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Abstract

Never before in history has data been generated at such high volumes as it is today. Exploring and analyzing the vast volumes of
data has become increasingly difficult. Information visualization and visual data mining can help to deal with the flood of information.
The advantage of visual data exploration is that the user is directly involved in the data mining process. There are a large number of
information visualization techniques that have been developed over the last two decades to support the exploration of large data sets.
In this article, we provide an overview of information visualization and visual data mining techniques, and illustrate them using a few
examples. We show that an application of information visualization methods provides new ways of analyzing geography — related
data.

1 Introduction

The progress made in hardware technology allows today’s computer systems to store very large amounts of data. Researche
from the University of Berkeley estimate that every year about 2 Exabyte (= 2 Million Terabytes) of data are generated, of which
a large portion is available in digital form (growth rate is about 50%). This means that in the next three years more data will be
generated than in all of human history to date. The data is often automatically recorded via sensors and monitoring systems. Almo:s
all transactions of every day life, such as purchases made with credit card, web pages visited or telephone calls are recorded
computers. In many application domains it might also be useful that much of the data include geospatial referencing. For example
credit card purchase transactions include both the address of the place of purchase and of the purchaser, telephone records inclt
addresses and sometimes coordinates or at least cell phone zones, data from satellite remote sensed data contain coordinate
other geographic indexing, census data and other government statistics contain addresses and/or indexes for places, and informat
about property ownership contains addresses, relative location info, and sometimes coordinates etc. This data is collected becau
people believe that it is a potential source of valuable information, providing a competitive advantage (at some point) to its holders.
Usually many parameters are recorded, resulting in data with a high dimensionality. With today’s data management systems, it i
only possible to view quite small portions of the data. If the data is presented textually, the amount of data that can be displayed i
in the range of some one hundred data items, but this is like a drop in the ocean when dealing with data sets containing millions o
data items. Having no possibility to adequately explore the large amounts of data that have been collected because of their potenti
usefulness, the data becomes useless and the databases become data ‘dumps’.

Benefits of Visual Data Exploration

For data mining to be effective, it is important to include the human in the data exploration process and combine the flexibility,

creativity, and general knowledge of the human with the enormous storage capacity and the computational power of today’s com
puters. Visual data exploration aims at integrating the human in the data exploration process, applying human perceptual abilitie
to the analysis of large data sets available in today’s computer systems. The basic idea of visual data exploration is to present tt
data in some visual form, allowing the user to gain insight into the data, draw conclusions, and directly interact with the data. Visual
data mining techniques have proven to be of high value in exploratory data analysis, and have a high potential for exploring large

*portions of this article have been previously published’in [54]



databases. Visual data exploration is especially useful when little is known about the data and the exploration goals are vague. Sinc
the user is directly involved in the exploration process, shifting and adjusting the exploration goals is automatically done if necessary

Visual data exploration can be seen as a hypothesis generation process; the visualizations of the data allow the user to ga
insight into the data and come up with new hypotheses. The verification of the hypotheses can also be done via data visualizatiol
but may also be accomplished by automatic techniques from statistics, pattern recognition, or machine learning. In addition to the
direct involvement of the user, the main advantages of visual data exploration over automatic data mining techniques are: visua
data exploration can easily deal with highly non-homogeneous and noisy data, visual data exploration is intuitive and requires mucl
less understanding of complex mathematical or statistical algorithms or parameters than other methods, visualization can provide
gualitative overview of the data, allowing data phenomena to be isolated for further quantitative analysis. Visual data exploration
do include some underlying data processing, dimension reduction, re-mapping from one space to another, etc. which typically doe
require some basic understanding of the underlying algorithm to understand it properly. As a result, visual data exploration car
lead to quicker and often superior results, especially in cases where automatic algorithms fail. In addition, visual data exploratior
techniques provide a much higher degree of confidence in the findings of the exploration. This fact leads to a high demand for visua
exploration techniques and makes them indispensable in conjunction with automatic exploration techniques.

Visual Exploration Paradigm

Visual Data Exploration usually follows a three step proc&3gerview first, zoom and filter, and then details-on-dem@vitdch

has been called the Information Seeking Manira [84]). First, the user needs to get an overview of the data. In the overview, the use
identifies interesting patterns or groups in the data and focuses on one or more of them. For analyzing the patterns, the user nee
to drill-down and access details of the data. Visualization technology may be used for all three steps of the data exploration proces:
Visualization techniques are useful for showing an overview of the data, allowing the user to identify interesting subsets. In this step
it is important to keep the overview visualization while focusing on the subset using another visualization technique. An alternative
is to distort the overview visualization in order to focus on the interesting subsets. This can be performed by dedicating a larget
percentage of the display to the interesting subsets while decreasing screen utilization for uninteresting data. To further explor
the interesting subsets, the user needs a drill-down capability in order to observe the details about the data. Note that visualizatic
technology does not only provide the base visualization techniques for all three steps but also bridges the gaps between the steps.

2 Classification of Visual Data Mining Techniques

Information visualization focuses on data sets lacking inherent 2D or 3D semantics and therefore also lacking a standard mappin
of the abstract data onto the physical screen space. There are a number of well known techniques for visualizing such data sets, su
as X-Y plots, line plots, and histograms. These techniques are useful for data exploration but are limited to relatively small and low
dimensional data sets. In the last decade, a large number of novel information visualization techniques have been developed, allowir
visualizations of multidimensional data sets without inherent two- or three-dimensional semantics. Nice overviews of the approache:
can be found in a number of recent books [18,98,(85, 82]. The techniques can be classified based on three criteria (3ee Figure 1
The data to be visualized, the visualization technique, and the interaction technique usddtaltype to be visualized84] may
be: One-dimensional data, such as temporal (time-series) data; Two-dimensional data, such as geographical maps; Multidimensior
data, such as relational tables; Text and hypertext, such as news articles and web documents; Hierarchies and graphs, such
telephone calls and web documents; and Algorithms and software, such as debugging operatiorisualibation technique
used may be classified as: Standard 2D/3D displays, such as bar charts and X-Y plots; Geometrically transformed displays, suc
as landscapes and parallel coordinates; Icon-based displays, such as needle icons and star icons; Dense pixel displays, such as
recursive pattern and circle segments; and Stacked displays, such as treemaps and dimensional stacking.

The third dimension of the classification is tinéeraction technique used. Interaction techniques allow users to directly navigate
and modify the visualizations, as well as select subsets of the data for further operations. Examples include: Dynamic Projection
Interactive Filtering, Interactive Zooming, Interactive Distortion as well as Interactive Linking and Brushing.

Note that the three dimensions of our classification - data type to be visualized, visualization technigue, and interaction technique
- can be assumed to be orthogonal. Orthogonality means that any of the visualization techniques may be used in conjunction wit
any of the interaction techniques for any data type. Note also that a specific system may be designed to support different data type
and that it may use a combination of visualization and interaction techniques.

3 Data Type to be Visualized

In information visualization, the data usually comprise of a large number of records, each consisting of a number of variables
or dimensions. Each record corresponds to an observation, measurement, or transaction. Examples are customer properties,
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Figure 1: Classification of Information Visualization Techniques

commerce transactions, and sensor output from physical experiments. The number of attributes can differ from data set to dat
set; one particular physical experiment, for example, can be described by five variables, while another may need hundreds ¢
variables. We call the number of variables the dimensionality of the data set. Data sets may be one-dimensional, two-dimensiona
multidimensional or may have more complex data types such as text/hypertext or hierarchies/graphs. Sometimes, a distinction |
made between grid dimensions and the dimensions that may have arbitrary values.

One-dimensional Data

One-dimensional data usually has one dense dimension. A typical example of one-dimensional data is temporal data. Note that wit
each point of time, one or multiple data values may be associated. An example are time series of stock prices (§ee Figure 4) or tf
time series of news data used in the ThemeRivér [43].

Two-dimensional data

Two-dimensional data usually has two dense dimensions. This type of data can be represented by mapping the associated data vall
to a color and displaying the color of each data value in its (X, y) location on the screen. A typical example are geometry-related
planar data in the euclidian plane. In general, planar data defines quantities of distances, or distances and angles, which define t
position of a point on a reference plane to which the surface of a 3D object has been projected. A typical example is geographica
data, where the two distinct dimensions are longitude and latitude. Longitude and Latitude describe locations on a 3D surface an
some transformation is required to project the relationships between locations specified in this way on a plane. Besides, dependir
upon the cartography used, various characteristics of the relationships between locations are either preserved or lost. After tt
projection, the geographical data can be stored as two-dimensional data with x/y-dimensions. X-Y-plots are a typical method for
showing two-dimensional data and maps are a special type of X-Y-plot for showing geographical data. Although it seems easy tc
deal with temporal or geographic data on 2D devices, caution is advised. If the number of records to be visualized is large, tempore
axes and maps get quickly cluttered - and may not help to understand the data. There are several approaches to draw upon with del
geographic data already in common use, such as Gridfit [55] (see Figure 6 in $edtion PRalhp[61] (see Figurg]7 in section

63).

Multi-dimensional data

Many data sets consist of more than three attributes and therefore do not allow a simple visualization as 2-dimensional or 3
dimensional plots. Examples of multidimensional (or multivariate) data are tables from relational databases, which often have
tens to hundreds of columns (or attributes). Since there is no simple mapping of the attributes to the two dimensions of the screer
more sophisticated visualization technigues are needed, such as parallel coordinatés plots [48] (SE€ Figure 12(a)). A very differel
method for data with geospatial attributes are Scatterplots and S¢enes [37].
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Figure 2: Skitter Graph Internet Map, CAIDA (Cooperative Association for Internet Data Anal@=i6p2 UC Regents. Courtesy
University of California.

Text & Hypertext

Not all data types can be described in terms of dimensionality. In the age of the World Wide Web, one important data type is text anc
hypertext, as well as multimedia web page contents. These data types differ in that they cannot be easily described by numbers, a
therefore most of the standard visualization techniques cannot be applied. In most cases, a transformation of the data into descriptit
vectors is necessary before visualization techniques can be used. An example for a simple transformation is word counting which i
often combined with a principal component analysis or multidimensional scaling to reduce the dimensionality to two or three.

Hierarchies & Graphs

Data records often have some relationship to other pieces of information. These relationships may be ordered, hierarchical, c
arbitrary networks of relations. Graphs are widely used to represent such interdependencies. A graph consists of a set of object
called nodes, and connections between these objects, called edges or links. Examples are the e-mail interrelationships among peoj
their shopping behavior, the file structure of the hard disk or the hyperlinks in the world wide web. There are a number of specific
visualization techniques that deal with hierarchical and graphical data. A nice overview of hierarchical information visualization
techniques can be found in23], an overview of web visualization techniques is presented in [29] and an overview book on all aspect
related to graph drawing is711].

Algorithms & Software

Another class of data are algorithms and software. Coping with large software projects is a challenge. The goal of software
visualization is to support software development by helping to understand algorithms (e.g., by showing the flow of information in

a program), to enhance the understanding of written code (e.g., by representing the structure of thousands of source code lines
graphs), and to support the programmer in debugging the code (e.g., by visualizing errors). There are a large number of tools an
systems that support these tasks. Nice overviews of software visualization can be faundin [94, 89]. Few examples of visualizatior
(and visually-enabled steering) of process models that depict geographic processes are the AGP-System for ocean flow mod
visualization [48], and visualization methods/simulation steering for the 3D turbulence model of LakeErie [72].



Figure 3: The iris data set, displayed using star glyphs positioned based on the first two principal components (from XmdvTool
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4 Visualization Techniques

There are a large number of visualization techniques that can be used for visualizing data. In addition to standard 2D/3D-technique
such as X-Y (X-Y-Z) plots, bar charts, line graphs, and maps, there are a number of more sophisticated classes of visualization tect
nigues. The classes correspond to basic visualization principles that may be combined in order to implement a specific visualizatio
system.

4.1 Geometrically-Transformed Displays

Geometrically transformed display techniques aim at finding “interesting” transformations of multidimensional data sets. This class
of geometric display methods includes techniques from exploratory statistics such as scatterplot matrices [6, 25] and techniques th.
can be subsumed under the term “projection purshii” [46]. Other geometric projection techniques include ProsectianlViews [36, 87],
Hyperslice [95], and the well-known Parallel Coordinates visualization technigle [48pdradel coordinate techniqueaps the
k-dimensional space onto the two display dimensions by Usmgs that are parallel to each other (either horizontally or vertically
oriented), evenly spaced across the display. The axes correspond to the dimensions and are linearly scaled from the minimum to tl
maximum value of the corresponding dimension. Each data item is presented as a chain of connected line segments, intersecting ec
of the axes at a location corresponding to the value of the considered dimensions (seg Figure 12(a)). A geographic extension of tf
Parallel Coordinates Technique is to build them in 3D, with maps as planes orthogonal to the otherwise flat 2D Parallel Coordinate:

[30]

4.2 Iconic Displays

Another class of visual data exploration techniques are the iconic display methods. The idea is to map the attribute values of :
multi-dimensional data item to the features of an icon. Icons can be arbitrarily defined; they may be littléfaces [24], needle icons
[, B3], star iconsI[97], stick figure icons[76], color icomsi[67, 56], or TileBars [44], for example. The visualization is generated by
mapping the attribute values of each data record to the features of the icons. In case of the stick figure technique, for example, tw
dimensions are mapped to the display dimensions and the remaining dimensions are mapped to the angles and/or limb length of tl
stick figure icon. If the data items are relatively dense with respect to the two display dimensions, the resulting visualization present:
texture patterns that vary according to the characteristics of the data and are therefore detectable by pre-attentive perception. FigL
B shows an example of this class of techniques. Each data point is represented by a star icon/glyph, where each data dimensi
controls the length of a ray emanating from the center of the icon. In this example, the positions of the icons are determined using
principal component analysis (PCA) to convey more information about data relations. Other data attributes could also be mapped t
icon position.



Figure 4: Dense Pixel Displays: Recursive Pattern Technique showing 50 stocks in the Frankfurt Allgemeine Zeitung (Frankfurt
Stock Index Jan 1975 - April 1995). The technique map each stock value to a colored pixel; high values correspond to
bright colors.(©IEEE

4.3 Dense Pixel Displays

The basic idea of dense pixel techniques is to map each dimension value to a colored pixel and group the pixels belonging to eac
dimension into adjacent areas. More precisely, dense pixel displays divide the screen into multiple subwindows. For data sets wit|
mdimensions (attributes), the screen is partitioned ingubwindows, one for each of the dimensions. Since in general dense pixel
displays use one pixel per data value, the techniques allow the visualization of the largest amount of data possible on current display
(up to about 1,000,000 data values). Although, it seems to be easy to create dense pixel displays, there are some important questic
to be taken into account.

Color Mapping

First, finding a path through a color space that maximizes the numbers of just noticeable difference (JND), but at the same time, i
intuitive for the application domain, however, is a difficult task. The advantage of color over gray scales is that the number of IND’s
is much higher.

Pixel Arrangement

If each data value is represented by one pixel, the main question is how to arrange the pixels on the screen within the subwindow:
Note, that only a good arrangement due to the density of the pixel display will allow a discovery of clusters, local correlations,
dependencies, other interesting relationships among the dimensions, and hot spots. For the arrangement of pixels, we have
distinguish between data sets that have a natural ordering of the data objects, such as time series, and data sets without inher:
ordering, such as in query result sets. Even if the data has a natural ordering to one attribute, there are many arranging possibilitie
One straightforward possibility is to arrange the data items from left to right in a line-by-line fashion. Another possibility is to
arrange the data items top-down in a column-by-column fashion. If these arrangements are done pixel wise, in general, the resultin
visualizations do not provide useful results. More useful are techniques which provide a better clustering of closely related date
items and allow the user to influence the arrangement of the data. Techniques which support the clustering properties are scre
filling curves. Another technique which supports clustering is the Recursive Pattern technique [S&cUrsive pattern technique

is based on a generic recursive back-and-forth arrangement of the pixels and is particularly aimed at representing datasets with
natural order according to one attribute (e.g. time-series data). The user may specify parameters for each recursion level, and there
control the arrangement of the pixels to form semantically meaningful substructures. The base element on each recursion level is
pattern of height; and widthw; as specified by the user. First, the elements correspond to single pixels that are arranged within a
rectangle of height; and widthw; from left to right, then below backwards from right to left, then again forward from left to right,

and so on. The same basic arrangement is done on all recursion levels with the only difference being that the basic elements th
are arranged on levelare the pattern resulting from the leyél 1) arrangements. In Figufé 4, an example recursive of a pattern
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Figure 5: Dimensional Stacking visualization of drill hole mining data with longitude and latitude mapped to the outer x-,y-axes
and one grade and depth mapped to the inner x-,y{ased by permission of M. Ward, Worcester Polytechnic InstieEE)

visualization of financial data is shown. The visualization shows twenty years (January 1974 - April 1995) of daily prices of the 100
stocks contained in the Frankfurt Stock Index (FAZ).

Shape of Subwindows

The next important question is whether there exists an alternative to the regular partition of the screen into rectangular subwindows
The rectangular shape of the subwindows allows a good screen usage, but on the other hand, the rectangular shape leads to a dispe
of the pixels belonging to one data object over the whole screen. Especially for data sets with many dimensions, the subwindow:
of each dimension is rather far apart, which makes it very difficult to detect clusters, correlations, and interesting patterns. An
alternative shape of the subwindows is the Circle Segments technique [8]. The basic idea of these technique is to display the da
dimensions as segments of a circle.

Ordering of Dimensions

Finally, the last question to consider is the ordering of the dimensions. This problem is actually not just a problem of dense pixel
displays, but a more general problem which arises for a number of other visualization techniques, such as the parallel coordinat
plots, as well. The basic problem is that the data dimensions have to be arranged in some one- or two dimensional ordering on tt
screen. The ordering of dimensions, however, has a major impact on the expressiveness of the visualization. If a different orderin
of the dimensions is chosen, the resulting visualization becomes completely different and leads to different interpretations. More
details about designing pixel-oriented visualization techniques can be found in[53, 57] and all techniques have been implemente
in the VisDB-System [56].

4.4 Stacked Displays

Stacked display techniques are tailored to present data partitioned in a hierarchical fashion. In the case of multi-dimensional dats
the data dimensions to be used for partitioning the data and building the hierarchy have to be selected appropriately. An example of
stacked display technique@@mensional Stackinfh5]. The basic idea is to embed one coordinate system inside another coordinate
system, i.e. two attributes form the outer coordinate system, two other attributes are embedded into the outer coordinate system, al
so on. The display is generated by dividing the outermost level coordinate system into rectangular cells and within the cells the nex
two attributes are used to span the second level coordinate system. This process may be repeated multiple times. The usefulness
the resulting visualization largely depends on the data distribution of the outer coordinates and therefore the dimensions that are ust
for defining the outer coordinate system have to be selected carefully. A rule of thumb is to choose the most important dimension:
first. A dimensional stacking visualization of mining data with longitude and latitude mapped to the outer x and y axes, as well as
ore grade and depth mapped to the inner x and y axes is shown in Higure 5. Other examples of stacked display techniques incluc
Worlds-within-Worlds [3B], Treemap[50,183], and Cone Trees [79].

5 Visual Data Mining on Geospatial Data

Geospatial data are relevant to a large number of applications. Examples include weather measurements such as temperature, rain
wind-speed, etc. measured at a large number of locations, use of connecting nodes in telephone business, load of a large number
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Figure 6: The picture shows the call volume of the AT&T customers at one specified time (midnight EST). Each pixel represents
one of 22000 telephone switches. A uni-color map is used to show the call volume.

internet nodes at different locations, air pollution in cities etc. Nowadays, there exist a large number of applications, in which it is
important to analyze relationships that involve geographic location. Examples include global climate modeling (measurements suc
as temperature, rainfall, and wind-speed), environmental records, customer analysis, telephone calls, credit card payments, and crir
data. Spatial data mining is the branch of data mining that deals with spatial (location) data. However, to analyze the huge amount
(usually tera-bytes) of geospatial data obtained from large databases such as credit card payments, telephone calls, environmer
records, etc. it is almost impossible for users to examine the spatial data sets in detail and extract interesting knowledge or gener
characteristics. Automated data mining algorithms are indispensable for analyzing large geospatial data sets, but often fall short ¢
providing completely satisfactory results. Usually, interactive data mining based on a synthesis of automatic and visual data mining
techniques usually does not only yields better results, but also a higher degree of user satisfaction and confidence in the finding
[42]. Although automatic approaches have been developed for mining geospatigi-data [42], they are often no better than simpl
visualizations of the geospatial data on a map.

5.1 Visualization Strategy

The visualization strategy for geospatial data is straightforward. The geospatial data points described by longitude and latitude ar
displayed on the 2D euclidian plain using a 2D projection. The two euclidian plain dimens@ntty are directly mapped to the

two physical screen dimensions. The resulting visualization depends on the djpa¢iakionor extentof the described phenomena

and objects. A nice overview can be found inl[62]. Since the geospatial locations of the data are not uniformly distributed in a
plain, however, the display will usually be sparsely populated in some regions while in other regions of the display a high degree
of overplotting occurs. There are several approaches to cope with dense geospatiail data [39]. One widely used method is 2.5
visualization showing data points aggregated up to map regions. This technique is commercially available in systems such a
Visuallnsight's In3D [2] and ESRI's ArcView[32]. An alternative that shows more detail is a visualization of individual data points
as bars on a map. This technique is embodied in systems such as SGI's MinéSet [45] and AT&T’s Swift 3D [52]. A problem
here is that a large number of data points are plotted at the same position, and therefore only a small portion of the data is actuall
displayed. Moreover, due to occlusion in 3D, a significant fraction of the data may not be visible unless the viewpoint is changed.
Other visualization techniques that have been developed to support specific visualization and data mining tasks will be described i
the following section.
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Figure 7:Comparison Traditional Map versus PixelMapNew York State - Year 1999 Median Household Income. This map
displays cluster regions e.g. on the East side of Central Park in Manhattan, where inhabitants with high income live, or on
the right side of Brooklyn, where inhabitants with low income live.

5.2 The VisualPoints -System

The VisualPointsSystem solves the problem of overplotting pixel using the Gridfit algorithrn [55]. The basic idea of the Gridfit
algorithm is to hierarchically partition the data space. In each step, the data set is partitioned into four subsets containing the dat
points which belong to four equally-sized subregions. Since the data points may not fit into the four equally size subregions, we
have to determine a new extent of the four subregions (without changing the four subsets of data points) such that the data poin
of each subset can be visualized in the corresponding subregion. For an efficient implementation of the algorithm, a quadtree-lik
data structure is used to manage the required information and to support the recursive partitioning process. The partitioning proce:
works as follows. Starting with the root of the quadtree, in each step the data space is partitioned into 4 subregions. The goal o
the partitioning is that the area occupied by each of the subregions (in pixels) is larger than the number of pixels to be placed withir
these subregions. The partitioning process works as follows. Starting with the root of the quadtree, in each step the data space
partitioned into four subregions. The partitioning is made such that the area occupied by each of the subregions (in pixels) is large
than the number of pixels belonging to the corresponding subregion. A problefauaiPointsis that in areas with high overlap,

the repositioning depends on the ordering of the points in the database. That is, the first data item found in the database is placed
its correct position, and subsequent overlapping data points are moved to nearby free positions, and so locally appear quasi-randc
in their placement.

5.3 Fast-PixelMap —Technique

A problem of the Gridfit—algorithm is that in areas with high overlap, the repositioning depends on the ordering of the points in the
database. That is, the first data item found in the database is placed at its correct position, and subsequent overlapping data poit
are moved to nearby free positions, and so locally appear quasi-random in their placemeRixellap-Technique solves the
problem of displaying dense point sets on maps, by combining clustering and visualization techiniques [61].

First, the Fast-PixelMap algorithm approximates a two-dimensional kernel-density-estimation in the two geographical dimen-
sions performing a recursive partitioning of the dataset and the 2D screen space by using split operations according to the geograp
ical parameters of the data points and the extensions of the 2D screen space. The goal is (a) to find areas with density in the tw
geographical dimensions and (b) to allocate enough amount of pixels on the screen to place all data points of dense regions at uniq
positions close to each other. The top-down partitioning of the dataset and 2D screen space results in distortion of certain ma
regions. That means, however, virtually empty areas will be shrinking and dense areas will be expanding to achieve pixel coherenc
For an efficient partitioning of the dataset and the 2D screen space and an efficient scaling to new boundaries, a new data structu
called Fast-PixelMap is used. The Fast-PixelMap data structure is a combination of a gridfile and a quadtree which realizes the spl
operations in the data and the 2D screen space. Fast-PixelMap data structure enables an efficient determination of the old (boundar
of the gridfile partition in the dataset) and the new boundaries (boundaries of the quadtree partition in the 2D screen space) of eac
partition. The old and the new boundaries determine the local rescaling of certain map regions. More precisely, all data points withir
the old boundaries will be relocated to the new positions within the new boundaries. The rescaling reduces the size of virtually empty
regions and unleashes unused pixels for dense regions.

Second, the Fast-PixelMap algorithm approximates a three-dimensional kernel-density-estimation-based clustering in the thre
dimensions performing an array based clustering for each dataset partition. After rescaling of all data points to the new boundaries
the iterative positioning of data points (pixel placement step), starting with the densest regions and within the dense regions th



Figure 8: The Figure displays the U.S. state population cartogram with the presidential election result of 2000. The area of the
states in the cartograms corresponds to the electoral voters the color corresponds to the percentage of the vote. A bipol:
colormap depicts which candidate has won each state.

smallest cluster is chosen first. To determine the placement sequence, we sort all final gridfile partitions (leaves of the Fast-PixelMa
data structure) according to the number of data points, they contain. The clustering is a crucial preprocessing step to makin
important information visible and achieving pixel coherdlfedth respect to the selected statistical parameter).

The final step of the pixel placement is a sophisticated algorithm which places all data points of a gridfile partition to pixels on
the output map in order to provide visualizations which are as position, distance, and cluster-preserving as possible.

5.4 Cartogram Techniques

A cartogram can be seen as a generalization of a familiar land-covering choropleth map. In this interpretation, an arbitrary paramete
vector gives the intended sizes of the cartogram’s regions, so an ordinary map is simply a cartogram with sizes proportional to lan
area. In addition to the classical applications mentioned above, a key motivation for cartograms as a general information visualizatiol
technique is to have a method for trading off shape and area adjustments. For example in a conventional choropleth map, high valu
are often concentrated in highly populated areas, and low values may be spread out across sparsely populated areas. Such m
therefore tend to highlight patterns in less dense areas where few people live. In contrast, cartograms display areas in relation 1
an additional parameter, such as population. Patterns may then be displayed in proportion to this parameter (e.g. the number
people involved) instead of the raw size of the area involved. Example applications in the literature include population demographics
[83, 7], election results[63], and epidemiolo@yl[41]. Because cartograms are difficult to make by hand, the study of automated
methods is of interesi[28].

One of the latest cartogram generation algorithm isGaetoDraw-algorithm which was recently proposed as a practical ap-
proach to cartogram generation][60] 59]. The basic ide@atoDraw is to incrementally reposition the vertices of the map’s
polygons by means of scanlines. Local changes are applied if they reduce total area error without introducing excessive shape err
Scanlines may be determined automatically, or entered interactively. The main search loop runs over a given set of scanlines. F
each, it computes a candidate transformation of the polygons, and checks it for topology and shape preservation. If the candidal
passes the tests, it is made persistent; otherwise it is discarded. The scanline processing order depends on their potential for reduc
area error. The algorithm runs until the area error improvement over all scanlines falls below a given threshold. A result of the
CartoDrawalgorithm can be seen in Figufie 8.

6 Interaction Techniques

In addition to the visualization technique, for an effective data exploration it is necessary to use one or more interaction techniques
Interaction techniqueallow the data analyst to directly interact with the visualizations and dynamically change the visualizations
according to the exploration objectives. In addition, they also make it possible to relate and combine multiple independent visu-
alizations. Interaction techniques can be categorized based on the effects they have on theNisfdmgion techniquefocus

1pixel coherence means similarity of adjacent pixels, which makes small pixel clusters perceivable.
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on modifying the projection of the data onto the screen, using either manual or automated methadenhancement methods

allow users to adjust the level of detail on part or all of the visualization, or modify the mapping to emphasize some subset of the
data.Selection techniqugwovide users with the ability to isolate a subset of the displayed data for operations such as highlighting,
filtering, and quantitative analysis. Selection can be done directly on the visualization (direct manipulation) or via dialog boxes or
other query mechanisms (indirect manipulation). Some examples of interaction techniques are described below.

Dynamic Projection

Dynamic projection is an automated navigation operation. The basic idea is to dynamically change the projections in order to explore
a multi-dimensional data set. A classic example is the GrandTour system [10] which tries to show all interesting two-dimensional
projections of a multi-dimensional data set as a series of scatterplots. Note that the number of possible projections is exponenti
in accordance with the number of dimensions, i.e. it is intractable for large dimensionality. The sequence of projections shown
can be random, manual, precomputed, or data driven. Systems supporting dynamic projection techniques includel XGobi [91, 17]
XLispStat [92], and ExplorN22].

Interactive Filtering

Interactive filtering is a combination of selection and view enhancement. In exploring large data sets, it is important to interactively
partition the data set into segments and focus on interesting subsets. This can be done by a direct selection of the desired sub.
(browsing)or by a specification of properties of the desired suligetrying) Browsing is very difficult for very large data sets and
guerying often does not produce the desired results, but on the other hand, these tools offer many advantages over traditional contro
Therefore, a number of interactive selection techniques have been developed to improve interactive filtering in data exploration. Ar
example of a tool that can be used for interactive filtering is the Magic Lens 16, 34]. The basic idea of Magic Lens is to use a tool
similar to a magnifying glass to support the filtering of the data directly in the visualization. The data under the magnifying glass
is processed by the filter, and the result is displayed differently from the remaining data set. Users may also use several lenses wi
different filters, e.g., magnify, then apply a blur, by carefully stacking multiple lenses, which work by applying their effects from
back to front. Each lens acts as a filter that screens on some attribute of the data. The filter function only modifies the view only
within the lense window. When the lenses overlap, their filters are combined. Other examples of interactive filtering techniques anc
tools are InfoCrystall[88], Dynamic Queries [3] 3T} 40], Polaris [90], Linked Micromap Plots, and Conditioned Choropleth Maps
[P0, 2] (see also Figufe]l0). Also, a type of interactive filtering using a parallel coordinate plot linked to a map is illustiaied in [70]
and in [38].

Zooming

Zooming is a well known view modification technique that is widely used in a number of applications. In dealing with large amounts
of data, it is important to present the data in a highly compressed form to provide an overview of the data, but at the same time
allowing a variable display of the data at different resolutions. Zooming does not only mean displaying the data objects larger, but
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lung cancer. (made by using Conditioned Choropleth Mapping Systeém [69] developed under theGuopitibned
Choropleth Maps: Dynamic Multivariate Representations of Statistical Bafgervised by Alan MacEachren)

also that the data representation may automatically change to present more details on higher zoom levels. The objects may, fi
example, be represented as single pixels at a low zoom level, as icons at an intermediate zoom level, and as labeled objects at a hi
resolution. An interesting example applying the zooming idea to large tabular data sets is the Table Lens &pproach [78]. Getting a
overview of large tabular data sets is difficult if the data is displayed in textual form. The basic idea of Table Lens is to represent
each numerical value by a small bar. All bars have a one-pixel height and the lengths are determined by the attribute values. Thi
means that the number of rows on the display can be nearly as large as the vertical resolution and the number of columns depends
the maximum width of the bars for each attribute. The initial view allows the user to detect patterns, correlations, and outliers in the
data set. In order to explore a region of interest the user can zoom in, with the result that the affected rows (or columns) are displaye
in more detail, possibly even in textual form. Figlire 9 shows an example of a baseball database with a few rows being selected i
full detail. Other examples of techniques and systems that use interactive zooming include PAD+# [75, 14] [15], IVEE/Spotfire [4],
and DataSpacel[9]. A comparison of fisheye and zooming techniques can be foiind in [81].

Distortion

Distortion is a view modification technique that supports the data exploration process by preserving an overview of the data during
drill-down operations. The basic idea is to show portions of the data with a high level of detail while others are shown with a
lower level of detail. Popular distortion techniques are hyperbolic and spherical distortions; these are often used on hierarchies ¢
graphs but may be also applied to any other visualization technique. An example of spherical distortions is provided in the Scalable
Framework paper[68]. An overview of distortion techniques is provided-in[[66, 19]. Examples of distortion techniques include
Bifocal Displays [85], Perspective Wali{71], Graphical Fisheye Views [35, 80], Hyperbolic Visualization 64, 74], and Hyperbox
[5]. Some of the uses of distortion with map displays that combines zooming, distortion and filtering can be fatind in [51]. Figure
1 shows the effect of distorting part of a familiar land-covering map to display more detail while preserving context from the rest
of the display.

Brushing and Linking

Brushingis an interactive selection process that is often, but not always, combinedinkitiig, a process to communicate the
selected data to other views of the data set. There are many possibilities to visualize multi-dimensional data, each with thei
own strengths and weaknesses. The idea of linking and brushing is to combine different visualization methods to overcome the
shortcomings of individual techniques. Scatterplots of different projections, for example, may be combined by coloring and linking
subsets of points in all projections. In a similar fashion, linking and brushing can be applied to visualizations generated by all
visualization techniques described above. As a result, the brushed points are highlighted in all visualizations, making it possible
to detect dependencies and correlations. Interactive changes made in one visualization are also automatically reflected in the oth
visualizations. Note that connecting multiple visualizations through interactive linking and brushing provides more information than
considering the component visualizations independently.
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Figure 11: Combination of zooming, distortion, and filtering techniques in the area of geographic visualization ($ee also [51]).

Typical examples of visualization techniques that have been combined by linking and brushing are multiple scatterplots, bar
charts, parallel coordinates, pixel displays, and maps. Most interactive data exploration systems allow some form of linking and
brushing. Examples are Polaris[90] and the Scalable Framework [68]. Other tools and systems include—S-Plus [12],1XGobi [91, 13]
XmdvTool [97] (see Figurg12), and DataDe&kl [986, 99]. Links between XGobi and GIS for interactive linking and brushing (as well
as filtering) are discussed in[26,7] 73].

Alternative Classification from GI-Science

Crampton [2I7] proposes an alternative classification of interaction techniques developed in GI-Science. The interactivity types are
placed in the framework of geographic visualization (GVis) in order to extend the GVis emphasis on exploratory, interactive and
private functions of spatial displays. Four categories of interactivity are proposed: (1) the Data; (2) the Data Representation; (3
the Temporal Dimension; and (4) Contextualizing Interaction. The following benefits of the classification can be observed. First,
interactivity types can be combined to build an interactive environment. Second, the typology allows cartographers to compare
and critique different mapping and GIS environments and gives cartography educators and students a mechanism for understandi
the different types of interactivity, as well as a set of concepts for imagining and creating new interactive environments. Third, a
typology of interactivity gives interface designers a mechanism with which to identify needs and measure interface effectiveness.

7 Conclusion

The exploration of large data sets is an important but difficult problem. Information visualization techniques can be useful in solving
this problem. Visual data exploration has significant potential, and many applications such as fraud detection and data mining
can use information visualization technology for improved data analysis. Avenues for future work include the tight integration
of visualization techniques with traditional techniques from such disciplines as statistics, machine learning, operations researct
and simulation. Integration of visualization techniques and these more established methods would combine fast automatic dat
mining algorithms with the intuitive power of the human mind, improving the quality and speed of the data mining process. Visual
data mining techniques also need to be tightly integrated with the systems used to manage the vast amounts of relational ar
semistructured information, including database management and data warehouse systems. The ultimate goal is to bring the power
visualization technology to every desktop to allow a better, faster and more intuitive exploration of very large data resources. This
will not only be valuable in an economic sense but will also stimulate and delight the user.
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