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Abstract

We are proposing a novel method that makes it possi-
ble to analyze high dimensional data with arbitrary shaped
projected clusters and high noise levels. At the core of our
method lies the idea of subspace validity. We map the data
in a way that allows us to test the quality of subspaces using
statistical tests. Experimental results, both on synthetic and
real data sets, demonstrate the potential of our method.

1. Introduction

The concept of “cluster” is somewhat elusive. From an
intuitive sense, it means points in a cluster are “close” to
each other while they are “far” from other points. The
meaning of “closeness” corresponds to the meaning of
“similarity”. This definition raises some questions:

Projected Clusters: Typically, a relation may exist be-
tween some, but not all, variables. Consequently, the clus-
ters are not defined over all attributes, i.e. values in some
attributes are similar, but in other attributes not. It is pos-
sible that projecting the space into a smaller dimensional
space will yield interesting clusters that do not exist in the
original data space.
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Topology: Clusters may have different shapes and linear
dependencies. We may be interested in identifying a plane
in a multidimensional space as a cluster.

Dimensions: A Cluster spreads over a subset of dimen-
sions, implying a relationship between these dimensions.
Different clusters may also share some dimensions, mean-
ing that different values of a variable � relate to some subset
of variables, while other values of � relate to a different set
of variables.

Overlaps: It is possible that under a certain projection,
two clusters overlap and can not be distinguished, whereas
in another projection they are separated. In an even more
drastic situation, a cluster may not be identified under any
projection!

For clustering visual methods have proven to be quite
successful. Such methods use the perceptual capabilities of
the human. Knowledge about the domain/task flows into the
process step by step and is exploited both for a successful
understanding of dependencies in the particular domain and
for ferring out and separating clusters [6, 7].

Albeit the success of such visualization methods, it is
necessary to develop automated clustering algorithms. The
reason for this need is the existence of very large high di-
mensional data sets that need to be analyzed. Considering
all different 	 - or 
 -dimensional projections is clearly not a
feasible number for interactive human analysis.

Automated methods have the advantage of speed but the
disadvantage of lacking domain knowledge. Harnessing
such knowledge through preprocessing work or by machine
learning methods is a laborious process and the state-of-the-
art is far from satisfactory. The above mentioned challenges
of cluster finding do not have good solutions by current
methods of automatic data exploration.



Current methods for cluster finding differ in their re-
quirements of domain knowledge and they require parame-
ters (such as the requested number of clusters) as input for
the algorithm. In addition, they depend on the amount of
noise in the data and that affects the quality of the results.

2. Our Contribution

We are proposing a novel method that makes it possi-
ble to analyze high dimensional data with high noise levels.
Our method requires no domain knowledge in advance, yet
it discovers projected clusters and allows separating over-
lapping clusters with different topologies.

At the core of our method lies the idea of subspace va-
lidity. We map the data in a way that allows us to test the
parameters of a one-dimensional subspace. It is possible
to perform various statistical tests efficiently in one dimen-
sion. In these projections, one of the variables is designated
as the subspace whose validity is checked by various sta-
tistical means. The result of these tests allows us to reach
a conclusion about clustering in the low-dimensional sub-
space.

Our goal is analyzing high-dimensional data sets in or-
der to find structures and patterns that can be considered
as interesting to the end user. It is accepted that if the hu-
man eye would perceptually capture a pattern in a subset
of data points, then it is considered as valuable information
which should be noticed and investigated further. The tra-
ditional way to capture such “similar” data objects is by the
various definitions of clustering in the literature. Therefore,
to demonstrate the efficiency and effectiveness of our pro-
posed method, we compare it against clustering algorithms
in the databases literature. However, it should be stressed
that we are not defining “clusters” in any traditional formal
sense. We are seeking a more general method that can auto-
matically detect “interesting” structures in high dimensional
data sets. Therefore, our use of the word “clusters” to define
such structures is intentionally quite loose.

3. The Subspace Validity Algorithm

Given a � -dimensional database
���

, we first project
the data set onto every subset of 
 dimensions. For
each 
 -dimensional projection, we designate one dimen-
sion (i.e., attribute) as the vertical dimension, i.e., the one-
dimensional subspace whose subspace validity is tested.
The proposed approach has four major stages.

Constructing compact images from the data. The
first stage consists of building compact 	 -dimensional im-
ages for every triple of dimensions �����
	����� . Let �����
denote the image matrix. In every � ��� entry or pixel��� �
��� we store information about the conditional distribu-

tion � � ��� ��� ������� of the � variable associated with that en-
try.

Feature extraction from the image. Recall that for the
same

��� ����� location in the image � ��� , there can be many� values in the � dimension. A feature function returns
for each pixel an extracted feature vector associated with
that pixel. These values are assigned to ���� � ��� ����� . In our
implementation we used the Haar wavelet transformation
for our feature function.

Let us illustrate this idea with a simple case. In [4], a sin-
gle representative value was chosen for each entry of �!��� ,
the median of all � values at location

�"� �
�#� , assuming a
unimodal distribution at that location.

Image segmentation. Since � �� � represents an image,
we can segment the image by applying standard image seg-
mentation techniques. The segmentation of ������ yields
regions, such that the pixels of a region have similar fea-
tures. The strategy we have used for segmentation is based
on region growing.

Region analysis. At this stage we have possibly a large
number of different regions of the various � and 	 at-
tributes, such that the values of the associated vertical �
dimensions in each such region are distributed in a similar
manner. Using this information about the regions, we can
analyze the data points in order to further discover prospec-
tive clusters either in the same attribute subspace or in some
augmented subspace projections.

The clustering scheme we have used consists of the fol-
lowing characteristics:

1. Consider the two-dimensional projection on � and 	 .
A pixel stores information about the distribution of the �
values of the points which are mapped to the corresponding
cell.

2. We find regions (dense and compact) with similar dis-
tribution of � .

3. A region corresponds to a low-dimensional cluster.
In order to augment the set of dimensions which define the
cluster, we partition all points into two sets; points which
belong to the region and points which do not. The two
subsets are processed recursively. We use the partition tree
concept which is a generalization of the separator tree con-
cept used in HD-Eye [6].

4. Searching for projected clusters is motivated by the
fact that it might not be possible to augment a certain di-
mension set, i.e., the cluster is not defined in all dimensions;
it is a projected cluster.

5. Clusters correspond to the leafs of the partition tree.

4. Evaluation and Comparison

In the experiments, we use a number of data sets with
controlled characteristics, such as the number of dimen-
sions or noise level, as well as real data sets. In the exper-
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Figure 1. Experimental results

iments, we compare our new approach to existing methods
including Expectation Maximization (EM) [5], K-Means
and PROCLUS [1].

In the first experiment, we present the effectiveness of
our approach on clusters which are defined in all dimen-
sions, which we will refer to as full-dimensional clusters.
The type of data we generated is similar to the data created
in [1], taking into account that all dimensions are selected.
The results are shown in Figure 1(a). The performance of
K-Means remains constant and EM is degenerating with in-
creasing dimensionality, whereas our solution provides the
best overall effectiveness.

Full-dimensional clusters are unlikely to occur in high-
dimensional data sets. Real clusters often describe lin-
ear dependencies between the dimensions which define the
cluster. Therefore we analyze the ability of the algorithms
to find rotated projected clusters. The type of data we gen-
erated is similar to the data created in [1] and [2]. The re-
sults are shown in Figure 1(b). The results represent the
average correctness over a number of data sets of this type.
Subspace Validity has the best overall correctness. EM per-
forms surprisingly well and provides a better performance
than PROCLUS.

In the next experiment, we examined the effect of noise
in the data. For this series of experiments, we added random
noise to the data sets from our second experiments and re-
peated the tests. The new results (see Figure 1(c)) show that
the effectiveness of our method remains unchanged, but the
performance of EM and PROCLUS degenerates. Interest-
ingly, the performance of EM degenerates much faster than
the performance of PROCLUS.

We performed experiments with two real data sets.
The first one is the pendigits data set from the Univer-
sity of California at Irvine’s Machine Learning Reposi-

tory (www.ics.uci.edu/ � mlearn/MLRepository.html). The
pendigits data set contains 7,494 tuples and 16 dimensions
that describe handwritten digits. The results of this exper-
iment is shown in Figure 1(d). With our method we get
the best correctness of 84%, followed by EM with 80% and
K-Means with 78%. From the extremely low classification
rate of PROCLUS (only 66%, we tested all kinds of values
for the number of bounded dimensions), we may conclude
that clusters are spread over all dimensions.

Our second real data set is the census data set nhis93ac
(NHIS – National Health Interview Survey 1993). The data
set is available from (http://ferret.bls.census.gov/). It has
several hundred numeric and nominal attributes and con-
sists of

���������
records. The numerical attributes AGE, BD-

DAY12, DV12, EDUC, INCFAMR, NCOND, WEIGHT were
selected. Since the data does not come with a known clas-
sification, we have to judge the accuracy of the clusters by
looking at the results. For this purpose, we use the Subspace
Validity plots.

An example can be seen in Figure 2. The clusters
are defined in three dimensions, namely AGE, WEIGHT
and NCOND. The AGE attribute is on the horizontal axis,
WEIGHT is the vertical axis, and NCOND is the vertical
dimension and is represented by a symbol.1 Recall that a
region in the � , 	 projection with the same symbol means
that the pixels belonging to the region have a similar data
distribution in the vertical dimension � . Therefore, same
symbol means a cluster with similar data points in the third
attribute. The clusters can be easily understood with the his-
togram of � . Those histograms are shown in Figure 2(b),(c)
and (d). The histogram is shown with gray bars, and the
black line indicates the histogram of the full data set. One
can see that the data points falling in the region marked with
squares have lower values compared to the full data set, be-
cause the leftmost bin of the histogram for the region in
Figure 2(b) is more than 10% higher than the histogram cor-
responding to the full dataset. Analogously, one can see that
points falling in the region with solid circles have a similar
distribution in the � attribute as the full data set. But points
falling in the region with the triangle point-up have higher
values compared to the full data set. The pixels labeled with
the plus sign are outliers. They belong to regions with very
low support. The number of points falling in a particular
region is 22946, 17509 and 5182, respectively. The clusters
found by our method tell a very interesting story. The di-
agonal in the projected cluster from top left to bottom right
indicates something that insurance companies love to find.
The number of medical conditions increases at a younger
age when the weight is greater. In fact, the diagonal can
even predict at what weight and at what age one can expect
the problems to accumulate.

1In reality we use colors, which will increase considerably the ability
to recognize the regions.
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Figure 2. An example from a census data set

5. Related Work

Cluster finding has been an extensively studied prob-
lem for many years by the statistics, machine learning and
database communities. For the full-dimensional case many
clustering algorithms have been proposed [8].

The idea of projected clustering has attracted a lot of at-
tention during the last few years. One of the first algorithms
dealing with projected clustering is CLIQUE [3]. The al-
gorithm mines the projection space bottom up by searching
frequent combinations of histogram bins which are assem-
bled to clusters on a single linkage basis.

The algorithms PROCLUS [1] and ORCLUS [2] are
�

-
means like algorithms. Each cluster found is described by a
centroid and a set of vectors, spanning the subspace of the
projected cluster. PROCLUS reduces the full-dimensional
data space to the subspace spanned by the dimensions with
the smallest variance (which are treated independently) with
the result that only axes-parallel projected clusters can be
found. In contrast, ORCLUS determines for each cluster
the eigenvectors of the covariance matrix with the smallest
eigenvalues and therefore allows arbitrary orientations.

The most recent method DOC [9] defines a projected

cluster as a hyperbox, with a boundary size of � in the
bounded dimensions and an unbounded size in the other di-
mensions. DOC uses sampling to center the boxes, and an
optimal projected cluster maximizes a quality function.

6. Conclusions and Future Work

We have shown a methodology for finding projected
clusters in high dimensional data sets. Our idea resulted
in an effective way of automatically considering low dimen-
sional projections of the data set and analyze them appropri-
ately to obtain meaningful projected clusters. Our method
constructs higher dimensional clusters from data on small
dimensional projections of those clusters. In future research
we plan to pursue faster implementation for our approach as
well as extending it into a visual data mining system.
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