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Abstract

In a large number of applications, data is collected and
referenced by their spatial location. Visualizing large
amountsof spatially referenced data onalimited-sizedisplay
often resultsin poor visualizations due to the high degree of
overplotting of neighboring data points. In this paper, wein-
troduce a new approach to visualizing large amounts of spa-
tiallyreferenced data. Thebasicideaistointelligently usethe
unoccupied pixels of the display instead of overplotting data
points. After formally describing the problem, we present two
solutions which are based on (1) placing overlapping data
points on the nearest unoccupied pixel and (2) shifting data
points along a screen-filling curve (e.g., Hilbert-curve). We
then develop a more sophisticated approach called Gridfit,
which is based on a hierarchical partitioning of the data
space. We evaluate all three approacheswith respect to their
efficiency and effectiveness, and show the superiority of the
Gridfit approach. For measuring the effectiveness, in addi-
tion to comparing the resulting visualizations we introduce
mathematical effectiveness criteria measuring properties of
the generated visualizations such as distance- and position-
preservation.

Keywords: Visualizing Large Data Sets, Visualizing Spa-
tially Referenced Data, Visualizing Geographical Data, In-
terfaces to Databases

1. Introduction

There are a large number of applications where spatial
data arise. Examplesinclude weather data such as tempera-
ture, rainfall, wind-speed, etc. measured at alarge number of
locations, use of connecting nodes in telephone business,
load of alarge number of internet nodes at different loca-
tions, air pollution of cities, etc. Visualizing this type of in-
formation requiresrepresenting the datavalues (e.g., air pol-
lution) and their spatial location. A natural way to visualize
the dataiis, for example, to represent the data values as col-
ored pixels on a screen where the position on the screen di-
rectly correlatesto the spatial location of the data. Sincethe
spatial locations of the dataare not uniformly distributedina
rectangular data space, however, the display will usually be
sparsein someregionswhilein other regionsof thedisplay a
high degree of overplotting occurs. Consider, for example,
the air pollution example from above. Cities (e.g., al cities

with more than 10.000 inhabitants) cluster in few places
(such asNorth America, Europe, Asia, etc.) whilelarge por-
tions of the earth are only sparsely populated. In addition, if
the datais presented on aworld map the large portion of the
screen which correspondsto oceansisnot used, whileonly a
few data values corresponding to European cities may be
displayed. Thisresultsin aloss of large amounts of poten-
tially important information.

A simple but intuitive idea to avoid this problem is to
present data values which would be overplotted at nearby un-
occupied positions. If the data values are presented in an ap-
propriate way, the visualization naturally reflects the spatial
location of the data and the loss of information can be avoid-
ed. In addition, as many pixels of the display as necessary are
used while still reflecting the spatial nature of the data. In
Figurel, we show a data set of lightning strikes in southern
Germany. On the left, the data set i's presented with overlap-
ping data points, whereas on the right, overlapping data
points are placed on unoccupied pixels closeto their original
position, thereby avoiding the information to be lost. The
goal of thethis paper isto introduce an efficient algorithm for
visualizing spatially referenced datain an effectiveway.

Visualization technology has already been used for the
exploration of large amounts of data in the past. Examples
for visual data exploration approaches include geometric
projection techniques such as prosection matrices [FB94]
and parallel coordinates [Ins85, 1D90], icon-based tech-
niques (e.g., [PG88, Bed90]), hierarchical techniques(e.g.,
[LWW 90, RCM91, Shn92]), graph-based techniques
(e.g., [EW93, BEW95]), pixel-oriented techniques
(e.0.,[Kei94, KK94, KKA95]), and combinations hereof
([Asi85, AS94]). In general, the visualization techniques
are used in conjunction with some interaction techniques
(e.g.,[BMMS91, AWS92, ADLP95]) and sometimes also
some distortion techniques [SB 94, LRP95]. The research
also resulted in data exploration and analysis systemswhich
implement some of the mentioned techniques. Examplesin-
clude statistical data analysis packages such as SPlus/Trel-
lis[BCW88], XGobi [SCB92], and Data Desk [WUT95],
visualization oriented systems such as ExVis [GPW89],
XmdvTool [War94, MW95], and IBM’s Parallel Visual
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Figurel: Lightening Strike Data

Explorer, as well as database oriented systems such as
TreeViz [Shn92], the Information Visualization and Explo-
ration Environment (IVEE) [AW95], and the VisDB system
[KK95].

The techniques presented in this paper can be seen as
pixel-oriented techniques. The principle idea of pixel-ori-
ented techniquesisto use each pixel of the display to repre-
sent one data value (e.g., spiral [KK94], recursive pattern
[KKA95], and circle segments techniques [AKK96]). In
contrast to previous pixel-oriented techniques, the tech-
niques presented in this paper deal with displaying spatially
referenced data, which means that the data have real world
2D coordinatesand some additional datavalues. Thegoal of
the new techniquesisto present the data on the display such
that the (absolute and relative) position of the data points
and their distance is preserved as much as possible. These
objectives can be described formally as global optimization
goal sof the mapping function between original and new po-
sition of the data points (cf. subsection 2.1). In subsection
2.2, we introduce a first algorithm which implements this
mapping function by placing all datapointstotheir original
position unless the position is aready occupied by some
other data point. In asecond step, all remaining data points
are placed on the nearest unoccupied pixel. A second algo-
rithm also presented in subsection 2.2 places the data points
which could not be placed in the first step by shifting the
data points along a screen-filling curve (e.g., Hilbert- or Z-
curve). A third and more sophisticated algorithm called
Gridfit is based on a hierarchical partitioning of the data
space into subregions (cf. section3). The partitioning into
subregionsisdetermined such that each regioninthehierar-
chical structure (in our case a variant of the quadtree
[Sam84]) allowsavisualization of the datawhich belong to
the region. An experimental evaluation using a number of
different data sets showsthe superior efficiency (cf. subsec-
tion 4.1) and effectiveness (with respect to the optimization
criterions, cf. subsection 4.2) of the Gridfit approach. A vi-
sual comparison (cf. subsection 4.3) confirmsthese results.
In section5, we finally discuss our three approaches and

present an alternative ideawhich is based on clustering the
datafor an effective display.

2. The Problem and Two Solutions

In this section, we formally describe the problem and
present two sol utions— the nearest-neighbor algorithm and
the curve-based algorithm.

2.1 Formal Description of the Problem

Theproblem of visualizing spatially referenced datacan
be described as a mapping between the multiset of original
positions and the set of display positions. Let A be the data
set of original positions

A = {ay, Y, ay_,} witha = (a'a))
whereitispossiblethat a = g for anarbitrary iand j. Let
the data space (or better screen space) DSI Z* be defined
as DS = {0, Y, X~ 1} “ {0, %, Y0y — 1} Where x....
and y,, ., arethemaximal extension of the screen.

The goal of the algorithm is to determine a solution set
S = {s;, ¥, sy_4} of new positionswith s; being the new
position of a; suchthat
itjp sty "i,jT {0%N-1}
and the resulting visualization should be as similar as possi-
ble to the visualization of the original data. The similarity
may be defined by the absol ute distance of the data pointsto
their original positionsor by therelativedistanceor relative
position between data points. This leads to the following
optimization goals:

(1) absolute position-preservation

o N-1 .
ai:Od(ai,si) ® min

(2) relativeposition-preservation

o N-1oN-1

=080, d(5:)-d(aa) ® min

(3) relativedistance-preservation

o N-1gN-1 d(8.§)

— 1" ® i
ai:() j:O’jlid(aj,aj) min

where disan arbitrary distance metricin 2D such as
d(aj, gj) = laj*—aj* + la;Y - Y]
or the Euclidean metric

d(a.a)= J(&*X -a*)2 + () —a¥)2.

The optimization goalsmakesurethat aslittleaspossible
of thespatial informationislost. Which of thethree optimiza-
tion goals is most important and should be fulfilled first de-
pends on the application. The formal description of the prob-
lem indicatesthat finding amapping which fulfillsthe above
propertiesisatypical optimization problem. Most typical op-
timization problemsare NP-compl ete and we assumethat our
mapping problem also belongs to the class of NP-complete
problems. A formal proof, however, hasnot yet been found.




2.2 Two Solutions

Both algorithms work in two steps. In step one, all data
points a; are placed on the display unless their position is
already occupied by some other data point. In the second
step, anew position whichisasclose aspossibleto theorig-
inal position isdetermined for the remaining data points.

More formally, the general idea of the algorithm can be
described as follows. The set Sisthe set of data pointswith
unique positions and the set of points T isatemporary set of
datapointsto be placed in the second step.

Step 1:
* Sy ={ay,Ty= A&

i R -
_ 1 SE{a,,} if(g,.ts) "slS
* =
i TS otherwise
i
i ) A
T'+1=% T; if (@,,1s) "sl§
' i TE{a, } otherwise
i
Step 2:

* Sy =Sn-10To = T
* T,,, = T'-{a} foranarbitrary al T’
Si +1l = SI E {anew}
where a, ., isdetermined differently by thetwo a gorithms.

Nearest-Neighbor Algorithm

In case of the nearest-neighbor (NN) algorithm, the new
position for the data points which have not been placed in
thefirst step isdetermined by simply placing the data points
on the nearest unoccupied positions (cf. Figure 2a). More
formally, the new position a_,, of adatapoint a is deter-
mined as

Apew = {ST DS\ § |das)Ed(a 9y " sl DS\S}.

An advantage isthat the new position can usually be de-
termined locally and therefore, in general, the algorithm
works quite efficiently. For avery dense display, however,
the efficiency and effectiveness suffer from the fact that the
new position may be rather far from the original position
(cf. section 4).

Curve-based Algorithm

In case of the curve-based agorithm, the new position
for the data points which have not been placed in the first
step isdetermined by computing the nearest unoccupied po-
sitions on a given screen-filling curve and shifting all data
points between the overlapping data pointa and the unoccu-
pied position in that direction (cf. Figure2b). Screen-filling
curvessuch astheHilbert-curve[ Pea90, Hil91] or Z-curve
[Mor66] provide abijective mapping between a position on
aone-dimensional lineand atwo-dimensional position. The
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Figure2: NN- and Curve-based Algorithms

advantageis that data points which are closein 1D are usu-
ally mapped to nearby pointsin 2D and viceversa. Theidea
of the curve-based algorithm isto shift the data pointsalong
the screen-filling curve (1D) which in general will al so cor-
respond to nearby positionsin 2D.

Moreformally,let C: {0, %, X ..’ Ymax — 1} ® DS bea
bijective curve function where C(i) = a givesthe 2D posi-
tion of thei-th position on the curve and

C™: DS® {0, %, Xy Via— 1}
theinverse function. Then, the one-dimensional distanceto
the nearest unoccupied position on a given screen-filling
curve can be computed as

—2
1

i
:, Jn 0 i £ ]ia] U A = signum(])
I j, otherwise

|

minij1 No| C(C @)+ )1 DS\S,E
I

where  j;

o = —ming j1 Ny C(C(a)~}) 1 DS\ ag
|
Then, all data points between aand C(C '(a)+]) have to
be shifted along the space-filling curve. This can be de-
scribed as
S+1=§-{b}E{bT DS|b=C(C(b)A 1)
“bi {bl DS|Ca) <C}(b) <C Y(a) +]}.
Thenew position a,,, of thedatapoint a isdetermined as
ey = {$1 DS |s=C(C (@)A 1)} .

The efficiency and effectiveness of the curve-based algo-
rithm are discussed in section 4.

3. TheGridfit Algorithm

As afirst evaluation showed, neither the nearest-neigh-
bor nor the curve-based algorithm provide visualizations
which are sufficiently position- and distance-preserving
(cf. subsection 4.2). In addition, for a high degree of non-
unique data points the performance degenerates (cf.
subsection4.1). We therefore developed a more sophisti-
cated algorithm called Gridfit which provides a better effi-
ciency and effectiveness (visually as well as measured)
than the other two algorithms.
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Figure3: Partitioning of a Node

3.1 Basic Idea

Thebasicideaof the Gridfit algorithm isto hierarchical-
ly partition the data space. In each step, the data set is parti-
tioned into four subsets contai ning the data poi ntswhich be-
long to four equally-sized subregions. If the number of data
pointsin some of the four subregions exceeds the size of the
subregion, we haveto determinethe new extends of thefour
subregions (without changing the four subsets of data
points) such that the data points of each of the subsetscan be
visualized in the corresponding subregion. For an efficient
implementation of the algorithm, aquadtree-like data struc-
ture is used to manage the required information and to sup-
port the recursive partitioning process. The partitioning
process works as follows. Starting with the root of the
quadtree, in each step the data space is partitioned into 4
subregions. The partitioning is made such that the area oc-
cupied by each of the subregions (in pixels) is larger than
the number of pixels belonging to the corresponding subre-
gion (cf. Figure3).

3.2 Formal Description
Thequadtree datastructure consistsof aroot node (BO) ,
which is the starting point of the tree, and each non-leaf
node of the quadtree has four son nodes. Let B' denote a
nodeon hierarchy level i, then
E(B) = (xmin’ xmax’ Ymin ymax)
denotes the extend of anode B,
A(B) = (B-Xpayx = B-Xqin) > (B Ymax = B-Ymin)
the area occupied by node B (in pixels), and
P(B) the number of data points which belong to the
equally-sized subregion corresponding to node B.
Theroot node B® of anormalized data space can be defined
as E(B%) = (0,1,0,1), A(B% = 1, and P(8°) = N. The
son nodes (B}, B}, By, BY) of anode B'~* and the extend of
the corresponding subregions can be defined recursively as

. 1 i1
E(®)) = (B, " X.B, "y
E(BY) = (x,B, B} "%y}

i-1

i ymax
i B4 i
B; Yo
j i
Y. - B
s 2 i-1
-1 XI BIX— T Ymin

Xmin max
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n' X ’yl’ Bymax)

E(By) = (B,

=(E) = 08 ).
where(xi , yil , yiz) describethe partitioning of thenode. The
partitioning of anode on the next hierarchy level is done by
first partitioning the node vertically (at X) and then, both
halves are partitioned horizontally (at y; and y,). The par-
titioning is therefore given by the three values x', y} , and
y, (cf. Figure4), which are determined as
i—1 i—-1
i BIxmin + lemax

X = T'*‘DX

where Cx = min{x1 9| P(B,) + P(B3) £A(B,) + A(Bg) U ,
P(B,) + P(B,) £ A(B,) + A(B,)}
Bi—1+Bi—1 i—1+Bi—l
ymin

i ymm ymax i ymax
Jy = ey Dy, and v = e ey,

where Cy, = min{yT 9| P(B,) £EA(B,) UP(B,) £A(B;)} ,
Cy, = min{yT 9] P(B,) £A(B,) UP(B,) £ A(B,)} .

3.3 Implementation Details

In some rare cases, the partitioning as described so far
runs into problems. Even if the condition P(B) £A(B) is
fulfilled for node B, there may not be a straight-line parti-
tioning of B into four subregions such that al data points
can be visualized in the corresponding subregions. Consid-
er, for example, the datapresentedin Figure 5a. Inthiscase,
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Figure6: Placing Data Points on Dividing Lines
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Figure7: Comparison of the Efficiency

the partitioning is only possible if the dividing line is split
and used by both, the upper and the lower partition (cf.
Figurebb). In our implementation of the Gridfit algorithm,
we solve this problem by making the dividing line part of
both partitions. In placing pixels, however, we have to be
careful if the dividing lineis used by both partitions. Let us
consider the situation in Figure6a. If the data points of the
upper partition are placed the dividing line is aready com-
pletely filled (cf. Figure6b). This however leads to the
problem that one data point in thelower partition can not be
placed any more (cf. Figure6c). Our implementation solves
this rarely occurring problem by storing the data points
which can not be placed in the first run and placing them to
the nearest unoccupied position in a second run (cf.
Figure6d).

4. Comparison and Evaluation

All agorithmsintroduced in sections 2 and 3 have been
implemented as part of the VisualPoints system. The sys-
tem isimplemented in C++ and running under HP-UX and
LINUX. Public-domain versions of the system areavailable
viahttp://mww.informatik.uni-halle.de/~keim.

We used the VisualPoints systemto evaluateand com-
pare the different algorithms. We evaluated not only the ef-
ficiency but also their mathematically defined absolute and
relative position- and distance-preservation (cf. subsection
2.1) and their visual effectiveness. For the experiments, we
used a number of different data setsincluding two different
versions of a world map containing simulated data, a real
data set of lightning strikes, and a synthetic data set which
has been designed to demonstrate effects and artifacts of the
algorithms.

4.1 Efficiency

Thetheoretical time and space complexities of thethree
algorithmsare all similar. In al three cases, the space com-
plexity isO(N) and the time complexity is between O(N) in
the best case and O(N?) in the worst case.

An experimental evaluation based on different realistic
datasets, however, clearly showsthe advantage of the Grid-
fit algorithm. Since the number of data points, which onthe

35
3 4
2,5 1
2
15 A
14
0,5 4
0 A

Gridfit

1]

Curyes

10 4
8 -
6 4
4 4
2 4

0 4

GiridFic

=
=

Curves

=
=

Curye

=
=]
I3
c.L

a. Small OF b. Medium OF arge OF

Figure8: Efficiency for Different Data Sets

average would be positioned at the same position plays an
important rolein all three algorithms, we used data setswith
adifferent overlap-factor (OF). In Figure7, we provide the
performance curves for a varying overlap-factor. It is clear
that for all algorithms the time increases significantly with
an increasing overlap-factor. In Figure8, we present the
time performance of the three algorithms for asmall, medi-
um, and large overlap-factor. For al three data sets, the
Gridfit algorithm is significantly faster than the other two
algorithms, and the nearest-neighbor algorithm is faster
than the curve-based algorithm. The speed-up of the Gridfit
algorithm increases with the overlap-factor and reaches a
factor of about 13 over the curve-based algorithm and afac-
tor of about 4 over the nearest-neighbor algorithm.

4.2 Effectiveness

More important than the efficiency, however, is the ef-
fectiveness of the generated visualizations. The effective-
ness can be determined by visually comparing the generated
visualizations but it can also (at least partially) be deter-
mined mathematically according to our optimizations
goals. Before presenting the visual comparison in subsec-
tion 4.3, in this subsection we briefly present the measured
effectiveness, i.e. the absolute and rel ative position and dis-
tance preservation (cf. the definitionsin subsection 2.1) for
an L* distance function.

In Figure9, we present the absol ute position measure of
the three algorithms depending on the overlap-factor.
Figure9 clearly shows that the Gridfit algorithm provides a
smaller average deviation from the original position than
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Figure9: Absolute Position



25000000
H 7
V]
- 20000000 e
H VAR I i
¥ 15000000 - Gridfit
= 4 NN
H /
JF 10000000 z - Curves
] -,
2 P
% 5000000 7
i L e
0 == T T
1 3 5 7 9

Overlap-Factor

FigurelO: Relative Position

the nearest-neighbor and curve-based algorithms, especial-
ly for higher overlap factors. This can also be confirmed by
our visual comparison which is presented in subsection 4.3.
FigurelO presents the development of the relative position
measure. The relative position measure determines how
good the relative position of the data pointsis preserved in
thevisualization (asmaller value meansabetter relative po-
sition preservation). Here, the advantage of the Gridfit algo-
rithm over the nearest-nei ghbor and curve-based algorithms
becomes even more impressive. The improvement is up to
390% over the nearest-neighbor algorithm and up to 870%
over the curve-based algorithm. Figurell shows the rela-
tive distance measure of the three algorithms for a high
overlap-factor. Inthiscase, all three algorithmsprovide ap-
proximately the same performance, and the value of the
Gridfit algorithmisbetween the values of the nearest-neigh-
bor and curve-based algorithms.

4.3 Visual Comparison

All formal effectiveness measures as defined by the ab-
soluteand rel ative position and distance are of limited value
if they do not correspond to improvementsin the generated
visualizations. In this section, we therefore provide a visual
comparison of the three techniques, which confirms the
measured effectiveness criteria presented in the previous
subsection.

Our first comparison uses a greyscale world data map
with simulated points distributed over the surface of dry
land. Figure 13 shows the result of visualizing the data us-
ing our nearest-neighbor, curve-based, and Gridfit algo-
rithms on two different resolutions. The visualizations
clearly show the advantages and disadvantages of the three
approaches. The nearest-neighbor algorithm provides nice
results, at least for the portion of datawhich can be placed at
their original positionsinthefirst step of thealgorithm. The
contours of the continentsareclearly visibleintheir original
size. All datapointswhich can not be placed inthefirst step,
however, do not show any structure (cf. right portion of
Figurel3a). In case of the curve-based algorithm, the conti-
nents are rather distorted and their contours are barely visi-
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ble. In the lower resolution picture (cf. right portion of a
Figurel3b), there even seemstobeno similarity totheorig-
inal image. Thisresult correspondsto the result of our theo-
retical effectiveness comparison (cf. subsection 4.2) which
showed that the curved-based algorithm is worse than the
other two approaches. The visualization generated by the
Gridfit algorithm (cf. right portion of a Figurel3c) also
confirmstheresults of thetheoretical effectivenesscompar-
ison, namely that the Gridfit algorithm provides significant-
ly better resultsthan the other two approaches. In contrast to
the nearest-neighbor algorithm, the Gridfit algorithm en-
larges and distorts the contours such that all data points can
be placed closetotheir original positions. Asaresult, thevi-
sualization retains the spatial locality of the data points as
much as possible, which results not only in a better (abso-
lute and relative) position-preservation but also in a better
visual representation of the data.

To analyze the properties of the three algorithms in
moredetail, for the second test we designed a synthetic data
set consisting of a number of objects with different proper-
ties (cf. Figurel4a). Besides afew simple objects such as
circles, straight and curved lines, and vertical and horizontal
bars, we also usetext aswell asrectangular and circular pat-
terns. The visualizations generated by our three algorithms
allow someinteresting insightsinto the properties of theal-
gorithms. Again, the curve-based algorithm provides the
poorest results for all types of objects (cf. Figurel4c). The
nearest-neighbor algorithm providesrather good results, es-
pecially for the text (cf. Figure 14b). The main problem of
the algorithm, however, are the rectangular and circular pat-
ternswhich show theoriginal datain the center but no struc-
turefor the overlapping data points positioned in the second
step of the algorithm. Since patterns are very important in
dataexploration, thisturnsout to beamajor drawback of the
nearest-neighbor algorithm. In contrast, the Gridfit algo-
rithm performs nicely for all types of objects (cf.
Figurel4d). Note that the rectangular and circular patterns
areenlarged which isa desired effect in preserving the spa-
tial locality.



void ClusterAlgorithm(D)
{ C = DetermineClusters(D); // C is array of clusters
for (inti=1; i<=|C]; i++)
{if (Size(C[i]) <=CIi]l)
{  ES={C[j] | Neighbor(C[i], C[j])
&& Size(C[j]) > [CIi]l}
Sort ES according to (Size(C[j]) - |C[j]])
for (int k=1; Size(C[i]) <= |C[i]|; k++)
{ ReduceSize(ES[K]);
ExpandSize(C[i])

}

Figurel2: Cluster-based Algorithm

The third test shows a series of four Gridfit visualiza-
tions of acolored world map at different resolutions— from
a very high resolution visualization without overlapping
data points in Figurel5a to a low resolution version in
Figurel5d. It isinteresting to consider the development of
the distortion of the continents. In thefirst generated visual-
ization (cf. Figure 15b), the continents are more compact
but their shape is still pretty much unchanged. In the next
version (cf. Figurel5c), the continents start to get distorted
and the partitioning lines of the quadtree data structure be-
come visible (e.g., in the blue region corresponding to the
African continent). In the final visualization (cf.
Figurel5d), basically all pixels of the display are used and
the continents are distorted to fill all the screen space.

5. Conclusions

Inthispaper, we presented three algorithmsfor visualiz-
ing large amounts of spatially referenced data. The algo-
rithmsavoid the problem of losing information by overplot-
ting data points. Instead, they map each data point to one
pixel of the display and try to preserve the spatial locality
(position and distances) as much as possible. We used a
number of test datasetsto evaluateand comparethethreeal -
gorithms. It turns out that the Gridfitalgorithm significantly
outperforms the other two algorithms with respect to their
efficiency and their (mathematical and visual) effective-
ness. In our futurework, wewill investigate other approach-
es for visualizing spatially referenced data. One idea is to
use acluster-based approach which first triesto identify the
clustersin the dataand then transformsthe clustersto retain
their spatial properties as much as possible. Weimplement-
ed afirst version of thisalgorithm (cf. Figurel2). The gen-
erated visualizations, however, turned out to be worse than
the visualizations generated by the nearest-neighbor algo-
rithm, and the efficiency isworse by orders of magnitude.
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Figurel3: Visualizations of Greyscale World Map Data Using Two Different Resolutions



c. Curve-Based Algorithm d. Gridfit Algorithm
Figureld: Visualizations of Synthetic Test Data Using the Three Algorithms

Figure 15: Visualization of World Continent Data at Different Resolutions



