
Abstract
In a large number of applications, data is collected and

referenced by their spatial location. Visualizing large
amounts of spatially referenced data on a limited-size display
often results in poor visualizations due to the high degree of
overplotting of neighboring data points. In this paper, we in-
troduce a new approach to visualizing large amounts of spa-
tially referenced data. The basic idea is to intelligently use the
unoccupied pixels of the display instead of overplotting data
points. After formally describing the problem, we present two
solutions which are based on (1) placing overlapping data
points on the nearest unoccupied pixel and (2) shifting data
points along a screen-filling curve (e.g., Hilbert-curve). We
then develop a more sophisticated approach called Gridfit,
which is based on a hierarchical partitioning of the data
space. We evaluate all three approaches with respect to their
efficiency and effectiveness, and show the superiority of the
Gridfit approach. For measuring the effectiveness, in addi-
tion to comparing the resulting visualizations we introduce
mathematical effectiveness criteria measuring properties of
the generated visualizations such as distance- and position-
preservation. 

Keywords: Visualizing Large Data Sets, Visualizing Spa-
tially Referenced Data, Visualizing Geographical Data, In-
terfaces to Databases

1. Introduction
There are a large number of applications where spatial

data arise. Examples include weather data such as tempera-
ture, rainfall, wind-speed, etc. measured at a large number of
locations, use of connecting nodes in telephone business,
load of a large number of internet nodes at different loca-
tions, air pollution of cities, etc. Visualizing this type of in-
formation requires representing the data values (e.g., air pol-
lution) and their spatial location. A natural way to visualize
the data is, for example, to represent the data values as col-
ored pixels on a screen where the position on the screen di-
rectly correlates to the spatial location of the data. Since the
spatial locations of the data are not uniformly distributed in a
rectangular data space, however, the display will usually be
sparse in some regions while in other regions of the display a
high degree of overplotting occurs. Consider, for example,
the air pollution example from above. Cities (e.g., all cities

with more than 10.000 inhabitants) cluster in few places
(such as North America, Europe, Asia, etc.) while large por-
tions of the earth are only sparsely populated. In addition, if
the data is presented on a world map the large portion of the
screen which corresponds to oceans is not used, while only a
few data values corresponding to European cities may be
displayed. This results in a loss of large amounts of poten-
tially important information. 

A simple but intuitive idea to avoid this problem is to
present data values which would be overplotted at nearby un-
occupied positions. If the data values are presented in an ap-
propriate way, the visualization naturally reflects the spatial
location of the data and the loss of information can be avoid-
ed. In addition, as many pixels of the display as necessary are
used while still reflecting the spatial nature of the data. In
Figure1, we show a data set of lightning strikes in southern
Germany. On the left, the data set is presented with overlap-
ping data points, whereas on the right, overlapping data
points are placed on unoccupied pixels close to their original
position, thereby avoiding the information to be lost. The
goal of the this paper is to introduce an efficient algorithm for
visualizing spatially referenced data in an effective way.

Visualization technology has already been used for the
exploration of large amounts of data in the past. Examples
for visual data exploration approaches include geometric
projection techniques such as prosection matrices [FB94]
and parallel coordinates [Ins85, ID90], icon-based tech-
niques (e.g., [PG88, Bed90]), hierarchical techniques (e.g.,
[LWW 90, RCM91, Shn92]), graph-based techniques
(e.g., [EW93, BEW95]), pixel-oriented techniques
(e.g.,[Kei94, KK94, KKA95]), and combinations hereof
([Asi85, AS94]). In general, the visualization techniques
are used in conjunction with some interaction techniques
(e.g.,[BMMS91, AWS92, ADLP95]) and sometimes also
some distortion techniques [SB 94, LRP95]. The research
also resulted in data exploration and analysis systems which
implement some of the mentioned techniques. Examples in-
clude statistical data analysis packages such as SPlus/Trel-
lis [BCW88], XGobi [SCB92], and Data Desk [WUT95],
visualization oriented systems such as ExVis [GPW89],
XmdvTool [War94, MW95], and IBM’s Parallel Visual
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Explorer, as well as database oriented systems such as
TreeViz [Shn92], the Information Visualization and Explo-
ration Environment (IVEE) [AW95], and the VisDB system
[KK95]. 

The techniques presented in this paper can be seen as
pixel-oriented techniques. The principle idea of pixel-ori-
ented techniques is to use each pixel of the display to repre-
sent one data value (e.g., spiral [KK94], recursive pattern
[KKA95], and circle segments techniques [AKK96]). In
contrast to previous pixel-oriented techniques, the tech-
niques presented in this paper deal with displaying spatially
referenced data, which means that the data have real world
2D coordinates and some additional data values. The goal of
the new techniques is to present the data on the display such
that the (absolute and relative) position of the data points
and their distance is preserved as much as possible. These
objectives can be described formally as global optimization
goals of the mapping function between original and new po-
sition of the data points (cf. subsection 2.1). In subsection
2.2, we introduce a first algorithm which implements this
mapping function by placing all data points to their original
position unless the position is already occupied by some
other data point. In a second step, all remaining data points
are placed on the nearest unoccupied pixel. A second algo-
rithm also presented in subsection 2.2 places the data points
which could not be placed in the first step by shifting the
data points along a screen-filling curve (e.g., Hilbert- or Z-
curve). A third and more sophisticated algorithm called
Gridfit is based on a hierarchical partitioning of the data
space into subregions (cf. section3). The partitioning into
subregions is determined such that each region in the hierar-
chical structure (in our case a variant of the quadtree
[Sam84]) allows a visualization of the data which belong to
the region. An experimental evaluation using a number of
different data sets shows the superior efficiency (cf. subsec-
tion 4.1) and effectiveness (with respect to the optimization
criterions, cf. subsection 4.2) of the Gridfit approach. A vi-
sual comparison (cf. subsection 4.3) confirms these results.
In section5, we finally discuss our three approaches and

present an alternative idea which is based on clustering the
data for an effective display. 

2. The Problem and Two Solutions
In this section, we formally describe the problem and

present two solutions — the nearest-neighbor algorithm and
the curve-based algorithm. 

2.1 Formal Description of the Problem
The problem of visualizing spatially referenced data can

be described as a mapping between the multiset of original
positions and the set of display positions. Let A be the data
set of original positions 

 with  
where it is possible that  for an arbitrary i and j. Let
the data space (or better screen space)  be defined
as  where 
and  are the maximal extension of the screen. 

The goal of the algorithm is to determine a solution set
 of new positions with  being the new

position of  such that

and the resulting visualization should be as similar as possi-
ble to the visualization of the original data. The similarity
may be defined by the absolute distance of the data points to
their original positions or by the relative distance or relative
position between data points. This leads to the following
optimization goals:

(1) absolute position-preservation

(2) relative position-preservation

(3) relative distance-preservation

 

where d is an arbitrary distance metric in 2D such as 

or the Euclidean metric

.

The optimization goals make sure that as little as possible
of the spatial information is lost. Which of the three optimiza-
tion goals is most important and should be fulfilled first de-
pends on the application. The formal description of the prob-
lem indicates that finding a mapping which fulfills the above
properties is a typical optimization problem. Most typical op-
timization problems are NP-complete and we assume that our
mapping problem also belongs to the class of NP-complete
problems. A formal proof, however, has not yet been found. 

Figure1: Lightening Strike Data
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2.2 Two Solutions
Both algorithms work in two steps. In step one, all data

points  are placed on the display unless their position is
already occupied by some other data point. In the second
step, a new position which is as close as possible to the orig-
inal position is determined for the remaining data points. 

More formally, the general idea of the algorithm can be
described as follows. The set S is the set of data points with
unique positions and the set of points T is a temporary set of
data points to be placed in the second step.

Step 1: 
• , 

•

Step 2: 

• , 

•

where  is determined differently by the two algorithms.

Nearest-Neighbor Algorithm
In case of the nearest-neighbor (NN) algorithm, the new

position for the data points which have not been placed in
the first step is determined by simply placing the data points
on the nearest unoccupied positions (cf. Figure 2a). More
formally, the new position  of a data point  is deter-
mined as

.

An advantage is that the new position can usually be de-
termined locally and therefore, in general, the algorithm
works quite efficiently. For a very dense display, however,
the efficiency and effectiveness suffer from the fact that the
new position may be rather far from the original position
(cf. section 4).

Curve-based Algorithm
In case of the curve-based algorithm, the new position

for the data points which have not been placed in the first
step is determined by computing the nearest unoccupied po-
sitions on a given screen-filling curve and shifting all data
points between the overlapping data point a and the unoccu-
pied position in that direction (cf. Figure2b). Screen-filling
curves such as the Hilbert-curve [ Pea90, Hil91] or Z-curve
[Mor66] provide a bijective mapping between a position on
a one-dimensional line and a two-dimensional position. The

advantage is that data points which are close in 1D are usu-
ally mapped to nearby points in 2D and vice versa. The idea
of the curve-based algorithm is to shift the data points along
the screen-filling curve (1D) which in general will also cor-
respond to nearby positions in 2D. 

More formally, let  be a
bijective curve function where  gives the 2D posi-
tion of the i-th position on the curve and 

the inverse function. Then, the one-dimensional distance to
the nearest unoccupied position on a given screen-filling
curve can be computed as

 

where

Then, all data points between a and  have to
be shifted along the space-filling curve. This can be de-
scribed as 

.

The new position  of the data point  is determined as

.

The efficiency and effectiveness of the curve-based algo-
rithm are discussed in section 4.

3. The Gridfit Algorithm
As a first evaluation showed, neither the nearest-neigh-

bor nor the curve-based algorithm provide visualizations
which are sufficiently position- and distance-preserving
(cf. subsection 4.2). In addition, for a high degree of non-
unique data points the performance degenerates (cf.
subsection4.1). We therefore developed a more sophisti-
cated algorithm called Gridfit which provides a better effi-
ciency and effectiveness (visually as well as measured)
than the other two algorithms.
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Figure2: NN- and Curve-based Algorithms
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3.1 Basic Idea 
The basic idea of the Gridfit algorithm is to hierarchical-

ly partition the data space. In each step, the data set is parti-
tioned into four subsets containing the data points which be-
long to four equally-sized subregions. If the number of data
points in some of the four subregions exceeds the size of the
subregion, we have to determine the new extends of the four
subregions (without changing the four subsets of data
points) such that the data points of each of the subsets can be
visualized in the corresponding subregion. For an efficient
implementation of the algorithm, a quadtree-like data struc-
ture is used to manage the required information and to sup-
port the recursive partitioning process. The partitioning
process works as follows. Starting with the root of the
quadtree, in each step the data space is partitioned into 4
subregions. The partitioning is made such that the area oc-
cupied by each of the subregions (in pixels) is larger than
the number of pixels belonging to the corresponding subre-
gion (cf. Figure3). 

3.2 Formal Description
The quadtree data structure consists of a root node ,

which is the starting point of the tree, and each non-leaf
node of the quadtree has four son nodes. Let  denote a
node on hierarchy level i, then

 
denotes the extend of a node B, 

 
the area occupied by node B (in pixels), and

 the number of data points which belong to the
equally-sized subregion corresponding to node B.

The root node  of a normalized data space can be defined
as , , and . The
son nodes  of a node  and the extend of
the corresponding subregions can be defined recursively as 

.

where ( , , ) describe the partitioning of the node. The
partitioning of a node on the next hierarchy level is done by
first partitioning the node vertically (at ) and then, both
halves are partitioned horizontally (at  and ). The par-
titioning is therefore given by the three values , , and

 (cf. Figure4), which are determined as

where ,

 and 

where ,

.

3.3 Implementation Details
In some rare cases, the partitioning as described so far

runs into problems. Even if the condition  is
fulfilled for node B, there may not be a straight-line parti-
tioning of B into four subregions such that all data points
can be visualized in the corresponding subregions. Consid-
er, for example, the data presented in Figure 5a. In this case,

Figure3: Partitioning of a Node
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Figure5: Split of the Dividing Line
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the partitioning is only possible if the dividing line is split
and used by both, the upper and the lower partition (cf.
Figure5b). In our implementation of the Gridfit algorithm,
we solve this problem by making the dividing line part of
both partitions. In placing pixels, however, we have to be
careful if the dividing line is used by both partitions. Let us
consider the situation in Figure6a. If the data points of the
upper partition are placed the dividing line is already com-
pletely filled (cf. Figure6b). This however leads to the
problem that one data point in the lower partition can not be
placed any more (cf. Figure6c). Our implementation solves
this rarely occurring problem by storing the data points
which can not be placed in the first run and placing them to
the nearest unoccupied position in a second run (cf.
Figure6d). 

4. Comparison and Evaluation
All algorithms introduced in sections 2 and 3 have been

implemented as part of the VisualPoints system. The sys-
tem is implemented in C++ and running under HP-UX and
LINUX. Public-domain versions of the system are available
via http://www.informatik.uni-halle.de/~keim.

We used the VisualPoints  system to evaluate and com-
pare the different algorithms. We evaluated not only the ef-
ficiency but also their mathematically defined absolute and
relative position- and distance-preservation (cf. subsection
2.1) and their visual effectiveness. For the experiments, we
used a number of different data sets including two different
versions of a world map containing simulated data, a real
data set of lightning strikes, and a synthetic data set which
has been designed to demonstrate effects and artifacts of the
algorithms. 

4.1 Efficiency 
The theoretical time and space complexities of the three

algorithms are all similar. In all three cases, the space com-
plexity is O(N) and the time complexity is between O(N) in
the best case and O(N2) in the worst case. 

An experimental evaluation based on different realistic
data sets, however, clearly shows the advantage of the Grid-
fit algorithm. Since the number of data points, which on the

average would be positioned at the same position plays an
important role in all three algorithms, we used data sets with
a different overlap-factor (OF). In Figure7, we provide the
performance curves for a varying overlap-factor. It is clear
that for all algorithms the time increases significantly with
an increasing overlap-factor. In Figure8, we present the
time performance of the three algorithms for a small, medi-
um, and large overlap-factor. For all three data sets, the
Gridfit algorithm is significantly faster than the other two
algorithms, and the nearest-neighbor algorithm is faster
than the curve-based algorithm. The speed-up of the Gridfit
algorithm increases with the overlap-factor and reaches a
factor of about 13 over the curve-based algorithm and a fac-
tor of about 4 over the nearest-neighbor algorithm.

4.2 Effectiveness
More important than the efficiency, however, is the ef-

fectiveness of the generated visualizations. The effective-
ness can be determined by visually comparing the generated
visualizations but it can also (at least partially) be deter-
mined mathematically according to our optimizations
goals. Before presenting the visual comparison in subsec-
tion 4.3, in this subsection we briefly present the measured
effectiveness, i.e. the absolute and relative position and dis-
tance preservation (cf. the definitions in subsection 2.1) for
an L1 distance function. 

In Figure9, we present the absolute position measure of
the three algorithms depending on the overlap-factor.
Figure9 clearly shows that the Gridfit algorithm provides a
smaller average deviation from the original position than

Figure7: Comparison of the Efficiency
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the nearest-neighbor and curve-based algorithms, especial-
ly for higher overlap factors. This can also be confirmed by
our visual comparison which is presented in subsection 4.3.
Figure10 presents the development of the relative position
measure. The relative position measure determines how
good the relative position of the data points is preserved in
the visualization (a smaller value means a better relative po-
sition preservation). Here, the advantage of the Gridfit algo-
rithm over the nearest-neighbor and curve-based algorithms
becomes even more impressive. The improvement is up to
390% over the nearest-neighbor algorithm and up to 870%
over the curve-based algorithm. Figure11 shows the rela-
tive distance measure of the three algorithms for a high
overlap-factor. In this case, all three algorithms provide ap-
proximately the same performance, and the value of the
Gridfit algorithm is between the values of the nearest-neigh-
bor and curve-based algorithms. 

4.3 Visual Comparison 

All formal effectiveness measures as defined by the ab-
solute and relative position and distance are of limited value
if they do not correspond to improvements in the generated
visualizations. In this section, we therefore provide a visual
comparison of the three techniques, which confirms the
measured effectiveness criteria presented in the previous
subsection. 

Our first comparison uses a greyscale world data map
with simulated points distributed over the surface of dry
land. Figure 13 shows the result of visualizing the data us-
ing our nearest-neighbor, curve-based, and Gridfit algo-
rithms on two different resolutions. The visualizations
clearly show the advantages and disadvantages of the three
approaches. The nearest-neighbor algorithm provides nice
results, at least for the portion of data which can be placed at
their original positions in the first step of the algorithm. The
contours of the continents are clearly visible in their original
size. All data points which can not be placed in the first step,
however, do not show any structure (cf. right portion of
Figure13a). In case of the curve-based algorithm, the conti-
nents are rather distorted and their contours are barely visi-

ble. In the lower resolution picture (cf. right portion of a
Figure13b), there even seems to be no similarity to the orig-
inal image. This result corresponds to the result of our theo-
retical effectiveness comparison (cf. subsection 4.2) which
showed that the curved-based algorithm is worse than the
other two approaches. The visualization generated by the
Gridfit algorithm (cf. right portion of a Figure13c) also
confirms the results of the theoretical effectiveness compar-
ison, namely that the Gridfit algorithm provides significant-
ly better results than the other two approaches. In contrast to
the nearest-neighbor algorithm, the Gridfit algorithm en-
larges and distorts the contours such that all data points can
be placed close to their original positions. As a result, the vi-
sualization retains the spatial locality of the data points as
much as possible, which results not only in a better (abso-
lute and relative) position-preservation but also in a better
visual representation of the data. 

To analyze the properties of the three algorithms in
more detail, for the second test we designed a synthetic data
set consisting of a number of objects with different proper-
ties (cf. Figure14a). Besides a few simple objects such as
circles, straight and curved lines, and vertical and horizontal
bars, we also use text as well as rectangular and circular pat-
terns. The visualizations generated by our three algorithms
allow some interesting insights into the properties of the al-
gorithms. Again, the curve-based algorithm provides the
poorest results for all types of objects (cf. Figure14c). The
nearest-neighbor algorithm provides rather good results, es-
pecially for the text (cf. Figure 14b). The main problem of
the algorithm, however, are the rectangular and circular pat-
terns which show the original data in the center but no struc-
ture for the overlapping data points positioned in the second
step of the algorithm. Since patterns are very important in
data exploration, this turns out to be a major drawback of the
nearest-neighbor algorithm. In contrast, the Gridfit algo-
rithm performs nicely for all types of objects (cf.
Figure14d). Note that the rectangular and circular patterns
are enlarged which is a desired effect in preserving the spa-
tial locality.

Figure10: Relative Position 
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The third test shows a series of four Gridfit visualiza-
tions of a colored world map at different resolutions — from
a very high resolution visualization without overlapping
data points in Figure15a to a low resolution version in
Figure15d. It is interesting to consider the development of
the distortion of the continents. In the first generated visual-
ization (cf. Figure 15b), the continents are more compact
but their shape is still pretty much unchanged. In the next
version (cf. Figure15c), the continents start to get distorted
and the partitioning lines of the quadtree data structure be-
come visible (e.g., in the blue region corresponding to the
African continent). In the final visualization (cf.
Figure15d), basically all pixels of the display are used and
the continents are distorted to fill all the screen space.

5. Conclusions

In this paper, we presented three algorithms for visualiz-
ing large amounts of spatially referenced data. The algo-
rithms avoid the problem of losing information by overplot-
ting data points. Instead, they map each data point to one
pixel of the display and try to preserve the spatial locality
(position and distances) as much as possible. We used a
number of test data sets to evaluate and compare the three al-
gorithms. It turns out that the Gridfit algorithm significantly
outperforms the other two algorithms with respect to their
efficiency and their (mathematical and visual) effective-
ness. In our future work, we will investigate other approach-
es for visualizing spatially referenced data. One idea is to
use a cluster-based approach which first tries to identify the
clusters in the data and then transforms the clusters to retain
their spatial properties as much as possible. We implement-
ed a first version of this algorithm (cf. Figure12). The gen-
erated visualizations, however, turned out to be worse than
the visualizations generated by the nearest-neighbor algo-
rithm, and the efficiency is worse by orders of magnitude.
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Figure12: Cluster-based Algorithm

void ClusterAlgorithm(D)
{ C = DetermineClusters(D); // C is array of clusters

for (int i=1; i<=|C|; i++)
{if (Size(C[i]) <= |C[i]|)

{ ES = {C[j] | Neighbor(C[i], C[j]) 
&& Size(C[j]) > |C[j]|}

Sort ES according to (Size(C[j]) - |C[j]|)
for (int k=1; Size(C[i]) <= |C[i]|; k++)
{ ReduceSize(ES[k]);

ExpandSize(C[i])
}
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Figure13: Visualizations of Greyscale World Map Data Using Two Different Resolutions

a. Nearest-Neighbor Algorithm 

b. Curve-based Algorithm 

c. Gridfit Algorithm 



Figure14: Visualizations of Synthetic Test Data Using the Three Algorithms

Figure 15: Visualization of World Continent Data at Different Resolutions

a. Original Data

d. Gridfit Algorithm c. Curve-Based Algorithm 

b. Nearest-Neighbor Algorithm 


