
Efficient Geometry-based
Similarity Search of 3D Spatial Databases

Daniel A. Keim
University of Halle-Wittenberg,

Kurt-Mothes-Str. 1, D-06120 Halle, Germany
keim@informatik.uni-halle.de

Abstract
Searching a database of 3D-volume objects for objects which are
similar to a given 3D search object is an important problem
which arises in number of database applications - for example,
in Medicine and CAD. In this paper, we present a new geometry-
based solution to the problem of searching for similar 3D-vol-
ume objects. The problem is motivated from a real application in
the medical domain where volume similarity is used as a basis
for surgery decisions. Our solution for an efficient similarity
search on large databases of 3D volume objects is based on a new
geometric index structure. The basic idea of our new approach is
to use the concept of hierarchical approximations of the 3D ob-
jects to speed up the search process. We formally show the cor-
rectness of our new approach and introduce two instantiations of
our general idea, which are based on cuboid and octree approxi-
mations. We finally provide a performance evaluation of our
new index structure revealing significant performance improve-
ments over existing approaches.

1 Introduction
Searching a database of 3D objects for objects which are
similar to a given 3D search object is an important prob-
lem. The problem arises in a number of applications such
as CAD and Medicine. Since our motivation for the work
presented in this paper comes from a cooperation with a
radiological clinic, in the following we briefly describe the
background. The specific medical application of our part-
ners in medicine is epilepsy of children. The current med-
ical theory of epilepsy of children assumes that an irregu-
lar development of a specific portion of the brain called
the hippocampus is the reason for epilepsy. In several
studies, it has been observed that epilepsy only occurs
with children whose hippocampi are significantly larger
than the average hippocampus of healthy children. On the
other hand, it has been found that there also exists a signif-
icant number of children which have large hippocampi but
do not develop epilepsy.
The current medical practice is to use the available mag-
netic resonance imaging (-1) and computer tomography
(CT) data to determine the volume of the patient’s hippoc-

Permission to make digital or hard copies of all or part of this work f01
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
topics hear this notice and the full citation on the tirst page. TO COpy
othcrwisc, to republish, to post on swvers or to rcdisrributc to lists.
requires prior specific permission and/or a fee.
SIGMOD ‘99 Philadelphia PA

Copyright ACM 1999 l-58113-084-8/99/05...$5.00

ampus. The data resulting from MRI or CT scanning of the
patient are multiple layers of images (cf. Figure la) which
can be segmented (cf. Figure lb) and then combined into
a voxel-based 3D representation (cf. Figure 2). Note that
the position of the patient is fixed in taking the MRI or CT
images and therefore, no significant translation or rotation
may occur. Depending on the determined volume, the hip-
pocampus is then completely removed by brain surgery.
Although this procedure is the best medical doctors are
able to provide for the time being, there is a serious need
for a more thorough analysis of the hippocampus and the
volume defects that cause epilepsy. The observation of
children with a large hippocampus but no epilepsy leads to
the hypothesis that the shape of the deformation may indi-
cate the defect. In first studies, initial support for this hy-
pothesis has been collected. For a thorough analysis, how-
ever, a large number of hippocampi has to be examined
and their shapes have to be compared. Using a database of
hippocampi, the deformations that lead to epilepsy can be
better understood and the surgery can hopefully be im-
proved, e.g., by only removing the affected portions of the
hippocampus. A more immediate goal, however, is to use
the database to search for similar cases and make the sur-
gery decision based on the outcome of this search. This al-
ready would largely improve the decision process and
help to avoid unnecessary surgeries. Although our work is
motivated by a rather specific medical application, the
problem of finding all objects from a database of 3D ob-
jects which are similar to a given 3D object is a general
problem which arises in many application areas such as
CAD, pattern recognition, and others.

It is widely recognized that 3D similarity search is a diffi-
cult problem-by far more difficult than the 2D similarity
search. Database technology does no yet support geome-
try-based similarity search of 3D-objects. In comparison to
the available systems that support 2D spatial data, the 3D
data is much more complex. The currently most widely
used techniques for accessing database of complex objects
are feature-based approaches (e.g., [Fal94, MG 951)
which are mainly used as a simple filter to restrict the
search space. In case of our application, a useful feature
would be, for example, the volume of the objects or a fea-
ture vector containing the volumes of a pattern spectrum of
the objects [Kor 961. Although filtering approaches can be
very effective, in our application they do not provide good

419

neighborhood relation -N , and the light grey voxels are in
neighborhood relation -k . In Figure 3b, the dark grey
squares are in neighborhood relation -N0 of the black mid-
dle square. Figure 3b also shows two example objects -
the upper fulfills definition 2 using the neighborhood rela-
tion -N, while the lower object would not be allowed using
the degree zero neighborhood relation. Due to the volume
properties of our medical volume objects, in our applica-
tion, it is appropriate to use a -N0 neighborhood relation.
To define the similarity search task on 3D-volume objects,
we first need to define a similarity measure
8: vol x Vol+ 31 which determines the volume differ-
ence between two volumes.

Definition 3: (Similarity Measure Volume D@erence 6,)
The similarity measure 8,,: Vol x Vol+ 31 of two 3D
volumes voll and ~012 may be defined as

s”o(vol*, vo&) = l-
11% n vo4ll
II4 ” vobll

where IlVolll denotes the volume covered by Vol.

Note that the denominator of the fraction is only necessary
for normalizing the resulting volume difference with re-
spect to the overall volume of voll and ~012. Instead of
llvol1 ” voq , other normalization factors such as

max(llvo~& IIvo&ll) or 0,s . (llvolill + /volZll) may be used.

Definition 4: (Congruence, E -Similarity, NN-Similarity)
Two 3D volumes ~011 are called congruent voZl = vol,
iff GvD(voli, VOLJ = 0.

Two 3D volumes ~011 and ~011 are called ~-similar with
respect to S,, iff ~3,~(voli, v0l.J < s .

A 3D volume ~011 is called NN -similar to a given 3D
volume vo12 with respect to 6,, and a database of vol-
umes DB iff

Vvol E DB: &(vo12, voZI) s &,(vo12, vol) .

The similarity measure 8, satisfies the properties of a
metric, which is expressed by the following lemma.

Lemma 1: (‘Properties of the Similarity Measure 6,)

(1) identity-preservation: Vvol : 6,,(vol, vol) = 0
(2) commutativity: Vvol, Vvo& :

&)(vol,, VOlJ = SVD(VO12, vol,)
(3) triangle inequation: Vvol,Vvo12Vvo13 :

i&(vol1, voq + s”D(voz2, vo&) 2 s”D(voll, voq

Up to now, we have only defined the similarity of two vol-
umes. The next step is to define a similarity query which
is searching a database of volumes for similar volumes.
Given a database DB of n volumes VOli, the similarity
query on volumes may be defined as follows.

Definition 5: (E -Similarity Query, NN-Similarity Query)
Given a query volume s, find all volumes vol from the da-
tabase DB which are ~-similar to s with respect to 6,, ,
i.e. determine { vol E DB(&,(s, vol) <E} .

Given a query volume s, find the volumes vol from the
database DB which is NN-similar to s with respect to
6 “o , i.e. determine

{z E DBI Vvol E DB, vol + z: GvD(s, z) I &(s, vol)}

Note that finding all congruent volumes is a subtask of
solving the E -similarity or NN-similarity query task. This
means that any algorithm which solves the similarity
query must at least find all congruent volumes.

2.2 Hierarchical Approximations
To support an efficient pruning in the GSS-tree, we use
two types of approximations - the Minimum Included
Volume (MIV) approximation and the Maximum Sur-
rounding Volume (MSV) approximation. Using both
types of approximations has several advantages: The most
important advantage is that the pruning of irrelevant
branches of the tree becomes more effective. This is im-
portant not only in the search process, but also in inserting
new data objects. Using both approximations further pro-
vides an additional criterion in guiding the search process,
allowing the algorithms to follow the more promising
branches first. Note that MIV and MSV approximations
are generalizations of conservative and progressive ap-
proximations which have been successfully used for an ef-
ficient query processing in geographical databases
[BKS 931 and for similarity queries on databases contain-
ing high-dimensional point data [ABKS 981.

Definition 6: (Maximum Included Volume - MN,
Minimum Surrounding Volume - MSV}

An approximation of a 3D volume vol is called Maximum
Included Volume (MIV(vol)) iff

MIV(vol) c vol and MZV(vol) is maximal for a given
type of approximation.

An approximation of a 3D volume vol is called Minimum
Surrounding Volume (MSV(vol)) iff

vol c MSV(vol) and MSV(vol) is minimal for a given
type of approximation.

The maximality of the MIV and the minimality of the
MSV approximations depends on the type of approxima-
tion used. Examples are provided in the description of the
cuboid and octree instantiations (cf. section 3).
In many cases, even a coarse approximation of a volume
which may be efficiently stored and processed may al-
ready allow a substantial pruning of the search space. In
order to make the similarity search more efficient, we
therefore use the concept of hierarchical approximations.
The basic idea of hierarchical approximations is to use sets

Gb
a. MIV Approximation b. MSV Approximation

Figure 4: Example of MIV and MSV Approximation

421

of approximations which differ in their accuracy. In the
search process, we always use the least accurate approxi-
mation which provides enough differentiation between the
volume objects, thereby reducing the storage overhead
and allowing fast comparisons due to the low complexity
of the volume objects involved.

Defintion 7: (Hienarchical Approximation)

A sequence of MIV approximations MZVl(vol) ,
MZV2(vcrl), ., MZVJvoZ) of a volume vol is called a hier-
archical approximaltion iff

vi = l...k: MzVi(voz)cMzVi+l(voz) *

A sequence of MSV approximations MSV,(voZ),
MSV,(voZ), . ..) MSVk(vol) of a volume vol is called a hier-
archical approximation iff

Vi= l...k: MSVi+l(voZ)~MSVi(voZ).

The definition of a hierarchical approximation implies for
a sequence of MIV approximations that

IIMZV, (voZ)ll I llMZVz(voZ)lJ I I IIMZVk(voZ)ll 5 llvolll

and for a sequence of MSV approximations that

IIMSVl(VOZ)ll 2 llMSV2(VOZ)ll 2 . . . t IIMSVk(VOZ)ll 1 llvolll .
Hierarchical approximations have some important proper-
ties which are used1 for pruning the search space in the
GSS-tree. The most important property directly follows
from the above observation and is summarized in the fol-
lowing lemma.

Lemma 2: (Monotonicity of Hierarchical Approximations)

The minimum overlap / union of a search volume vol, and
hierarchical MIV aplproximations is monotonously increas-
ing when going to more exact approximation levels, i.e.

VvoZ Vi= l...k-1:

/MIVi(vol) n / Ll vol,l~ I II MIV, + I(voZ) n / u voZ,l~ .

The maximum overlap / union of a search volume VOZ, and
hierarchical MSV approximations is monotonously decreas-
ing when going to more exact approximation levels, i.e.
VvoZ Vi = l...k- 1:

1) MSVi(vol) nlc~ voZ,JJ 1 1) MSVi+l(voZ) n/u voZ,JI .

Proofi

The lemma directly follows from the monotonicity prop-
erty of u and n as well as 1) 1) and the definition of hier-
archical approximations. Cl

A second property which is important for using the MIV
and MSV approximations of sets of volumes in the direc-
tory nodes is the foll.owing:

Lemma 3: (Monotonicity of Union and Intersection of

Hierarchical Approximations)

The intersection of the hierarchical MIV approximations
of a set of volumes VS, = { voZl, vol,} is monoto-
nously increasing when going to a more exact approxima-
tion level, i.e.

m m

Vm VVS, \Ji= l...k-1: &MZVi(voZj) E &MIVi+I(vor))
j=l j=l

The union of the hierarchical MSV approximations of a
set of volumes VS, = {vol,, vol,} is monotonously
decreasing when going to a more exact approximation
level, i.e.

Vm VVS, Vi = l...k- 1: & MSVi+l(voZj) C_ & MSVi(voZj)

Idea of the Proof:

j=l j=l

The lemma can be shown by induction over m, the number
of volumes in VS. Details can be found in [Kei 971. 0

Examples of hierarchical approximations of volume data
are octree approximations and approximations by sets of
cuboids (cf. section 3).

2.3 Structure of the GSS-Tree
The idea of the geometry-based similarity search tree is to
cluster similar objects (i.e., objects with a high volume
overlap) in data pages and store the MSV and MIV ap-
proximations of the objects in the directory pages. In the
directory, the MSVs and MIVs are combined (by union or
intersection) and stored on the next higher directory level.
The accuracy of the approximations stored in the directory
nodes is chosen as low as possible for the objects on the
next lower level to be discernible. This guarantees that
only the smallest amount of information possible is stored
in each of the directory nodes and that the rather expensive
volume comparisons can be efficiently approximated. A
result, however, is that the accuracy of the approximation
may vary between different directory levels, and even on
the same directory level, nodes with a different accurac,y
of the approximations are possible.
The GSS-tree is a completely dynamic height-balanced
tree similar to the B-tree [BM 721 and the R-tree [Gut 8411.
The leaf nodes of the GSS-tree are all on the same level and
contain (MIV, MSV)-pairs together with pointers to thle
actual volume objects. The directory nodes contain (MIV,
MSV)-pairs together with child pointers. Since MIV and
MSV approximations of different accuracy levels are used.,
the fanout of a node is allowed to vary within certain
ranges. Also, the node size is not fixed but corresponds to
one or multiple adjacent disk pages. This is necessary to
prevent the tree from degenerating in case large approxi-
mations are necessary to distinguish the data,objects.
To simplify the description of the GSS-tree, we use the
following notations: The terms MZV,’ and MSV,’ are used
to denote the hierarchical MIV and MSV approximation
of accuracy i on tree level 1, where tree level Z=l is the root
level. (The tree level 1 is only mentioned when necessary.)
To access the different parts of an node entry
e = (MZV,, MSVj, ptr) , we write e.MZVi , e.MSVj, and
e.ptr. The MIV accuracy level AL,,, of the node e is
ALMrv(e) = i and the MSV accuracy level is
AL,,,(e) = j . The GSS-tree may be formally defined as:

422

Definition 8: (Geometry-based Similarity Search Tree)
The Geometry-based Similarity Search tree (GSS-tree) is
a tree consisting of data and directory nodes. The data
nodes contain entries of the form (MIV,, MSVj, obj-ptr)
and the directory nodes contain entries of the form
(MZV,, MSVj, child-node) . The GSS-tree satisfies the fol-
lowing properties:
1. Every data and directory node of a GSS-tree of order
m contains between m and 2 . m entries unless it is the
root. The root contains between 1 and 2 m entries.
2. The node size is variable and depends on the accuracy
level AL,,” and AL,,, of the node. Let b(MIVi) denote
the number of bytes necessary to store an MIV approxima-
tion of accuracy level i, b(MSVj) the number of bytes for
an MSV approximation of accuracy levelj, and b(ptr) the
number of bytes for the pointer ptr . For a node storing
(MIVi, MSV,, ptr) -tuples and a page size of p, the node
size is

x=
1

2. m (b(MIVi) + b(MSV.) + b(ptr))

P 1
times the normal page size p.

3. For each entry (MIV? MS?, obj-ptr) in a leaf node
LN, MZV; and MSV;: are the hierarchical approximations
of theA data object, obj-ptr is pointing to. The accuracy
level i of the MIV approximations in a leaf node LN is
chosen such that

i : = f/yk {iI t/ e,, e2 E LN: e,.MIVi f e2.MIVi)

and the accuracy level j of the MSV approximations is
chosen such that

J: ’ = j~~~~ cil’ e,, e2 E LN: e,.MSVj # e2.MSVj}.

4. For each entry e = (MI<, MSV!, child-node’) in a di-
rectory node DN, Ml< is defined is

e.MIVf: : = n el.MIe. + ’

elm e.child-node’

where i is determined as

:
I:=

MZN
i = l...MinALMIV

{ i(We,, e2 E DN: e,.Mt< f ez.MI<I

and MSVj’ is defined as

e.MS$: = v el.MS$.”

el E e.child-node’

where f is determined as

J:= MZN
j= ,,.,MinALMSy 0’1 vel,e2E DN: ~IJ~SI/:+~~~~~$}

MinAL,,, is the minimum MIV accuracy level in DN

and MinA LMsv is the minimum MSV accuracy level in DN

MinALMs, := e$$ {ALMsv(e)l.

5. All leaves appear on the same level of the tree. Cl

The five properties of Definition 8 define the GSS-tree. In
analogy to the B-tree and R-tree, property one defines the
fanout of the tree which is between m and 2 . m for all
nodes except the root node. Since the objects stored in the
nodes are hierarchical approximations, the node size is al-
lowed to be a multiple of the normal page size, which is
defined by property two. Property three and four define
the MIV and MSV approximations used as keys in the
tree. An MIV approximation on level 1 is the intersection
of all MIV approximations in the corresponding childnode
on level (1+1) and the MSV approximation is the union of
all MSV approximation in the corresponding childnode on
level (l+l). The accuracy of the approximation is chosen
as low as possible as long as the approximations stored in
the node remain different, but it is never increasing when
going to a higher level in the tree [level @+I) to I]. The last
property states in analogy to the B-tree and R-tree that the
tree is height-balanced, which means that all leaves are on
the same level of the tree. Since the fanout of all nodes ex-
cept the root node is between m and 2 . m , the height of
the tree is limited by

[l%2,+#‘+1) 1’ ff,qss(N) s log,., [W]+l
if N is the number of volumes in the index. This means
that the length of one path in the tree is logarithmic in the
number of data objects.

In searching the GSS-tree for a given search object, we
need two variations of our similarity measures which al-
low us to traverse the tree and efficiently prune the search
space. The idea is to define two similarity measures 6;:
and 6;: which provide a lower and upper bound for 8,
of a search object and all objects stored in some branch of
the tree. Let OS(e) refer to the set of objects stored in
branch e of the tree. 87: and 8:; can be defined as:

Definition 9: (Minimum and Maximum Volume
Difference 6;: and 8;;)’

The minimum volume difference SF:: VoZ x Node + 3
of a 3D search volume vols and the set of 3D volumes
OS(e) stored in the subtree e may be defined as

The maximum volume difference 8::: Vol x Node + %
of a 3D search volume voI, and the set of 3D volumes
OS(e) stored in the subtree e may be defined as

1. Note that 6;: and 6;: can also be seen as an interval esti-
mate of 6, in the sense of interval arithmetic. Theorem 1 then
corresponds to the fundamental invariant of interval arithmetic.

423

6;fsx(voI,, e) = 1 -
poz, l-7 e.kq
poz, u e.MSvj .

In the following lemma, we show the monotonicity of the
6 7: and 8:: similarity measures. Lemma 4 together
with Lemma 2 and Lemma 3 are then the basis for Theo-
rem 1 which shows the important search tree property of
the GSS-tree. As we explain later, Theorem 1 is the basis
for the correctness of our search algorithm.

.
Lemma 4: (Monotontctty of 8;: and 8;;)

For 6;: and 8:: as defined by Definition 9 and a GSS-
tree as defined by Definition 8, the following monotonic-
ity properties hold:
1. Monotonicity of $$:

Qvol, QDN Qe E DN Qel E e.child-node :

i$!z(vols, e) I StF(vols, el) .

2. Monotonicity of $5;; :
Qvol, QDN Qe E DN Qel E e.child-node :

6~~(vol,, e) 2 S~~(vol,, el) .

Proofi see [Kei97]

Now we are able to show the important search tree prop-
erty of the GSS-tree which is expressed by the following
theorem.

Theorem 1: (Search Tree Property of the GSS-Tree)

For $2 and ST: as defined by Definition 9 and a GSS-
tree as defined by Definition 8, the following search tree
property holds:

Qvol, QDN Qe 1: DN Qvol E OS(e) :

Syy(vols, c.) 5 G”D(vol,, vol) 26, max(vol,, e) .

Proofi see [Kei97]

Theorem 1 is of higlh relevance for the correctness of our
search algorithm. Theorem 1 implies that in the top-down
traversal of a path in the GSS-tree, the minimal and max-
imal similarity of the search object vol, and the objects in
a subtree OS(e) converge against the actual similarity of
the search object vol, and the objects in the subtree
(vol E OS(e)) . This means that in following a path of the
tree, the search space may be restricted, which allows us
to reduce the number of potentially relevant objects.
The high storage requirements seem to be a major draw-
back of the GSS-tree since storing all hierarchical approx-
imations seems to be: prohibitively expensive. The storage
requirements, however, may be reduced considerably by
only storing the additional information of the MIV and
MSV approximations in going to a more accurate approx-
imation level. This can be done since

which holds due to property four of Definition 8,
Lemma 3, and due to the observation already mentioned
in the proof of Lemma 4, namely that

QDN Qe,, e2 E DN: Level(el) 2 Level(e*)

*ALMllr(q)~ALMIV(ed
QDN Qel, e2 E DN: Level(eI) 2 Level(e2)

* ALMdel) 2ALMsV(e2)

Note that the idea of storing only the incremental changes
of the approximations rather than the full approximations
is similar to the idea of prefix-trees. The benefit of apply-
ing the prefix idea in the GSS-tree, however, is much
higher due to the high storage requirements of the 3D ap-
proximations. Applying the prefix idea is possible because
of the properties of hierarchical approximations and the
properties of the GSS-tree.

Note also that the definition of the GSS-tree is indepen-
dent of the type of approximation used. Any hierarchical
MIV and MSV approximation may be used as long it ful-
fills the requirements of Definition 6 and Definition 7.
Two specific instantiations of the GSS-tree which usce
cuboids and octrees as approximations are the Cuboid
Similarity Search tree and the Octree Similarity Search
tree, which are described in section 3.

2.4 Search Algorithm
In searching for all data objects which are similar to a
given search volume vol, , according to Definition 4 we
have to distinguish between E -similarity and NWsimilar-
ity. In case of E -similarity, the basic idea of the search al-
gorithm is to use the minimum and the maximum volume
difference (SF:(vol,, e) and $F(vol,, e)) to prune all
branches of the tree, of which the minimum volume differ-
ence is higher than the allowed volume difference (E) .
The search starts in the root node and tries to prune a,s
many branches as possible. The branches of the tree which
cannot be pruned since their minimum volume difference
is smaller than the allowed volume difference are put into
a list of nodes to be searched in the remaining search pro-
cess, The objects belonging to nodes of which the maxi-
mum volume difference is smaller than the allowed vol-
ume difference are added to the result list.

In case of NWsimilarity, instead of the maximum volume
difference a, the smallest volume difference found so far
in the search is used for pruning. The smallest volume dif-
ference which is already found is denoted either by the
volume difference of the search volume vol, and some
volume vol in the database (Syg(vols, vol)) or by the
smallest maximum volume difference ($!F(vol,, e)) of
the search volume vol, and some node e. Again, all nodes
which cannot be pruned are put into a list of nodes to be
searched and heuristics are used to determine the most
promising node to be examined next. After choosing a
node, the list of nodes to be searched is pruned again and
the same process is repeated until the leaf level is reached.
In case of NN-similarity, the volume difference of data ob-

424

psilonSimilaritySearch (GSSTree *rootnode, VOL *search-vol, float epsilon
SearchStrategy strategy, VolList *result)

ListOffriples *SearchL.ist;
float VolDiffMin, VolDiffMax, VolDiff;

SearchList = 0; SearchList->append(rootnode, 0. Volume (DS));
for (n = Sear&List->GetFirst(); n != NULL; n = Sear&List->GetFirst())
(SearchList->RemoveFist();

for (e = n->GetFirstChild(); e != NULL; e = n->GetNextCbild())
(if (e == leafnode)

(VolDiff = l- (Volume(e->obj-ptr n search-vol)/
Volume(e->obj-ptr v search-vol));

if (VolDiff <= epsilon)
result->append(e);

) else { VoiDiftMin = I- ((Volume(e->MSV n search-vol)/
Volume(e->MIV u search-vol));

VolDiffMax = l- ((Volume(e->MIV n search-vol)/
Volume(e->MSV u search-vol));

if (VolDiffMin <= epsilon)
Sear&List->append(e, VolDiffMin. VolDiffMax);

if (VolDiffMax <= epsilon)
for (o = e->GetFirstCbild(); o != NULL, i = o-AietNextChildO

result->append(o);

1
Sort(SearchList, strategy);

I

Figure 5: E -Similarity Search Algorithm

jects is also used for pruning the list. The search process
ends if all nodes which possibly contain similar data ob-
jects are removed from the search list and the most similar
data object is found. If more than one nearest neighbor is
searched for, the search ends after the desired number of
nearest neighbors has been found. The implementation de-
tails of the algorithm and other important algorithms of the
GSS-tree (such as the insertion algorithm) can be found in
[Kei 971.

3 lnstantiations of the GSS-Tree

The GSS-tree is a generic geometry-based index structure
which can be instantiated using different hierarchical ap-
proximations. In the following, we present two different
instantiations - the cuboid similarity search tree and the
octree similarity search tree.

3.1 The Cuboid Similarity Search Tree
An instantiation of the GSS-tree which may be seen as an
extension of the rectangular approximation of 2D objects
in the R-tree is the usage of cuboid approximations of the
3D volume objects. The idea of the Cuboid Similarity
Search tree (CSS-tree) is to define the hierarchical MIV
and MSV approximations by sets of cuboids. The MIV ap-
proximations are defined as sets of additive cuboids and
MSV approximations are defined as sets of subtractive
cuboids. Additive means that the MIV approximations are
defined as the union of a set of adjacent non-overlapping
cuboids; and subtractive means that the MSV approxima-
tions are defined as the data space minus a set of non-over-
lapping cuboids. For a more accurate MIV approximation,
additional cuboids are used in the union; for a more accu-

a. imv

b. MSV

Figure 6: Hierarchical Cuboid MIV and MSV Apprs

rate MSV approximation, additional cuboids are sub-
tracted from the data space.

Definition 10: (Cuboid MIV and MSV Approximations)
The hierarchical cuboid MIV approximations of a 3D vol-
ume Vol are defined as sets of cuboid volumes. The MIV,
approximation of level i is defined inductively by i cuboid
volumes {C,, C;}:

MIV, := Cl
where Vol n c, = c, A vc# c,: llClll 2 IICII

MIV, := MIV,- , v Ci

Where V(X,, Yl, Zl), (~2, Y2, ~2) E MIVi:
*

($9 Y,, Z,)“.&p Y2? 4

A (Vol-MIVi-l)nCi=Ci

A VC* ci: (ICiJI 2 llcq

The hierarchical cuboid MSV approximations of a 3D
volume Vol are defined as sets of cuboid volumes. The
MSV, approximation of level i is defined inductively by
the data space DS minus i cuboid volumes (C,, ., Ci> :

MSV, := DS-Cl

where VoZ A C, = 0 A VC# C1: l/Clll > IIC/

MSV, := MSV, _ 1 - Ci

where (MSV,- 1 - Vol) n Ci = Ci

A VC+ ci: I)cij 2 jlc/l .

In Figure 6, multiple levels of hierarchical cuboid MIV
and MSV approximations are presented. In the following,
we have to show that the approximations defined in Defi-
nition 10 are hierarchical MN and MSV approximations
according to Definition 6 and Definition 7, since the cor-
rectness of the GSS search tree (cf. Theorem 1) requires
the approximations to fulfill these properties.

Lemma 5: (Cuboid MIVand MSVApprs are Hierarchical Appr)
The cuboid approximations are hierarchical MIV and
MSV approximations according to Definition 6 and Deti-
nition 7.

425

Idea of the Proo$

According to Definition 10, Vj: Cj c Vol from which fol-
10~s that Vi

“;=,C, c Vol * MIVicVol.

Also according to Definition 10, Vj: Cj n Vol = 0 from
which follows that Vi

Vol c DS-&C, a Vol E MSV,.

The MIV approximations are hierarchical since the union
operation can only provide larger MZVs (for i + i + 1)
and the MSV approximations are hierarchical since the
minus operations can only provide smaller A4SVs (for
i+i+l).Ll

Lemma 5 is important since together with Theorem 1 and
the search algorithm presented in subsection 2.4, it guar-
antees the correctness of the CSS-tree, i.e. that no false
dismissals occur in the search process. Note that for the
proof and therefore also for the correctness of our ap-
proach, we do not :need the minimality and adjacency re-
quirement of Defin:ition 10. The minimality requirement is
important to guarantee the best possible performance, and
the adjacency requirement is important to guarantee that
the MIV approximations are still 3D volumes according to
Definition 1. Both requirements, however, may be relaxed
without losing the correctness.

There are a number of algorithms which are necessary to
implement the CSS-tree. For the generic insert and search
algorithms presented in 2.4, we need efficient implemen-
tations for determining the hierarchical cuboid MIV and
MSV approximations and for calculating the union and in-
tersection of sets of cuboids. For determining the hierar-
chical MIV and MSV approximations, the basic idea is to
recursively determine the voxel of maximal intersection
and the portion of the volume which is ‘reachable’ from
this point - called the quasi-convex hull. The quasi-con-
vex hull is then the basis for determining the maximal
cuboid that fits into the remaining volume. The complex-
ity of the heuristics-based algorithm is O(]vol]) . Since the
algorithms work on the voxel-based representations of the
volumes and are therefore more graphics-related, for de-
tails the reader is re,ferred to [Kei 971.

For a better understanding of the CSS-tree, in Figure 7 we
show a simple two-dimensional CSS-tree which results
from inserting eight objects. The order of the tree is m = 1
and each node of the tree is completely filled with 2 . m
objects. In Figure 7., the MIV and MSV approximations of
the two entries in each node are shown. Note that in case
of the M[SV approximations, only the cuboids are shown;
the actual MSV approximations are defined as DS minus
the shown cuboids. The accuracy level of the nodes which
corresponds to the number of cuboids used to approximate
the objects in the considered subtree is increasing in top-
down direction of the tree. Note that different accuracy
levels may be used for different nodes on the same tree

search object

m
MIV MSV

entry 1 entry 2

Figure 7: Example of the CS&Tree

level. On the first level of the tree, for example, the accu-
racy level of the left node is two whereas the accuracy
level of the right node is three. In searching for all objects
which are volume-similar to the given search object, the
6 FF and 13;; of the search object and the hierarchical ap-
proximations stored in the nodes have to be calculated. In
the example, only the nodes with the grey background
(right-most path of the tree) have to be visited.

3.2 The Octree Similarity Search Tree
A second instantiation of the GSS-tree is the Octree Sim-
ilarity Search Tree (OSS-tree). The OSS-tree uses octrees
as hierarchical MIV and MSV approximations and cam
therefore be seen as a combination of the concepts of the
R-tree and the Octree. The octree provides an efficient
representation of volume data and is therefore widely used
for storing and processing volume data (a detailed descrip-
tion can be found in [Sam 90a] and [Sam gob]). The oc-
tree is based on the principle of a recursive decomposition
of space. The basic idea is to successively subdivide a
three-dimensional bounded voxel array into eight equal-
sized octants. If the volume does not cover an entire oc-
tant, the octant is divided into suboctants until blocks are
obtained that are entirely covered by the volume or by
empty space. For our purpose of using the octree as hier-
archical approximations in the OSS-tree, we use the stan-
dard octree which is also referred to as region octree.

For defining the hierarchical octree approximations, we
first need to introduce a formal definition of the octree
representation of a volume.

Definition 11: (Octree of a Volume)
A (standard) octree representation of a volume vol is a
non-balanced tree. A node n of the octree is defined by

426

l the tree level (denoted by n.leveZ E {O...k}),
l the portion of space represented by IZ

(denoted by n.oct), and
l the node type (denoted by n.type E {b, W, g]),
l for nodes of type g, the eight son nodes

(denoted by n.s[ib i = I..@.

Let ~&es’ be the set of all nodes on level 1. The octree is
defined by
1. the rootnode:

rootnode.level = 0

rootnode.oct = DS

rootnode.type = w

1

b if vol = DS

if vol = 0

g else

2. the other nodes:
Vn E Nodes’ : n.type = g * n.s[i] = nodei

(i= l...&l>O)

where nodei.level = l+ 1

nodei.oct = Octant(n.oct, i)

I

b if (nodei.oct G vol)

nodei.type = ,,, iJ (vol n nodei.oct = 0) *

g else

Note that the octree may be seen as a variable resolution
data structure. If we want a lower resolution representa-
tion of the considered volume, we may simply use only the
lower levels of the octree. According to a theorem from
[Sam 90a], the size of an octree is proportional to the sum
of the resolution (res) and the size of the boundary of the
object (volb) , i.e. both, the storage complexity as well as
the complexity of several algorithms is 0(voZb + res) . The
advantages of the octree are therefore twofold: The stor-
age and processing requirements in using an octree repre-
sentation of a volume are only proportional to the 2D sur-
face of the object instead of the 3D volume object itself,
and second, the octree provides a variable resolution rep-
resentation of the volume without inducing additional
storage or processing costs.
The first property is important to obtain efficient algo-
rithms for the union and intersection of two volumes and
their approximations. The second property is important
for our definition of the hierarchical MIV and MSV ap-
proximations. The basic idea of the MIV approximation is
to modify the octree such that the nodes with type g are set
to type W. This may be applied to an octree of an arbitrary
resolution and thereby we obtain a sequence of MIV ap-
proximation. For defining the hierarchical MSV approxi-
mation, we use a similar idea. In this case, however, nodes
of type g are replaced by nodes of type 6.

Definition 12: (Octree h4IV and MSV Approximations)
The hierarchical octree MIV approximations of a 3D vol-
ume Vol are defined as a set of octree approximations of

q ml
!ii--mm
--II

b. MSV

Figure 8: Hierarchical Quadtree MIV and MSV Apprs

varying resolution where the nodes of type g are replaced
by nodes of type W. The MIV, approximation of level i is
defined as:

MIVi := u { n.oct 1 n.type = b}

n E v Nodes’

1 = O...i

The hierarchical octree MSV approximations of a 3D vol-
ume Vol are defined as a set of octree approximations of
varying resolution where the nodes of type g are replaced
by nodes of type b. The MSV, approximation of level i is
defined as

MSV, := u {n.oct 1 n.type = b
n E v Nodes’ v (n.leveZ = i A n.type = g)}

I= O...i

In Figure 8, we present a two-dimensional example of
multiple levels of hierarchical quadtree MIV and MSV ap-
proximations (quadtrees are the 2D equivalent of the
three-dimensional octrees). In the following, we have to
show that the approximations defined in Definition 12 are
hierarchical MIV and MSV approximations according to
Definition 6 and Definition 7, since the correctness of the
GSS search tree (cf. Theorem 1) requires the approxima-
tions to fulfill these properties.

Lemma 6: (Octree MIVand MSVApprs are Hierarchical Appr)

The octree MIV and MSV approximations are hierarchical
MIV and MSV approximations according to Definition 6
and Definition 7.

Idea of the Proof

The proof that t/j: MIVjc Vol A Vol5; MSVj can be
done based on Definition 12 by induction overj. The proof
that the MIV and MSV approximations are hierarchical
(i.e., Ifi: MIVi~MIVi+, A MSVi+,~MSVi) can be
shown by induction over i. A formal proof is provided in
[Kei 971. Ll
Lemma 6 is important since together with Theorem 1 and
the search algorithm presented in subsection 2.4, it guar-
antees the correctness of the OSS-tree, i.e. that no false
dismissals occur in the searching process.
There are a number of algorithms which are necessary to
implement the OSS-tree. For the generic insert and search
algorithms presented in subsection 2.4, we need efficient
implementations for determining the hierarchical octree
MIV and MSV approximations and for calculating the

427

entrv 1 entrv 2

MIV MSV

\

q l3 q YLB
* \

BEg i i i i
Figure 9: Example of the OS&Tree

union and intersection of octree MIV and MSV approxi-
mations. The algorithms for determining an octree repre-
sentation of a volume as well as the union and intersection
algorithms are similar to those presented in the literature
(e.g., [Sam 90a]) and are therefore not discussed here.
For a better understanding of the OSS, in Figure 9 we show
a simple two-dimensional OSS-tree which results from in-
serting eight objects. For simplicity, in the example all
nodes have the same accuracy level. In searching for all ob-
jects which are volume-similar to the given search object,
the 8:; and 87: of the search object and the hierarchical
approximations stored in the nodes have to be calculated.
In the example, only the nodes with the grey background
(right-most path of the tree) have to be visited.

4 Experimental Eivaluation

To show the practical relevance of our method, we per-
formed an experimental evaluation the GSS-tree and its
two instantiations (CSS-tree and OSS-tree). We also com-
pared the performa.nce results to the currently used
method which is a direct volume-based search. All exper-
imental results presented in this section are computed on a
64-bit HPC160 workstation with a few hundred MBytes
of main memory and several GBytes of secondary storage.
The prototype of the GSS-tree has been implemented in
C++ as templates to support different hierarchical MIV
and MSV approximations of the data objects. The imple-
mentation details can be found in [Kei 971.
For our experiments, we used a realistic data set consisting
of real medical hippocampi volumes obtained from our
medical partners. The data objects have a resolution of
64 x 64 x 16 voxels, ,which is given by the medical image
generation and segmentation process. Due to the problems

a. Quay Object

b. Query Results

Figure 10: NN-Similarity Query and Results (Data Set 1)

with an automatic segmentation of medical images, how-
ever, the data set was originally rather small. Since the ad-
vances in medical imaging and (semi-)automatic segmen-
tation will soon produce much larger data sets, for a more
realistic performance evaluation and to obtain a variable
size database (needed for the experiments depending on
the size of the database), we extended the real data set by
modifying the data objects as realistically as possible and
added the modified data objects to the data set. The mod-
ification has been done by adding sphere-shaped regions
at randomly generated boundary voxels of the original vol-
ume. As a result, we obtain a data base with between 10
and 800 volume objects.

4.1 Evaluation of the Effectiveness
In contrast to feature-based approaches to similarity
search, the effectiveness of our geometry-based approach
with respect to the given similarity measure can be fully
guaranteed (cf. Theorem 1 in section 2.3). This means that
our similarity search tree guarantees to find exactly the
data objects which fulfill the given volume similarity mea-
sure. Nevertheless, for the medical scientists it is interest-
ing to compare the results of our similarity search to theit
expectations. This is useful to validate and improve the
similarity measure. In Figure 10, we show one search ob-
ject together with two NN-similar result objects which are
determined by the CSS-tree and OSS-tree. In Figure Il.,
we present a query objects together with four E -similar
result objects. The representation shows the objects inI
their cuboid representation and uses two light sources toI
enable a limited form of a 3D view. Due to the limits of

b. Query Results

Figure 11: E -Similarity Query and Results (Data Set 2)

Figure 12: Total Search Time of iVN-Similarity Queries

the 2D representation, the 3D shapes of the objects are still
difficult to discern. The jaggedness of the representation is
due to the limitations of the original data which comes
from the voxel-based representation of limited resolution.

4.2 Evaluation of the Efficiency
From a database perspective more important than the ef-
fectiveness is the efficiency of our approach. In Figure 12,
we show the total search time (in seconds) for m-similar-
ity queries depending on the number of data objects. As
expected, for both the CSS-tree and OSS-tree, the search
time is sublinear in the number of data objects. In Figure
12, we also show the total search time of the volume-based
filtering approach. The basic idea of volume-based filter-
ing is to store the total volume of all data objects in a one-
dimensional data structure (e.g., a B-tree) and use the total
volume of the search object to restrict the search to a cer-
tain volume range resulting in a set of potentially relevant
objects. This set is then scanned linearly and in the refine-
ment step, each object is intersected with the search ob-
ject. The total search time for the volume-based filtering
approach is dominated by the time for the time-consuming
intersection tests in the refinement step. If the filtering se-
lectivity is constant, the number of objects to be tested in
the refinement step increases linearly with the number of
data objects in the database (cf. Figure 12). For some ap-
plications such as the one described in [Kor 961, a volume-
based filtering approach provides good results since the

Figure 13: Speed-Up over Volume-based Similarity Search

a. Page Accesses

b. CPU-The

Figure 14: Comparison of Pages Accesses and CPU-Time

filtering selectivity is high. If the volume of all data ob-
jects in the database is in a rather small range, however,
the selectivity of volume-based filtering is poor since in
the refinement step almost the whole database has to be
scanned and the time-consuming intersection test has to be
performed for each database object. In our database of
hippocampi, the objects are all pretty similar and their vol-
ume is in a small range since the objects are normalized.
The performance of the volume-based filtering is there-
fore rather bad compared to both - the CSS-tree and the
OSS-tree. In Figure 13, we show the speed-up of the CSS-
tree and the OSS-tree over the volume-based filtering ap-
proach. Since volume-based filtering is almost linear in N
and CSS-tree and OSS-tree are sublinear in N, the speed-
up increases with increasing N.

In Figure 14, we provide a more detailed analysis of the
CSS-tree and the OSS-tree. We compare the number of
page accesses’ and the CPU-time (in seconds). As ex-
pected, the CPU-time of the CSS-tree is much higher since

l- ,

Figure 15: Comparison of CSS- and OSS-tree (Data Set 2)

429

the intersection and union of sets of cuboids is much more
time-consuming tha.n the intersection and union of MIV
and MSV octree approximations. On the other hand, the
precision of the cuboid approximations is better, which
leads to a better pruning of nodes early in the search pro-
cess and therefore a lower number of page accesses. Fig-
ure 14 clearly shows the advantages and disadvantages of
CSS-tree and OSS-tree: The CSS-tree provides a better
filtering and therefore less node accesses, but the intersec-
tion and union operations on sets of cuboids are more
time-consuming. In contrast, the OSS-tree provides fast
intersection and union operations, but due to the fixed
space partitioning of the octree the approximations are of
less precision and therefore more node accesses are neces-
sary. The usefulness of the octree partitioning scheme,
however, is data-dependent and therefore, a general state-
ment, which of the instantiations (CSS-tree or OSS-tree)
provides a better performance, is not possible. To show
the advantage of the CSS-tree over the OSS-tree, we gen-
erated a second slightly different data set. In data set two,
the likelihood that the partitioning scheme of the octree
provides a suboptimal partitioning is higher. In Figure 15,
we present the performance result of the CSS-tree and
OSS-tree. In this case, the performance of the CSS-tree is
better than the performance of the OSS-tree.

5 Conclusions

The main contribution of the paper is a new geometry-
based index structure which generalizes the well-known
R-tree approach for an efficient volume-based similarity
search on 3D volumle objects. Our solution is based on the
general concept of using both, progressive (MIV) and con-
servative (MSV) approximations, and the concept of using
a hierarchy of approximations. The approximations are
used to define a minimum and maximum volume differ-
ence measure which1 is formally shown to be correct and
allows an efficient pruning of the search space. We devel-
oped two instantiations of our geometry-based index
structure, which are based on cuboid and octree approxi-
mations. The practical relevance and feasibility of our ap-
proach is shown by applying our new techniques to the
real data from our medical applications. Our experimental
evaluation of the two variants of the GSS-tree reveals sig-
nificant performance improvements over existing ap-
proaches. Although the GSS-tree has been developed with
our medical application in mind, it is generally applicable
in a wide range of other applications.

There are a number of open research directions and a lot
of future work to do: Other MIV and MSV approximations
need to be explored and more experience needs to be col-

1. Note that for a fair comparison, the number of page accesses is
determined from the number of node accesses by weighting
each node access with the size of the node. The weighting corre-
sponds to the time needed to load the node.

lected by applying the GSS-tree in other application con-
texts, some of which may require an extension of the GSS-
tree to allow a similarity search under other invariances.

References
[ABKS 981 Ankerst M., Braunmtiller B., Kriegel H.-P., Seidl T.:

Improving Adaptable Similarity Query Processing b,y
Using Approximations, Proc. 24th Int. Conf. on Very
Large Data Bases, New York, 1998, pp. 206-217.

[BKS 931 Brinkhoff T., Ktiegel H.-P., Schneider R.: ‘Compar-
ison ofApproximations of Complex Objects Usedfor
Approximation-based Query Processing in Sputia:l
Database Systems’, Proc. 9th Int. Conf. on Data En-
gineering, Vienna, Austria, 1993, pp.40-49.

[BKSS 901 Beckmatm N., Kriegel H.-P., Schneider R., Seeger

[BM 721

[FaI94]

[Gut 841

[Kei 971

[Kor 961

[MG 931

[NLH 881

[Sam 90a]

[Sam 90b]

[SFA 901

[SRF 871

B.: ‘The R*-tree: An EJicient and Robust Access
Methodfor Points and Rectangles’, F’roc. ACM SIG-
MOD Int. Conf. on Management of Data, Atlantic
City, NJ, 1990, pp. 322-331.
Bayer R., McCreight E. M.: ‘Organization and
Maintenance of Large Ordered Indices’, Acta Infor-
matica, Vol. 1, No. 3, pp. 173-189.
Faloutsos C., Barber R., FIickner M., Hafner J., Ni-
black W., Petkovic D.: ‘EfJicient and E’ective Que-
rying by Zmage Content ‘, Journal of Intelligent Infor-
mation Systems, 1994, Vol. 3, pp. 231-262
Guttman A.: ‘R-trees: A Dynamic Index Structune
for Spatial Searching’, Proc. ACM SIGMOD Int.
Conf. on Management of Data, Boston, MA, 1984.,
pp. 47-57.
Keim D. A.: ‘Efficient Support of Similarity Search
in Spatial Data Bases’, Habilitation thesis, Universi-
ty of Munich, 1997.
Kom F., Sidiropoulos N., Faloutsos C., Siegel E.,
Protopapas Z.: ‘Fast Nearest Neighbor Search in
Medical Image Databases’, J?roc. 22nd Int. Conf. on

Very Large Data Bases, Mumbai, India, 1996#,
pp. 215226.
Mehrotra R., Gary J. E.: ‘Feature-Based Retrieval qf
Similar Shapes’, Proc. 9th Int. Conf. on Data Engi-
neering, Vienna, Austria, 1993, pp. 108-115.
Noborio H., Liang P., Hackwood S.: ‘Construction
of the Octree Approximating Three-Dimensional
Objects Using Multiple Views’, IEEE Trans. on Pat-
tern Analysis and Machine Learning, Vol. 10, 1988,
pp. 769-782.
Samet H.: ‘Applications of Spatial Data Structures:
Computer Graphics, Image Processing, and GIS’,
Addison-Wesley, 1990.
Samet H.: ‘The Design and Analysis of Spatial Data
Structures’, Addison- Wesley, 1990.
Srinivasan P., Fukusa S., Azimoto S.: ‘Computation-
al Geometric Methods in Volumetric Intersection for
3D Reconstruction’, Pattern Recognition, Vol. 23,
1990, pp. 843-857.
Sellis T., Roussopoulos N., Faloutsos C.: ‘The

R+-Tree: A Dynamic Index for Multi-Dimensional
Objects’, Proc. 13th Int. Conf. on Very Large Data-
bases, Brighton, England, 1987, pp 507-518.

430

