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Abstract

In many application domains, data is collected and referenced by geo-spatial location. Spa-
tial data mining, or the discovery of interesting patterns in such databases, is an important
capability in the development of database systems. A noteworthy trend is the increasing
size of data sets in common use, such as records of business transactions, environmental
data and census demographics. These data sets often contain millions of records, or even
far more. This situation creates new challenges in coping with scale.

For data mining of large data sets to be effective, it is also important to include humans
in the data exploration process and combine their flexibility, creativity, and general knowl-
edge with the enormous storage capacity and computational power of today’s computers.
Visual data miningapplies human visual perception to the exploration of large data sets.
Presenting data in an interactive, graphical form often fosters new insights, encouraging
the formation and validation of new hypotheses to the end of better problem-solving and
gaining deeper domain knowledge. In this paper we give a short overview of visual data
mining techniques, especially for analyzing geo-spatial data. We provide examples for ef-
fective visualizations of geo-spatial data in important application areas such as consumer
analysis and census demographics.
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1 Introduction

Progress in technology allows computer systems to store and exchange datasets that
were, until recently, considered extraordinarily vast. Nowadays, almost all transac-
tions of everyday life, such as purchases made with credit cards, web pages vis-
ited, or telephone calls made are recorded by computers. This data is collected for
its potential value in providing a competitive advantage to its holders. Government
agencies also provide a wealth of statistical information that can be applied to prob-
lems in public health and safety, and combined with proprietary data to increase its
value.

Data mining is the extraction of interesting patterns or models from observed data.
Finding valuable details that reveal fine structures hidden in these already large and
ever-growing data sets is difficult. With current data management systems, it is only
possible to directly view very small portions of such data. With little possibility for
exploring the full volume of data that was collected for its potential value, the data
becomes useless and databases become ’data dumps’.

A positive trend is that visual feedback plays an increasing role in data mining.
Presenting data in an interactive, graphical form often fosters new insights and
encourages the formation and validation of new hypotheses, to the end of better
problem-solving and deeper domain knowledge. Typically, a data analyst first spec-
ifies some parameters to restrict the search space, then runs a data mining algorithm
to extract potentially interesting patterns, and examines the results graphically. For
data mining to be effective, it is important to include humans in the data explo-
ration process, combining their flexibility, creativity, and domain knowledge with
the storage capacity and computational power of current computer systems. Visual
data exploration thus aims at involving humans closely in data exploration, apply-
ing their perceptual abilities to the problem. Visual data mining techniques have
proven to be essential in exploratory data analysis, and have high potential for the
discovery of interesting patterns in very large databases.

There are many ways to approach data mining problems, including creating statisti-
cal models, clustering, and finding association rules, but in practice when data with
geographic attributes are involved, it is often important to find relationships involv-
ing location. Consider, for example: credit card purchase transactions including
both the address of the place of purchase and of the purchaser; telephone records
including addresses or cell phone base antennae locations; space satellite remote
sensed data; census and other government statistics with addresses or other geo-
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graphic indexes for residents; or records of property ownership based on physical
locations. Often, discovering spatial patterns is crucial for understanding these data
sets. Spatial data mining is the branch of data mining that deals with this problem.

2 Visual Data Mining

Visual data exploration often follows a three step process:Overview first, zoom and
filter, and then details-on-demand(which has been called the Information Seeking
Mantra (1)). In other words, in exploratory data analysis (EDA) of a data set, an
analyst first obtains an overview. This may reveal potentially interesting patterns
or certain subsets of the data that deserve further investigation. The analyst then
focuses on one or more of these, inspecting the details of the data.

Visualization technology is essential for presenting overviews and selecting inter-
esting subsets. For example, it is often helpful to simultaneously show the overview
while focusing on subsets in a different type of visualization. An alternative is to
distort the overview to focus on the interesting subsets. This can be done by allo-
cating a larger fraction of the display to the interesting subsets in some way, while
decreasing the area used for less interesting items. Good overviews of visualization
techniques can be found in several recent books (2; 3; 4; 5) and a survey article (6).
Similar techniques may apply to “drilling down” to inspect details of individual
data items.

Visualization technology not only provides the base visualization techniques for all
three steps, but also bridges the gaps between them. Visual data mining can thus
be seen as a hypothesis generation process; the visualizations of the data allow the
data analyst to gain insight into the data, and thereby develop and confirm new hy-
potheses. The verification of hypotheses may also be achieved through automatic
techniques from statistics, pattern recognition, or machine learning, as a comple-
ment to visualization.

Some of they key advantages of visual data exploration over automatic data mining
techniques alone are:

• yields results more quickly, with a higher degree of user satisfaction and confi-
dence in findings

• are especially useful when little is known about the data and exploration goals
are vague, because the analyst guides the search and can shift or adjust goals on
the fly

• can deal with highly non-homogeneous and noisy data
• can be intuitive and require less understanding of complex mathematical or sta-

tistical algorithms or parameters
• can provide a qualitative overview of the data, allowing unexpected phenomena
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to be isolated for further quantitative analysis

These factors make visual data mining indispensable in conjunction with automatic
pattern extraction techniques. This is no less true for very large data sets, but more
sophisticated, scalable visualization techniques may be needed. In the next sections,
we show that the involvement of humans in data mining, and the application of hu-
man perceptual ability to the analysis of large data sets can provide more effective
results in the mining of geo-spatial data sets.

3 Spatial Data Mining

Spatial data describes objects or phenomena with specific real-world locations.
Large spatial data sets occur naturally when accumulating many samples or read-
ings of phenomena in the real world while moving through two dimensions in
space. Spatial data mining methods can be applied to understand spatial phenomena
and to discover relationships between spatial and non-spatial data.

A very common approach to analyzing geo-spatial data has been to apply stan-
dard statistical analysis methods. Statistical analysis is a well understood area, and
has contributed many practical algorithms. A significant problem in applying sta-
tistical methods to spatial data is that the models often assume or require statisti-
cal independence within the spatially distributed data. The difficulty is that spatial
data items are often interrelated – objects are influenced by other, nearby objects.
Regression models are applied to overcome this problem, but the overall analysis
process is complicated.

In the development of modern data mining, researchers have proposed various au-
tomated data mining algorithms for discovering patterns in large spatial databases.
These automated data mining algorithms combine methods from more mature re-
search areas within statistics, pattern recognition and machine learning (see (7; 8)
for an overview).

While automated data mining algorithms are indispensable for analyzing large geo-
spatial data sets (9; 10), they often fall short of completely satisfactory results.
Often automatic approaches are no better than simple visualizations of data on the-
matic maps. Thematic maps show spatial relationships in relation to a quantitative
or qualitative data theme. Different thematic maps are examined to discover various
relationships, for example, to compare median household with the general pattern
of income and occupations in a geographic region.

Interactive data mining based on a synthesis of automatic and visual data mining
may not only yield better results, but offer a higher degree of user satisfaction and
confidence in the findings (7). Practical analysis may involve multiple parameters
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shown on multiple maps. If all maps in such a collection map the data with identical
coordinates, it may be possible to quickly relate parameters and to detect local
correlations, dependencies, and other interesting patterns. But when large data sets
are drawn on a map, identifying local patterns is greatly confounded by undesired
overlap or overplotting of data points in densely populated areas, whereas lightly
populated areas are nearly empty.

4 PixelMaps

This paper describesPixelMaps, a new way of displaying dense point sets on maps,
which combines clustering and visualization. An abbreviated description of Pix-
elMaps was published earlier (11). In brief, the idea is to first preprocess the data by
kernel-density-based clustering, based on the geometric parameters (longitude, lat-
itude) and one designated statistical parameter. This clustering is crucial to making
important information visible by achieving pixel coherence with respect to the se-
lected parameter.1 In the next step, data points are assigned to unoccupied pixels.
The assignment is done cluster by cluster, proceedings from the the densest to the
least dense region of conflicting clusters. Within each region, the smallest clusters
are placed first, then proceeding to larger clusters until all the points are positioned.
Displayed pixels are colored according to the statistical parameter. Other statistical
parameters may be shown on additional maps, with data points at the same posi-
tions as in the first map, but coloring pixels by other parameters. Such multiple
linked views help to compare different statistical parameters, and may reveal lo-
cal correlations, dependencies and other trends. Unfortunately a full evaluation of
the density function is prohibitively expensive. This motivates work on efficient
heuristic solutions.

4.1 Previous Approaches

There are several approaches to coping with dense geographic data already in com-
mon use (6). One popular method is 2.5D visualization showing data points aggre-
gated up to map regions. This technique is in commercial systems such as Visu-
alInsight’s In3D (12) and ESRI’s ArcView (13). In the example generated by In3D
(figure 1(c)), we can readily see that because of aggregation, important information
is lost if we are looking for patterns other than the coarsest ones. An alternative
approach, showing more detail, is the visualization of individual data points as bars
on a map. This technique is embodied in systems such as SGI’s MineSet (14) and
AT&T’s Swift 3D (15). A problem here (figure 1(d)) is that too many data points

1 Pixel coherence means similarity of adjacent pixels, which makes small pixel clusters
perceivable.
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are plotted at the same position, and therefore only a small portion of the data is
actually displayed. Moreover, due to occlusion in 3D, some of the data is not visible
unless the viewpoint is changed, so it cannot all be seen at the same time. One ap-
proach that does not aggregate the data, but avoids overlap in the two-dimensional
display, is Gridfit (16). The idea is to reposition pixels locally to prevent overlap.
Figure 1(b) shows an example. A problem with Gridfit is that in areas with high
overlap, the repositioning depends on the ordering of the points in the database,
which may be arbitrary. That is, the first data item found in the database is placed at
its correct position, while subsequent overlapping data points are moved to nearby
free positions, and so are locally quasi-random in their placement.

4.2 Problem Definition

The problem of visualizing geo-referenced data can be described as a mapping of
input data points, with their associated original positions and statistical attributes, to
unique positions on the output map. The mapping function must satisfy three main
constraints. In the following, we formally define this problem. LetA be the set
of input pointsA = {a0, . . . ,aN−1} , whereai = (ax

i ,a
y
i ) is the original position of

each point andS1(ai), . . . ,Sk(ai) are its associated statistical parameters. Because
A is assumed to be large, it is likely that we have many data pointsi and j, for
which the original positions are very close or even the same, i.e.ai ≈ a j (see figure
2(a)). Let the data display space (screen or window space)DS⊂ Z2 be defined as
DS= {0, . . . ,xmax−1}×{0, . . . ,ymax−1}, wherexmax andymax are the maximal
extension of the window. The goal of the algorithm is to determine a mapping
function f of the original data set to a solution set

B = {b0, . . . ,bN−1}, 0≤ bx
i ≤ xmax−1, 0≤ by

i ≤ ymax−1

such that
f : A→ B, f (ai) = bi ∀i = {0, . . . ,N−1},

i.e. f determines the new positionbi of ai . The mapping function must satisfy three
constraints:

(1) No-overlap Constraint
The most important constraint is that all pixels are visible, which means that
each must have a unique position (see figure 2(b)). Formally, this can be ex-
pressed as

i 6= j ⇒ bi 6= b j ∀i, j ∈ {1, . . . ,N−1}
(2) Position Preservation Constraint

The second constraint is that the new positions should be ‘as close as possible”
to their original ones. This can be measured by taking the absolute distance
of the points from their original positions (see figure 2(c)) or as the relative
distance between the data points (see figure 2(d)), leading to the following
optimization goals:
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• absolute position preservation

N−1

∑
i=0

d(ai ,bi)−→min

• relative position preservation

N−1

∑
i=0

N−1

∑
j=0,i 6= j

(d(bi ,b j)−d(ai ,a j))
2−→min

The choice between relative and absolute position preservation may depend
on the application. The distance functiond can be defined by anLm-norm
(m= 1 or 2)

d(bi ,b j) = m
√

(bx
i −bx

j)m+(by
i −by

j)m

.
(3) Clustering Constraint

The third constraint is clustering on one of the statistical attributesSi , i ∈
{0, . . . ,k}. The idea is to present the data points such that those with high
similarity in Si are positioned near each other.2 In other words, points in the
neighborhood of any given data point should have similar values, which is
needed for pixel coherence (see figure 2(e)). To formalize this constraint, we
need to define the neighborhoodN H of a data pointai , and a distance function
dS on the statistical attributeS.

N−1

∑
i=0

∑
b j∈N H(bi)

dS(S(bi),S(b j))−→min

This neighborhood function sums up all the differences onSbetween each
data point and its neighboring points, and may be defined as

N H(bi) = {b j |d(bi ,b j)< ε}.

Because the statistical attribute may have a highly non-uniform distribution,
in some cases it will be necessary to perform non-linear scaling ofSbefore ap-
plying the distance function. Situations may also occur where there are many
similar points in some areas while in others there are only a few. In this case,
it may be necessary to varyε in the area under consideration. We will return
to this idea when we introduce the algorithm in section 4.4.

4.3 Trade-Offs and Complexity

While it is not hard to find a good solution for any of the three constraints taken
individually, they are difficult to optimize simultaneously. Given that pixels must

2 We assume that the clustering depends on the statistical attributeS∈ {S0, . . . ,Sk}.
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not overlap as specified by constraint 1, the other two constraints often conflict.
Therefore, our goal will be to find a good trade-off between constraints 2 and 3. We
define a good trade-off by the following optimization problem:

a·
N−1

∑
i=0

d(ai ,bi)+b·
N−1

∑
i=0

N−1

∑
j=0,i 6= j

(d(bi ,b j)−d(ai ,a j))
2

+c·
N−1

∑
i=0

∑
b j∈N H(bi)

dS(S(bi),S(b j))−→min

a,b,c∈ R

Unfortunately, this is a complex optimization problem and likely to be NP-hard. In
general, it is difficult to find good solutions by exact techniques. In dense areas, for
example, it is likely that there are data points that, although close, have different
values ofS. In a non-overlapping display, it is only possible to satisfy either con-
straint 2 or 3. If constraint 2 is optimized, original locations are preserved as much
as possible, but there may be little pixel coherence and the visualization may not be
very informative (see figure 1(b)). Conversely, if constraint 3 is optimized, the data
is clustered according toS, but locations may be highly inaccurate.

4.4 The PixelMap Algorithm

The PixelMap algorithm solves the optimization problem by a hybrid cluster and
visualization approach, based on kernel density estimation and an iterative scheme
for local repositioning of data points. In this section we will describe the algorithm.

4.4.1 Basic Idea

The PixelMap algorithm starts by finding a three-dimensional kernel-density-estimation-
based clustering in the dimensions(ax

i ,a
y
i ,S(ai)). Kernel density is a way of esti-

mating the density of a statistical value(S(ai)) at all locations in a region based on
(ax

i ,a
y
i ). The clustering defines sets of related pixels based on both the two spatial

dimensions and the statistical parameter. The idea is to place all data points in the
same cluster at proximate display pixels. The next step consists of a second kernel
density estimation based clustering on the two geographical dimensions(ax

i ,a
y
i ) to

find dense areas. The information obtained in the two clustering steps drives the
iterative positioning of data points. Starting with the densest region, all data points
belonging to the same cluster are placed at neighboring pixels without overwriting
previously occupied ones. If multiple clusters overlap, the smallest cluster is po-
sitioned first. After all pixels in one area are positioned, the algorithm applies the
same procedure to the clusters in the next densest region, until all data points are
positioned. Outliers and very small clusters, which would otherwise be treated as
noise, are at last positioned at the remaining free pixels.
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Procedure PixelMap Algorithm
INPUT

D: Geo-Spatial Data Set
DS : Display Space

OUTPUT
PixelMap

KDE←− DetermineKernelDenEst3D(D)
P = {Pi , i = 1..n}←− DeterminePeaks(KDE)
C = {Ci , i = 1..n}←− DetermineClusters(P)
forall Ci ∈C do

if |Ci |<Min or Variance(Ci , Centroid(Ci)) >
√
|Ci | then

CNoise←−CNoise∪Ci

C←−C\Ci

endif
endfor
Den2D←− DetermineDensity2D(D,C)
SortC←− sort C according toDen2D(Ci) (decreasing)
forall cl ∈ SortCdo

if |cl| pixels are free aroundCentroid(cl) in DS then
SetPixels(cl, Centroid(cl), DS )

else
FreePos←− FindClosestFreePixels(Centroid(cl), |cl|, DS )
SetPixels(cl, FreePos, DS )

endif
forall cl ∈CNoisedo

forall p∈ cl do
if DS[pos(p)] == emptythen

SetPixel(p, pos(p), DS )
else

FreePos= FindClosestFreePixel(p, pos(p), DS )
SetPixel(p, FreePos, DS )

endif
endfor

endfor
endfor

EndProcedure

4.4.2 Kernel Density Estimation-based Clustering

Kernel Density Estimation (KDE) is based on the notion that the influence of each
data point can be formally modeled using a mathematical function, called a kernel.
For more details on KDE see other references (17; 18; 19). Typical examples of
kernels are parabolic, square wave and Gaussian functions. The kernel function is
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applied to each data point; an estimate of the overall density of the data space can
be calculated by taking the sum of the influences of all data points. Clusters can be
then mathematically determined by identifying local maxima of the overall density
function, which can be found by a hill-climbing procedure. If the overall density
function is continuous and differentiable at every point, the hill-climbing procedure
may be guided by a standard gradient method. As an example, in the following we
show several visualizations of US Year 2000 census data (x,y, median household
income). Direct, static visualization of the three-dimensional density function is
difficult, since the data is four dimensional. The examples of the density function
shown in figures 3(a) and 3(b) result from the two dimensions longitude-income
and latitude-income, respectively, both based on a Gaussian kernel. To show both
geographical dimensions at once, we use a space-filling curve (figure 3(c)) to lin-
earize the two-dimensional geographic space and plot that on the x-axis of figure
3(d). Note that the use of a space-filling curve (such as a Hilbert curve) leads to ge-
ographically clustered points. In figure 3(c), we have labeled the regions of several
metropolitan areas. PixelMap allows varying the degree of clustering by changing
kernel functions to adjust the definition of the neighborhood of a point. An advan-
tage is that the placement of points in the visualization is not made individually;
in fact all points within a specified neighborhood are considered. Small alterations
in the data can be either smoothed away or, contrarily, emphasized, if needed by a
particular application.

4.4.3 Complexity of the PixelMap Algorithm

Computing the density at a given point involves making a full database scan. More-
over, complex mathematical operations are performed. Thus computing the exact
density function is time consuming, even when the database fits in main memory.
To be more precise: computing the density at each point is quadratic in the number
of points in the database. To speed up this process, we use a classical grid-based
approximation. That is, when finding the density atp, only neighboring points to
p are taken into account, because points distant fromp do not influence the local
density. So only points in the grid cell containingp (and, as specified by parame-
ters, some additional neighboring cells) are accessed to calculate the density.
Because our goal is to visually cluster many points according to a statistical pa-
rameter, we must anticipate a large number (O(n)) of relatively small clusters.
This requires computing the kernel density estimation at a fine-grained level, with
many peaks that must be discovered in the hill-climbing procedure. In addition, the
smoothness (σ) of the kernel function may vary with the spatial density of the input
pont set, and different kernel function are needed in the spatial and statistical di-
mensions. These issues make it computationally prohibitive to directly implement
the PixelMap algorithm for large data sets.

The next section describes an efficient heuristic algorithm to cope with the com-
plexity of computing the three-dimensional kernel-density-estimation-based clus-
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tering in (ax
i ,a

y
i ,S(ai)) and the two-dimensional kernel-density-estimation-based

clustering in(ax
i ,a

y
i ).

4.5 Fast-PixelMap Algorithm - An Efficient Implementation of the PixelMap Al-
gorithm

In this section, we present Fast-PixelMap, an efficient algorithm that combines the
advantages of gridfiles and quadtrees into a new data structure. This data struc-
ture approximates the kernel density functions to enable placement of data points
at unique positions on the output map, as previously described. The combination
supports recursive partitioning of Euclidian 2D space, with automatic smoothing
depending onx,y density and an array-based 3D density estimation. 4.2.

4.5.1 Basic Idea

A key feature of Fast-PixelMap, as compared with the original PixelMap algorithm,
is the rescaling of parts of the map to better fit dense point clouds to unique output
positions. This is effective because spatial data sets in the real world are often highly
non-uniformly distributed. The idea works as follows.

First, the Fast-PixelMap algorithm approximates the two-dimensional kernel-density-
estimation based clustering in the two spatial dimensions(ax

i ,a
y
i ) by finding a re-

cursive partitioning of the dataset in 2D screen space, applying split operations
according to the spatial parameters of the data points and the extensions of the 2D
display space. The goal is (a) to find areas with high density in the two geomet-
ric dimensions(ax

i ,a
y
i ) and (b) to allocate enough pixels to place all data points of

these dense regions at unique positions close to each other. The top-down partition-
ing of the dataset and 2D screen space results in distortion of certain map regions.
That means, however, virtually empty areas will shrink and dense areas will ex-
pand to achieve pixel coherence. For efficient partitioning of the dataset and the 2D
screen space, and efficient scaling to new boundaries, we propose a new data struc-
ture called Fast-PixelMap. The Fast-PixelMap data structure is a combination of
gridfiles and quadtrees to realize the split operations efficiently in both data and 2D
display space. Our new data structure enables efficient determination of old (bound-
aries of the gridfile partition in the dataset) and new boundaries (boundaries of the
quadtree partition in the 2D screen space) in each partition. The old and the new
boundaries determine the local rescaling of various map regions. More precisely, all
data points within the old boundaries will be relocated to the new positions within
the new boundaries. The rescaling reduces the size of virtually empty regions and
reallocates unused pixels to dense regions.

Procedure Fast-PixelMap Algorithm
INPUT
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D: Geo-Spatial Data Set
DS : Display Space

OUTPUT
PixelMap

displaybound←− {min(DS .x),max(DS .x),min(DS .y),max(DS .y)}
BuildFPM(D, DS , displaybound, 0,|D|, 0)
L ←− F P M .leafnodes()
L ←− sort L according to|Li | with Li ∈ L
forall Li ∈ L do

DeterminePath(Li)
DetermineBoundaries(0, path,F P M )
P←− Scale2NewBoundaries(D[Li .left:Li .right], bound, equalbound)
PixelPlacement(P,DS )

endfor
EndProcedure

Second, the Fast-PixelMap algorithm approximates the three-dimensional kernel-
density-estimation-based clustering in the three dimensions(ax

i ,a
y
i ,S(ai)) perform-

ing an array based clustering for each dataset partition. After rescaling of data
points to the new boundaries, the iterative positioning of data points (pixel place-
ment step), starts with the densest regions and within the dense regions the smallest
clusters are processed first. To determine the placement sequence, we sort all final
gridfile partitions (leaves of the Fast-PixelMap data structure) by the number of
data points contained.

A final step assigns all data points in the gridfile partition to pixels on the output
map in order to provide visualizations which are as position, distance, and cluster-
preserving as possible. The next sections describe the Fast-PixelMap algorithm in
more detail.

4.5.2 The Fast-PixelMap Data Structure

Fast-PixelMap relies on a data structure that combines the gridfile and quadtree in
a single multidimensional array, with storage for the simple array-based clustering
in the third dimension.

A gridfile is a k-dimensional data structure for point access, that splits space into
a non periodic grid. Each spatial dimension is divided by a scaling vectorSi , i =
1. . .k. The scaling vectorSi allows the definition of arbitrary split points for quadtrees.
A quadtree is a degree-4 tree for storing two-dimensional data. The four children
correspond to a subdivision of the 2D screen space into four quadrants (labeled
by points of the compass: NE, SE, SW, NW). The coordinates of the intersections
between the horizontal and vertical subdivision lines define the regions within the
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split step. For geo-related 2D data sets, gridfiles and quadtrees only need two alter-
nating split dimensions, i.e. longitude (x) and latitude (y), so we can treat both data
structures as binary trees. This enables implementing both trees in a single multidi-
mensional array where each array element represents two split operations. In other
words, each array element stores the coordinates of two split points according to the
pertinent split dimensionx or y: (1) coordinates of the split point according to the
geographical parameters (gridfile) and (2) coordinates of the split point according
to the extension of the screen space (quadtree). Moreover, every array element has
additional space for a constant number of classes in the third dimension. Figure 4
shows a sketch of the proposed Fast-PixelMap data structure. The advantage of this
data structure is that the Fast-PixelMap algorithm can determine the old and new
boundaries in timeO(log|DB|) (per section 4.2).

4.5.3 Fast-PixelMap Algorithm

In this section, we describe the Fast-PixelMap algorithm in detail. It has four main
parts:

(1) Recursive top-down construction of the Fast-PixelMap data structure
(2) Array-based clustering
(3) Scaling to New Boundaries / Rescaling certain map regions
(4) Pixel Placement
(5) Polygon Mesh Placement

4.5.4 Recursive top-down construction

First, the Fast-PixelMap recursively builds the new data structure, top-down, using
split operations. This construction starts to split on the first split dimensionx. Then,
in every recursive step, a partition is split into two smaller ones.

Procedure BuildFPM
INPUT

D: Geo-Spatial Data Set
DS : Display Space
displaybound: current boundaries within the display space
left, right: current boundaries within the data set
i: current node index within the tree
level: current split level

OUTPUT
F P M : Fast-PixelMap Datastructure

if level≤MaxLevelor (right− le f t)> 4 then
if (level% 2)== 0 then

D←− sortD according toD.x between[le f t : right]
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else
D←− sortD according toD.y between[le f t : right]

endif
if (level% 2)== 0 then

F P M [i][0]←− DetermineSplit(D[le f t : right].x)
F P M [i][1]←− (displaybound.xmin+displaybound.xmax)/2

else
F P M [i][0]←− DetermineSplit(D[le f t : right].y)
F P M [i][1]←− (displaybound.ymin+displaybound.ymax)/2

endif
if (level% 2)== 0 then

leftbound←− displaybound
leftbound.xmax←−DS [F P M [i][1]]
rightbound←− displaybound
rightbound.xmin←−DS [F P M [i][1]]+1

else
leftbound←− displaybound
leftbound.ymax←−DS [F P M [i][1]]
rightbound←− displaybound
rightbound.ymin←−DS [F P M [i][1]]+1

endif
BuildFPM(D, DS , leftbound, left,D[F P M [i][0]], 2· i +1, level + 1)
BuildFPM(D, DS , rightbound,D[F P M [i][0]]+1, right, 2· i +2, level + 1)

else
forall i ∈ [le f t : right] do

F P M ←− F P M [DetermineClass(D.s[i])+1]+1
endfor
D←− sortD according to|F P M [2 : ]classes+1]| between[le f t : right]

endif
EndProcedure

We apply split operations at low density positions with no more thanω (typically
10%) of (l + r)/2 data points.l andr are the left and the right boundaries of the
gridfile partition. This avoids splitting geo-related 2D clusters, such as big cities.
Figure 5 shows the impact of splitting geo-related 2D clusters to the visualization.
To compute a split and to enable an efficient placement step, the Fast-PixelMap
algorithm sorts the data points within the gridfile partition according to the current
split dimension. The Fast-PixelMap algorithm determine the closest low density
position using a histogram in theω interval of (l + r)/2. In each top-down con-
struction step, we store the coordinates of the two arising split points belonging to
the current split dimensionx or y. The recursion stops when the maximal split level
is reached, or when the number of data points in a partition is fewer than 4 (de-
termined experimentally). In the second step, Fast-PixelMap performs array-based
clustering of all data points in the same gridfile partition according to the statistical
parameter.
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4.5.5 Array-based clustering

The Fast-PixelMap algorithm implements array-based clustering by partitioning the
third dimension into a number of intervals starting with the minimal value. The end
points of each interval are stored in an array starting with the first interval. Each
interval corresponds to a class (for example, income class as defined by the US
Census Bureau), and can be efficiently determined for each statistical value using
binary search. Finally, the pixels are colored according to their class indices. See
Figure 6 for a further illustration of the idea.

4.5.6 Scaling to New Boundaries

The third step of the Fast-PixelMap is to scale all gridfile partitions to their new
boundaries in the 2D screen space. Effectively, all data points will also be scaled
to new coordinates on the output map. Starting with the densest partition, the Fast-
PixelMap algorithm explores the shortest path from each partition to the root ele-
ment in the new data structure.

Procedure DetermineBoundaries
INPUT

level: current level within the data structure
path: split history
F P M : Fast-PixelMap Datastructure

OUTPUT
bound={xmin, xmax, ymin, ymax}: current boundaries within the data set
equalbound={xmin, xmax, ymin, ymax}: current boundaries within the

display space

if level≤MaxLevelthen
if (level% 2)== 0 then

if (path[level+1] % 2) 6= 0 then
bound.xmax←− F P M [path[level]][0]
equalbound.xmax←− F P M [path[level]][1]

else
bound.xmin←− F P M [path[level]][0]
equalbound.xmin←− F P M [path[level]][1]

endif
else

same as x-direction, x and y exchanged
endif
DetermineBoundaries(path, level + 1, bound, equalbound)

endif
EndProcedure
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The shortest path is well defined in binary trees and therefore, as described above,
also in the Fast-PixelMap algorithm data structure. This shortest path describes in
inverse order the split history of each partition, and this split history enables deter-
mination of the old boundaries of the gridfile partition and their new boundaries in
the 2D screen space. In order to determine the old and new boundaries, the Fast-
PixelMap algorithm starts with the reconstruction of the split history with the first
split operation. At each reconstruction step the Fast-PixelMap algorithm determines
the new and old boundaries of the associated partitions, which arise through split
operations, following these rules:

• If the split history runs into the left subtree (left split), set the right boundary
accordingly (see Procedure DetermineBoundaries)

• If the split history runs into the right subtree (right split), set the left boundary
accordingly (see Procedure DetermineBoundaries)

All splits at even levels are split operations in thex dimension, and the rest are
split operations in they dimension. We store the old boundaries in an array called
boundyand the new boundaries in an array calledequalboundand use the formula

new= equalbound.min+(old−bound.min)· (equalbound.max−equalbound.min)
bound.max−bound.min

to scale all data points to their new coordinates.

4.5.7 Pixel Placement Step

The last step of the Fast-PixelMap algorithm is the iterative placing of all data
points at unique positions on the output map, in a way that yields informative vi-
sualizations. Note, that the rescaling of gridfile partitions on the 2D screen space
solves neither the pixel overlap nor the pixel coherence problem. The basic idea
of the pixel placement algorithm is the iterative positioning of all data points, de-
pending on the class they belong to. More precisely, the pixel placement algorithm
divides all classes into two partitions: cluster and non-cluster. To solve the pixel
coherence problem, real clusters in(ax

i ,a
y
i ,S(ai)) are placed first. The pixel place-

ment algorithm computes the variance of all classes to identify real clusters in the
three dimensions(ax

i ,a
y
i ,S(ai)). A class is considered a real cluster if its variance is

less than some constantMaxVariance.

Procedure Pixel Placement
INPUT

P: data points belonging the same partitionP
DS : Display Space

OUTPUT
PixelMap
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forall Pi ∈ P do
if |Pi |<Min or Variance(Pi , Centroid(Pi)) >

√
|Pi | then

CNoise←−CNoise∪Pi

else
C←−C∪Pi

endif
endfor
C←− sort C according|Pi | with Pi ∈C
forall Ci ∈C do

if |Ci | pixels are free aroundCentroid(Ci) in DS then
SetPixels(Ci ,Centroid(Ci))

else
FreePos= FindClosestFreePixels(Ci , Centroid(Ci), DS )
SetPixels(Ci , FreePos, DS )

endif
endfor
forall Ci ∈CNoisedo

if DS [pos(p)] == emptythen
SetPixel(p, pos(p), DS )

else
FreePos= FindClosestFreePixel(p, pos(p), DS )
SetPixel(p, FreePos, DS )

endif
endfor

EndProcedure

Next, the placement algorithm tries to place all cluster points at free positions close
to the cluster’s centroid, without overwriting already-occupied pixels. This second
step is performed starting with the smallest class from the real cluster partition.
Small clusters take the fewest free positions and in practice can often be placed
optimally. To solve the pixel coherence problem and make small clusters visible, all
cluster members are placed close to their centroid. If data points cannot be placed
without overwriting existing pixels, the placement algorithm searches for the next
closest free region to the centroid, in which most of the data points can be placed.
For all other data points, the placement algorithm searches for the closest free pixel
for each. Finally, the placement algorithm continues with the smallest class from the
non-cluster partition to place all data points at free pixels without overwriting the
occupied ones. If a data point cannot be placed, the placement algorithm searches
for the closest free pixel in the solution set. Figure 8 shows the idea of the placement
step and figure 9 displays an example of the described placement in the Manhattan
area. The bipolar colormap encodes the income classes. Blue color is used for low
income and red for high income. The lightness of the color corresponds to the
number of class members. The color usage described above can be seen in figure
9(a).
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4.5.8 Polygon Mesh Placement Step

Often, a map has an associated polygonal mesh of geo-political boundaries that help
in identifying locations. Assuming this mesh is given along with the input points
A, we would like to provide a transformed mesh for the output map. The vertices
of the mesh are handled in a way similar to data points. Each vertex is repositioned
separately: first the cell of the quadtree containing the vertex is found. Then, the
new position of the vertex is calculated by scaling the cells of the quadtree, the
original boundaries in the data set, to the new boundaries in 2D display space.
To calculate the new position of each vertex, the same algorithm as described in
4.5.6 is used. By repositioning each vertex, we iteratively construct the transformed
polygon mesh. For further details on polygon mesh and distortion techniques see
previous work (20).

4.5.9 Complexity

The time complexity of the proposed approach isO(nlog2n) and the additional
space overhead, 0(n+ logn), is negligible. This additional space is needed by the
Fast-PixelMap data structure to store the original data points and a constant number
of split-operations (depending on the maximal split-level).

5 Application and Evaluation

For comparison, we implemented alternative methods of generating PixelMaps
that likewise attempt to optimize the goals presented in section 4.2. We compared
the Fast-PixelMap algorithm with a genetic multi-objective optimization algorithm
(21; 22) and a PixelMap algorithm based on the DenClue clustering algorithm (23)
using both absolute and relative position preservation as defined in constraints 1
and 2 and clustering effectiveness defined in constraint 3. Experiments are con-
ducted using a sample of 30000 points from the United States Year 2000 Census
Median Household Income database (24).

5.1 Efficiency Evaluation

The average number of data points assigned to the same position has a heavy influ-
ence on the performance of the Fast-PixelMap algorithm. To evaluate its efficiency,
we measured computation time based on the sample of 30000 points, with vary-
ing degrees of overlap (number of pixels assigned to the same position). Figure 10
shows, for differing screen resolutions, the corresponding degree of overlap. Fig-
ure 11 shows time-performance curves of the genetic algorithm, Fast-PixelMap,
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and DenClue-PixelMap under varying degrees of overlap. We ran the experiments
on a 700 MHz Intel Pentium-3 computer with 1 GB of main memory. We can eas-
ily see that the computation time of all three methods increases exponentially with
the degree of overlap, and for high degrees of overlap it is nearly impossible to
find solutions for the criteria defined in section 4.2. The results also indicate that
the Fast-PixelMap algorithm outperforms the other two methods for all degrees of
overlap, and is efficient enough to be practical on large spatial data sets.

5.2 Effectiveness Evaluation

More important in visual data mining than the efficiency of computing visualiza-
tions is their effectiveness. This can be evaluated by visual inspection and compar-
ison of the generated displays. It can also be mathematically measured in relation
to the three optimization goals defined in section 4.2. Before presenting the visual
evaluation and applications. we first define the measurement of absolute and rel-
ative position preservation errors and clustering error. The effectiveness was mea-
sured for the same sample of 30000 points from the U.S. Year 2000 Census Median
Household Income database mentioned previously. The measured curves for the ab-
solute and relative position preservation and clustering degree are shown in figure
12. The following facts can be observed.

First, figure 12 shows that the genetic multi-objective optimization algorithm pro-
vides the smallest average deviation from the original position, and so, the small-
est absolute position preservation error. The results show that both PixelMap al-
gorithms (Fast-PixelMap and DenClue-PixelMap) provide similar average devia-
tion from the original positions. The measured error for Fast-PixelMap is slightly
higher. The higher absolute position preservation error can be explained by the lo-
cal rescaling of certain parts of the map. On the other hand, the relative position
preservation error is much lower than for the two other methods. The lower rel-
ative position preservation error can be explained by the fact that dense regions
and virtually empty regions expand or shrink respectively, which allows placing all
data points at pixel positions close to the desired ones. Note that for all three meth-
ods, the absolute position preservation constraint becomes is exponentially costly
to satisfy for higher degrees of overlap. This follows from the fact that the num-
ber of data points assigned to the same pixels increases with the degree of overlap.
That means, however, that the number of available pixels in dense regions rapidly
decreases, and the distance to the next free available pixels grows in an exponential
fashion.

Second, the Fast-PixelMap algorithm provides the smallest average deviation of the
relative position of the data points from each other in comparison with the other two
methods. An interesting result is that the average deviation of the relative position
of the data points to each other of the genetic algorithm fluctuates at high error
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levels. This can be explained by the fact that DenClue-PixelMap and the genetic
algorithm place all data points at positions on a traditionally designed dot map
(without distortion). Consequently, in dense regions, only a small portion of the
data points can be placed close to the desired positions. For the rest of the data
points, both algorithms search for the next free pixel. The distance to the next free
available pixels grows exponentially in medium and high degrees of overlap.

Finally, figure 12 shows that DenClue-PixelMap provides the best clustering. Fast-
PixelMap and the genetic algorithm provide similar clustering results. It is clear
that, on the one hand, the DenClue kernel-density-estimation based clustering finds
real clusters in the three dimensions(ax

i ,a
y
i ,S(ai)), and on the other hand, the other

two methods are not real cluster algorithms for 3D point clouds. However, the result
for the Fast-PixelMap algorithm is acceptable for real time applications. The same
can be observed for the genetic multi-objective optimization approach.

Concluding, we observe that the Fast-PixelMap algorithm provides good approxi-
mations to the kernel-density-estimation based clustering PixelMap algorithm. The
advantage of the Fast-PixelMap algorithm is that it computes PixelMaps in real-
time for low and medium degrees of overlap, and after some seconds for high de-
grees of overlap. The measured optimization results are comparable to the other
two methods. Finally, we can observe that for very high degrees of overlap, it is
impossible to find assignments with small position and clustering errors, and the
measured error functions become even more exponential under all three methods.

5.3 Visual Evaluation and Applications

Formal effectiveness measures, such as the absolute and relative position preser-
vation and clustering errors considered above, are of limited value if they do not
correspond to useful visualizations. In this section, we provide a visual comparison
of the PixelMap technique with traditional approaches, which in general confirm
the measured mathematical criteria.

Our first comparison (see Figure 13) is a map of the United States showing the U.S.
Year 2000 Median Household Income Data. The left visualization is a traditional
map, and the right visualization was made by the Fast-PixelMap algorithm. The
traditional map provides random results in areas with high degree of overlap while
sparsely populated areas are virtually empty. The visualization on the right shows
the advantages of the Fast-PixelMap algorithm. First, we can easily see that New
York City and Los Angeles County are the population areas of greatest interest
in the United States. In the Fast-Pixelmap visualization, the densest regions get
the space needed to place all data points close to each other. We can even see the
distribution of U.S. Year 2000 Median Household Incomes in these regions. Finally,
for the U.S. Year 2000 Median Household Income we can observe a sharp decline
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between high and low income. Most Americans had income below $75000 U.S.,
and ca. 10% of all Americans live below the federal poverty level.

Our second comparison (see Figure 14) is a zoomed view to an interesting region,
the State of New York. We can easy see that households with very high median
household income are located in Manhattan and Queens, and households with low
median household income are in the Bronx and Brooklyn. Especially, very wealthy
inhabitants live on the east side of Central Park. The degree of overlap for a screen
resolution of 1200x1200 is 0.66 for the whole United States and 0.82 for the State
of New York.

6 Conclusions

In this paper, we presented PixelMap, a novel pixel-based visual data mining tech-
nique that combines kernel-density-based clustering with visualization, and gave an
efficient approximation for displaying large amounts of spatially referenced data.
PixelMap avoids the problem of losing information because of overplotting data
points. More precisely, it assigns each data point to a unique pixel in the 2D display
space, and tries to achieve a good trade-off between spatial locality (absolute and
relative position preservation) and clustering to solve the pixel-coherence problem.
We applied a number of real data sets to evaluate the Fast-PixelMap algorithm. The
proposed Fast-PixelMap algorithm provides an effective, efficient solution to the
optimization problem defined in this paper, and is of practical value for exploring
spatially referenced statistical data. In future work, we expect to investigate related
approaches for visualizing large geographical data sets. One idea is to combine the
pixel placement technique with a cartogram algorithm, which first computes a dis-
tortion of the output map having low shape and area error, and then places pixels
on this map with a simple array-based clustering.
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(a) Traditional 2D Map (with
overlap)

(b) Non-overlap 2D Map
(Gridfit)

(c) 2.5D Aggregated Map
(In3D)

(d) 2.5D Bar Map (Swift)

Fig. 1.Approaches to Visualize Large Spatial Data Sets- An Overview
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(a) Dense data points in 3D
space (x,y,s)

(b) No-Overlap Constraint

(c) Absolute Position Preser-
vation

(d) Relative Position Preser-
vation

(e) Clustering Constraint

Fig. 2.Problem Definition Constraints- The goal is to find a good trade-off between con-
straints 2(c), 2(d) and 2(e), such that constraint 2(b) is always satisfied

26



(a) 2D Density Plot (longi-
tude, median household in-
come)- The two densest me-
dian household income ar-
eas (Atlantic Coast and Pa-
cific Coast) regions have up to
$100.000 U.S. median house-
hold income; the two lowest
density regions are the New
England and Rocky Mountain
regions

(b) 2D Density Plot (lati-
tude, median household in-
come)- Only significant me-
dian household income for
the United States middle lat-
itude region

(c) Space-filling (Hilbert)
Curve - Yields a good clus-
tering of median household
income with respect to six
cities that are identified, but
the geographical relationship
of the clusters is lost

(d) Linearized 2D Den-
sity Plot (xy, income) of
the Space-filling (Hilbert)
Curve - Very wealthy people
($200.000 U.S. and above)
yield significant geo-related
clusters

Fig. 3. 2D Visualizations of the 3D Density Function- United States Year 1999 Median
Household Income
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Fig. 4.The Fast-PixelMap Data Structure: Combination of Gridfile and Quadtree- Gridfile
and quadtree represented as binary trees in a single multidimensional array in which each
array element represents two split operations
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(a) Split operations
at low density posi-
tions with ω (typi-
cally 10%) of (l +
r)/2

(b) Two different split
operations - Split op-
eration at the center
of a partion and split
operation at low den-
sity position

(c) Unwanted split-
ting geo-related 2D
clusters (split opera-
tion at the center of a
partion)

(d) Avoidance of
splitting geo-related
2D clusters (split
operation at low
density position)

Fig. 5. Splitting geo-related 2D clusters
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(a) Dataset partition and its data points

(b) Array-based clustering

Fig. 6. Array-based clustering in the three dimensions(ax
i ,a

y
i ,S(ai))
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(a) Original bound-
aries after first split

(b) Original bound-
aries after second
split

(c) Original bound-
aries after third split

(d) New boundaries
after first split

(e) New boundaries
after second split

(f) New boundaries
after third split in the
2D screen space

Fig. 7.Scale to new boundaries- scale all gridfile partitions to their new quadtree bound-
aries in the 2D screen space
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(a) Clustered geo-related 2D
data (x,y) with statistical
value

(b) Placing the smallest clus-
ter first

(c) Placing the next cluster in
the closest free screen region

(d) Placing the next cluster in
the same way

Fig. 8.Pixel placement step- starting with the smallest class from the real cluster partition
and placing all class members at free positions close to their centroid without overwriting
existing pixels
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Histogram of Income
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(a) The plot displays the histogram of the eight median house-
hold income classes. Income classes are superposed in color
and correspond to the colors in figure 9(b)

(b) Pixel Placement Step starting with the smallest cluster (left
to right)

Fig. 9. Pixel placement step for real 3D Clusters in the Manhattan Area- starting with
the smallest class from the real cluster partition and placing all cluster members to free
positions close to their centroid without overwriting pixels
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Fig. 10.Varying degree of pixel overlap depending on screen resolution- even for a modern
screen resolution of 1600x1200 the degree of overlap is about 0.4; 40% of our sample
of data points (about 12000 points) from the U.S. Year 2000 Census Median Household
Income database are cannot be directly placed without overwriting already-occupied pixels.
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Fig. 11. Efficiency of the (a) genetic algorithm for multi-objective optimization, (b)
Fast-PixelMap, and (c) PixelMap algorithm based on the DenClue clustering algorithm
to find solutions for the in section 4.2) defined optimization problem with a increasing
degree of overlap, logarithmic scale- It becomes exponentially difficult to compute Pix-
elMaps which optimizes the defined optimization goals, that means, however, to find good
trade-off between the defined optimization constraints in section 4.2, the Fast-PixelMap
algorithm outperforms very clear the other two methods for medium and high degrees of
overlap
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Fig. 12.Effectiveness Measurement of the defined optimization constraints 1, 2, and 3 in
section 4.2- We can observe, that the Fast-PixelMap algorithm provides a good approxima-
tion of the kernel-density-estimation based clustering PixelMap algorithm. The advantage
of the Fast-PixelMap algorithm is that it computes PixelMaps in real-time (low and medium
degrees of overlap) and after some seconds (high degrees of overlap). The Fast-PixelMap
algorithm provides an effective and efficient solution to the optimization problem defined in
section 4.2, and is of practical value for exploring spatially referenced statistical data. The
measured constraint errors defined in section 4.2 are comparable to the DenClue-PixelMap
and to the genetic algorithm for multi-objective optimization.
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Fig. 13.Comparison of Traditional Map versus PixelMap– United States, Year 1999 Me-
dian Household Income.

Fig. 14.Comparison of Traditional Map versus PixelMap- New York State, Year 1999
Median Household Income. This map displays cluster regions e.g. on the East side of Cen-
tral Park in Manhattan, where inhabitants with high income live, or on the right side of
Brooklyn, where inhabitants with low income live.
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