
CartoDraw: A Fast Algorithm for Generating
Contiguous Cartograms

Daniel A. Keim, Member, IEEE Computer Society, Stephen C. North, Senior Member, IEEE, and

Christian Panse, Member, IEEE Computer Society

Abstract—Cartograms are a well-known technique for showing geography-related statistical information, such as population

demographics and epidemiological data. The basic idea is to distort a map by resizing its regions according to a statistical parameter,

but in a way that keeps the map recognizable. In this study, we formally define a family of cartogram drawing problems. We show that

even simple variants are unsolvable in the general case. Because the feasible variants are NP-complete, heuristics are needed to

solve the problem. Previously proposed solutions suffer from problems with the quality of the generated drawings. For a cartogram to

be recognizable, it is important to preserve the global shape or outline of the input map, a requirement that has been overlooked in the

past. To address this, our objective function for cartogram drawing includes both global and local shape preservation. To measure the

degree of shape preservation, we propose a shape similarity function, which is based on a Fourier transformation of the polygons’

curvatures. Also, our application is visualization of dynamic data, for which we need an algorithm that recalculates a cartogram in a few

seconds. None of the previous algorithms provides adequate performance with an acceptable level of quality for this application. In this

paper, we therefore propose an efficient iterative scanline algorithm to reposition edges while preserving local and global shapes.

Scanlines may be generated automatically or entered interactively to guide the optimization process more closely. We apply our

algorithm to several example data sets and provide a detailed comparison of the two variants of our algorithm and previous

approaches.

Index Terms—Information visualization, visualization of geo-related information, continuous cartograms, value-by-area cartograms,

visualization and cartography.

�

1 INTRODUCTION

CARTOGRAPHERS and geographers have used cartograms
long before computers were available to make displays

[1], [2], [3]. References date back as far as 1868.1 A short

historical overview can be found in [5]. The basic idea of a

cartogram is to distort a map by resizing its regions by some

geographically related parameter. Example applications

include population demographics [6], election results [7],

and epidemiology [8]. Because cartograms are difficult to

make by hand, the study of programs to draw them is of

interest.

A cartogram can be seen as a generalization of an

ordinary map [9]. In this interpretation, an arbitrary

parameter vector gives the intended sizes of the cartogram’s

regions, so an ordinary map is simply a cartogram with

sizes proportional to land area. In addition to the classical

applications mentioned above, a key motivation for carto-

grams as a general information visualization technique is to

have a method for trading off shape and area adjustments.

For example in a conventional choropleth map,2 high values

are often concentrated in highly populated areas and low

values may be spread out across sparsely populated areas.

Such maps therefore tend to highlight patterns in less dense

areas where few people live. In contrast, cartograms display

areas in relation to an additional parameter, such as

population. Patterns may then be displayed in proportion

to this parameter (e.g., the number of people involved)

instead of the raw size of the area involved. In Fig. 1, a

population-based cartogram is presented which shows that

a cartogram can give a much different impression of overall

trends as compared with the original map.
For a cartogram to be effective, a human must be able to

quickly understand the displayed data and relate it to the

original geographical model. Recognition, in turn, depends

on preserving basic properties, such as shape, orientation,

and contiguity. This, however, is difficult to achieve in the

general case because—as we show in this paper—it is

impossible even just to retain the original map’s topology.

Because the generation of contiguous cartograms by simulta-

neous optimization of these objectives is difficult, most

currently available algorithms are very time-consuming.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 1, JANUARY/FEBRUARY 2004 95

. D.A. Keim and C. Panse are with the University of Constance, D-78457
Konstanz, Germany. E-mail: {keim, panse}@informatik.uni-konstanz.de.

. S.C. North is with AT&T Research Shannon Laboratory, Florham Park, NJ
07932. E-mail: north@research.att.com.

Manuscript received 13 Nov. 2001; accepted 24 Jan. 2002.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number 115361.

1. See remarks on Levasseur in [4] on page 355.

2. Choropleth maps are divided into regions that are shaded according to
the value of a variable for that region.

1077-2626/04/$17.00 � 2004 IEEE Published by the IEEE Computer Society

The ultimate goal of this work is to continuously display

the behavior of an input parameter, particularly, its deviation

from an expected value. Our application is to make dynamic

cartograms for online data stream monitoring, such as

display of network traffic or transaction event levels by

country, state, and local regions. This requires cartogram

generationon the fly and, to our knowledge, there is currently

no competing algorithm with adequate speed for that.
The paper is organized as follows: Section 2 reviews

previous work on cartogram drawing. Then, we define

several variants of the problem and show that even simple

ones are unsolvable in general. Because the feasible variants

are NP-complete, heuristics are necessary to solve the

problem. Based on some important observations, in

Section 3, we develop a heuristic that uses scanline-based

local repositioning of vertices with an explicit shape error

control function to preserve both the global shape and the

shape of interior polygons while providing sufficient speed

for dynamic cartograms drawing. In Section 4, we present a

number of application examples and provide a detailed

comparison with previous approaches, showing the effec-

tiveness and efficiency of our proposed algorithm. Section 5

summarizes our approach and discusses open issues.

2 CARTOGRAM DRAWING

In this section, we introduce a few basic concepts that

underlie cartogram drawing. First, we formally define

several variants of the problem. Then, we discuss the

complexity and theoretical limitations of potential solutions

and review the solutions which have been proposed in the

literature. Finally, we outline some key observations that

are the basis for a new, effective, and efficient solution.

2.1 Problem Definition

We assume that the input is a map defined by a set of

connected simple polygons (a polygonal mesh) P and a

parameter vector X
!

that gives the desired values for the

area of each polygon. Our goal is to generate contiguous

cartograms and, therefore, the desired output also is a set of

connected simple polygons P. Let p 2 P jpj denote the

number of vertices, AðpÞ the area, and SðpÞ the shape of a

polygon p, and T ðPÞ the topology of a set of polygons.

Then, the ideal solution of the Contiguous Cartogram

Drawing problem can be defined as:

Definition 1 (Contiguous Cartograms—Ideal Solution). A

contiguous Cartogram of a set of connected polygons

P ¼ fp1; . . . ; pkg with respect to a parameter vector

X
!¼ x1; . . . ; xkf g, ð8j xj > 0Þ, is a visualization of the

transformed set of polygons P, where

T ðPÞ ¼ T ðPÞ ðTopology PreservationÞ;
SðpjÞ ¼ SðpjÞ; 8j ¼ 1; . . . ; k ðShape PreservationÞ;
AðpjÞ ¼ ~xjxj; 8j ¼ 1; . . . ; k ðArea ResizingÞ:

The desired area ~xjxj of a polygon pj is defined as

~xjxj ¼ xj �
Pk

i¼1 AðpjÞPk
j¼1 xj

:

To simplify the description, the following assumes that

we have only one set of connected polygons (such as the

continental United States) and not multiple unconnected

sets (such as a world map).3 Let vij denote the ith vertex of

polygon pj, �
i
j the angle at the ith vertex, eij the ith edge, jeijj

the length of edge eij, and CEðvÞ the cyclic order of edges at

vertex v (see Fig. 2).
If we assume that the transformed polygons have the

same number of vertices (i.e., jpij ¼ jpij), then one way of

formalizing the topology and shape preservation con-

straints is the following:

Definition 2 (Topology Preservation—Preservation of

Connecting Vertices). Topology preservation T ðPÞ ¼ T ðPÞ
means that, for each vertex v 2 P, the cyclic order of edges

remains the same as in P. More formally, 8vij 2 P; j ¼
1; . . . ; k; i ¼ 1; . . . ; jpjj : 9vij 2 P; j ¼ 1; . . . ; k; i ¼ 1; . . . ; jpjj

96 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 1, JANUARY/FEBRUARY 2004

Fig. 1. Population-based cartogram (USA 1998). (a) Traditional map. (b) Population cartogram.

3. These definitions may easily be extended to multiple polygonal
meshes. The heuristic described in Section 2 operates on arbitrary maps.Fig 2. Cyclic order of edges.

CEðvjiÞ ¼ CEðvjiÞ:

If the cartogramconstruction algorithmdoes not provide a

mapping to the original polygon set, topologypreservation is

difficult to test because, as a first step, the isomorphism

problem between the two corresponding graphs must be

solved. Graph isomorphism is a difficult problem and,

therefore, efficient solutions have to maintain the topology

of the original polygon mesh or provide a mapping to the

original polygon mesh.

Definition 3 (Shape Preservation—Preservation of Edge

Length Ratios and Angles). Shape preservation SðpiÞ ¼
SðpiÞ means that the edge length ratios of the polygons and the

angles are preserved

1.

8j ¼ 1; . . . ; k 9cj 2 IR : jeijj ¼ cjjeijj;

i ¼ 1; . . . ; jpjj; eij 2 P; eij 2 P;

2. 8j ¼ 1; . . . ; k; 8i ¼ 1; . . . ; jpjj : �i
j ¼ �i

j.

Now, let us consider a simple example. Assume that we

have a map with the topology of a checker board (cf. Fig. 3)

and that we want to resize the map according to the color of

the fields, scaling white fields by a factor of 1:5 and black

fields by a factor of 0:5. This rescaling is impossible without

changing the topology or shapes. So, in general, it is

impossible to achieve the ideal solution. We state this
observation in the following lemma.

Lemma 1 (Impossibility of the Ideal Solution). The
cartogram drawing problem of Definition 1 is unsolvable in
the general case, i.e., there exist sets of polygons and parameter
vectors such that it is impossible to obtain an ideal solution.

Proof. Fig. 3 provides examples of sets of polygons which
do not have ideal cartogram solutions according to
Definition 1. tu

To derive feasible variants of the problem, we need to
relax some of the feature preservation conditions. If
topology is the most important property to maintain, the
only other conditions left to relax are the shape and area
constraints. But, there are many ways to go about this. We
can explore that in terms of two distance functions—an area
distance function (which measures the distance of the area
of a polygon from the desired size, typically, difference in
area in the Euclidean plane) and a shape distance function
(which measures the similarity of two shapes). Table 1 is an
enumeration of possible constraints. The first column lists
constraints that require a maximum distance for each
polygon, the second column lists constraints that require a
maximum distance for the sum of the distances of all
polygons, and the third column lists minimum constraints
for the sum of distances. By combining the different area
and shape constraints in Table 1, we can construct variants
of the cartogram drawing problem. A useful combination

KEIM ET AL.: CARTODRAW: A FAST ALGORITHM FOR GENERATING CONTIGUOUS CARTOGRAMS 97

Fig. 3. Checker board example. (a) 2� 2. (b) Relaxed topology. (c) Relaxed shape. (d) 3� 3. (e) Relaxed topology. (f) Relaxed topology and shape.

(g) Relaxed shape.

TABLE 1
Possible Constraints for Cartogram Drawing

would be, for example, a restriction of the solution space to

solutions where the shape of each polygon has at least a

certain similarity to its original shape and the sum of all

area differences is minimal. In the following, we discuss the

different variants of the problem and their complexity.

2.2 Solvability and Complexity of the Problem

As shown by Lemma 1, in general it is impossible to find an

ideal solution to the cartogram drawing problem. If we now

consider the variants that may be constructed by a combina-

tion of the constraints in Table 1, it turns out that many of

these are also unsolvable in the general case.

Lemma 2 (Impossibility of the Solution of Problem

Variants). Any variant of the cartogram drawing problem

that involves the single-polygon area constraint or the all-

polygon area constraint is unsolvable in the general case, i.e.,

there exist sets of polygons P and parameter vectors X
!

such

that, for any ", the problem variants do not have a valid,

topology-preserving solution.

Proof. In Fig. 4a, we show an example of a symmetric

cartogram consisting of seven polygons. If the parameter

vector for scaling the polygons requires the white

polygons to become larger and the black ones to become

smaller, we can easily construct an impossible case. Due

to the symmetric construction of the polygons, without

loss of generality, we can assume that one angle � � �
3 .

Thus,

� ¼ 2�� 2� � � � 2�� 2� � �

3
:

For the above-mentioned resize requirements (triangle A

very large and triangles B very small), � ! 0 and,

therefore,

� � 2�� �

3
¼ 5

3
� ¼) � > �

and, thus, the topology cannot be preserved, as shown in

Fig. 4b. tu

This means that only variants of the problem that use the

minimum-area condition are solvable and this is true for

any combination with a shape constraint. The solvability is

trivial to see since there is at least the identity solution,

which has a perfect shape preservation but a rather bad

value for the area difference. As the following lemma

shows, the determination of the actual solution with the

minimum area difference, however, is a computationally
hard problem.

Lemma 3 (NP-Completeness of the Minimum-Area Pro-
blem). Any variant of the cartogram drawing problem that
involves the minimum-area condition is NP-complete.

Proof. The proof depends on a constrained, simplified
version of the cartogram problem called the integer
cartogram problem. A proof sketch shows a reduction from
integer cartograms to planar 3-SAT which is known to be
NP-hard. The details are beyond the scope of this
paper. tu

In using this variant of the problem, one easily observes
that there is little freedom to improve the second important
parameter, namely, the shape. In most cases, the minimum
area condition will provide some solution which is best
optimized according to the area condition, but does not take
the shape similarity into account. There might be, for
example, a solution which much better preserves the shape,
but is a little bit worse in area. To allow the shape constraint
to have an impact on the solution, we have to adapt our
constraints. In principle, there are two possibilities. The first
is to determine the minimum area difference possible and
then allow a certain maximum deviation from this mini-
mum difference for finding the best shape. More formally,
this may be defined as follows.

Definition 4 (Variant 1 of the Contiguous Cartogram
Problem). Given a set of polygons P, a parameter vector X

!
,

and an error value ", the Contiguous Cartogram problem may
be defined as a transformed set of polygons P for which the
following two conditions hold:

ð1Þ
Xk
j¼1

dAð ~xjxj; AðpjÞÞ �
MIN

P ðdAð ~xjxj; AðpjÞÞ þ "

ð2Þ
Xk
j¼1

dSðSðpjÞ; SðpjÞÞ !
!
min :

A second possibility is to normalize the area and shape
distances and to use a weighted mean of the normalized
distances as a combined optimization criterion.

Definition 5 (Variant 2 of the Contiguous Cartogram
Problem). Given a set of polygons P, a parameter vector X

!
,

and importance factors for the area and shape distances, the
Contiguous Cartogram problem may be defined as the
transformed set of polygons P for which

a �
Xk
j¼1

dAð ~xjxj; AðpjÞÞ þ b �
Xn
j¼1

dSðSðpjÞ; SðpjÞÞ !
!
min
a;b�0

:

There are other meaningful and solvable variants of the
problem which, for example, also include the single-
polygon constraints (see Table 1). Most currently available
algorithms try to solve the problem according to Definition 4
or Definition 5. This seems sufficient for some applications,
but there are others where additional constraints seem
necessary. In the following, we discuss some important
observations which are the basis for our final definition and
also the key to an efficient solution of the problem.

98 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 1, JANUARY/FEBRUARY 2004

Fig. 4. Impossible cartogram drawing problem.

2.3 Related Work

Cartograms can made by contiguous or noncontiguous
distortions. The noncontiguous case is much easier since the
input map topology does not have to be preserved. As seen
in Fig. 5, handmade noncontiguous cartograms have been
made with overlapping or touching circles, by eliminating
some of the original map’s adjacencies, or even by drawing
disconnected shapes over the original regions [10], [11].

Most previous attacks on automated drawing of con-
tiguous cartograms do not yield results comparable to good
handmade drawings. One reason, first pointed out by Dent
[15], [16], is that straight lines, right angles, and other
features considered important in human recognition of
cartograms are obliterated. Methods that are radial in
nature such as the conformal maps proposed by Tobler [6],
the radial expansion method of Selvin et. al. [13], and the
line integral method of Guseyn-Zade and Tikunov [14] do
not provide the best possible results, since the shapes of the
polygons are heavily deformed (see Fig. 5). Likewise, the
pseudocartograms of Tobler expand the lines of longitude
and latitude to achieve a least root mean square area error
[12]. Very similar drawings are made by approaching the
problem as distortion viewing by nonlinear magnification
[17], [18], [19], [20]. Jackel [10] applies radial forces to
change the size of polygons, moving the sides of each
polygon relative to its centroid, but the solver runs slowly
(taking 90 minutes to perform eight iterations on a map of
six New England states of the US) and seems to have
problems with nonconvex input polygons and with self-
intersections in the output, which is consistent with our
early experiments with a similar approach.

Another family of approaches operates on a grid or mesh
imposed on the input map. The “piezopleth” method of
Cauvin et al. transforms the grid by a physical pressure
load model [21]. Dorling’s cellular automaton approach
trades grid cells until each region achieves the desired
number of cells [22]. The combinatorial approach of

Edelsbrunner and Waupotitsch [23] computes a sequence
of piecewise linear homeomorphisms of the mesh that
preserve its topology. While the first method is good at
preserving the shape of the polygons, the other two
methods allow a very good fit for area, but only poor
shape preservation.

A synthesis of both approaches was recently described
by Kocmoud and House, who propose a force-based model
and alternately optimize the shape and the area error [7].
Although the results are better than most other methods,
the complex optimization algorithm has a prohibitively
high execution time. Kocmoud and House report a time of
18 hours for a medium-sized map with 744 vertices. In
Fig. 5, we present population cartograms generated by
several of the methods we have mentioned.

2.4 Important Observations

The current solutions have two major problems: First, the
high time complexity of the algorithms restricts their use to
static applications with a small number of polygons and
vertices. Second, they have very limited shape preservation.
Although the recent work by Kocmoud and House provides
nice results, some effectiveness problems remain. One
problem is the significant deformation of the global shape.
In evaluating the different heuristic solutions which have
been proposed so far, we found that insufficient preservation
of the global shape is one of their major problems. In our
experience, however, the global shape is one of the most
important factors for cartograms to be effective and it is
certainly at least as important as the preservation of interior
polygon shapes. In our definition of cartogram drawing,
besides the shapeandarea constraints ofTable 1,we therefore
explicitly include a global shape constraint which may be
again either a single-polygon, all-polygon, or minimum
constraint for the global shape(s).4 If GrðPÞðr ¼ 1 . . . l; l � kÞ

KEIM ET AL.: CARTODRAW: A FAST ALGORITHM FOR GENERATING CONTIGUOUS CARTOGRAMS 99

Fig. 5. Cartogram drawing methods—figures were first published in the given references, used by permission; [11] and [13] are official publications of

the American Congress on Surveying and Mapping (ACSM). (a) 3D map [6]. (b) Noncontiguous cartogram [11]. (c) Non-topology-preserving

cartogram designed by Bernard J. vanHamond [5]. (d) Circle cartogram [12]. (e) Tobler [13]. (f) Selvia [14]. (g) Zade and Tikunov [15]. (h) Kocmoud

and House [7].

4. Note that there may be multiple global shapes as they occur, for
example, on a world map.

denotes the set of global polygons which may be derived
from the set of polygons P. The global shape constraints
may formally be described as given in Table 2. Our final
definition of the cartogram drawing problem uses a
weighted minimum of area, shape, and global shape
constraints.

Definition 6 (Contiguous Cartogram Problem). Given a set
of polygons P, a parameter vector X

!
, and importance factors

for the area, shape, and global shape constraints a, b, and c, the
Contiguous Cartogram problem may be defined as a trans-
formed set of polygons P for which

a �
Xk
j¼1

dAð ~xjxj; AðpjÞÞ þ b �
Xk
j¼1

dSðSðpjÞ; SðpjÞÞ

þ c �
X
r

dSðSðGrðPÞÞ; SðGrðPÞÞÞ !
!

min
a;b;c�0

:

Let us now focus on some important observations which
are crucial for an efficient solution of the problem. One
important observation is that, in practice, only very few
vertices are actually important for defining the shapes of the
polygons. In considering the US map, for example, we
found that, in addition to a restricted number of outer
vertices, only a limited number of interior vertices are
actually relevant. Note also that the importance of polygons
and their vertices largely depends on their size (which is
directly related to the parameter vector) and on the length
of the edges and the angles between them. In our proposed
algorithm, we give special consideration to these facts and
determine the importance of vertices based on these
observations. A second observation is that—in order to
obtain good results—the shape error has to be controlled
explicitly, which is not done sufficiently in previous
approaches. A last observation is that the high time
complexity of most algorithms proposed previously is due
to a complex and time-consuming optimization. In most
cases, however, it is possible to locally reposition vertices
and improve the area error while retaining the shape. To
obtain good solutions, our algorithm iteratively repositions
vertices based on scanline-defined locality measures with
an explicit shape error control function.

3 THE CARTOGRAM DRAWING ALGORITHM

The main objective of our proposed Cartogram Drawing
Algorithm is fast generation of cartograms of acceptable
quality. Because input maps often have far more vertices
than are needed to compute good cartograms, the first step
is an intelligent decimation. This is followed by the central
heuristic, scanline-based repositioning of vertices. We first
reposition vertices of the global polygon(s) and then interior
vertices. Scanlines can be restricted to vertical and

horizontal lines determined automatically or may be

arbitrarily positioned line segments of any length, entered

interactively. This follows the human-guided local search

paradigm proposed by Anderson et al. [24]. In each step,

the shape of the modified polygon mesh is controlled by the

shape error function. The last step is fitting the undecimated

polygons to the decimated mesh to obtain the output

cartogram. By exploiting the potential for precomputation

and fast local optimization, our algorithm runs quickly

enough to support dynamic displays with high update rates

on maps having dozens of polygonal regions.

3.1 Reduction Algorithms

Edge reduction algorithms have been used previously in

solving the cartogram problem. Kocmoud and House, for

example, use a simplification of the polygons to speed up

cartogram generation. Our algorithm, however, is different.

As mentioned in Section 2.4, preserving the global shape is

very important in making recognizable cartograms. Our

decimation algorithm takes this into account by simplifying

the global and inner polygons differently.

3.1.1 Reduction of Global Polygon

A key observation is that the importance of the vertices of a

polygon can vary greatly. Vertices on angles near 180 de-

grees and those with short edges make almost no noticeable

difference in the shape of a polygon, while others with

sharp angles or long edges have a significant effect. The

basic idea of the global polygon reduction algorithm is to

rate the importance of each vertex according to these

criteria. Then, iteratively, the least important vertices are

removed. To maintain the topology, only vertices that do

not belong to multiple polygons are removed. To formalize

the global reduction algorithm, we first define the notion of

a vertex’s importance as

IðvÞ ¼ Sigð�vÞ � jev1j � jev2j; ð1Þ

where ev1 and ev2 are the two edges of vertex v and Sigð�vÞ is
a function denoting the significance of the angle �v at vertex

v. The significance function Sigð�Þ is important because

different angles have a specific impact on the shape of the

polygons. Sharp angles and angles close to 90� are more

important than obtuse angles (c.f. [15], [16]) and the

significance function therefore assigns higher values to

sharp angles and lower values for obtuse angles. For our

algorithm, we use

Sigð�Þ ¼
X

�2f0�;90�;270�;360�g
exp

ð���Þ2

2�2 ð2Þ

as the significance function. This function has peaks for � ¼
0�; 90�; 270�; 360� and is close to zero for � ¼ 180�. The

100 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 1, JANUARY/FEBRUARY 2004

TABLE 2
Global Polygon Constraints for Cartogram Drawing

function is defined for � 2 ½0�; 360�� and � is chosen to be

0:2 � �. Fig. 6 shows a plot of this function.
To formalize the global reduction algorithm, we first

define the global polygon as a subset of the vertices of P.
For each polygon pj, j ¼ 1 . . . k, the portion gpj of the global

polygon GP can be defined as

gpj ¼ fv 2 pj : jedgesðvÞj > jpolygonsðvÞjg:

The global polygon is defined as GP ¼ [
j¼1...k gpj. The

algorithm for the reduction of the global polygon is shown

in Fig. 7. Note that vertices are only considered for removal

if they do not belong to multiple polygons (see initialization

of V in Fig. 7) and they are only removed if the induced area

difference is smaller than a given constant MaxAreaDiff .
Note also that the area AsðpÞ of a polygon p is determined as
if the polygon is perfectly scaled according to the parameter
vector X and the area difference kAsðp1Þ �Asðp2Þk—the
subscript s of As stands for scaled—is defined as

kAsðp1Þ �Asðp2Þk ¼ ðAsðp1Þ [Asðp2ÞÞ n ðAsðp1Þ \Asðp2ÞÞ:

3.1.2 Reduction of Inner Polygons

To position interior vertices, we can again use iterative
vertex removal. A more efficient alternative is based on the
observation that, for most maps, only the connecting
interior vertices are important. Instead of iteratively
removing unimportant vertices, we therefore take a more
direct approach and remove all vertices not common to
more than two polygons (nonconnecting vertices). In some
cases, the shape deformation and area error introduced by
this reduction is unacceptably high. We therefore reintro-
duce a few additional vertices. See Fig. 8 for the complete
algorithm.

Fig. 9 shows an example polygon (cf. Fig. 9a), a reduced
polygon of its interior vertices common to more than two
polygons (cf. Fig. 9b), and the final polygon after re-
introducing a few additional vertices (cf. Fig. 9c). In
practice, only few polygons need the additional vertices,

KEIM ET AL.: CARTODRAW: A FAST ALGORITHM FOR GENERATING CONTIGUOUS CARTOGRAMS 101

Fig. 6. Significance function.

Fig. 7. Reduction of global vertices.

Fig. 8. Reduction of interior vertices.

so the likelihood of reintroducing vertices that were

removed is low (see Fig. 9).

3.2 The CartoDraw Algorithm

The main idea of the CartoDraw algorithm is to incremen-

tally reposition the vertices along a series of scanlines. A

scanline is a line segment of arbitrary length and position.

Each scanline defines a scan section, orthogonal to the

scanline. All points within a scan section are repositioned in

a single step. For each section on a scanline, a target scaling

factor for each of its polygons is determined according to

their area error factors. Vertices are then repostioned

according to the polygon scaling factors and distances to

the scanline. The repositioning may be parallel or orthogo-

nal to the scanlines. If the shape error introduced by

applying a scanline exceeds some threshold, its candidate

vertex repositionings are discarded.
Scanlines should be applied to parts of the map where

the area error is large and there is still potential for

improvement. A simple approach to scanline generation is

to use horizontal and vertical line segments positioned on a

regular grid. Significantly better results can be obtained by a

manual scanline placement, guided by the shape of the

input polygons and the local potential for improvement.

Note that the incremental repositioning of vertices per

scanline application is intentionally small compared to the

expected change in area. This means the same scanline may

need to be applied many times to make large adjustments in

an area.
Before we describe the main CartoDraw algorithm, we

first introduce its three main components—the area error

function, the shape similarity function, and the scanline

algorithm.

3.2.1 Area Error Function

The objective of cartogram generation is to obtain a set of

polygons where the area of the polygons corresponds to

values given in a data vector X. In each step of the

algorithm, the area error function is needed to determine

the reduction of the area error achieved by applying a given

scanline. The relative area error Ej
rel of a polygon pj can be

computed as:

Ej
rel ¼

Aj
desired �Aj

actual

�� ��
Aj

desired þAj
actual

: ð3Þ

Hence, the area error for the set of polygons P is defined as

EP
rel ¼

Xk
j¼1

Ej
rel �

Aj
desiredPk

j¼1 A
j
desired

 !
: ð4Þ

3.2.2 Shape Error Function

In addition to reducing area error, the cartogram generation
process also aims at retaining the original shapes. To assess
shape preservation, we need a shape similarity function
that compares the new shape of a polygon with its original
shape. Defining a useful shape similarity function is in itself
a difficult problem since the similarity measure should be
translation-invariant, scale-invariant, and at least partially
rotation-invariant. From CAD research, it is known that the
Euclidean distance in Fourier space is useful for measuring
shape similarity [25], [26]. To gain invariance against
translation, rotation, and scaling, we use the Fourier
transformation of the differential geometric curvature of
the polygons, instead of the polygons themselves, and
normalize the arc length of the polygons to 2�. Using the
curvature guarantees translation and rotation-invariance
and normalizing the arc length guarantees scale-invariance.

In the following, we assume that the polygons are
transformed into a normalized parameterized polygon
contour function p : ½0; 2�� ! <2. Then, we can define the
curvature C of the polygons as

C : ð< ! <2Þ�!ð< ! <2Þ:

The Fourier transformation F is a transformation

F : ð< ! <2Þ�!<d;

determining the Fourier coefficients for a given curvature
function in d-dimensional Fourier space. The shape simi-
larity of two polygons p and p can then be defined as

dSðSðpÞ; SðpÞÞ ¼ dEuclidðF ðCðpÞÞ; F ðCðpÞÞÞ:

In the following, we describe the curvature transformationC
and the Fourier transformation F in more detail.

Determining the Curvature of a Polygon. In general, the
curvature of a polygon defined as a parameterized function
is mathematically undefined because the second derivative
is not continuous. We can avoid this problem by approx-
imating the polygon by replacing each vertex with very
small circular arcs, as shown in Fig. 10. This yields a new
geometric object of which the first derivative is continuous.
The curvature of this structure is defined in sections;
concatenating these sections, we obtain the curvature as a
square wave function.

To describe the curvature transformation in more detail,
let us focus on two consecutive edges, ei�1 and ei. These

102 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 1, JANUARY/FEBRUARY 2004

Fig. 9. Map reduction (US state map). (a) Original map (743 vertices). (b) Without nonconnecting vertices (204 vertices). (c) Reduced map

(343 vertices).

edges coincide in vertex vi with an angle �i. For the polygon
containing vi, we may easily compute the curvature
function ciðtÞ, describing the differential geometric curva-
ture of the approximated polygon because the curvature of
a circle segment with radius r is a constant function 1

r and
the curvature of a straight line is a constant zero function.
We may calculate the arc length of the circle segment
substituting vertex vi by bi ¼ j�ij � r. For ciðtÞ, we therefore
obtain

ciðtÞ ¼
1
r if ðtvi � bi=2 > t > tvi þ bi=2Þ
0 otherwise:

�

The curvature of an arbitrary polygon p is

cðtÞ ¼
Pjpj�1

k¼0 ckðtÞ. Fig. 10c shows the graph of the curvature

function cðtÞ for the approximation of the polygon section in

Fig. 10a. Fig. 11 shows the curvature functions for two

polygons which are identical under translation-invariance,

rotation-invariance, and scale-invariance.
The approximation of the original polygon and, in

particular, the choice of r, influences the curvature function.
If we reduce the radius r of the circle segment, 1

r will be
increased while bi will be decreased. This causes cðtÞ to
become more narrow and the amplitude of square waves to
become higher, while the approximation of the polygon
converges against the polygon itself. On the other hand, cðtÞ
becomes difficult to handle numerically. An adequate value
for r which has proven useful for our application is �

50 for
polygons with a normalized length of 2�. As our experi-
ments show, the similarity function is quite robust against a
suboptimal choice of r as long as r is smaller than half of the
length of the shortest edge since, otherwise, individual
square wave functions may overlap.

Fourier Transformation. The next step is computing
the Fourier transformation F of the curvature. The
principle of the Fourier transformation is to approximate
a function by summing up sine and cosine functions with
certain parameters. The quality of the approximation is
improved by increasing the degree d of the Fourier
approximation, which means to successively sum up

cosðxÞ; sinðxÞ; cosð2xÞ; sinð2xÞ; . . . ; cosðkxÞ; sinðkxÞ. More for-
mally, the Fourier approximation of a function f with a
period of 2� is defined as

F ðxÞ ¼ a0
2

Xd
k¼1

ðak cosðkxÞ þ bk sinðkxÞÞ;

where the coefficients ak and bk are defined as

ak ¼
1

�

Z 2�

0

fðxÞ cosðkxÞdx and bk ¼
1

�

Z 2�

0

fðxÞ sinðkxÞdx:

In general, integrals of the form
R
fðxÞ sinðxÞdx are difficult

to solve analytically. For the special case where fðxÞ is a
square wave function, however, the integral can be easily
determined. Let us assume that fðxÞ has a value of 1

r in the
interval ½u; v� and is zero elsewhere. Since the value of the
integral is zero outside of ½u; v�, we just have to integrate
from u to v. Therefore, we are able to calculate ak and bk as:

ak ¼
1

�kr
ðsinðkvÞ � sinðkuÞÞ and bk ¼

1

�k
ðcosðkvÞ � cosðkuÞÞ:

To determine the Fourier coefficients of the curvature
function cðtÞ of the whole polygon p, we only have to sum
uptheabove formula ciðtÞ for all vertices vi of thepolygon.We
obtain the following formulas for the Fourier coefficients:

ak ¼
1

�kr

Xjpj�1

i¼0

�i

j�ij
sin k ti þ

j�irj
2

� �� ��

� sin k ti �
j�irj
2

� �� ��

bk ¼ � 1

�kr

Xjpj�1

i¼0

�i

j�ij
cos k ti þ

j�irj
2

� �� ��

� cos k ti �
j�irj
2

� �� ��
:

The calculation of ak and bk can be done in OðjpjÞ time,
and the calculation of all coefficients can be done in
Oðjpj � dÞ, where d is the degree of the Fourier sum. Note

KEIM ET AL.: CARTODRAW: A FAST ALGORITHM FOR GENERATING CONTIGUOUS CARTOGRAMS 103

Fig. 10. Curvature approximation of the polygon. (a) Original polygon. (b) Approximated polygon. (c) Curvature of approximated polygon.

Fig. 11. Curvature transformation. (a) Two polygons. (b) Curvature of the two polygons.

that we are able to compute the coefficients of the Fourier

sum analytically and therefore do not run into numerical

problems such as finding the right sample rate. Experi-

mental results show that the Fourier transformation

provides a good approximation of the polygons and their

curvature function even for rather small d. For a detailed

discussion of Fourier theory, see [27].

3.2.3 Scanline Algorithm

The key to the CartoDraw algorithm is the scanline heuristic,

which incrementally repositions vertices along scanlines. A

scanline sl is a line segment of arbitrary position and length

and is partitioned into n portions of length jslj
n . The scanline

section points spi ði ¼ 0 . . .nÞ define nþ 1 sections of the

polygon mesh, which are orthogonal to the scanline (see

Fig. 13a). In one step of the scanline algorithm, all vertices

v 2 Vi within a certain distance ð� ¼ jslj
2nÞ of li are considered

for incremental repositioning (see Fig. 13a). Let SPi be the

set of polygons (by index number) which have at least one

vertex in scanline section i ði ¼ 0 . . .nÞ. Then, the scaling

factor SFi is determined according to the area error of all

polygons p in section i:

SFi ¼ const �
X
r2Si

~xrxr �AðprÞ
~xrxr þAðprÞ

� ~xrxrPn
l2Si

~xlxl

 !
:

Next, we have to determine the direction oðvÞ of a vertex v

and apply the scaling factor SFi to reposition the vertex.

The repositioning can be done either in the direction of the

scanline ðdirection ¼ scanlineÞ or in the direction of the
section line li. The algorithm is shown in Fig. 12. Note that

the scanline sections always span the full range orthogonal

to the scanline of the polygon net. If we want to restrict the

changes to be local in both directions, we can optionally

limit the polygons considered to those close to the scanline
(see Fig. 13b). This option is not reflected in the algorithm

shown in Fig. 12.

3.2.4 CartoDraw Main Algorithm

Having defined the components of the CartoDraw algo-

rithm, we can now describe its main procedure. The

algorithm assumes as input a set of polygons P, a scaling

vector of the desired statistical parameter ~XX, and a set of

scanlines SL, which can be determined automatically or
manually (see Section 3.2.5). Output is the modified set of

polygons P which describes the cartogram. The algorithm

works as follows (see Fig. 14). For each scanline, the

algorithm applies the scanline transformation and checks

the results. If the area difference Erel introduced by the
scanline transformation is below a certain threshold "A and

the shape distortion is below a certain threshold "s, then the

changes are retained and, otherwise, discarded. Then, the

104 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 1, JANUARY/FEBRUARY 2004

Fig. 12. Scanline algorithm.

Fig. 13. Scanline algorithm example. (a) Scanline section. (b) Scanline section with limited range.

algorithm proceeds with the next scanline until all scanlines
are applied in the same way. At this point, the algorithm
checks whether, in applying all scanlines, an improvement
of the area error has been obtained. If this is the case, the
algorithm applies all scanlines again and repeats the entire
procedure until no further improvement is reached (area
improvement below "). Since the area error improvement
must be positive and above the threshold " in each iteration,
the area error is monotonously decreasing and termination
of the algorithm is guaranteed. Note that, in applying an
individual scanline, we allow the algorithm to potentially
increase the area error to allow escaping local optima. Also,
notice that, after applying a scanline, all the other ones
remaining to be processed must be transformed as well, so
that they correspond properly to the transformed map.

3.2.5 Automatic versus Interactive Scanline Placement

So far, we assumed that the set of scanlines SL used by the
CartoDraw algorithm are given. In this section, we discuss
how the scanlines can be obtained. Our implementation
allows them to be defined automatically or interactively. The
automatic generation of scanlines uses a fixed grid of horizontal
and vertical scanlines (see Fig. 15a). The grid’s resolution can
be varied, but, within reason, this has only a minor influence
on the result. Because only those scanlines that do not induce
a higher shape and area error are applied, generating many
useless scanlines causes apotential loss in efficiency, but does
not affect the quality of the result.

The best cartograms seem to be obtained when the
scanlines are well adapted to the shape of the input
polygons and are placed in areas with a high potential for
improvement. Automatic placement based on these criteria
is difficult to achieve, so we allow the user to interactively
position the scanlines depending on the result of the previous
steps. The user usually starts with scanlines in regions with
a high area error. The scanlines seem to work best if they are
positioned such that they are either parallel or orthogonal to
the contour of the global polygon (see Fig. 15b).

Once the scanlines are specified for a given polygon
mesh, we can store and reapply them later to different data
on the same map. This makes it practical to generate a
continuous time series of cartograms, without user interac-
tion in each step. While the generated cartogram may not be
as good as if the scanlines were specified anew, the results
seem sufficient for many applications. In our experience,
manual positioning of scanlines is not difficult and can be
done quickly. Fig. 15b shows an example of a set of
manually placed scanlines. It took about 5 minutes to enter
these scanlines. Note that parts of the map that need large

changes have many scanlines of varying lengths, while
other parts have hardly any scanlines.

Fig. 16 shows a few intermediate steps of incrementally
applying the automatic scanlines shown in Fig. 15a to the
US population cartogram problem. The area error is
encoded in red for polygons that should be smaller and
blue for polygons that should be larger. The algorithm
quickly provides nice results in some areas which are well
adapted to horizontal and vertical scanlines (e.g., the
midwestern states and New England states). In other areas,
the improvement that can be reached by global horizontal
and vertical scanlines seems limited (e.g., California or New
York and Pennsylvania).

Fig. 17 shows a similar sequence applying the interactive
scanlines shown in Fig. 15b to the US population cartogram
problem. The local nonorthogonal scanlines specified
interactively allow a better adaptation of the algorithm to
the shape and area error of the polygons and, therefore,
provide better results. The residual area error obtained from
interactive scanline placement is much lower than that
obtained by automatic placement, with both having about
the same shape error. A detailed comparison of shape and
area error of the automatic versus interactive scanline
placements is provided in Section 4.2.

4 APPLICATION AND EVALUATION OF THE

ALGORITHM

The algorithm as described in the previous section has been
implemented in C using the LEDA library [28] and run on
several different example applications. Unless noted other-
wise, the tests were performed on a 1 GHz Pentium
computer with 128 Mbytes of main memory. In this section,
we report and discuss the results and compare the
effectiveness and efficiency of the different approaches.
Although our focus is on efficiency, the examples show that
the proposed CartoDraw algorithm also provides results of
good quality. For most of the examples, we will continue to
use a state map of the continental US as a running example.

4.1 Comparison with Previous Methods

Fig. 18 shows population cartograms generated by our
algorithm and by the technique proposed by Tobler [12]
and by Kocmoud and House [7]. A visual comparison
shows that our approach offers comparable if not better
visual results, with the geography of the United States being
clearly perceivable.

To evaluate the results analytically, Fig. 19a shows the
total area error Erel for all three approaches. Fig. 19a shows
that our proposal can provide better results than the
complex optimization-based approach by Kocmoud and
House [7]. Since the total area error is basically an average
over the state-wise area error, in Fig. 19b, we show the area
error state by state, sorted according to the area error.
Fig. 19b reveals that, for most states, our approach provides
significantly less area error than the Tobler cartogram5 and

KEIM ET AL.: CARTODRAW: A FAST ALGORITHM FOR GENERATING CONTIGUOUS CARTOGRAMS 105

Fig. 14. CartoDraw algorithm.

5. Note that the Tobler cartogram was not optimized according to our
error measure, which puts higher weights on polygons that should become
large. Since many of the polygons with large weights still have a large area
error in the Tobler cartogram, the overall improvement of Erel by the Tobler
cartogram is low.

a slightly less area error than the Kocmoud and House

cartogram, with few exceptions.
In terms of efficiency, our approach is much faster than

existing techniques. While previous approaches that at-

tempt to preserve shape and topology need hours or even

days to compute a solution, our implementation runs in

only seconds. Fig. 19c shows that our scanline-based

heuristic needs about 25 seconds, while the Kocmoud and

House approach needs about 16 hours, making our

approach about 2,000 times faster.6

4.2 Comparison of the CartoDraw Variants

One important aspect of the CartoDraw algorithm is the

specification of the scanlines. As mentioned previously, we

allow scanlines to be determined automatically or inter-

actively. In this section, we compare these two approaches

with respect to effectiveness (quality of the results) and

efficiency (time needed to produce the results).

4.2.1 Quality

In Fig. 20, we show the original US map (Fig. 20a) with the
results of the CartoDraw algorithm using automatically
generated scanlines (Fig. 20b) and interactively generated
scanlines (Fig. 20c). Both approaches provide good quality
cartograms. Fig. 20 shows that the area error ðErelÞ is much
lower for the interactive scanlines, but shape distortion
seems to be higher. To measure shape distortion, we use a
Fourier-based shape similarity function (see Section 3.2.2).
In Fig. 21, we compare the trade off between area and shape
error for each incremental step of the algorithm. Each point
in Fig. 21a and Fig. 21b corresponds to one intermediate
result of the CartoDraw algorithm (with interactive scan-
lines). The result shows the trade off between area error and
shape distortion: In the beginning, there is a large area error
Erel ¼ 0:36. By applying a scanline, the area error is
improved, but the shape becomes more distorted. It is
therefore not surprising that the curve goes from the lower
right to the upper left until the area error is small enough or
the shape distortion reaches some threshold. A similar
behavior can be observed for the global shape. There is,

106 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 1, JANUARY/FEBRUARY 2004

Fig. 17. Cartogram construction steps with interactively placed scanlines. (a) Step 0. (b) Step 10, (c) Step 20. (d) Step 40. (e) Step 60. (f) Step 80.

(g) Step 100. (h) Step 120. (i) Step 140. (j) Step 149.

6. The comparison assumes that both algorithms run on a 120 MHz
computer with 32 MByte RAM.

Fig. 15. Automatically versus interactively placed scanlines. (a) Automatic scanlines. (b) Interactive scanlines.

Fig. 16. Cartogram construction steps with automatically placed scanlines. (a) Step 0. (b) Step 12. (c) Step 21. (d) Step 30. (e) Step 36.

however, a slight difference: While the area error still

improves from one step to the next, the distortion of the

global shape in some cases actually improves.
Comparing the area-shape error trade off of interactive

versus automatic scanlines reveals some interesting

properties of our algorithm (see Fig. 22). In the beginning,

both approaches have a similar trend in shape-area error

trade off. At a certain point, however, the automatically

generated scanlines lead to a deterioration in area error that

subsequent scanlines are not able to improve. In the case of

interactively generated scanlines, the area error continues to

improve by smaller and smaller increments. Note the jump

in shape error for an area error of about Erel ¼ 0:15. At this

point, we switched the direction from scanline to section line

(see scanline algorithm in Section 3.2.3), which yields a

continued improvement of the area error, but with con-

siderable deterioration of the shape error.

KEIM ET AL.: CARTODRAW: A FAST ALGORITHM FOR GENERATING CONTIGUOUS CARTOGRAMS 107

Fig. 20. Population cartogram with automatically and interactively placed scanlines. (a) Original map (Erel ¼ 0:36). (b) Automatic scanlines

(Erel ¼ 0:21). (c) Int. scanlines (Erel ¼ 0:1).

Fig. 19. Area error and efficiency comparison (1980 US population cartogram). (a) Total area error. (b) Area error state-wise sorted. (c) Efficiency

comparison.

Fig. 18. Comparison of cartogram drawing algorithms. (a) Tobler [13]. (b) Kocmoud and House [7], Scanline-based algorithm.

Fig. 21. Shape versus area error comparison (interactive scanlines). (a) State polygons. (b) Global polygons.

4.2.2 Efficiency

We also performed extensive experiments to evaluate the
efficiency of the CartoDraw algorithm. The time needed to
run the algorithm on the US population data is about
2 seconds. If we change the parameter vector, the time
needed for the reduction step versus the scanline execution
varies slightly between 40 percent and 60 percent. Fig. 23a
shows the percentages needed for the two steps of the
algorithm for nine different parameter vectors, namely,
long-distance telephone call volume data by state for nine
time steps during a day. Note that the reduction step can be
precomputed so that it does not have to be rerun each time
the algorithm is executed.

We also analyzed the effect of changing the length of
scanlines. Fig. 23b shows the results for the 144 interactively
defined scanlines for the US population data. The time
needed to process a scanline depends only on the number of
scanline sections, which in turn depends only on the length
of the scanlines. This means that a steep increase corre-
sponds to long scanlines and a shallow increase corre-
sponds to short scanlines. Fig. 23b reveals that shorter

scanlines are more likely toward the end of the process and
are used for fine tuning portions of some polygons.
Nevertheless, some shorter scanlines are applied regularly
in the process as indicated by the irregularities in the curve.

Our final efficiency analysis was aimed at testing how
the performance of the CartoDraw algorithm varies with the
number of polygons. Since we do not have many different
real data sets with a widely varying number of polygons,
we generated synthetic data sets, namely, checker boards
with an increasing number of rectangular polygons. We
then used random numbers to initialize the parameter
vectors. Fig. 23c shows the results of these tests, revealing a
clear linear dependency on the number of polygons. The
algorithm needs about 16 seconds for a net of 90,000
polygons. Note, however, that, in this case, the number of
vertices per polygon is very low (four) and a reduction of
vertices is not necessary.

4.2.3 Application Examples

We ran the CartoDraw algorithm on several example data
sets. First, we used a US population cartogram to show
some statistical data obtained from the US census database.
In Fig. 24a, we show the population cartogram with color
corresponding to the area error in the cartogram. Blue
colored regions should be larger, while red regions should
be smaller. In Fig. 24b, Fig. 24c, and Fig. 24d, the color
shows different statistical parameters on top of the
population cartogram: Fig. 24b shows the percentage of
people with German ancestry, Fig. 24c the median house-
hold income in 1989, and Fig. 24d the percentage of unpaid
family workers. Since the area of the states corresponds to
their population, the shaded areas in the figures directly
correspond to the number of people with those properties.
It is interesting that the highest percentage of people with
German ancestry is in the northern midwest (with some

108 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 1, JANUARY/FEBRUARY 2004

Fig. 22. Comparison of automatic and interactive scanlines.

Fig. 24. Population cartogram showing census data statistics (Erel ¼ 0:10). (a) Area error. (b) Percentage of people with German ancestry. (c) Median

household income in 1989. (d) Unpaid family workers.

Fig. 23. Efficiency tests. (a) Reduction versus scanline step. (b) Number of scanlines (US states). (c) Number of polygons.

higher numbers also in Philadelphia and East). In the
median income cartogram, it is interesting that the areas
with small income are mostly states with relatively small
populations (the middle of the noncoastal east of the US)
and, in the unpaid family workers cartogram, the numbers
are high in the northern midwest, with some additional
high numbers in Florida, Texas, and California. To show
that our algorithm works with arbitrary polygon meshes,
we also applied the algorithm to the population data of
Europe, as shown in Fig. 25.

As mentioned at the outset, we developed the CartoDraw

algorithm for displaying applications like telephone call
volume data, which needs to be continuously monitored
and visualized. Since the underlying polygon data does not
change, the vertex reduction only needs to be run once. This
provides a significant speed-up, making interactive display
with an update rate of about one second possible. Fig. 26
shows the results of the normalized telephone call volume
at different times during one day. The resulting visualiza-
tions clearly reflect the different time zones of the US, and
show interesting patterns of phone usage as it proceeds
during the day. In Fig. 27, we compare the shape-area error
trade off of the four call volume cartograms. The results
clearly show that interactive scanlines always provide
better shape-area error trade offs. Note, however, that, for
frames 2 and 3, the interactive solution provides signifi-
cantly lower area error at the cost of slightly greater shape
error, while, for frames 1 and 4, it is superior in both shape
and area error.

5 CONCLUSIONS AND FUTURE WORK

In this study, we analyzed and discussed the problem of
efficient cartogram drawing and proposed an optimistic

algorithm that outperforms previous techniques by orders

of magnitude and provides results that are at least as

correct. Experiments show that the proposed algorithm

offers good results for a variety of applications and scales to

a large number of input polygons. For medium sized data

sets, its performance is sufficient for interactive display of

streaming data in telecom applications. Although the

proposed algorithm is a significant step toward fast,

reliable, and effective cartogram generation, there remain

several promising directions for further research, including

study of the dependence of the results on the selected

scanlines and improvement of automatic scanline place-

ment.

ACKNOWLEDGMENTS

Stephen North thanks David Dobkin and Ilan Sender for

collaborating on the initial cartogram experiments that

helped to inspire this work. The authors also thank Rick

Becker and AllanWilks for their comments and suggestions.

REFERENCES

[1] E. Raisz, General Cartography. New York: McGraw-Hill, 1948.
[2] E. Raisz, Principles of Cartography. New York: McGraw-Hill, 1962.
[3] J. Hunter and J.C. Young, “A Technique for the Construction of

Quantitative Cartograms by Physical Accretion Models,” The
Professional Geographer, vol. 20, pp. 402-406, 1968.

[4] H. Gray Funkhouser, “Historical Development of the Geographi-
cal Representation of Statistical Data,” Osiris, vol. 3, pp. 269-403,
1937.

[5] B.D. Dent, Cartography: Thematic Map Design, fourth ed., chapter
10. Dubuque, Iowa: William C. Brown, 1996.

[6] W.R. Tobler, “Cartograms and Cartosplines,” Proc. 1976 Workshop
Automated Cartography and Epidemiology, pp. 53-58, 1976.

[7] C.J. Kocmoud and D.H. House, “Continuous Cartogram Con-
struction,” Proc. IEEE Visualization, pp. 197-204, 1998.

KEIM ET AL.: CARTODRAW: A FAST ALGORITHM FOR GENERATING CONTIGUOUS CARTOGRAMS 109

Fig. 25. Population cartogram of Europe.

Fig. 26. Long distance call volume data (Erel < 0:20). (a) 0:00 am (EST). (b) 6:00 am (EST). (c) 12:00 pm (EST). (d) 6:00 pm (EST).

Fig. 27. Interactive versus automatic scanlines (call volume data).

[8] S. Gusein-Zade and V. Tikunov, “Map Transformations,” Geo-
graphy Rev., vol. 9, no. 1, pp. 19-23, 1995.

[9] A.M. MacEachren, How Maps Work: Presentation, Visualization, and
Design. New York: The Guilford Press, 1995.

[10] C.B. Jackel, “Using Arcview to Create Contiguous and Noncon-
tiguous Area Cartograms,” Cartography and Geographic Information
Systems, vol. 24, no. 2, pp. 101-109, 1997.

[11] B. White, I. Gregory, and H. Southall, “Analysing and Visualising
Long-Term Change,” GIS Research UK, Proc. Sixth Nat’l Conf., 1998.

[12] W.R. Tobler, “Pseudo-Cartograms,” The Am. Cartographer, vol. 13,
no. 1, pp. 43-40, 1986.

[13] S. Selvin, D. Merrill, J. Schulman, S. Sacks, L. Bedell, and L. Wong,
“Transformations of Maps to Investigate Clusters of Disease,”
Social Science and Medicine, vol. 26, no. 2, pp. 215-221, 1988.

[14] S. Gusein-Zade and V. Tikunov, “A New Technique for
Constructing Continuous Cartograms,” Cartography and Geographic
Information Systems, vol. 20, no. 3, pp. 66-85, 1993.

[15] B. Dent, “A Note on the Importance of Shape in Cartogram
Communication,” The J. Geography, vol. 71, no. 7, pp. 393-401, Oct.
1972.

[16] B. Dent, “Communication Aspects of Value-by-Area Cartograms,”
The Am. Cartographer, vol. 2, no. 2, pp. 154-168, Oct. 1975.

[17] T. Keahey and E. Robertson, “Nonlinear Magnification Fields,”
Proc. IEEE Symp. Information Visualization, pp. 51-58, 1997.

[18] T. Munzner, “Exploring Large Graphs in 3D Hyperbolic Space,”
IEEE Computer Graphics and Applications, vol. 18, no. 4, pp. 18-23,
July/Aug. 1998.

[19] M.S.T. Carpendale, D.J. Cowperthwaite, M. Tigges, A. Fall, and
F.D. Fracchia, “The TARDIS: A Visual Exploration Environment
for Landscape Dynamics,” Visual Data Exploration and Analysis VI,
Proc. SPIE, vol. 3643, pp. 110-119, Jan. 1999.

[20] T.A. Keahey, “Area-Normalized Thematic Views,” Proc. Int’l
Cartography Assembly, Aug. 1999.

[21] C. Cauvin, C. Schneider, and G. Cherrier, “Cartographic Trans-
formations and the Piezopleth Method,” The Cartographic J., vol. 26,
no. 2, pp. 96-104, Dec. 1989.

[22] D. Dorling, Area Cartograms: Their Use and Creation, first ed. Dept.
of Geography, Univ. of Bristol, England, 1996.

[23] H. Edelsbrunner and R. Waupotitsch, “A Combinatorial Ap-
proach to Cartograms,” Computational Geometry, pp. 343-360, 1997.

[24] D. Anderson, E. Anderson, N. Lesh, J. Marks, K. Perlin, D.
Ratajczak, and K. Ryall, “Human-Guided Greedy Search: Com-
bining Information Visualization and Heuristic Search,” Proc.
Workshop New Paradigms in Information Visualization and Manipula-
tion (NPIVM ’99), pp. 21-25, 1999.

[25] L. Kehrer and C. Meinecke, Perceptual Organization of Visual
Patterns: The Segmentation of Textures, chapter 2. London: Aca-
demic Press, 1995.

[26] S. Berchtold, D.A. Keim, and H.-P. Kriegel, “Using Extended
Feature Objects for Partial Similarity Retrieval,” VLDB J., vol. 6,
no. 4, pp. 333-348, 1997.

[27] N. Weisstein, The Joy of Fourier Analysis. Hillsdale, N.J.: Erlbaum,
1980.

[28] K. Mehlhorn and S. Näher, The LEDA Platform of Combinatorial and
Geometric Computing, first ed. Cambridge Univ. Press, 1999,
http://www.mpi-sb.mpg.de/mehlhorn/LEDAbook.html.

Daniel A. Keim received the PhD degree in
computer science from the University of Munich
in 1994. He is working in the area of information
visualization and data mining. In the field of
information visualization, he developed several
novel techniques which use visualization tech-
nology to explore large databases. He has
published extensively on information visualiza-
tion and data mining; he has given tutorials on
related issues at several large conferences

including Visualization, SIGMOD, VLDB, and KDD; he was program
cochair of the IEEE Information Visualization Symposia in 1999 and
2000; he was program cochair of the ACM SIGKDD conference in 2002;
and he is an editor of the IEEE Transactions on Visualization and
Ccomputer Graphics and the Information Visualization Journal. He has
been an assistant professor in the Computer Science Department of the
University of Munich, an associate professor in the Computer Science
Department of the Martin-Luther-University Halle, and he is a full
professor in the Computer Science Department of the University of
Constance. Recently, he worked at AT&T Shannon Research Labs,
Florham Park, New Jersey. He is a member of the IEEE Computer
Society.

Stephen C. North received the PhD degree in
computer science from Princeton University in
1986. He is head of Information Visualization
Research at AT&T Labs, a group that studies
novel interactive displays and high performance
graphics for network visualization in the AT&T
Infolab. His background is in software visualiza-
tion, applied computational geometry, and the
design of reusable software. He is one of the
authors of graphviz, a widely used collection of

open source programs for drawing and interacting with graph layouts.
His other current technical interests include dynamic graph layout, and
Internet mapping and measurement. He is a senior member of the IEEE
and a member of the ACM.

Christian Panse received the master’s degree
from the Martin-Luther-University Halle-Witten-
berg, Germany, in 2001. He is currently pursing
the PhD degree in the Data Mining and
Visualization Group at the University of Con-
stance, Germany. He wrote his master’s thesis
on cartograms and has worked on related
research issues since then. he is a member of
the IEEE Computer Society.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

110 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 1, JANUARY/FEBRUARY 2004

