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Chapter 1

Visual Data Mining Techniques

Daniel Keim and Matthew Ward
University of Konstanz, Germany and Worcester Polytechnic Institute, USA

Abstract. Never before in history has data been generated at such high
volumes as it is today. Exploring and analyzing the vast volumes of data
has become increasingly difficult. Information visualization and visual
data mining can help to deal with the flood of information. The advan-
tage of visual data exploration is that the user is directly involved in the
data mining process. There are a large number of information visualiza-
tion techniques that have been developed over the last two decades to
support the exploration of large data sets. In this paper, we propose a
classification of information visualization and visual data mining tech-
niques based on the data type to be visualized, the visualization technique,
and the interaction technique. We illustrate the classification using a few
examples, and indicate some directions for future work.

1.1. Introduction

The progress made in hardware technology allows today’s computer systems to
store very large amounts of data. Researchers from the University of Berkeley
estimate that every year about 1 Exabyte (= 1 Million Terabytes) of data are
generated, of which a large portion is available in digital form. This means that
in the next three years more data will be generated than in all of human history
to date. The data is often automatically recorded via sensors and monitoring
systems. Even simple transactions of every day life, such as paying by credit
card or using the telephone, are typically recorded by computers. Usually many
parameters are recorded, resulting in data with a high dimensionality. The data
is collected because people believe that it is a potential source of valuable infor-
mation, providing a competitive advantage (at some point). Finding the valuable
information hidden in the data, however, is a difficult task. With today’s data
management systems, it is only possible to view quite small portions of the data.
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If the data is presented textually, the amount of data that can be displayed is in
the range of some one hundred data items, but this is like a drop in the ocean
when dealing with data sets containing millions of data items. Having no possi-
bility to adequately explore the large amounts of data that have been collected
because of their potential usefulness, the data becomes useless and the databases
become data ‘dumps’.

Benefits of Visual Data Exploration

For data mining to be effective, it is important to include the human in the data
exploration process and combine the flexibility, creativity, and general knowledge
of the human with the enormous storage capacity and the computational power
of today’s computers. Visual data exploration aims at integrating the human in
the data exploration process, applying human perceptual abilities to the analysis
of large data sets available in today’s computer systems. The basic idea of visual
data exploration is to present the data in some visual form, allowing the user to
gain insight into the data, draw conclusions, and directly interact with the data.
Visual data mining techniques have proven to be of high value in exploratory
data analysis, and have a high potential for exploring large databases. Visual
data exploration is especially useful when little is known about the data and the
exploration goals are vague. Since the user is directly involved in the exploration
process, shifting and adjusting the exploration goals is automatically done if
necessary.

Visual data exploration can be seen as a hypothesis generation process; the
visualizations of the data allow the user to gain insight into the data and come
up with new hypotheses. The verification of the hypotheses can also be done via
data visualization, but may also be accomplished by automatic techniques from
statistics, pattern recognition, or machine learning. In addition to the direct
involvement of the user, the main advantages of visual data exploration over
automatic data mining techniques are:

– visual data exploration can easily deal with highly non-homogeneous and
noisy data

– visual data exploration is intuitive and requires no understanding of complex
mathematical or statistical algorithms or parameters.

– visualization can provide a qualitative overview of the data, allowing data
phenomena to be isolated for further quantitative analysis.

As a result, visual data exploration usually allows a faster data exploration
and often provides better results, especially in cases where automatic algorithms
fail. In addition, visual data exploration techniques provide a much higher degree
of confidence in the findings of the exploration. This fact leads to a high demand
for visual exploration techniques and makes them indispensable in conjunction
with automatic exploration techniques.
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Visual Exploration Paradigm

Visual Data Exploration usually follows a three step process: Overview first,
zoom and filter, and then details-on-demand (which has been called the Infor-
mation Seeking Mantra [68]). First, the user needs to get an overview of the data.
In the overview, the user identifies interesting patterns or groups in the data and
focuses on one or more of them. For analyzing the patterns, the user needs to
drill-down and access details of the data. Visualization technology may be used
for all three steps of the data exploration process. Visualization techniques are
useful for showing an overview of the data, allowing the user to identify interest-
ing subsets. In this step, it is important to keep the overview visualization while
focusing on the subset using another visualization technique. An alternative is
to distort the overview visualization in order to focus on the interesting subsets.
This can be performed by dedicating a larger percentage of the display to the
interesting subsets while decreasing screen utilization for uninteresting data. To
further explore the interesting subsets, the user needs a drill-down capability in
order to observe the details about the data. Note that visualization technology
does not only provide the base visualization techniques for all three steps but
also bridges the gaps between the steps.

1.2. Classification of Visual Data Mining Techniques

Information visualization focuses on data sets lacking inherent 2D or 3D seman-
tics and therefore also lacking a standard mapping of the abstract data onto
the physical screen space. There are a number of well known techniques for vi-
sualizing such data sets, such as x-y plots, line plots, and histograms. These
techniques are useful for data exploration but are limited to relatively small and
low dimensional data sets. In the last decade, a large number of novel infor-
mation visualization techniques have been developed, allowing visualizations of
multidimensional data sets without inherent two- or three-dimensional seman-
tics. Nice overviews of the approaches can be found in a number of recent books
[21] [83] [69] [64]. The techniques can be classified based on three criteria (see
figure 1.1) [45]: The data to be visualized, the visualization technique, and the
interaction technique used.

The data type to be visualized [68] may be

– One-dimensional data, such as temporal (time-series) data
– Two-dimensional data, such as geographical maps
– Multidimensional data, such as relational tables
– Text and hypertext, such as news articles and Web documents
– Hierarchies and graphs, such as telephone calls and Web documents
– Algorithms and software, such as debugging operations

The visualization technique used may be classified as:

– Standard 2D/3D displays, such as bar charts and x-y plots



4 1. Visual Data Mining Techniques

Fig. 1.1. Classification of Information Visualization Techniques

– Geometrically transformed displays, such as landscapes and parallel coordi-
nates

– Icon-based displays, such as needle icons and star icons
– Dense pixel displays, such as the recursive pattern and circle segments
– Stacked displays, such as treemaps and dimensional stacking

The third dimension of the classification is the interaction technique used.
Interaction techniques allow users to directly navigate and modify the visual-
izations, as well as select subsets of the data for further operations. Examples
include:

– Dynamic Projection
– Interactive Filtering
– Interactive Zooming
– Interactive Distortion
– Interactive Linking and Brushing

Note that the three dimensions of our classification - data type to be visual-
ized, visualization technique, and interaction technique - can be assumed to be
orthogonal. Orthogonality means that any of the visualization techniques may
be used in conjunction with any of the interaction techniques for any data type.
Note also that a specific system may be designed to support different data types
and that it may use a combination of visualization and interaction techniques.

1.3. Data Type to be Visualized

In information visualization, the data usually consists of a large number of
records, each consisting of a number of variables or dimensions. Each record
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corresponds to an observation, measurement, or transaction. Examples are cus-
tomer properties, e-commerce transactions, and sensor output from physical
experiments. The number of attributes can differ from data set to data set;
one particular physical experiment, for example, can be described by five vari-
ables, while another may need hundreds of variables. We call the number of
variables the dimensionality of the data set. Data sets may be one-dimensional,
two-dimensional, multidimensional or may have more complex data types such
as text/hypertext or hierarchies/graphs. Sometimes, a distinction is made be-
tween dense (or grid) dimensions and the dimensions that may have arbitrary
values. Depending on the number of dimensions with arbitrary values the data
is sometimes also called univariate, bivariate, or multivariate.

One-dimensional data

One-dimensional data usually has one dense dimension. A typical example of
one-dimensional data is temporal data. Note that with each point of time, one
or multiple data values may be associated. An example are time series of stock
prices (see figures 1.4 and 1.6 for examples) or the time series of news data used
in the ThemeRiver examples (see figures 2-5 in [35]).

Two-dimensional data

Two-dimensional data has two distinct dimensions. A typical example is geo-
graphical data, where the two distinct dimensions are longitude and latitude.
X-Y-plots are a typical method for showing two-dimensional data and maps are
a special type of x-y-plot for showing two-dimensional geographical data. Ex-
amples are the geographical maps used in Polaris (see figure 3(c) in [74]) and
in MGV (see figure 9 in [1]). Although it seems easy to deal with temporal or
geographic data, caution is advised. If the number of records to be visualized
is large, temporal axes and maps get quickly cluttered - and may not help to
understand the data.

Multi-dimensional data

Many data sets consist of more than three attributes and therefore do not allow
a simple visualization as 2-dimensional or 3-dimensional plots. Examples of mul-
tidimensional (or multivariate) data are tables from relational databases, which
often have tens to hundreds of columns (or attributes). Since there is no simple
mapping of the attributes to the two dimensions of the screen, more sophisti-
cated visualization techniques are needed. An example of a technique that allows
the visualization of multidimensional data is the Parallel Coordinates Technique
[42] (see figure 1.3, which is also used in the Scalable Framework (see figure 12
in [52]) and XmdvTool [82]. Parallel Coordinates display each multi-dimensional
data item as a set of line segments that intersect each of the parallel axes at the
position corresponding to the data value for the corresponding dimension.
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Fig. 1.2. Skitter Graph Internet Map, CAIDA (Cooperative Association for Internet
Data Analysis) c©2000 UC Regents. Courtesy University of California.

Text & Hypertext

Not all data types can be described in terms of dimensionality. In the age of
the World Wide Web, one important data type is text and hypertext, as well as
multimedia web page contents. These data types differ in that they cannot be
easily described by numbers, and therefore most of the standard visualization
techniques cannot be applied. In most cases, a transformation of the data into
description vectors is necessary before visualization techniques can be used. An
example for a simple transformation is word counting (see ThemeRiver [35])
which is often combined with a principal component analysis or multidimensional
scaling to reduce the dimensionality to two or three (for example, see [85]).

Hierarchies & Graphs

Data records often have some relationship to other pieces of information. These
relationships may be ordered, hierarchical, or arbitrary networks of relations.
Graphs are widely used to represent such interdependencies. A graph consists
of a set of objects, called nodes, and connections between these objects, called
edges or links. Examples are the e-mail interrelationships among people, their
shopping behavior, the file structure of the hard disk or the hyperlinks in the
world wide web. There are a number of specific visualization techniques that deal
with hierarchical and graphical data. A nice overview of hierarchical information
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Fig. 1.3. Parallel Coordinate Visualization c©IEEE

visualization techniques can be found in [24], an overview of web visualization
techniques is presented in [27] and an overview book on all aspects related to
graph drawing is [12].

Algorithms & Software

Another class of data are algorithms and software. Coping with large software
projects is a challenge. The goal of software visualization is to support software
development by helping to understand algorithms (e.g., by showing the flow of
information in a program), to enhance the understanding of written code (e.g.,
by representing the structure of thousands of source code lines as graphs), and
to support the programmer in debugging the code (e.g., by visualizing errors).
There are a large number of tools and systems that support these tasks. Nice
overviews of software visualization can be found in [77] and [73].

1.4. Visualization Techniques

There are a large number of visualization techniques that can be used for visual-
izing data. In addition to standard 2D/3D-techniques such as x-y (x-y-z) plots,
bar charts, line graphs, and maps, there are a number of more sophisticated
classes of visualization techniques. The classes correspond to basic visualization
principles that may be combined in order to implement a specific visualization
system.

1.4.1 Geometrically-Transformed Displays

Geometrically transformed display techniques aim at finding “interesting” trans-
formations of multidimensional data sets. The class of geometric display methods
includes techniques from exploratory statistics such as scatterplot matrices [6]
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Fig. 1.4. Dense Pixel Displays: Recursive Pattern Technique c©IEEE

[26] and techniques that can be subsumed under the term “projection pursuit”
[39]. Other geometric projection techniques include Prosection Views [32] [71],
Hyperslice [80], and the well-known Parallel Coordinates visualization technique
[42]. The parallel coordinate technique maps the k-dimensional space onto the
two display dimensions by using k axes that are parallel to each other (either
horizontally or vertically oriented), evenly spaced across the display. The axes
correspond to the dimensions and are linearly scaled from the minimum to the
maximum value of the corresponding dimension. Each data item is presented as
a chain of connected line segments, intersecting each of the axes at a location
corresponding to the value of the considered dimensions (see figure 1.3).

1.4.2 Iconic Displays

Another class of visual data exploration techniques are the iconic display meth-
ods. The idea is to map the attribute values of a multi-dimensional data item to
the features of an icon. Icons can be arbitrarily defined; they may be little faces
[25], needle icons as used in MGV (see figure 5 in [1]), star icons [82], stick figure
icons [57], color icons [51, 46], or TileBars [36], for example. The visualization is
generated by mapping the attribute values of each data record to the features of
the icons. In case of the stick figure technique, for example, two dimensions are
mapped to the display dimensions and the remaining dimensions are mapped
to the angles and/or limb length of the stick figure icon. If the data items are
relatively dense with respect to the two display dimensions, the resulting visu-
alization presents texture patterns that vary according to the characteristics of
the data and are therefore detectable by pre-attentive perception. Figure 1.5
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Fig. 1.5. The iris data set, displayed using star glyphs positioned based on the first
two principal components (from XmdvTool [82]);

shows an example of this class of techniques. Each data point is represented by
a star icon/glyph, where each data dimension controls the length of a ray ema-
nating from the center of the icon. In this example, the positions of the icons are
determined using principal component analysis (PCA) to convey more informa-
tion about data relations. Other data attributes could also be mapped to icon
position.

1.4.3 Dense Pixel Displays

The basic idea of dense pixel techniques is to map each dimension value to a col-
ored pixel and group the pixels belonging to each dimension into adjacent areas
[44]. Since in general dense pixel displays use one pixel per data value, the tech-
niques allow the visualization of the largest amount of data possible on current
displays (up to about 1,000,000 data values). If each data value is represented
by one pixel, the main question is how to arrange the pixels on the screen. Dense
pixel techniques use different arrangements for different purposes. By arranging
the pixels in an appropriate way, the resulting visualization provides detailed
information on local correlations, dependencies, and hot spots.

Well known examples are the recursive pattern technique [47] and the circle
segments technique [9]. The recursive pattern technique is based on a generic
recursive back-and-forth arrangement of the pixels and is particularly aimed
at representing datasets with a natural order according to one attribute (e.g.
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Fig. 1.6. Dense Pixel Displays: Circle Segments Technique c©IEEE

time-series data). The user may specify parameters for each recursion level, and
thereby control the arrangement of the pixels to form semantically meaningful
substructures. The base element on each recursion level is a pattern of height hi

and width wi as specified by the user. First, the elements correspond to single
pixels that are arranged within a rectangle of height h1 and width w1 from
left to right, then below backwards from right to left, then again forward from
left to right, and so on. The same basic arrangement is done on all recursion
levels with the only difference being that the basic elements that are arranged
on level i are the pattern resulting from the level (i−1) arrangements. In Figure
1.4, an example recursive pattern visualization of financial data is shown. The
visualization shows twenty years (January 1974 - April 1995) of daily prices of
the 100 stocks contained in the Frankfurt Stock Index (FAZ). The idea of the
circle segments technique [9] is to represent the data in a circle that is divided
into segments, one for each attribute. Within the segments each attribute value
is again visualized by a single colored pixel. The arrangement of the pixels starts
at the center of the circle and continues to the outside by plotting on a line
orthogonal to the segment halving line in a back and forth manner. The rationale
of this approach is that close to the center all attributes are close to each other
enhancing the visual comparison of their values. Figure 1.6 shows an example of
circle segment visualization using the same data (50 stocks) as shown in figure
1.4.
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Fig. 1.7. Dimensional Stacking visualization of drill hole mining data
(used by permission of M. Ward, Worcester Polytechnic Institute c©IEEE)

1.4.4 Stacked Displays

Stacked display techniques are tailored to present data partitioned in a hierar-
chical fashion. In the case of multi-dimensional data, the data dimensions to be
used for partitioning the data and building the hierarchy have to be selected ap-
propriately. An example of a stacked display technique is Dimensional Stacking
[49]. The basic idea is to embed one coordinate system inside another coordinate
system, i.e. two attributes form the outer coordinate system, two other attributes
are embedded into the outer coordinate system, and so on. The display is gen-
erated by dividing the outermost level coordinate system into rectangular cells
and within the cells the next two attributes are used to span the second level co-
ordinate system. This process may be repeated multiple times. The usefulness of
the resulting visualization largely depends on the data distribution of the outer
coordinates and therefore the dimensions that are used for defining the outer
coordinate system have to be selected carefully. A rule of thumb is to choose the
most important dimensions first. A dimensional stacking visualization of mining
data with longitude and latitude mapped to the outer x and y axes, as well as
ore grade and depth mapped to the inner x and y axes is shown in figure 1.7.
Other examples of stacked display techniques include Worlds-within-Worlds [29],
Treemap [67] [43], and Cone Trees [61].

1.5. Specific Visual Data Mining Techniques

There are a number of visualization techniques that have been developed to
support specific data mining tasks, such as association rule generation, classifi-
cation, and clustering. In the following we describe how visualization techniques
can be used to support these tasks.
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Fig. 1.8. MineSets Association Rule Visualizer [41] c©SGI

1.5.1 Association Rules

The goal of association rule generation is to find interesting patterns and trends
in transaction databases. Association rules are statistical relations between two
or more items in the dataset. In a supermarket basket application, associations
express the relations between items that are bought together. It is for example
interesting if we find out that in 70% of the cases when people buy bread,
they also buy milk. Association rules tell us that the presence of some items in
a transaction imply the presence of other items in the same transaction with
a certain probability, called confidence. A second important parameter is the
support of an association rule, which is defined as the percentage of transactions
in which the items co-occur.

Let I = {i1, ...in} be a set of items and let D be a set of transactions, where
each transaction T is a set of items such that T ⊆ I. An association rule is an
implication of the form X ⇒ Y , where X ∈ I, Y ∈ I, X, Y 6= ∅. The confidence
c is defined as the percentage of transactions that contain Y , given X. The
support is the percentage of transactions that contain both X and Y . For a
given support and confidence level, there are efficient algorithms to determine
all association rules [2]. A problem however is that the resulting set of association
rules is usually very large, especially for low support and confidence levels. Using
higher support and confidence levels may not be effective, since useful rules may
then be overlooked.

Visualization techniques have been used to overcome this problem and to
allow an interactive selection of good support and confidence levels. Figure 1.8
shows SGI MineSets Rule Visualizer [41] which maps the left and right hand
sides of the rules to the x- and y-axes of the plot and shows the confidence as
the height of the bars and the support as the height of the discs. The color
of the bars shows the interestingness of the rule. Using the visualization, the
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(a) Mosaic Plot (b) Double Decker Plot

Fig. 1.9. Association Rule Visualization [38] c©ACM

user is able to see groups of related rules and the impact of different confidence
and support levels. The number of rules that can be visualized, however, is
limited and the visualization does not support combinations of items on the
left or right hand side of the association rules. Figure 1.9 shows two alternative
visualizations called mosaic and double decker plots [38]. The basic idea is to
partition a rectangle on the y-axis according to one attribute and make the
regions proportional to the sum of the corresponding data values. Compared
to bar charts, mosaic plots use the height of the bars instead of the width to
show the parameter value. Then each resulting area is split in the same way
according to a second attribute. The coloring reflects the percentage of data items
that fulfill a third attribute. The visualization shows the support and confidence
values of all rules of the form X1, X2 ⇒ Y . Mosaic plots are restricted to two
attributes on the left side of the association rule. Double decker plots can be used
to show more than two attributes on the left side. The idea is to show a hierarchy
of attributes on the bottom (heineken, coke, chicken in the example shown in
figure 1.9) corresponding to the left hand side of the association rules and the
bars on the top correspond to the number of items in the corresponding subset
of the database and therefore visualize the support of the rule. The colored areas
in the bars correspond to the percentage of data transactions that contain an
additional item (sardines in figure 1.9) and therefore correspond to the support.
Other approaches to association rule visualization include graphs with nodes
corresponding to items and arrows corresponding to implications as used in
DBMiner [40] and association matrix visualizations to cluster related rules [34].

1.5.2 Classification

Classification is the process of developing a classification model based on a train-
ing data set with known class labels. To construct the classification model, the
attributes of the training data set are analyzed and an accurate description or
model of the classes based on the attributes available in the data set is developed.
The class descriptions are used then to classify data for which the class labels
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Fig. 1.10. MineSets Decision Tree Visualizer [41] c©SGI

are unknown. Classification is sometimes also called supervised learning because
the training set is used to teach the system how to classify the data. There are
a large number of algorithms for solving classification talks. The most popular
approaches are algorithms that inductively construct decision trees. Examples
are ID3 [58], CART [19], ID5 [78, 79], C4.5 [59], SLIQ [54], and SPRINT [66].
In addition there are approaches that use neural networks, genetic algorithms
or Bayesian networks to solve the classification problem. Since most algorithms
work as black box approaches it is often difficult to understand and optimize
the decision model. Problems such as overfitting or tree pruning are difficult to
tackle.

Visualization techniques can help to overcome these problems. The decision
tree visualizer in SGIs MineSet system [41] shows an overview of the decision tree
together with important parameters such as the attribute value distributions.
The system allows an interactive selection of the attributes shown and helps the
user understand the decision tree. A more sophisticated approach which also
helps in decision tree construction is visual classification as proposed in [8]. The
basic idea is to show each attribute value by a colored pixel and arrange them
in bars. The pixels of each attribute bar are sorted separately and the attribute
with the purest value distribution is selected as the split attribute of the decision
tree. The procedure is repeated until all leaves correspond to pure classes. An
example of the decision tree resulting from this process is shown in figure 1.11.
Compared to a standard visualization of a decision tree, additional information
is provided that is helpful for explaining and analyzing the decision tree, namely

– size of the nodes (number of training records corresponding to the node)
– quality of the split (purity of the resulting partitions)
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Fig. 1.11. Visualization of a decision trees [8] for the segment training data from the
Statlog benchmark having 19 attributes c©ACM

– class distribution (frequency and location of the training instances of all
classes).

Some of this information might also be provided by annotating the standard
visualization of a decision tree (for example, annotating the nodes with the
number of records or the gini-index), but this approach clearly fails for more
complex information such as the class distribution. In general, visualizations
can help to better understand the classification models and to easily interact
with the classification algorithms in order to optimize the model generation and
classification process.

1.5.3 Clustering

Clustering is the process of finding a partitioning of the data set into homo-
geneous subsets called clusters. Unlike classification, clustering is unsupervised
learning. This means that the classes are unknown and no training set with class
labels is available. A wide range of clustering algorithms have been proposed in
the literature including density-based methods such as KDE [65] and linkage-
based methods [18]. Most algorithms use assumptions about the properties of the
clusters that are either used as defaults or have to be given as input parameters.
Depending on the parameter values, the user gets differing clustering results. In
two- or three-dimensional space, the impact of different algorithms and param-
eter settings can easily be explored using simple visualizations of the resulting
clusters (for example, x-y plots) but in higher dimensional space the impact
is much more difficult to understand. Some higher-dimensional techniques try
to determine two- or three-dimensional projections of the data that retain the
properties of the high-dimensional clusters as much as possible [86]. Figure 1.12
shows a three-dimensional projection of a data set consisting of five clusters.

While this approach works well with low- to medium-dimensional data sets, it
is difficult to apply to large high-dimensional data sets, especially if the clusters
are not clearly separated and the data set also contains noise (data that does not
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Fig. 1.12. Visualization based on a projection into 3D space [86] c©ACM

belong to any cluster). In this case, more sophisticated visualization techniques
are needed to guide the clustering process, select the right clustering model, and
adjust the parameter values appropriately. An example of a system that uses
visualization techniques to help in high-dimensional clustering is OPTICS [7].
The idea of OPTICS (Ordering Points To Identify the Clustering Structure) is
to create a one-dimensional ordering of the database representing its density-
based clustering structure. Figure 1.13 shows a two-dimensional example data
set together with its reachability distance plot. Intuitively, points within a clus-
ter are close in the generated one-dimensional ordering and their reachability
distance shown in figure 1.13 is similar. Jumping to an other cluster results in
higher reachability distances. The idea works for data of arbitrary dimension.
The reachability plot provides a visualization of the inherent clustering struc-
ture and is therefore valuable for understanding the clustering and guiding the
clustering process.

Another interesting approach is the HD-Eye system [37]. The HD-Eye sys-
tem considers the clustering problem as a partitioning problem and supports a
tight integration of advanced clustering algorithms and state-of-the-art visual-
ization techniques, allowing the user to directly interact in the crucial steps of
the clustering process. The crucial steps are the selection of dimensions to be
considered, the selection of the clustering paradigm, and the partitioning of the
data set. Novel visualization techniques are employed to help the user identify
the most interesting projections and subsets as well as the best separators for
partitioning the data. Figure 1.14 shows an example screen shot of the HD-Eye
system with its basic visual components for cluster separation. The separator
tree represents the clustering model produced so far in the clustering process.
The abstract iconic displays (top right and bottom middle in figure 1.14) visu-
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(a) Data Set (b) Reachability Plot

Fig. 1.13. OPTICS Visual Clustering [7] c©ACM

alize the partitioning potential of a large number of projections. The properties
are based on histogram information of the point density in the projected space.
The number of data points belonging to the maxima corresponds to the color of
the icon. The color follows a given color table ranging from dark colors for large
maxima to bright colors for small maxima. The measure of how well a maxima
is separated from the others corresponds to the shape of the icon and the degree
of separation varies from sharp spikes for well-separated maxima to blunt spikes
for weak-separated maxima. The color- and curve-based point density displays
present the density of the data and allow a better understanding of the data
distribution, which is crucial for an effective partitioning of the data. The vi-
sualizations are used to decide which dimensions are used for the partitioning.
In addition, the partitioning can be specified interactively directly within the
visualizations, allowing the user to define non-linear partitionings.

1.6. Interaction Techniques

In addition to the visualization technique, for an effective data exploration it is
necessary to use one or more interaction techniques. Interaction techniques al-
low the data analyst to directly interact with the visualizations and dynamically
change the visualizations according to the exploration objectives. In addition,
they also make it possible to relate and combine multiple independent visualiza-
tions.

Interaction techniques can be categorized based on the effects they have on
the display. Navigation techniques focus on modifying the projection of the data
onto the screen, using either manual or automated methods. View enhancement
methods allow users to adjust the level of detail on part or all of the visualiza-
tion, or modify the mapping to emphasize some subset of the data. Selection
techniques provide users with the ability to isolate a subset of the displayed data
for operations such as highlighting, filtering, and quantitative analysis. Selection
can be done directly on the visualization (direct manipulation) or via dialog
boxes or other query mechanisms (indirect manipulation). Some examples of
interaction techniques are described below.
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Fig. 1.14. HD-Eye screen-shot [37] showing different visualizations of projections and
the separator tree. Clockwise from the top: separator tree, iconic representation of 1D
projections, 1D projection histogram, 1D color-based density plots, iconic representa-
tion of multi dimensional projections and color-based 2D density plot. c©IEEE

Dynamic Projection

Dynamic projection is an automated navigation operation. The basic idea is
to dynamically change the projections in order to explore a multi-dimensional
data set. A classic example is the GrandTour system [11] which tries to show
all interesting two-dimensional projections of a multi-dimensional data set as a
series of scatterplots. Note that the number of possible projections is exponential
in the number of dimensions, i.e. it is intractable for large dimensionality. The
sequence of projections shown can be random, manual, precomputed, or data
driven. Systems supporting dynamic projection techniques include XGobi [75]
[20], XLispStat [76], and ExplorN [23].

Interactive Filtering

Interactive filtering is a combination of selection and view enhancement. In ex-
ploring large data sets, it is important to interactively partition the data set into
segments and focus on interesting subsets. This can be done by a direct selection
of the desired subset (browsing) or by a specification of properties of the desired
subset (querying). Browsing is very difficult for very large data sets and query-
ing often does not produce the desired results. Therefore a number of interactive
selection techniques have been developed to improve interactive filtering in data
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Fig. 1.15. Table Lens(used by permission of R. Rao, Xerox PARC c©ACM)

exploration. An example of a tool that can be used for interactive filtering is
the Magic Lens [17] [30]. The basic idea of Magic Lens is to use a tool similar
to a magnifying glass to support filtering the data directly in the visualization.
The data under the magnifying glass is processed by the filter, and the result is
displayed differently than the remaining data set. Magic Lens show a modified
view of the selected region, while the rest of the visualization remains unaffected.
Note that several lenses with different filters may be used; if the filter overlap,
all filters are combined. Other examples of interactive filtering techniques and
tools are InfoCrystal [72], Dynamic Queries [3] [28] [33], and Polaris [74] (see
figure 6 in [74] for an example).

Zooming

Zooming is a well known view modification technique that is widely used in a
number of applications. In dealing with large amounts of data, it is important to
present the data in a highly compressed form to provide an overview of the data
but at the same time allow a variable display of the data at different resolutions.
Zooming does not only mean displaying the data objects larger, but also that the
data representation may automatically change to present more details on higher
zoom levels. The objects may, for example, be represented as single pixels at a
low zoom level, as icons at an intermediate zoom level, and as labeled objects
at a high resolution. An interesting example applying the zooming idea to large
tabular data sets is the TableLens approach [60]. Getting an overview of large
tabular data sets is difficult if the data is displayed in textual form. The basic
idea of TableLens is to represent each numerical value by a small bar. All bars
have a one-pixel height and the lengths are determined by the attribute values.
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Fig. 1.16. A scatterplot matrix with part of the display distorted using a fisheye lens.

This means that the number of rows on the display can be nearly as large as
the vertical resolution and the number of columns depends on the maximum
width of the bars for each attribute. The initial view allows the user to detect
patterns, correlations, and outliers in the data set. In order to explore a region of
interest the user can zoom in, with the result that the affected rows (or columns)
are displayed in more detail, possibly even in textual form. Figure 1.15 shows
an example of a baseball database with a few rows being selected in full detail.
Other examples of techniques and systems that use interactive zooming include
PAD++ [56] [15] [16], IVEE/Spotfire [4], and DataSpace [10]. A comparison of
fisheye and zooming techniques can be found in [63].

Distortion

Distortion is a view modification technique that supports the data exploration
process by preserving an overview of the data during drill-down operations.
The basic idea is to show portions of the data with a high level of detail while
others are shown with a lower level of detail. Popular distortion techniques are
hyperbolic and spherical distortions; these are often used on hierarchies or graphs
but may be also applied to any other visualization technique. An example of
spherical distortions is provided in the Scalable Framework paper (see figure
5 in [52]). An overview of distortion techniques is provided in [50] and [22].
Examples of distortion techniques include Bifocal Displays [70], Perspective Wall
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(a) Parallel Coordinates (b) Scatterplot Matrix

Fig. 1.17. Linked brushing between two multivariate visualization techniques, from
XmdvTool [82]. Highlighted data (in red) from one display is also highlighted in other
displays.

[53], Graphical Fisheye Views [31] [62], Hyperbolic Visualization [48] [55], and
Hyperbox [5]. Figure 1.16 shows the effect of distorting part of a scatterplot
matrix to display more detail from one of the plots while preserving context
from the rest of the display.

Brushing and Linking

Brushing is an interactive selection process that is often, but not always, com-
bined with linking, a process for communicating the selected data to other views
of the data set. There are many possibilities to visualize multi-dimensional data,
each with their own strengths and weaknesses. The idea of linking and brushing
is to combine different visualization methods to overcome the shortcomings of
individual techniques. Scatterplots of different projections, for example, may be
combined by coloring and linking subsets of points in all projections. In a sim-
ilar fashion, linking and brushing can be applied to visualizations generated by
all visualization techniques described above. As a result, the brushed points are
highlighted in all visualizations, making it possible to detect dependencies and
correlations. Interactive changes made in one visualization are automatically re-
flected in the other visualizations. Note that connecting multiple visualizations
through interactive linking and brushing provides more information than con-
sidering the component visualizations independently.

Typical examples of visualization techniques that have been combined by
linking and brushing are multiple scatterplots, bar charts, parallel coordinates,
pixel displays, and maps. Most interactive data exploration systems allow some
form of linking and brushing. Examples are Polaris (see figure 7 in [74]) and the
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Scalable Framework (see figures 12 and 14 in [52]). Other tools and systems in-
clude S Plus [13], XGobi [75] [14], XmdvTool [82] (see Figure 1.17, and DataDesk
[81] [84].

1.7. Conclusion

The exploration of large data sets is an important but difficult problem. Informa-
tion visualization techniques can be useful in solving this problem. Visual data
exploration has a high potential, and many applications such as fraud detection
and data mining can use information visualization technology for improved data
analysis.

Avenues for future work include the tight integration of visualization tech-
niques with traditional techniques from such disciplines as statistics, machine
learning, operations research, and simulation. Integration of visualization tech-
niques and these more established methods would combine fast automatic data
mining algorithms with the intuitive power of the human mind, improving the
quality and speed of the data mining process. Visual data mining techniques also
need to be tightly integrated with the systems used to manage the vast amounts
of relational and semistructured information, including database management
and data warehouse systems. The ultimate goal is to bring the power of visual-
ization technology to every desktop to allow a better, faster and more intuitive
exploration of very large data resources. This will not only be valuable in an
economic sense but will also stimulate and delight the user.
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