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Abstract

3D objects are an important type of multimedia data with
many promising application possibilities. Defining the as-
pects that constitute the similarity among 3D objects, and
designing algorithms that implement such similarity defini-
tions is a difficult problem. Over the last few years, a strong
interest in methods for feature-based 3D similarity search
has arisen, and a growing number of competing algorithms
for content-based retrieval of 3D objects have been pro-
posed. We present an extensive experimental evaluation of
the retrieval effectiveness and efficiency of a large part of
the current state-of-the-art feature-based methods for 3D
similarity search, giving a contrasting assessment of the dif-
ferent approaches.

1 Introduction

The development of effective and efficient similarity
search methods for multimedia data is an important research
issue due to the growing amount of digital audio-visual in-
formation that is becoming available. In digital libraries
that are built from heterogenous data sources, typically con-
sistent annotations are not available in order to organize
and access the objects. Therefore, automatic content-based
methods for similarity estimation of multimedia objects are
required. In the case of 2D images along with the growth of
available data volumes, a wealth of similarity notions and
retrieval systems has evolved. A similar development can
be expected for 3D data, as 3D objects are powerful means
for information dissemination with applications in such im-
portant fields as design and construction, education, simu-
lation and entertainment.

Similarity search methods for 3D objects have to address
a number of problems in order to achieve desirable invari-
ance properties (i.e., position, scale and rotation). They also
have to select suitable object characteristics for similarity
estimation. Usually, afeature vector(FV) approach is used
for performing similarity search. Already, there exist a vari-
ety of proposed methods that can be used to implement 3D

similarity search systems. As these methods are rather new,
to date few comprehensive experimental or theoretical stud-
ies contrasting the different methods exist. We have devel-
oped a retrieval system that implements many different 3D
FVs from our own as well as other researchers’ work. In this
paper, we present a survey of the FVs we have implemented
in our system, and empirically evaluate their retrieval per-
formance based on extensive similarity search experiments
conducted on a large classified database. The database is
representative for the variety of 3D models one may find on
the World Wide Web today in VRML or similar formats.

2 Similarity search of 3D objects

Given that it is not clear how to use geometry directly for
similarity search, in most methods for similarity search the
3D data is transformed in some way to obtain anumerical
descriptionfor indexing and retrieval, also referred to as
feature vectors, or FVs. The basic idea is to extract numeric
values that describe the objects under a certain geometric
aspect, and to infer the similarity of the models from the
distance of these FVs in some vector space.

2.1 Feature vector paradigm

The usage of feature vectors is the standard approach in
multimedia retrieval. Based on the real valued vectors de-
scribing the objects in a database, a similarity query for a
query objectq is usually executed as ak-NN query, return-
ing thek objects whose FVs have the smallest distance to
q under a certain distance metric, sorted by increasing dis-
tance to the query.

An important family of such distance metrics in vector
spaces is theMinkowski(ls) family of distances, defined as

ls (~x, ~y) =
(∑

1≤i≤d |xi − yi|
s
)1/s

, ~x, ~y ∈ IRd, s ≥ 1.

Examples of these distance functions arel1, which is called
Manhattan distance, l2, which is theEuclidean distance,
and l∞ = max1≤i≤t |xi − yi|, which is called themaxi-
mum distance. Several extentions to the Minkowski dis-
tances have been studied, like the weighted Minkowski dis-
tance, where a weighting vector is assigned to the vector



component distances, or the Mahalanobis distance [7, 13],
which engages a weight matrix to reflect cross-component
similarity relationships between FVs.

2.2 Invariance requirements and the Principal
Component Analysis

Several requirements that suitable methods for 3D sim-
ilarity search should fulfill can be identified. The methods
should beinvariant to changes in the orientation, transla-
tion, reflection, and scale of 3D models in their reference
coordinate frame. They should also berobustwith respect
to changes of the level-of-detail and to small changes of
the geometry and topology of the models. Invariance and
robustness properties can be achieved implicitly by those
methods that consider relative object properties or that inte-
grate a similarity measure over the space of transformations
[12]. Otherwise, these properties can be approximated by a
preprocessing normalization step, which transforms the ob-
jects so that they are represented in a canonical reference
frame. In such a reference frame, directions and distances
are comparable between different models. The predomi-
nant method for finding this reference coordinate frame is
pose estimation by principal components analysis (PCA)
[10, 19]. The basic idea is to align a model by consider-
ing its center of mass as the coordinate system origin, and
its principal axes as the coordinate axes. While the majority
of proposed methods employs PCA in some form or an-
other, some authors have stability concerns with respect to
the PCA as a tool for 3D retrieval. On the other hand, omit-
ting orientation information also omits valuable object in-
formation. For a more detailed discussion see [2, 15, 8, 14].

3 Implemented 3D feature extraction algo-
rithms

Geometric 3D moments. Statistical momentsµ are
scalar values that describe a distributionf . Parameter-
ized by their order, moments represent a spectrum from
coarse-level to detailed information of the given distribution
[10]. In the case of 3D solid objects, which may be inter-
preted as a density functionf(x, y, z), the momentµi,j,k
of ordern = i + j + k in continuous form is defined by
µijk =

∫ +∞
−∞
∫ +∞
−∞
∫ +∞
−∞ f(x, y, z)xiyjzkdxdydz. As is well

known, the complete (infinite) set of moments uniquely de-
scribes a distribution and vice versa. In its discrete form, the
moment formula becomesµijk =

∑
p∈P xp

iyp
jzp

k over
all considered points fromP in the distribution. In [10], it
is proposed to use the centroids of all triangles of a triangu-
lated model (weighted with the mass of the respective trian-
gle) as input to moment calculation (moments FV), while in
[16] object points found by an uniform ray-based scanning

scheme serve as the input (ray-moments FV). Because mo-
ments are not invariant with respect to translation, rotation
and scale, PCA and scale normalization have to be applied
prior to moment calculation. A FV can then be constructed
by concatenating certain statistical moments of an object,
e.g., all moments of order up to some valuen.

Cords based FV. A FV that combines information about
the spatial extent and orientation of a 3D object is given in
[10] (cords FV). The authors define a “cord” as a vector
that runs from an object’s center of mass to the centroid of
a bounded region of the object, usually a triangle. For all
object surfaces, such a cord is constructed. The FV is then
built by calculating two histograms for the angles between
the cords and the object’s first two principal axes each (mea-
suring orientation), and one histogram for the distribution
of the cord length (measuring spatial extention). All three
histograms are normalized by the number of cords and to-
gether make up the feature vector. Using the principal axes,
the methods is invariant to rotation and translation. It is
also invariant to scale, as the length distribution is binned to
the same number of bins for all objects. It can be inferred
that the methods is not invariant to non-uniform tessellation
changes. No quantitative retrieval results were given for this
FV in [10].

Shape distribution with D2. In [9], it is proposed to
characterize the shape of a 3D object as a probability dis-
tribution sampled from a shape function, which reflects ge-
ometric properties of the object. The algorithm calculates
histograms calledshape distributions, and estimates simi-
larity between two shapes by any metric that measures dis-
tances between distributions (e.g., Minkowski distances).
The authors state that, depending on the shape function em-
ployed, shape distributions possess rigid transformation in-
variance, robustness against small model distortions, inde-
pendence of object representation, and provide for efficient
computation. The shape functions studied by the authors
include the distribution of angles between three random
points on the surface of a 3D object, and the distribution of
Euclidean distances between one fixed point (specifically,
the centroid of the boundary of the object was taken) and
random points on the surface. Furthermore, they propose
to use the Euclidean distance between two random points
on the surface, the square root of the area of the triangle
between three random points on the surface, or the cube
root of the volume of the tetrahedron between four random
points on the surface. Where necessary, a normalization
step is applied for differences in scale. As the analytic com-
putation of distributions is feasible only for certain combi-
nations of shape functions and models, the authors perform
appropriate random sampling of many values from an ob-
ject, and construct a histogram from these samples to de-
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scribe the object shape. The authors perform retrieval ex-
periments and report that the best experimental results are
achieved using the distance function (distance between two
random points on the surface), and using thel1 norm of
the probability density functions, which are normalized by
aligning the mean of each two histograms to be compared
(D2 shape distribution FV).

Method based on surface geometry. A methods for 3D
retrieval proposed within the MPEG-7 framework for mul-
timedia content description and reflecting curvature prop-
erties of 3D objects is presented in [20]. Theshape spec-
trum FV is defined as the distribution of theshape indexfor
points on the surface of a 3D object, which in turn is a func-
tion of the two principal curvatures at the respective surface
point. The shape index gives the angular coordinate of a
polar representation of the principal curvature vector, and
it is implicitly invariant with respect to rotation, translation
and scale. Because the shape index is not defined for planar
surfaces, but 3D objects are usually approximated by poly-
gon meshes, the authors suggest approximating the shape
index by fitting quadratic surface patches to all mesh faces
based on the respective face and all adjacent faces, and us-
ing this surface for shape index calculation. To compensate
for potential estimation unreliability due to (near) planar
surface approximations and (near) isolated polygonal face
areas, these are excluded from the shape index distribution
based on a threshold criterion, but their relative area is cu-
mulated in two other attributes namedplanar surfaceand
singular surface. These attributes together with the shape
index histogram form the final FV.

Silhouette FV. A method calledsilhouette FV[4] char-
acterizes 3D objects in terms of their silhouettes that are
obtained from canonical renderings. The objects are first
PCA-normalized and scaled into a unit cube that is axis-
parallel to the principal axes. Then, parallel projections
onto three planes, each orthogonal to one of the princi-
pal axes, are calculated. The authors propose to obtain
FVs by concatenating Fourier approximations of the three
resulting contours. To obtain such approximations, a sil-
houette is sampled by placing a certain number of equally-
spaced sequential points on the silhouette, and regarding
the Euclidean distance between the image center and the
consecutive contour points as the sampling values. These
sampling values in turn constitute the input to the Fourier
transform. The concatenation of the magnitudes of low-
frequency Fourier coefficients of the three contour images
then gives the silhouette object description.

Depth buffer FV. Also in [4], another image-based FV
is proposed. The so-calleddepth buffer FVstarts with the
same setup as the silhouette FV: The model is oriented and

scaled into the canonical unit cube. Instead of three sil-
houettes, six gray-scale images are rendered using paral-
lel projection, each two for one of the principal axes. A
pixel attribute represents the distance between the object
and the viewing plane measured along a corresponding di-
rection that is perpendicular to the viewing plane. These
images correspond to the concept of z- or depth-buffers in
computer graphics. After rendering, the 6 images are trans-
formed using the standard 2D discrete Fourier transform,
and the magnitudes of low-frequency coefficients of each
image contribute to the depth buffer FV.

Extension-based methods. In [18, 16] the authors pro-
pose a FV extraction framework that is based on taking
samples from a PCA-normalized 3D object by means of
rays emitted from the center of massO of an object in uni-
formly distributed directionsu (directional unit vectors).
For all such rays in directionu, starting fromO the last
intersection pointi(u) with a polygonp of the object is
found, if such a point exists. If this point exists, the dis-
tancer(u) = ||i(u) − O|| is calculated, as well as the
scalar productx(u) = |u · n(u)|, wheren(u) is the nor-
mal vector of the respective polygon. In the first proposed
FV, which compares spatial extent, the distancesr(u) make
up the components of the so-calledray-basedfeature vec-
tor. A second FV is obtained by setting the scalar products
x(u) as the feature components (calledshading-based FV).
The sample values taken by these functions from an object
can be seen as instantiations of a function on the sphere.
The authors propose, instead of using the absolute sample
values, to apply the 3D Fourier transform on the samples,
and to take the magnitudes of low-frequency coefficients as
an embedded multi-resolution object description.Spherical
harmonics[3] are proposed as the basis functions for the
transform, and the corresponding FVs are calledrays-SH
and shading-SH FV, respectively. These complex coeffi-
cients come as complex conjugate pairs with equal magni-
tude. Thus, for each pair only one magnitude is used in the
feature vector. In extention to using eitherr(u) or x(u),
also the combination of both measures in a complex func-
tion y(u) = r(u) + i · x(u) is considered by the authors.
The FV based on the spherical harmonics transform ofy(u)
is called thecomplex FV.

Rotation invariant point cloud FV. In [5], the authors
present a method that relies on PCA registration but also is
invariant to rotations of 90 degrees along the found principal
axes. To construct the FV, an object is centered and oriented
into the canonical coordinate frame using PCA, and scaled
into the unit cube with origin at the center of mass of the
object and axis parallel to the principal axes. The unit cube
is then partitioned, e.g. into7 × 7 × 7 equally sized cubic
cells, and for each cell the frequency of some large number

3



of points sampled uniformly from the surface and that lie in
the respective cell is determined. To reduce the size of the
FV, which until now consists of343 values, all grid cells
are associated with one of21 equivalence classes based on
their location in the grid. Therefore, all cells that coincide
when performing arbitrary rotations of 90 degrees along the
principal axes are grouped together in one of the classes.
For each equivalence class, the frequency data contained in
the cells belonging to the respective equivalence class is ag-
gregated, and the final FV of dimensionality21 is obtained.
The authors present retrieval performance results on a 3D
database, on which7 × 7 × 7 is found to be the best grid
dimensionality , but state that in general the optimal size of
the FV may depend on the database chosen. In this paper,
we refer to this method as therotational invariant FV.

Methods based on surface voxelization. In [17], a FV
based on the rasterization of a model into a voxel grid struc-
ture is presented, and the representation of this FV in ei-
ther spatial or frequency domain is experimentally evalu-
ated. Thevoxel FV is obtained by first subdividing the
bounding cube of an object (after pose normalization) into
n×n×n equally sized voxel cells. Each of these voxel cells
vijk, i, j, k ∈ {1, . . . , n} then stores the fractionpijk =
Sijk
S of the object surface areaSijk that lies in voxelvijk,

whereS =
∑n
i=1

∑n
j=1

∑n
k=1 Sijk is the total surface

area. The object’s voxel cell occupancies constitute the FV
of dimensionn3.

For similarity estimation with this FV, a metric can be
defined in the spatial domain (voxel FV), or after a 3D
Fourier-transform in the frequency domain (3DDFT FV).
Then, onlyk low-frequency coefficients are used, enabling
multi-resolution search.

Volume-based FVs. In the preceding method, triangle
occupancies of a voxel grid made up a FV for object de-
scription. This approach is appropriate when dealing with
polygon meshes without further conditions. Such meshes
typically come from heterogenous sources, e.g., from the
Internet (informally referred to as “polygon soups”). On the
other hand, if the 3D models are known to bound a solid ob-
ject, then also volumetric occupancies of the corresponding
solid can be considered for FV construction. Several meth-
ods for similarity estimation based on voxelized volume
data of normalized models have been proposed [10, 11, 6].
Another volume based FV is presented in [4]. Here, the six
surfaces of an object’s bounding cube are equally divided
into n2 squares each. Adding the object’s center of mass
to all squares, a total of6n2 pyramid-like segments in the
bounding cube is obtained. Assume that the polygon mesh
bounds a solid object. The net proportion of volume occu-
pied by the solid object in each segment of the bounding
cube gives the components of the so-calledvolume FV.

Rotation invariant spherical harmonics FV. In [2], a
FV based also on the spherical harmonics approximation
of an object is proposed. An important characteristic of
this technique is that more than just phase information is
discarded in the spherical harmonics representation, in or-
der to obtain complete rotation invariance without requiring
pose estimation. This is possible since the energy in each
frequency band of the spherical transform is rotation invari-
ant [3]. Input to the transform is a binary voxelization of a
polygon mesh into a grid with dimension2R × 2R × 2R,
where each occupied voxel indicates the intersection of the
mesh with the respective voxel. To construct the voxeliza-
tion, the object’s center of mass is translated into grid po-
sition (R,R,R) (grid origin), and the object is scaled so
that the average distance of occupied voxels to the center
of mass amounts toR2 , that is 1

4 of the grids edge length.
By using this scale instead of scaling it so that the bound-
ing cube fits into the grid, it is possible to lose some object
geometry. On the other hand, sensitivity with respect to out-
liers is expected to be reduced. The8R3 voxels give rise to a
binary function on the corresponding cube, which is written
in spherical coordinates asfr(θ, φ) with the origin (r = 0)
placed at the cube center. The binary function is sampled
for radii r = 1, . . . , R and sufficiently many anglesθ, φ to
allow computation of the spherical harmonics representa-
tion of the spherical functionsfr. The FV consists of low
frequency band energies of the functionsfr, r = 1, . . . , R.
By construction, it is invariant with respect to rotation about
the center of mass of the object. In this paper, we refer to
this FV as theharmonics 3D FV.

4 Experimental comparison of 3D feature
vectors

4.1 Evaluation approach

Our evaluation experiments are based on a test database
we have built, which contains 1,837 3D objects collected
from the Internet. From this set, 472 objects were classified
by shape into 55 different model classes (e.g., cars, planes,
cups), and the rest of them were left as “unclassified”. Each
classified object of each model class was used as a query
object, and the objects belonging to the same model class,
excluding the query, were taken as the relevant objects. Fig-
ure 1 shows two examples of model classes: Formula 1 (F-
1) cars, which contains 9 models, and sea animals, which
contains 13 models (we omitted one model in the last model
class for space reasons).

For comparing the effectiveness of the search algorithms,
we useprecision vs. recall figures, a standard evaluation
technique for retrieval systems [1].Precisionis the fraction
of the retrieved objects which are relevant to a given query,
andrecall is the fraction of the relevant objects which have
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Figure 1. Formula 1 cars and sea animals
model classes.

been retrieved from the database. We average the precision
figures over all test queries at each of the 11 standard recall
levels. In addition to the precision at multiple recall points,
we also employ the widely usedR-precisionmeasure [1]
(also known asfirst tier) for each query, which is defined as
the precision when retrieving only the firstN objects, where
N is the number of relevant objects. The R-precision gives
a single number to rate the retrieval performance.

We tested all FVs using different levels of resolution,
from 3 up to 512 dimensions, selecting every possible di-
mensionality allowed by the parameters of each FV. The
resulting values are averaged over all queries, except when
otherwise stated. We usedl1 as the metric for distance com-
putation, as this metric produced the best average retrieval
results compared to thel2 and lmax metric in our experi-
ments. We apply our variant of the PCA [17] for those FVs
that require object orientation normalization.

4.2 Effectiveness comparison between FVs

Average results. Figure 2 shows the precision vs. re-
call figures for all the implemented FVs. The average R-
precision for each FV and its corresponding best dimen-
sionality are also included in the chart. The most effective
method in this experiment is the depth buffer with 366 di-
mensions. The difference of the average R-precision values
between the best performing methods is small, which im-
plies that in practice these FVs should all be suited equally
well for retrieval of general polygonal objects. As a con-
trast, the effectiveness difference between the worst and the
best FV is significant (up to a factor of 3). We observed that
FVs that rely on consistent polygon orientation like shape
spectrum or volume exhibit low retrieval rates, as consis-
tent orientation is not guaranteed for many of the models
retrieved from the Internet. Also, moment-based FVs seem
to offer only limited discrimination capabilities.

Specific query classes. Most of the individual query
classes from our database reflect the effectiveness ranking

Figure 5. Example query in the humans class.
The first query was conducted using the
shape spectrum method and retrieves differ-
ent articulations of the same model on the
first ranks. The second query was conducted
using the depth buffer method, and retrieves
human models having the same articulation
as the query object.

obtained from the database average, while certain shifts in
the rankings are possible. Figures 3 and 4 illustrate two
such query classes, namely one class with planes and one
class with swords. The charts give the effectiveness results
obtained with the methods for these query classes.

While the shape spectrum FV scores the worst on aver-
age, interestingly it achieves the best retrieval performance
in a query class containing 56 models of humans (34% R-
precision). As this FV considers the distribution of local
curvature, it is able to retrieve human models that have
different postures, while the other FVs retrieve only those
models where model posture is roughly the same. Figure 5
illustrates a representative query in the humans class, show-
ing the first retrieval results for the shape spectrum and the
depth buffer FVs, in the first and second rows, respectively.

Level-of-detail. Robustness of the retrieval with respect
to the level-of-detail in which models are given in a database
is an important FV property. We test for this property using
a query class that contains 7 different versions of the same
model, in varying levels of resolution (specifically, models
of a cow with 88 up to 5,804 faces). Except shape spec-
trum and cords, all FVs manage to achieve good to perfect
retrieval results. Figure 6 illustrates.
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Figure 2. Average precision vs. recall with best dimensionality.
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Figure 3. Average precision vs. recall, planes model class.
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Figure 7. Alignment problem of PCA in the
arm chais class. All objects are rendered
with the camera looking at the center of mass
along the least important principal axis, while
the first principal axis is aligned horizontally.

Principal axes. PCA normalization is required by a large
fraction of methods. For some model classes, the PCA
gives alignment results that are not in accordance with the
alignment a user would intuitively expect based on seman-
tic knowledge of the objects. For example, we have de-
fined a query class with 4 arm chairs, for which we observe
that PCA alignment results are counterintuitive (cf. Figure
7). While we do not want to give an in-depth discussion
of the PCA here, we note that in this query class an inher-
ently rotational-invariant method (harmonics 3D) provides
the best class-specific retrieval performance (see Figure 8).

Effects of dimensionality on retrieval. It is possible to
calculate feature vectors at different resolutions, e.g., by
specifying the number of rays with which to scan the ob-
jects, by specifying the number of Fourier coefficients to
consider, etc. We are therefore interested in assessing the
effect of FV resolution over the retrieval effectiveness. Fig-
ure 9 shows the effect of the FV dimensionality on the over-
all effectiveness. The figure shows that the effectiveness
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Figure 8. Precision-recall curves for the
chairs model class. The rotation-invariant
method harmonics 3D shows the best re-
trieval performance.

of the FVs first increases with dimensionality, but the im-
provement rate diminishes quickly for roughly more than
64 dimensions for most FVs (except for 3DDFT). It is inter-
esting to note that the saturation effect is reached for most
FVs at roughly the same dimensionality level. This is an
unexpected result, considering that different FVs describe
different characteristics of 3D objects.

5 Conclusions

We experimentally compared a wide variety of 3D FVs
on a classified database of 3D objects, formed by mod-
els collected from the Internet, and we compared their re-
trieval performance using standard effectiveness measures
from the Information Retrieval domain (precision vs. recall
diagrams and the R-precision values). Our experimental
comparison shows that there is a number of them that have
good average effectiveness and work well in most cases
(e.g., depth buffer, voxel and complex FVs). Other methods
work well with some specific model classes, and some of
them are effective when the normalization step using PCA
is not effective (e.g., harmonics 3D with the chair model
class). Regarding to the level-of-detail, the experimental re-
sults show that, with a few exceptions like shape spectrum
and volume, all FVs can be considered robust, as they can
retrieve similar objects with different level of detail.
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