=15), and uni-
formly distributed points (d=8..15). The total amount of data used
in our experiments was about 800 MBytes. The block size used is
4 KBytes. In order to measure the performance of our technique,
we determined the disk which accesses most pages during query
processing. We used the search time of this disk as the search time
of the whole parallel X-tree. Each experiment has been performed
10 times and the average of the 10 experiments is used as the re-
ported search time . In order to compute the speed-up, we compared
the search time of the parallel X-tree with a sequential X-tree using
the original implementation of [BKK 96]. In the following figures,
“new“ denotes our technique, whereas “HIL” denotes the Hilbert
approach.

Our first objective was to show the linear speed-up of our new
method. We therefore performed an experiment on 1 MByte of uni-
formly distributed data (d=15) with varying numbers of disks (c.f.
Figure 12). In performing a nearest-neighbor query, the speed-up
reaches a value of 8 for 16 disks for a nearest-neighbor query. For
10-nearest-neighbors queries, the speed-up increases up to a value
of 12 for 16 disks. In both experiments, the speed-up was nearly lin-
ear.

Since one cannot assume a uniform data distribution for real life
applications, we used real data for our further experiments. Again,
we investigated the speed-up of our technique and compared it to
the Hilbert declustering for a nearest-neighbor query and a 10-near-
est-neighbor query. Figure 13 shows the speed-up of our technique
and the Hilbert curve on 40 MBytes of 15-dimensional Fourier
points. Obviously, both techniques achieve a near-linear speed-up
for both query types. However, our technique clearly outperforms
the Hilbert curve which reaches only 19% of the optimal speed-up
using 16 disks. Figure 14 shows the improvement of our technique
over the Hilbert approach in the same experiment. The factor lin-
early increases with the number of disks and approaches a value of
5 for 16 disks. Note that this is due to the fact that the Hilbert curve
does not provide a near-optimal declustering.

Next, we made experiments to measure the scale-up of our tech-
nique, i.e. we increased the number of disks and proportionally in-

creased the total amount of data. In particular, we increased the
number of disks from 2 to 16 while increasing the amount of data
from 1 to 8 MBytes. Figure 16 depicts the result of this experiment.
The total search time is nearly constant for both, nearest-neighbor
queries and 10-nearest-neighbor queries. The experiment shows
that our technique scales well when increasing the problem size.

In addition to the Fourier data, we also used text descriptors for
our experiments. The text descriptors are feature vectors character-
izing substrings of large sets of various documents given in ASCII
format. Again, we compared our technique to the Hilbert approach.
Figure 17 shows a total search time of 771 ms for our technique in
contrast to 1683 ms for the Hilbert approach, for a nearest-neighbor
query (improvement of 2.18) on 1MByte of 15-dimensional text de-
scriptors. For the 10-nearest-neighbor query the improvement of
our technique increased to 2.99.

In section 4.3, we proposed several extensions of our technique.
The first extension, the adaption to an arbitrary number of disks,
has been used for all experiments presented in this chapter which
use a varying number of disks. The second extension of our tech-
nique has also been implemented and tested. Figure 16 depicts the
results of these experiments. The experiments have been performed
using 40 MBytes of 15-dimensional Fourier points. The Fourier
points represent a set of variants of CAD-parts and are therefore
highly clustered. The original technique yielded a total search time
of 537.6 ms for a nearest-neighbor query, whereas the extension re-

Figure 14: Improvement Factor over the Hilbert Curve
(Fourier Points)
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duced the total search time to 137.7 ms. The large improvement
factor of 3.9 is due to the fact that a large amount of data items is
located in the same quadrant of the data space and therefore as-
signed to a single disk. Note that only one recursive declustering
step was necessary in the experiments.

6 Conclusions

In this paper, we proposed a new method for parallel nearest-neigh-
bor search in high-dimensional data spaces. High-dimensional data
frequently occur in multimedia databases as the basis for a similar-
ity retrieval. The core problem of designing a parallel nearest-
neighbor algorithm is to determine an adequate distribution of the
data to the disks which is called the declustering problem. The basic
idea of our new declustering technique is to assign the buckets
which correspond to different quadrants of the data space to differ-
ent disks. We proved that our technique - in contrast to other declus-
tering methods - guarantees that all buckets corresponding to neigh-
boring quadrants are assigned to different disks. We evaluated our
method using large amounts of real data and compared it with the
Hilbert declustering. As the experiments show, our method pro-
vides a near-linear speed-up and a constant scale-up. Additionally,
it outperforms the Hilbert approach by a factor of up to 5.

Our future work will include the optimization of the reorganiza-
tion process which occurs if the data distribution changes during the

insertion. Another topic which we will address in the future are de-
clustering techniques which optimize the throughput instead of the
search time for a single query.
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Appendix

Lemma 2 (distributivity of col and XOR):

: col(b) XOR col(c) = col(b XOR c)

Proof:
col (b) XOR col (c) =

= col (b XOR c) ❏

b c∀∀

d 1–
XOR
i 0=

i 1+ if bi 1=

0 otherwise
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0 otherwise
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