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ABSTRACT

The Feature Vector approach is one of the most popular
schemes for managing multimedia data. For many data types
such as audio, images, or 3D models, an abundance of dif-
ferent Feature Vector extractors are available. Theautomatic
(unsupervised) identification of the best suited feature extrac-
tor for a given multimedia database is a difficult and largely
unsolved problem. We here address the problem ofcompar-
ative unsupervised feature space analysis. We propose two
interactive approaches for the visual analysis of certain fea-
ture space characteristics contributing to estimated discrimi-
nation power provided in the respective feature spaces. We
apply the approaches on a database of 3D objects represented
in different feature spaces, and we experimentally show the
methods to be useful (a) for unsupervised comparative esti-
mation of discrimination power and (b) for visually analyzing
important properties of the components (dimensions) of the
respective feature spaces. The results of the analysis are use-
ful for feature selection and engineering.

1. INTRODUCTION

The Feature Vector (FV) approach [1] to managing multime-
dia data represents multimedia objectso ∈ O given in an
object spaceO by points ~po ∈ Rd in a d-dimensional vec-
tor space. FV extractorsfvx are functionsfvx : O →
Rd mapping objects to vectors numerically describing object
properties. Suitable extractors provide the generated FVs (a)
are efficiently calculated and (b) allow to effectively capture
object space similarity relationships by appropriate distance
functions d : (~pi, ~pj) → R+

0 defined in FV space. The
FV approach provides a simple, flexible means to implement
important multimedia applications such as content-based re-
trieval and clustering. Also, the FV approach supports data-
base indexing [2]. For many multimedia data types, descrip-
tion schemes other than FVs exit, e.g., relying on graph-based
representations. Also, transformation-based matching schemes
have been proposed for certain content. Yet, due to its sim-
plicity and generality, the FV approach remains popular.

The effectivenessof a given FV extractor used to repre-
sent multimedia content is critical for any FV-based applica-
tion. We understand the effectiveness of a FV extractor as the
degree of how accurately distancesd in FV space resemble
similarity relationships in object space. For many multime-
dia data types an abundance of competing FV extractors are
available. Yet often the identification of the most effective FV
extractor for a given database is difficult. In this paper, we ad-
dress this problem by proposing two visual tools for the com-
parative evaluation of FV spaces, and we demonstrate how the
tools can support the selection and engineering of promising
FV extractors from a pool of available FV extractors.

2. BACKGROUND

An abundance of FV extractors is evident for many impor-
tant multimedia data types, e.g., in the image [3] and in the
3D model [4] domain. Effectiveness of FV extractors can
be benchmarked if a suitable ground truth classification (su-
pervised information) is available. Also, supervised FV en-
gineering, e.g., by dimensionality reduction [5] or building
appropriate combinations of FVs [6] is then possible. Practi-
cally, due to the large number of extractors available and the
costs and even potential instability [7] associated with many
benchmarks make supervised identification of the most effec-
tive FV extractors for a given application difficult. An alter-
native is to resort to unsupervised estimation of FV space ef-
fectiveness. To this end, a number of advanced statistical ap-
proaches have been proposed [8, 9]. These works are of rather
theoretical nature and to the best of our knowledge have not
been practically leveraged yet.

We here address the problem of unsupervised FV space
analysis by means of characteristics obtained from compressed
(clustered) FV space representations. As we are interested in
visually supporting the analysis, we rely on the Kohonen (or
Self-Organizing) Map algorithm [10] for FV space compres-
sion. It is a robust algorithm suited for visualization [11]. In
[12] we applied Kohonen Maps in a multimedia retrieval sys-
tem. Now, we leverage unsupervised information extracted
from Kohonen Maps for FV space analysis and selection.
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Fig. 1. Visualization of theL1 distances between adjacent cluster prototypes of Kohonen Maps generated for the PSB-Train
database represented in four different feature spaces. Bright (dark) shades correspond to low (high) distances. The degree of
uniformity of the respective distance distributions increases from left to right. This is in accordance with the increase of a
supervised discrimination precision benchmark score (R-precision, given in brackets).

3. CLUSTER DISTANCE-BASED ANALYSIS

We propose an intuitive, simple, and practical method for un-
supervised estimation of FV space discrimination power. We
base our method on the following hypothesis:

Hypothesis 1 Discrimination power provided in a given FV
space can be estimated by the degree of uniformity of the dis-
tance histogram defined over inter-cluster distances in the re-
spective FV space.

An important assumption underlying Hypothesis 1 is that
a FV space can be represented by a number of cluster pro-
totypes as obtained by application of an automatic cluster-
ing algorithm, e.g.,k-Meansor theKohonen Map. We then
consider the distribution of distances between adjacent clus-
ter prototypes. We expect the corresponding distance his-
tograms to approximately resemble uniform distributions if
the underlying FV spaces provide good discrimination power,
as a-priori there is no rationality why any specific distance in-
tervals should be preferred. While this has not necessarily
to be the case for any possible combination of FV extractor
and multimedia database, we expect uniform distance distrib-
utions to provide the best chances for meaningful discrimina-
tion in FV space. Conversely, we assume that for FV spaces
providing only little discrimination power, cluster distances
may be arbitrarily biased towards any subset of distance in-
tervals.

We tested this hypothesis on a database of 3D models -
thePrinceton Shape Benchmark(PSB) Train partition [13] -
described by a set of eleven competing FV extractors [4, 14].
We generated Kohonen Maps of dimensionality12×9 for the
database and each of the FV extractors. Figure 1 visualizes
the distribution ofL1 distances between neighboring cluster
prototypes on the Kohonen Maps for four different FV spaces.
We note that we useL1 as there are results thatL1 may be the
most robust of the Minkowski distances for high-dimensional
data [15]. In the respective images, brighter (darker) shades
correspond to lower (higher)L1 distances. From left to right,
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Fig. 2. Regression analysis between uniformity score of Ko-
honen Map distance histograms (unsupervised information)
and a supervised discrimination precision metric for eleven
FV extractors. The expected correlation is verified, indicating
viability of the analysis for automatic discrimination power
estimation.

the degree of uniformity of the respective maps’ distance dis-
tributions increases. While image (a) is dominated by low
distances, image (d) consists of a rich mix of different dis-
tances. In terms of distance histograms, image (a) is skewed
towards low distances, while image (d) approximately resem-
bles a uniform inter-cluster distance distribution. Based on
Hypothesis 1, we therefore expect the FV extractor underly-
ing (d) to have best chances to provide good discrimination
power, while we expect the converse for the FV extractor un-
derlying (a). The two FV extractors of (b) and (c) should
provide medium discrimination power as they show neither
uniform nor extremely skewed distance distributions. Note
that these assessments are based on unsupervised information
automatically extracted from the respective FV spaces.

We verified these visually obtained effectiveness estima-
tions by comparing them with benchmarked effectiveness sco-
res obtained using the classification information accompany-
ing the PSB database [13]. Specifically, we considered aver-
agedR-precisionscores [16] over the PSB in the different FV
spaces. Briefly, R-precision is a measure for rating the quality
of a retrieval algorithm based on a precision statistic over the
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Fig. 3. Component plane arrays for the PSB-Train database represented in four different feature spaces, sorted by benchmarked
precision scores. The visualization allows unsupervised selection of prospective FV extractors, and can be used to identify
highly correlated or indiscriminating components for removal from the FV. Note that the number of component planes differs
among the arrays, as each FV extractor was equipped with a specific, method-dependent dimensionality setting.

answer lists returned when querying a labeled database for
objects belonging to certain predefined object classes. Higher
scores indicate better retrieval quality (better FV space ef-
fectiveness) regarding a given benchmark. The R-precision
scores for each of the four FV extractors are included in Fig-
ure 1 and correlate positively with the degree of uniformity of
the distance distributions.

We substantiate the above findings by a correlation analy-
sis between R-precision scores and degree of uniformity of
the Kohonen Map distance distributions given in the eleven
FV spaces. For each FV spacef , we calculate theuniformity
scoreus(hf ) =

∑b
i=1 |h

f
i − 1

b | as theL1-distance between
its distance histogramhf defined overb bins, and the uniform
histogram of lengthb. The lower this score, the more uniform
the resulting distance histogram is. Figure 2 gives the results
of the exponential model regression analysis for the eleven
FV extractors usingb = 8 bin distance histograms. We verify
the correlation between the supervised and the unsupervised
FV space metric at squared correlation coefficientR2 = 0.78.
While this is not a perfect functional dependency, both met-
rics clearly correlate in the expected sense. We obtained sim-
ilar results for different bin and Kohonen Map dimensionality
settings. We conclude that the proposed analysis is a valid and
practical option for addressing the unsupervised FV extractor
selection problem.

4. COMPONENT-BASED ANALYSIS

Any meaningful distance functiond : (~pi, ~pj) → R+
0 in vec-

tor space, such as the Minkowski or Quadratic Form distance
functions, has to rely on the components (dimensions) in the
FV space. So it is ultimately the sum of characteristics of the
individual FV components that determines the FV effective-
ness. We next state a second hypothesis, and propose a tool
for visualizing certain component-based FV space character-
istics supporting unsupervised discrimination power estima-
tion and feature engineering.

Hypothesis 2 Discrimination power provided in a given FV
space can be estimated by the degree of heterogeneity among
the components of the cluster prototype vectors representing
the FV space.

Similar to Hypothesis 1, the intuition behind Hypothesis
2 is that FV spaces exhibiting high heterogeneity of prototype
vector components can be attributed better chances to provide
meaningful discrimination power. The more biased the com-
ponent values are towards certain component intervals, the
less chances are expected for good discrimination power.

Based on these considerations, we propose interactive FV
space evaluation by visualizing the component distributions
of the cluster prototypes in FV space. Again, we rely on the
Kohonen Map algorithm. A Kohonencomponent plane(CP)
[11] visualizes the distribution of one selected FV dimension
over the respective Kohonen Map. We can then visualize all
component distributions in a FV space by simultaneously dis-
playing the set of CPs in a component plane array (CPA).

Figure 3 shows CPAs of four different FV spaces (again,
the PSB-Train database is used), ordered by increasing R-
precision scores. Figure (a) contains the worst benchmarked
FV extractor from our setting. Its CPA indicates that most
components of the prototype vectors are biased towards cer-
tain value intervals, with substantial variance in component
values only towards the bottom-right area of the CPs. We do
not expect such characteristics to provide good chances for
meaningful object discrimination. Conversely, image (d) cor-
responds to the most discriminative FV extractor according to
the PSB benchmark. The respective CPA exhibits heteroge-
neous patterns for almost all components. We therefore are
lead to expect good discrimination power.

Images (b) and (c) represent middle-ground situations re-
garding component heterogeneity. The extractor underlying
image (b) exhibits significant variance among roughly the up-
per half of FV components. The lower half of components
seem to be significantly correlated, as the respective CPs show
similar patterns. Taking together these facts, we expect mod-



erate discrimination power. A similar situation is present in
image (c). About half of the components show significant
variance, while the other half of the components represent
roughly constant values which cannot meaningfully contribute
to object discrimination. In this case, we note that the respec-
tive FV extractor was wrongly configured which lead to the
observed outcome. Again, taking together both observations
leads us to expect moderate discrimination power.

Besides discrimination power estimation, the CPA tech-
nique is also helpful in interactive FV engineering. The re-
spective CPAs suggest that the highly correlated or approx-
imately constant components can be aggregated or removed
in the FVs underlying CPAs (b) and (c) in Figure 3. Doing
so should lead to more compact FVs expected to retain the
discrimination power provided by the original FVs.

We summarize that the CPA technique allows visual as-
sessment ofvariance, component-correlation, andnoise / er-
ror characteristics present among FV space components. In
our experiments, we were able to verify these unsupervised,
visually obtained assessments using supervised benchmark-
ing results, indicating the usefulness of the CPA tool for FV
selection and engineering. We note that numerically captur-
ing the discussed CPA characteristics is difficult, and we leave
the design of regression experiments similar to the one given
in Section 3 for future work. We conclude that the CPA tech-
nique offers visual access to a wealth of useful FV space in-
formation.

5. CONCLUSIONS

We gave two hypotheses linking FV space characteristics ob-
tained by unsupervised means with the discrimination power
(effectiveness) to expect in the respective FV space. We gave
experimental evidence supporting the hypotheses, and we de-
monstrated the applicability of two corresponding tools for
visual FV space analysis. The tools are proposed to comple-
ment the (expensive) supervised benchmarking approach to
FV space evaluation, and they are advocated for interactive
FV selection and engineering tasks. The tools are specifically
useful in cases where no appropriate benchmark is available.

Future work involves exploring additional unsupervised
metrics for FV space discrimination power estimation. Be-
sides the 3D FV domain considered in this work, we plan to
apply the techniques in additional multimedia data domains.
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