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Abstract

Scatterplots are widely used in exploratory data analysis and class visualization. The advantages of scatterplots

are that they are easy to understand and allow the user to draw conclusions about the attributes which span

the projection screen. Unfortunately, scatterplots have the overplotting problem which is especially critical when

high-dimensional data are mapped to low-dimensional visualizations. Overplotting makes it hard to detect the

structure in the data, such as dependencies or areas of high density.

In this paper we show that by extending the concept of Pixel Validity (1) the problem of overplotting or occlusion

can be avoided and (2) the user has the possibility to see information about an additional third variable. In

our extension of the Pixel Validity concept, we summarize the data which are projected onto a given region by

generating a histogram over the required attribute. This is then embedded in the visualization by a pixel-based

technique.

Categories and Subject Descriptors (according to ACM CCS): I.3.m [Computer Graphics]: Miscellaneous–

Visualization H.2.8 [Database Management]: Database Applications–Data Mining

1. Introduction

In this paper we propose a new visualization technique

which enhances a two-dimensional projection, e.g., a scat-

terplot, such that the probability distribution of an additional

third attribute can be perceived by the user. At a small lo-

cal region in the projection plane the probability distribution

of the additional attribute is shown. This enables the user to

recognize dependencies between three variables, i.e., the two

attributes which define the projection and the third attribute.

We call our technique Shape-Embedded-Histograms, be-

cause the histogram of a third attribute is embedded in the
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Emerging Technologies under the IST-2001-33058 PANDA project
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meinschaft (German Research Foundation) grant Ke 740/3-1.

plane to which the other two attributes are projected. The

embedding is done by a pixel-oriented visualization tech-

nique. The main benefit of our technique is to overcome

the impact of overplot or occlusion, a well known problem

of scatterplots when mapping high-dimensional data sets to

low-dimensional data sets. Overplot or occlusion happens

when two or more data items are mapped to the same po-

sition or when the number of data items exceeds the number

of unique positions available for the visualization.

We point out two applications where the method proposed

in this paper can be applied and show examples taken from

real data sets.

The first application is the task of analyzing the classifi-

cation of a data set. The classification (or labeling) can be

known in advance or can be determined by a data mining

algorithm. For instance, clustering methods give the user a

set of clusters whether they are meaningful or not. The user

needs techniques which allow her/him to verify the valid-

ity of the clustering. This can be done by means of statisti-

cal tests or by more informal data-oriented methods which
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make fewer assumptions about the data. One such informal

method is visualization. A widely used visualization tech-

nique is the scatterplot, where the points are colored accord-

ing to their class. The user can answer questions about the

separability and similarity of the classes, and dependencies

between attributes (that is, the location of points in the pro-

jection plane) and the class label can be determined.

Typically, high-dimensional data items are mapped to a

low-dimensional (e.g., in our case a two-dimensional) space

and colored according to their class. Due to overplotting the

true class distribution can not be perceived. This means that

the questions “Which classes are present at a given loca-

tion?” and “How much is a particular class represented at

a given location?” can not be fully answered. The literature

proposed jitter and other techniques of repositioning to over-

come the overplotting problem. Another technique is to draw

the data items in an appropriate ordering such that the most

significant items are drawn last. Our technique enables the

user to recognize the true class distribution by showing the

histogram of the class distribution at any given location.

The second application is the need for exploring large data

sets. Analyzing data sets typically starts with analyzing the

scatterplot matrix (provided that the dimensionality is not

too high). People like scatterplots because they are easy to

understand. Assuming that the axes of the plot correspond to

the real attributes (“real” means non-transformed attributes

by methods of linear combination or dimensionality reduc-

tion) one can directly draw conclusions from the scatter-

plots. Scatterplots give information about the two attributes

which span the projection screen. The question arises: “Is

there any possibility to show information about an additional

third variable?” In [AKN01] the authors propose a method

called Pixel Validity Plots. This method enables the user to

get information about an additional third variable when ana-

lyzing 2D projections, making the 2D projections more ex-

pressive, particularly with regard to the fact that analyzing

low-dimensional projections is very useful in order to gener-

ate previously unknown hypotheses.

The method proposed in this paper enhances the expres-

siveness of Pixel Validity Plots. In [AKN01] a pixel is called

valid if the mass of the data which are projected onto a pixel

is close to the median. The color of the pixel represents the

value of the median. If the pixel is not valid the pixel is col-

ored black. This works well if the probability distribution

is unimodal. Bimodal distributions are likely to result in in-

valid pixels disregarding the fact that the bimodality might

be an interesting observation. Therefore, we develop Shape-

Embedded-Histograms, an extension of Pixel Validity, in or-

der to show information of the probability distribution of the

third attribute. Shape-Embedded-Histograms solve the over-

plotting problem and enhance the Pixel Validity by summa-

rizing the data which are projected onto a small region in

the projection plane. This is done by computing the his-

togram of the class distribution or the probability distribu-

Figure 1: Overview of the technique presented in this paper.

tion of the data which are projected onto the particular loca-

tion. Our technique of embedded histograms visualizes those

histograms transferring the essential information to the user.

The histogram computation restores the loss of information

due to overplotting or occlusion.

An overview of our approach is shown in Figure 1. In this

paper we assume that the attributes which span the projec-

tion space are selected in advance. We call these attributes X

and Y . Furthermore, we assume that an additional attribute,

called Z is selected. At first, all data items from the database

are projected onto X×Y . In the next step the projected items

are discretized in order to get a grid, which is defined in the

X ×Y plane. Each cell of the grid corresponds to a region

in the final visualization. Next, the histogram of the Z at-

tribute for the data items falling in a particular grid cell is

computed, i.e., the data of a cell are summarized and fea-

tures are extracted. In the last step the histogram for a cell

is visualized at the position corresponding to that cell. The

histograms visualize some features of the data set, but avoid

the overplotting problem which would result from visualiz-

ing the individual data items.

In this paper we restrict ourselves to axes-parallel projec-

tions. For a given data set arbitrary projections or projections

determined by PCA or LDA can be useful to find dependen-

cies which are not visible in axes-parallel projections. For

instance, classes can seem to be badly separated in axes-

parallel projections, but an appropriate rotation may reveal

that they are well separated.

The rest of the paper is organized as follows: Section 2

presents work which is relevant to our technique. In section

3, we formalize our idea and present the essential algorithms.

In section 4, we evaluate our technique by visualizing data

sets taken from real world applications. We summarize our

findings and point out future work in section 5.

2. Related Work

The goal of visual data mining is to combine the domain

knowledge, the perceptual abilities and the creativity of the

human with the computational power of computers in or-

der to explore large high-dimensional data sets. Visual data
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mining methods have been proven to be successful in many

areas. An overview of techniques and applications can be

found in [KW02]. In this paper we apply the concepts of

several visual data mining techniques.

Scatterplots are widely used, but they have the problem of

overplotting or occlusion. Several methods have been pro-

posed in order to overcome the overplotting problem. Over-

plotting or occlusion is a matter of visual scalability [EK00].

The authors of [EK00] give some remarks about the scala-

bility of scatterplots. To overcome the overplotting problem

some techniques apply a repositioning of the data items by

jitter [CCKT83, Cle93] or self organizing maps [TGC03].

Other techniques summarize the data and visualize the ex-

tracted features. Those methods are based on density esti-

mation. Examples include the well-known density plot and

the methods proposed in [CLNL87, Hyn96]. In most cases

squares are used for binning, whereas [CLNL87] proposed

to use a hexagon for binning. Another technique to reduce

the overplotting problem is to draw the data items in an ap-

propriate ordering such that the most significant items are

drawn last. Also, techniques of panning and zooming can be

used to analyze regions of interest.

Several techniques have been emerged for visualizing

multi-dimensional data by embedding dimensions within

other dimensions. One of these techniques is called Di-

mensional Stacking [FB90a, FB90b, LWW90, MGTS91].

In [LWW90] the n-dimensional attribute space is partitioned

in two-dimensional subspaces which are “stacked” into each

other. The technique requires a partitioning of the attribute

value ranges into classes. The technique works best when

the important attributes are used on the outer levels.

Other techniques which embed a set of information into

a shape in a 2D region include Shape Coding [Bed90] and

Color Icons [Lev91, KK94]. In [Bed90] the data are visual-

ized using small arrays of fields. Each field represents one at-

tribute value. The arrays are arranged line-by-line according

to a given order (e.g., the time attribute for time-series data).

Color Icons [Lev91, KK94] are arrays or shapes divided into

fields and the color of the fields represents the attribute val-

ues. The arrangement of the icons can be query-dependent

(e.g., spiral) or can be specified by other attributes.

Our technique can be seen as a combination of Dimen-

sional Stacking and Shape Coding. In contrast to previous

work, we stack only one dimension: We embed the his-

togram of the third dimension in a higher-level image. The

embedding results in a dense display, whereas [LWW90]

gives a sparse display. Shape coding displays many attributes

at a small location. Our method achieves a higher coherence,

because only one attribute is displayed.

The method proposed in this paper embeds histograms by

a pixel-based technique. The idea of pixel-based techniques

is to represent each attribute value by one colored pixel. The

value ranges of the attributes are mapped to a fixed colormap

and the attribute values for each attribute are presented in

{The database of dimensionality d is defined as}

{DB = {xi : i = 1, . . . ,n∧ xi ∈ R
d}.}

{The attributes X , Y , and Z are selected in advance.}

{Let f , g, and h be appropriate functions}

{which discretize X , Y , and Z.}

{Project and discretize the data.}

{M is a matrix of size NX ×NY .}

{The elements of M are sets.}

for i = 1 to NX do

for j = 1 to NY do

Mi j←{x : x ∈ DB, f (xX ) = i,g(xY ) = j}
end for

end for

{Construct the histograms.}

{H is a matrix of size NX ×NY .}

{The elements of H are histograms.}

for i = 1 to NX do

for j = 1 to NY do

Hi j ← histogram of the set {xZ : x ∈ Mi j} with re-

spect to the discretization given by h

end for

end for

{Visualize the histograms.}

{I is the image matrix of size NX ·S×NY ·S.}

for i = 1 to NX do

for j = 1 to NY do

Histogram Hi j is visualized in the image region given

by [(i−1) ·S +1, i ·S]× [( j−1) ·S +1, j ·S]
end for

end for

Figure 2: The basic algorithm of our visualization tech-

nique.

separate subwindows. A survey of pixel-based techniques

can be found in [Kei00]. There are differences between the

work proposed so far and our work. In this paper the bin

of a histogram, i.e., “the attribute” is mapped to a number

of pixels of the same color. The number of pixels depends

on the value (height) of the bin and the color represents the

index of the bin. In contrast, the previous approaches map

the attribute value to the color and the specific attribute is

recognizable by the location of the pixel.

3. Shape-Embedded-Histograms

In this section we explain the essential algorithms. The basic

algorithm which outlines our method is given in Figure 2.

3.1. The Basic Algorithm

Suppose we have a database DB and we would like to ana-

lyze the data with regard to attributes X , Y , and Z. For now
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we assume that these attributes are selected in advance. At-

tributes X and Y correspond to the axes of the image. The

goal is to visualize the probability distribution of Z depend-

ing on X and Y .

First, we have to discretize X and Y in order to get the co-

ordinates of a data item in the image. The most natural way

is to use a linear mapping of the original range to the range

of the image coordinates, because this mapping preserves

the distances within an attribute. Other techniques such as

non-linear mappings might also be used, depending on the

nature of the distribution of the attribute. For instance, if a

specific attribute has a Zipf or some multimodal distribution

we would give more bins to the high populated areas of the

distribution. The discretization defines a grid in the X and Y

space. In the final image (the image of the visualization) this

grid is mapped to an equi-distant grid.

In the next step we have to generate the histograms over

the Z attribute. For each cell of the grid a histogram is gen-

erated. The overall task is to visualize those histograms. If Z

is a categorical attribute, e.g., if the class distribution has to

be analyzed, the histogram is given by the categories. If Z is

a continuous attribute, i.e., the probability distribution of Z

with respect to X and Y has to be analyzed, we discretize Z

in order to get an approximation of the probability distribu-

tion of Z by histograms. The discretization of Z influences

the visualization. Later, in section 4, we discuss different

discretization techniques including equi-width or equi-depth

binning.

The attributes X and Y are mapped to [1,NX ] and [1,NY ]
respectively, i.e., the generated grid has a size of NX ×NY .

Note that this is not the size of the image in pixels. The his-

togram of the Z attribute for a specific position is represented

by a small square of the size S×S pixels. Therefore the im-

age has a size of (S ·NX )× (S ·NY ) pixels.

Let h be a histogram with n bins hi (1 ≤ i ≤ n) describ-

ing the probability distribution of the Z attribute. For sim-

plicity we assume that ∑
n
i=1 hi = 1. The task is to visualize

the histogram in a small square of S× S pixels. We use a

pixel-based technique in order to achieve this. Each bin of

the histogram has to be represented by a number of pixels

proportional to the height of the bin. The color of the pixels

is determined by the index of the bin. We now explain the

details.

The index of a bin is encoded by the color. For instance

low values of a continuous variable are shown by dark colors

whereas high values of a continuous variable are represented

by light colors. Useful colormaps are discussed in the litera-

ture, e.g., [Lev97]. Typically, a continuous colormap is used

for numerical data, whereas a set of well-distinguishable col-

ors is used for categorical data.

The height of a bin is encoded by the number of pixels.

Suppose the histogram is allowed to occupy NP = S · S pix-

els on the screen. Bin hi should occupy approximately hi ·NP

pixels on the screen. In general this is a real number and

not an integer. Therefore we must round this value to get

the exact number of pixels pi for bin hi. Here we note that

∑
n
i=1 pi = NP must be satisfied. This implies that the round-

ing is not as trivial a task as it first seems.

Example 1: n = 3, h = ( 1
3 ,

1
3 ,

1
3 ), and NP = 10. After

rounding each bin occupies 3 pixels. One pixel is still un-

occupied.

Example 2: n = 3, h = ( 1
4 ,

1
4 ,

1
2 ), and NP = 10. After

rounding two bins occupy 3 pixels, and one bin occupies 5

bins. There is not enough space for 11 pixels.

A “good” rounding should satisfy

n

∑
i=1

pi = NP. (1)

In order to specify the quality of the “good” rounding we use

a least-square approach which corresponds to the Euclidean

Distance between the required amount and the actual amount

of pixels:

n

∑
i=1

(

hi−
pi

NP

)2

→min (2)

Furthermore it must be satisfied that each non-zero bin gets

at least one pixel:

pi > 0 ⇐⇒ hi > 0 (3)

Summarizing: The equations (1), (2), and (3) require that

the percentage of pixels for bin i should represent the actual

value of hi to the best possible extent.

The equation (2) is known as the integer least-squares

problem as well as the short vector problem. These prob-

lems are known to be NP-hard [Ajt98, HV02]. Equation (2)

has the form

min
p∈Zn
‖h−H p‖2 (4)

where H = ( 1
NP

, . . . ,
1

NP
) is diagonal. To solve equation (4)

it is sufficient to solve the unconstrained least-squares prob-

lem and then round pi to the nearest integer, because H is

diagonal. But in our case p is constrained by equation (1)

and (3). Therefore we developed a simple greedy algorithm

in order to determine the best number of pixels for each bin.

This algorithm is given in Figure 3. Basically the algorithm

assigns an initial number of bins. If there is still an unoccu-

pied pixel, the pixel is assigned to the bin which would yield

the minimal value for (2). We note that it is possible that two

bins with the same height may be represented by numbers of

pixels which differ by 1.

Until now we have done the following: We mapped each

data item to its grid cell. For each grid cell the histogram is

computed, and for each bin the number of pixels required to

visualize a particular bin is computed. What remains to be
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{h is the histogram as defined in the text}

{p is the vector of dimensionality n}

{pi is the number of pixels for bin i}

counter← 0 {number of bins i with hi > 0}

for all bins i do

if hi > 0 then

pi← 1

counter← counter +1

else

pi← 0

end if

end for

for all bins i with hi > 0 do

pi← pi + b(NP− counter) ·hic
end for

while ∑
n
i=1 pi < NP do

j← argmink∈{1,...,n},hk>0
(

(hk−
pk+1
NP

)2 +∑i∈{1,...,n}\{k},hi>0(hi−
pi

NP
)2

)

p j← p j +1

end while

Figure 3: The algorithm to determine the number of pixel

for every bin.

done is to specify how the histogram and the bins are visu-

alized, i.e., we need to discuss how the pixels are mapped to

the square of size S×S.

We use the concept of space-filling curves in order to map

the bins to the pixels of the image. The idea is to draw the

p1 pixels of the first bin at the first p1 locations on the curve,

to draw the next p2 pixels of the second bin on the locations

p1 + 1, . . . , p1 + p2 of the curve and so on. Examples for

space filling curves [Sag94] include the Hilbert Curve, the

Peano (Z) Curve as well as the Column-wise Scan or the

Column-wise Snake Scan. For our purpose we decided to

use the Column-wise Snake Scan (a to-and-fro method). It

is an intuitive mapping, easy to understand for the analyst

and it avoids jumps between pixels which correspond to the

same bin, i.e., regions of pixels of the same color are not

interrupted.

3.2. Incorporating the Support

Until now we did not mention that some grid cells, while

having the same or a similar histogram might have different

support. The support is defined as the number of data items

which belong to a given cell. We use the term support in or-

der to avoid that the term probability distribution refers to

the X ×Y plane as well as the Z attribute. For a successful

data analysis it is important to be able to distinguish between

cells of high and cells of low support - and, at the same time,

perceive the probability distribution of the Z attribute. The

following two possibilities can be used to give the user in-

formation about the support of a particular cell:

The first possibility is to adapt the number of pixels NP

which have to be drawn in order to visualize the histogram.

The value of NP should vary in an interval [Nmin,Nmax]. A

minimum value is needed in order to ensure that cells with

a very low support still have enough pixels to draw the his-

togram as well as that the user is able to perceive those his-

tograms. The support of a grid cell is mapped to this range.

A linear mapping or other transformations which are better

adapted to a given data set can be applied. The advantage

of this approach is that the method proposed so far remains

unchanged. The only change is that the value NP must be

computed for each grid cell.

The second possibility is to let the color represent the in-

dex of a bin and, at the same time, the support of the grid

cell. When using the HSV color model this can be achieved

as follows:

For all colors we assume full saturation. The index of a bin

is mapped to hue, and the support is mapped to the lightness.

An example of a colormap can be found in Figure 8. We suc-

cessfully analyzed data sets with this colormap. We decided

to use this colormap because the colors aqua (cyan), green,

yellow, orange, and red are easy to distinguish - in all cases:

The difference in hue can be recognized (for the same light-

ness), the difference in lightness can be recognized (for the

same hue) as well as different combinations of hue and light-

ness (for different combinations of index and support) are

distinguishable. At this point we note that there is still need

for research to answer the question “How can we map two

parameters to color?” This subject is discussed in [Lev97].

3.3. Special Case NY = 1

The case NY = 1 can be interpreted as follows: The data

items are not projected onto a 2D plane, but rather they are

projected onto a single axis, namely the X attribute. This

opens a new way to represent the support. So far a histogram

is visualized in a square of S× S pixels. Now the histogram

can be visualized in a rectangle of width S and height cor-

responding to the support (where an appropriate minimum

height is used such that cells with a very low support are

still recognizable). The algorithm implementing the space-

filling curves (here Row-wise Snake Scan) needs only mi-

nor changes to handle different heights. The resulting visu-

alization has similarities to Bar Charts or Pixel Bar Charts

[KHDH02]. But the idea to show a probability distribution

inside a bar is a new contribution. An example of this special

case is given in Figure 9.

4. Evaluation

We tested our method with data sets taken from the Na-

tional Health Interview Survey 1993, the Current Popula-

c© The Eurographics Association 2004.



Amir et al / Shape-Embedded-Histograms for Visual Data Mining

tion Survey of 1993 and the UCI Machine Learning Repos-

itory. To demonstrate the visualization of a third variable

we used two data sets. The first one is the nhis93ac data

set (National Health Interview Survey 1993), available at

http://ferret.bls.census.gov. The second one

is the cpsm93p data set (Current Population Survey of 1993

of personal records), available via the Data Extraction Sys-

tem (DES) on http://www.census.gov. The pendig-

its data set, available at http://www.ics.uci.edu/

∼mlearn/MLRepository.html, is used to exemplify

how to analyse class distributions. For each of those data sets

we use an individual colormap which is adapted to the task

at hand.

4.1. Visualizing a 3rd Dimension

The first example of our visualization is taken from the NHIS

data set and is shown in Figure 5. The selected attributes are

Age (X), Weight (Y ), and Doctor Visits in Past 12 Month (Z).

The X and Y attributes are mapped linearly to grid coordi-

nates. For the sake of small resolution images in papers we

mapped X and Y to the range of [1,20]. We note that one

can increase the number of grid cells. Our experiments show

that a grid size of 50 by 50 gives good results. Further on

we note that changing the grid size only slightly changes the

results perceived from the visualization. The range of the Z

attribute is from 0 to 997. We chose a nonlinear discretiza-

tion in order to reflect that many people visited the doctor

only a few times per year, but for the other people the num-

ber doctor visits is widespread. The resulting histogram is

shown in Figure 4.

The first visualization is shown in Figure 5. The amount

of different colors in a given cell represents the histogram

of doctor visits for that cell. Therefore one can recognize

dependencies between age, weight and the number of doc-

tor visits. For instance, this visualization tells that increasing

age as well as increasing weight results in a higher number

of doctor visits per year. This is because the amount of red

and orange is increasing in the upper right region of the im-

age. For comparison the well-known scatterplot is shown in

Figure 6.

One disadvantage is, that the support of the cells in a grid

defined by age and weight is not represented in the visu-

alization. Therefore the user can not know where and how

the data items are distributed in the grid. In this example

we show how to encode the support into the lightness of the

color. The corresponding visualization is shown in Figure 7.

Altogether three levels of support are encoded. The bottom

left corner is the region with the highest support. One can

recognize two very light cells (corresponding to the highest

support) and one cell of medium lightness (corresponding to

medium support). When verifying this isolated location we

found that this region corresponds to children, and that this

region covers about a quarter of the data. The large area in

the center of the image contains cells with low support, but

Histogram of Doctor Visits

Doctor Visits

P
ro

b
a

b
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it
y

0
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0
0
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5
0
.1

0
0
.1

5
0
.2

0
0
.2

5
0
.3

0
0
.3

5

x=0 x=1 1<x<=5 5<x<=10 10<x

Figure 4: The histogram shows the discretization of the Doc-

tor Visits in Past 12 Month attribute into 5 bins. A nonlinear

mapping is applied. The histogram is used in the experiments

of Figure 5 and Figure 7. The original range is mapped to

[0,4], and the mapping is given at the x-axis.

x = 0 x = 1 1 < x ≤ 5 5 < x ≤ 10 10 < x

Figure 5: An example taken from the NHIS data set. X cor-

responds to age and Y corresponds to weight. The embed-

ded histogram shows the distribution of doctor visits. The

visualization shows that increasing age as well as increas-

ing weight results in a higher number of doctor visits per

year. The colormap used is shown at the bottom, where aqua

(red) colors correspond to a low (high) number of doctor

visits.
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Figure 6: The scatterplot corresponding to the data shown

in Figure 5 and 7. The overplotting is 85%. With respect to

Shape-Embedded-Histograms there is no information about

a third variable or the density. Note that a weight of zero

means children.

it represents the majority of the data. There are two cells of

medium support. The level of support is simply computed by

dividing the range of all support values into 3 equally sized

intervals.

The colormap used for Figure 7 is shown in Figure 8. For

the highest level of support we use maximum lightness, and

the number of doctor visits (the index of the bin) is repre-

sented by hue. The hue ranges from aqua (cyan) for 0 doctor

visits, over green, yellow, orange to red for the highest num-

ber of doctor visits. The colormaps for the remaining two

levels of support are obtained by reducing the lightness: The

darker the color the lower the support.

4.2. Special Case NY = 1

The next example is taken from the CPSM data set and is

shown in Figure 9. Here we demonstrate the special case

where NY = 1. In this case we can intuitively represent the

amount of data inside each grid cell by the size (that is, the

height) of the region where the histogram is embedded.

The selected attributes are Age for X and AGI (Adjusted

Gross Income) for Z. That means, the distribution of AGI for

the different intervals of Age is shown. The range of Age is

[0,99] and we divided the range in ten intervals of length

10. The range of AGI is [−9.999,99.999]. We mapped all

values smaller than 0 to zero (approximately 0.1% of the

data), the value 0 to one (approximately 50% of the data),

and the interval [1,99.999] is divided into eight equi-width

buckets.

Figure 7: This visualization corresponds to Figure 5 which

does not show any information about the support of a spe-

cific cell. In this figure this is achieved by using different

values for lightness. Three levels of support are shown. The

colormap is explained in Figure 8.

low medium

density

high

10 < x

5 < x ≤ 10

1 < x ≤ 5

x = 1

x = 0

Figure 8: This is the colormap used for Figure 7. Different

levels of lightness correspond to different levels of support.

Hue represents the index of the bin (that is, the number of

doctor visits).

Figure 9 shows that for middle-age people the fraction of

high AGI is larger than for other people. It also shows that

young people have a higher risk to have negative AGI, which

can be seen by the red pixels. From the height of the differ-

ent blocks it is obviously that middle-age and young people

represent the biggest portion of the data set.

4.3. Analyzing Class Distributions

One data set from the UCI Machine Learning Repository

is the pendigits data set. This data set contains 7494 data

items and 16 dimensions which describe handwritten digits.

For every attribute the range is [0,100], therefore we would
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Figure 9: An example taken from the CPSM data set. The

horizontal axis corresponds to age. The height of different

bins (upper part) reflects the amount of data in each bin. In-

side each bin the distribution of AGI is shown. The colormap

shown on the left side maps low (high) AGI to yellow (black)

colors, whereas AGI below zero is mapped to red. The lower

part does not map the support to the height of the bin. This

allows easier comparison of different bins.

not apply any transformation for the selected X , Y , and Z

attributes. But for the purpose of the paper we mapped the

variables to the interval [1,10] in order to improve the read-

ability of the figures.

The data items of the pendigits data set can be interpreted

as follows: The movement of the pen when writing a digit

was recorded via a writing tablet. For each digit 8 points

were obtained by spatial resampling which yields a feature

vector of length 16. The first two attributes correspond to the

x- and y-coordinates where a person starts to write a digit,

whereas the last two attributes correspond to the x- and y-

coordinates where a person stops writing the digit. Some re-

constructed digits are shown in Figure 10. We present exam-

ples for every digit and note, that there are major differences

in writing digits between Europe (where the data set comes

from) and the US. This is shown in Figure 11. In particular

this applies for the digits 1 and 7. Further more we note that

some digits can not be written without lifting the pen. In the

US there are 2 such digits (digit “4” and “5”) and in Europe

3 such digits (digit “4”, “5”, and “7”). For this reason the

digit “5” looks like the digit “6” in Figure 10.

Because the data set is labeled, we would like to see if

there are similarities in how different people tend to write

digits. In particular we would like to know where (on the

writing tablet) different persons tend to start to write a spe-

Figure 10: Some digits reconstructed from the pendigits

data set. The solid circle identifies the point where a per-

son starts to write a digit, and the square identifies the point

where a person stops writing the digit. Those points can be

easily and reliable reconstructed from the pendigits data. In-

termediate points are identified by circles and the direction

of writing is shown by arrows. Note that points where writing

is interrupted (e.g., when writing “5”) can not be identified.

Figure 11: Writings of the digits. The upper row represents

the European style, the lower row represents the US style.

cific digit as well as stopping writing the digit. We are able

to accomplish this by plotting the first two attributes (the x-

and y-coordinates where the pen hits the tablet the first time)

as well as the last two attributes (the x- and y-coordinates

where the pen is lifted) and to color the plotted data items

corresponding to their class label which represents the digit.

Because there is considerable overplotting in the projec-

tions it is impossible to see any trustworthy patterns. This is

shown in Figure 14. Our technique helps to overcome this

situation. At a given location the histogram of the class dis-

tribution is drawn. Figures 12 and 13 show the resulting vi-

sualizations.

The long vertical yellow region in Figure 12 corresponds

to the digit 1. That means, usually a person starts to write

the digit 1 at the left border of the image. Here we have to

note that the digits are normalized in order to make the repre-

sentation invariant to translations and scale distortions. The

places where a person starts to write the other digits can be

identified with the colormap given in Figure 12.

Analogous is Figure 13 where one can identify the posi-

tion where a person ends the writing of a digit. For instance

the digit 2 (represented by red) typically ends at the bottom

right corner of the image. This figure additionally gives an
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Figure 12: This visualization shows the locations where

people tend to start to write different digits, i.e., the location

where the pen hits the paper is shown. The coordinates in

the visualization correspond to coordinates of the tablet. The

amount of digits which start at a given location (grid cell)

is represented by the embedded histogram. The colormap is

shown at the left side.

example of how to incorporate the support. Narrower blocks

correspond to cells with a low support, but square or al-

most square-like blocks correspond to cells with a high sup-

port. The decision to represent different levels of support by

the histogram size histogram is more appropriate than using

lightness, because changing the lightness would result in too

many colors.

One can verify those observations with Figure 10 where

we reconstructed some digits. In order to compare our vi-

sualization technique, we present a “normal” scatterplot in

Figure 14. While the user gets a first impression of the data

the overplotting of points is fairly high.

Some of the colors in Figure 12, 13, and 14 are hard to

distinguish, i.e., it is hard to distinguish the classes. Here we

mention that 10 classes is a fairly high number of classes to

visualize.

5. Conclusions

In this paper we presented a technique which makes it pos-

sible to recognize the distribution of a third attribute in the

2D projection screen, spanned by two attributes. Our exper-

iments show that this is useful for analyzing the class distri-

bution as well as dependencies between three variables. We

have shown that by extending the concept of Pixel Validity,

we are able to overcome the problems of overplotting or oc-

clusion.

Figure 13: This visualization corresponds to Figure 12, but

instead of the first point the last point (the point where the

pen is lifted) is in focus. The visualization takes care of the

support as explained in the text. The colormap is shown at

the left side.

Figure 14: This scatterplot corresponds to Figure 12. The

overplotting is 40%. The same colormap as in Figure 12 and

13 is used.
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Our future research is directed by the fact that there are

many combinations of three attributes, namely
d·(d−1)

2 ·(d−
2) where d is the dimensionality of the data set. Not all of

them have to be useful for an exploratory analysis. Therefore

we want to develop criteria which can help to select the most

interesting visualizations.

An important question is, how to map more than one pa-

rameter to color. In our case this means: “How can we map

the combination of histogram bin and support to the color?”

That means, we need a colormap which makes it possible to

recognize the histogram information as well as the support

of the corresponding cell. Increasing the number of support

levels and/or the number of bins and, at the same time, hav-

ing well-distinguishable colors is a challenging task.

The integration of Shape-Embedded-Histograms into sys-

tems for an exploratory data analysis is a goal of our future

work. The availability of information about an additional at-

tribute in two-dimensional plots should lead to a better qual-

ity of the exploration. Experiments with potential users are

needed in order to show the success of the integration.
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