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Abstract: In this article, we discuss how Visualization
(VIS) with Machine Learning (ML) could mutually benefit
from each other. We do so through the lens of our own ex-
perience working at this intersection for the last decade.
Particularly we focus on describing how VIS supports ex-
plaining ML models and aids ML-based Dimensionality
Reduction techniques in solving tasks such as parame-
ter space analysis. In the other direction, we discuss ap-
proaches showing howML helps improve VIS, such as ap-
plying ML-based automation to improve visualization de-
sign. Based on the examples and our own perspective, we
describe a number of open research challenges thatwe fre-
quently encountered in our endeavors to combine ML and
VIS.

Keywords: Visual analytics, machine-learning, quality
metrics, dimensionality reduction

ACM CCS: Human-centered computing→ Visual analytics

1 Introduction

Visualization (VIS) and Machine Learning (ML) are two
critical areas for data analysis. On the one hand, ML fo-
cuses primarily on learning (predictive) models from large
sets of collected data, with the common goal of automatiz-
ing a certain task [41]. For example, with many images of
animals,we can train amodel that enables the computer to
tell us, with a certain probability and accuracy, which an-
imals are visible in images that were not among the train-
ing data [43]. On the other hand, VIS is mainly concerned
with interfaces that present the data in an understandable

*Corresponding author: Quynh Quang Ngo, Universität Stuttgart,
Visualization Research Center, D-70174, Stuttgart, Germany, e-mail:
Quynh.Ngo@visus.uni-stuttgart.de
Frederik L. Dennig, Daniel A. Keim, Universität Konstanz,
Department of Computer and Information Science, D-78464,
Konstanz, Germany, e-mails: frederik.dennig@uni-konstanz.de,
keim@uni-konstanz.de
Michael Sedlmair, Universität Stuttgart, Visualization Research
Center, D-70174, Stuttgart, Germany, e-mail:
Michael.Sedlmair@visus.uni-stuttgart.de

way andmake it accessible for human users [42]. However,
often there are ill-defined tasks for which interactive oper-
ations can be leveraged to gain insights into the underly-
ing data. Using visualization, a finance expert might, for
instance, explore stock data to learn about where to in-
vest next [52]. A biologist might visualize genome data to
generate newhypotheses aboutwhere a particular disease
might stem from [44].

Given that both areas inherently deal with data, there
is an intrinsic connection between the two. Often, for in-
stance, data is first visualized to better understand the
contained patterns, derive potential hypotheses, and ver-
ify that the data collection process has not been faulty.
When a task is sufficiently defined, and enough data has
been collected, problems can then be modeled with ML
andautomatized in the next step [35, 56]. However, beyond
this obvious connection, we argue that there are more di-
rect ways of how the two fields of VIS and ML are related
and canbenefit fromeachother. Specifically,we argue that
VIS can help during the ML model building process. For
instance, ML researchers and practitioners need to select
hyper-parameters and models, which is often a tedious
and lengthy process. Here, visualization can help to pro-
vide systematic interfaces to explore and compare differ-
ent modeling alternatives, deal with multi-objective opti-
mizationproblems, and learn about uncertainties and sen-
sitivities of models in a rich yet easy-to-access way [55].

On the other hand, VIS can benefit from ML ap-
proaches as well. At the moment, for instance, design-
ing good visualizations is still mainly a manual process.
The decision of selecting an adjacency matrix-based visu-
alization over a node-link diagram to represent a graph,
e. g., is a choice entirely up to the designer who might (or
might not) follow existing guidelines [24]. Similarly, it is
the designer who needs to select an adequate projection
method formulti-dimensional data before it can be shown
in a scatterplot [57]. This process necessitates expertise on
the designer’s side, and wrong decisions can lead to un-
detected patterns or even misleading representations. As-
suming we can collect enough data on these processes,
we could instead try to train ML models that help with
suggesting good choices and support the designer. Over
the last years, such ML-based approaches have become
more common in visualization research. A recent survey
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by Wang and Han [64], for instance, looked at how deep
learning can be used for scientific visualization.

Coming primarily from a VIS standpoint, we have
worked for a decade on different facets of how VIS and
ML might be combined [1, 3, 5, 7, 12, 15–17, 27, 28, 54, 58,
66, 67]. In this article, we would like to take a step back
and reflect on some of the experiences and examples that
we studied over the years. We take a broad stand on ML,
including widespread supervised learning and unsuper-
vised approaches such as clustering and dimensionality
reduction.We alsowill include other types of optimization
approaches that we used that were not necessarily trained
from data but allowed us to address structurally similar
problems in a new, quantitative way. In the following, we
will share a bird’s-eye view of our collective experiences
with the hope of providing new inspiration to others work-
ing at the intersection of VIS and ML.

2 VIS4ML: Visualization to improve
the understanding of machine
learning

Over the recent years, there has been a considerable dis-
cussion around explainable artificial intelligence (XAI)
and explainableML. Visual representations can play a key
role in XAI as they support communicating complex struc-
tures between human and machine. In the keynote for
the EuroVis 2017 conference titled “Visualization: The Se-
cret Weapon of Machine Learning”,1 Wattenberg and Vie-
gas presented a variety of work demonstrating how VIS
could aid in explainability and interpretability for ML. In-
deed, this topic has become a booming research trend re-
cently. XAI spans a wide range of topics from supporting
debugging models, to deciphering learning processes in-
side ML models, and fostering education about ML mod-
els [2, 26, 29, 72]. Our primary focus has been on two ar-
eas, in particular, visual parameter space analysis (VPSA)
for ML and XAI through visual interactive learning.

2.1 Visual parameter space analysis for ML

The creation of an ML model often involves setting so-
called hyper-parameters such as the number of layers,
number of epochs, or the number of dimensions in la-
tent space [31, 65]. To set these parameters, a common ap-

1 https://www.youtube.com/watch?v=E70lG9-HGEM

proach is to rely on trial and error. Specifically with larger
parameter spaces, however, trial and error can become a
tedious, unsystematic, and error-prone process; analysts
easily forget what exact parameterizations they looked at
fiveminutes ago. Amore systematic approach is to instead
employ VPSA, i. e., to sample a larger collection of pa-
rameter values and visualize the space for the user to ex-
plore. If the objectives are well-defined, these steps might
also be automated [71]. Yet, often these types of problems
are ill-defined and, as such, necessitate a human-in-the-
loop [20, 59]. Multiple different objectivesmight need to be
weighted, objectives might not be even clearly character-
ized yet, and uncertainties and sensitivities might further
influence a decision. To mitigate these problems, we have
leveraged VPSA, which primarily has been used for classi-
cal simulationmodels in the past but works similarly well,
in our experience, for ML models [55].

As an example, let us assume that we want to find
a good dimensionality reduction (DR) model for a given
dataset. DR models take multi-dimensional data as input
and then output a lower-dimensional projection of the
data, either for further usage in the ML pipeline or for the
purpose of visualization. In terms of visualization, the out-
put is usually 2D and is typically represented in the form of
a scatterplot. Still, before we are able to do that, we need
to select among many different DR techniques, such as
UMAP [39], t-SNE [63], LLE [48], ISOMAP [62], MDS-based
methods [33], PCA [30], etc. [21], and for some of them we
also need to set additional parameters. While quantitative
error metrics exist, in the end, picking a good visual 2D
projection is often still in the eye of the beholder, calling
for a human-in-the-loop approach (at least still at the time
of writing this article).

Applying VPSA to the space of DR models and param-
eters, we developed VisCoDeR [15],2 as shown in Figure 1.
The central idea of VisCoDeR is a 2D overview scatterplot,
which is called a meta map, that encodes each instance of
a parameterized DR model output as a point in the view
(see Figure 1 (c)). The meta map is based on a DRmodel in
turn again (here t-SNE, but others are possible). As such,
if two points are close in the view, the respective DR in-
stances are similar to each other (see Figure 1 (d)). The dis-
tance is computed based on the visual similarity of two DR
instances (that is, 2D scatterplots), imitating the human
perception of the DR output. Like many Visual Analytics
tools, VisCoDeR also provides linking and brushing func-
tionality between the different views,most importantly be-

2 https://renecutura.eu/viscoder/discover.html
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Figure 1: The VisCoDeR system offers an interactive color legend for DR algorithms and their parameterizations (a), meta-parameterization
and control over the projection technique (b), meta map of 1004 DR results with activated proximity visualization (c), and a detailed view of
the selected DR result (d) [15], allowing for visual parameter space analysis of DR methods.

tween themetamap (outputs) and the respective input pa-
rameter space (see Figure 1 (a)).

Using the tool, analysts can now gain insights into the
role of each parameter for the different DR models. For
instance, t-SNE [63] requires users to set two parameters,
namely perplexity (relates to number of nearest neigh-
bors) and epsilon (learning rate) [68]. The question is now
how these parameters affect the visual output of t-SNE and
how sensitive they are to changes. To that end, we sam-
pled 1,000 different t-SNE parameterizations, created the
respective 2D scatterplots, and visualized them in the Vis-
CoDeR meta map. Using linking and brushing between
the meta map and input parameter space, we can now
smoothly hover over the two parameters, see Figure 1(a).
This interaction reveals, that perplexity has a smooth
sensitivity, that is, the visual output changes gradually
with the change of the perplexity parameter, see the cen-
ter of Figure 1(c) where the color encoding for perplexity
changes from orange to pink. In this area, t-SNE scatter-
plots with the same or similar perplexity are close in the
meta map. On the other hand, we can see that epsilon,
which is encoded by the brightness channel, has seem-
ingly little impact on the t-SNE outcome as t-SNEplotswith
the same epsilon appear all over the place in the meta
map.

In this example, VPSA helped us to conduct a sen-
sitivity analysis of t-SNE on a given dataset. Other tasks

that are supported are multi-objective optimization, un-
certainty analysis, partitioning, outlier detection and fit-
ting [55]. VPSA is by nomeans restricted to DRmodels, but
works on all sorts of input-output-based models, which is
the case for many ML approaches. We, for instance, also
used to make the exploration of hyper-parameters of clas-
sification models more systematic [28], and also for deep
learning models [27].

2.2 Explainable AI with visual interactive
learning

Another important use case for leveraging VIS of ML is Ac-
tive Learning (AL). In AL, only few labels are available,
and a user needs to be prompted to provide more and
more labels on the way, following a strategy that maxi-
mizes the effectiveness of the labeling process by request-
ing labels for data items with an uncertain classification
result. The new labels are used in subsequent steps to
improve the underlying model. The model is trained on
sparse data. Thus themodel needs to be assessed for qual-
ity and convey its reasoning, especially when the AL clas-
sifier is prompting for a label. As such, there is an intrin-
sic need for human-computer interaction. While classical
Active Learning leverages primarily simple labeling inter-
faces, VIS allows much more sophisticated ways for users
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Figure 2: FDive [17] learns to classify interesting from uninteresting data items via an iterative active learning process. It chooses the best-
fitting feature descriptor and distance function to reflect the users’ notion of interestingness as a distance measure. (1) Users select inter-
esting data items labeling a set of query items. (2) The labels determine similarity measures, i. e., feature descriptor and distance function.
(3) The system uses the selected distance measure to learn a classification model. The user can explore and refine the model by supplying
more labels for uncertain data items neat the decision boundaries.© IEEE 2019.

to interact with the models, supporting not just active but
also inter-active learning [49].

One way to use VIS in the AL pipeline is to support
users in understanding the space of (labeled and unla-
beled) instances, with the idea that the visualization can
help users to select, implicitly or explicitly, further items
for labeling. To that end, we developed a system called
FDive [17], which learns to distinguish interesting fromun-
interesting data through an iteratively improving classifier
(see Figure 2). To do so, it uses a set of feature descrip-
tors and distance functions to represent the similarity of
data items as a distance measure. This allows for inter-
pretable distances, where analysts can derive which data
properties are essential for the classification. First, users
can express their preference for a data item by labeling
a set of items prompted by the system (see Figure 2 (1)).
Second, these labels are used to choose a feature descrip-
tor and distance function combination by their ability to
represent the user’s preference through distance relations
(see Figure 2 (2)).

Finally, the system applies the selected combina-
tion to learn a Self-Organizing Map-based classifier (see
Figure 2 (3)). This special type of model can be explored
and refined by supplying labels at any position. However,
uncertain classifications are highlighted to guide users
toward items with uncertain labels. This process can be
repeated to improve the classification and assess it. We
applied our tool to connectomics, a sub-filed of neurol-
ogy where scientists try to map out neuronal connec-
tions using electronmicroscopy images to detect neuronal

synapses. There are roughly one billion synapses in 1mm3

of a brain tissue. Thus,methods of automatically detecting
images depicting neuronal synapses are necessary.

With FDive, the analyst can label a small subset of im-
ages determined by the system, whether they show neu-
ronal synapses or not (see Figure 2 (1)). The system selects
the best separating measure for the labeled images. The
analyst can observe the implied data space through an
MDS protection of the dataset (see Figure 2 (2)). We found
that descriptors focusing on the image texture generally
worked the best for this task, since the system immediately
convergedona texture-baseddescription of the images. Fi-
nally, the analyst can explore the model to determine the
classifier’s quality.

The classifier has a nested hierarchy, allowing for a
more and more fine-grained classification. Clusters with
an uncertain classification are highlighted to guide the an-
alyst towards them. The analyst can supply extra labels for
the images in those clusters to improve the classifier. We
observed that images containing similar cell structures are
clustered, including those depicting a neuronal synapse
(see Figure 2 (3)). The analyst repeated that process seven
times, iteratively supplying more labels until the analyst
considered themodel adequatewhile converging on a spe-
cific texture descriptor.

It is an interesting question when to use which type
of interface. Simple problems such as image classification
with a few classes probably are dealt well with a simple la-
beling interface that is prompted by the algorithm on de-
mand. Complex and ill-defined domain problems, such as
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Figure 3: 2D projections of a dataset showing the two classes as red and blue dots. (a, b) show pairs of dimensions with visually good class
separation and (c, d) with poor separation. The scores below are two separation measures. The first value shows a γ -Observable Neighbor
Graph-based measure and the second value a Distance Consistency measure. They are within 100 for the best separability and 0 for the
worst separability [3].© IEEE 2016.

connection classification in neurology, on the other hand,
might benefit fromclose integrationof labeling andanalyt-
ical components. First studies are available that explicitly
seek to characterize this space [7, 8] and understand how
to visually encode the data in such cases [25].

3 ML4VIS: Improving visualization
with machine learning

As described above, VIS plays a central role in making ML
explainable and support model building. However, we ar-
gue that, vice versa, VIS can similarly benefit from the ap-
plication of ML.

One of the main application areas of ML in VIS is
whether we can useML to automatize to at least guide sev-
eral steps in the VIS design process [35]. In fact, “How to
designa good visualization?” is oneof the grand challenges
in visualization. The goal of the visualization design pro-
cess is to aggregate and encode the data in a way that re-
veals interesting structures and patterns in the data. To
this end, visualizations need to (1) be readable and unclut-
tered [10], (2) be optimized toward the analysis task, and
(3) be tailored to the user’s prior knowledge [6].

Automatizing the visualization design process is not
a new idea. Already back in 1986, Mackinlay [37] thought
to automate the design of graphical presentations through
a thorough formalization of the process. As visualization
design is intrinsically a perceptual and cognitive process,
it stands to reason that modern ML approach could be a
good fit for that goal as well. While for a long time, this
idea has caught surprisingly little attention, a few years
ago, researchers have started investigating the topic more
and more [14, 18, 34, 36, 46, 50, 70].

Our work in this area so far has primarily focused on
training perceptual models to solve a specific task with
a given visualization. So instead of seeking a full end-to-
end model automatizing the entire VIS pipeline (and as
such likely necessitating huge amounts of training data),
we took a bottom-up approachfirst. To that end,we started
our work with learning perceptual models for scatter-
plots [51], which—according to Ron Rensink—are the “fruit
flies of visualization research” [47]. That is, scatterplots are
simple enough to control for confounding factors, but rich
enough to cover much of the underlying complexity of vi-
sual perception and analysis.

In 2015, we proposed a simple framework to imple-
ment our idea, consisting of the following three steps [54]:
(1) gather an extensive collection of perceptual “ground
truth data” from human subject studies, e. g., let partici-
pants judgewhether a scatterplot shows separated classes
or not, (2) predict these judgments with different “mod-
els”, e. g., let the model determine the class separation of
the plot, (3) evaluate the quality of each “model”, e. g., use
the accuracy and generalization to determine the quality
of the prediction. With this approach, we essentially set
out to train perceptualmodels of users fromempirical data
and to use that to automatically select existingmodels that
imitate these users—a typical approach of classical ML.
We instantiated this framework with different examples,
as described in the following.

3.1 Class separability for scatterplots

Following a series of earlier empirical work [11, 53, 57, 58],
the first task we were interested in was judging class sepa-
rability in scatterplots [3, 54]. In Figure 3, (a) and (b) show
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two separable classes while (c) and (d) show two non-
separable classes that are easy for humans to differentiate.
The basic ideawas then to useML to train amodel that im-
itates and predicts these human judgments and that rates
class separability like humans do. Having such a model
would then allow us to automatically spot “interesting”
views in large scatterplotmatrices [60, 69], guide the selec-
tion of DR methods [57], or even search dimensional sub-
spaces [61]—in a way that humans would.

The idea of modeling class separability originated
from Sips et al. [60], who proposed hand-crafted mea-
sures for that purpose, in a similar vein as the venera-
ble Scagnostics measures [69]. When using these mea-
sures for a large collection of 816 scatterplots, we, however
found the generalization to other (“unseen”) datasets was
poor [58]. As generalizability is a strength of ML, we thus
were wondering in how far ML could lead to better mod-
els and measures for class separability. With that in mind,
we used a carefully collected and cleaned dataset of expert
judgments [57] and trained a binary classifier (separable
or non-separable) for class separation in scatterplots [54].
Bootstrappingwas used to ensure generalizability to other
unseen datasets.

Using this approach, we then proposed and automat-
ically evaluated 2002 systematically generated separation
measures/models [3]. Using these in the model selection
phase of the framework, we indeed found thatmany of our
novel measures substantially outperformed the best state-
of-the-art measures. While the best state-of-the-art mea-
sure had an accuracy of 82.5% (bootstrapped AUC-ROC),
the best new measure had an average accuracy of 92.7%,
and overall, 58% of the new measures outperformed the
traditional best measure. Of course, our work here is just
a starting point. Our proposed model is relatively simple
and is still far from nuanced human perception in judg-
ing class separability. Still, alreadywith the simplemodel,
we got very good performance, indicating that an ML ap-
proach might be a good fit here.

3.2 Cluster detection in scatterplots

Another widespread and closely-related task in scatter-
plots is identifying classes in analysis scenarios where the
data is unlabeled [11]. Here the analyst has to deal with
monochrome scatterplots. The goal is to identify cluster
structures, meaning that groups of data items are sep-
arated visually, either by an empty area where no data
items are located or by differences in density for overlap-
ping or nested clusters. There are multiple approaches to

tackle this problem. Firstly, one could apply clustering al-
gorithms, such as DBSCAN [32] or CLIQUE [23] to the scat-
terplot visualization (i. e., image space), trying to detect
well-separated clusters. Secondly, this problem also has
been tackled with the idea of classical quality measures,
such as the “clumpiness” Scagnostics measure [69]. How-
ever, we were wondering in how far such heuristic ap-
proaches can capture the human understanding of a clus-
ter, which might include the notion of non-globular clus-
ters, clusters that are only separated visually by a small
gap, or clusters that are nested, differing only in density.
We hypothesized that a more nuanced approach could be
useful to capture thenotion ofwhat defines a visual cluster
from a human perspective and whether ML could provide
a better solution for this problem.

We thus proposed ClustMe [1], an ML-based approach
to the idea of “clumpiness”. We built ClustMe based on
data collected from a study with 34 participants. The
participants judged the cluster patterns in 1000 scatter-
plots of synthetically generateddatasets.Wegenerated the
datasets by adapting the parameters of a simple Gaussian
MixtureModelwith two components. To quantify thenum-
ber of clusters in a scatterplot, theparticipants counted the
number of clusters they could see.

We then created ClustMe by choosing the model that
best predicts the human intuition. We performed another
study to evaluate ClustMe, in which 31 study participants
ranked 435 pairs of scatterplots of real-world and gener-
ated data in terms of perceived cluster patterns. We then
compared the performance of ClustMe to four other state-
of-the-art clustering measures using this data. We also in-
cluded the “clumpiness” measure of Scagnostics in this
comparison. The results showed that ClustMe, out of all
measurements, wasmost consistent with the human rank-
ings. This work again showed evidence that an ML-based
approach can mimic classical quality measures and, as
such, can be used to improve VIS.

3.3 Example beyond scatterplots

While scatterplots are a good starting point, practical visu-
alization, of course, offersmanymore other types of visual
encodings. These can also benefit from a similar modeling
approach that helps to automatically optimize parameters
of visualizations [40].

We, for instance, developed SineStream [12] to push
forward the current state-of-the-art for streamgraph visu-
alizations (see Figure 4). Following a similar process as
on class separability above, SineStream was based on the
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Figure 4: SineStream [12] minimizes the impact of sine illusion effects originating from strong slopes. The arrows highlight parts of the
streamgraph, where SineStream [12] represents the thickness of layers more accurately than methodologies by Bryon & Wattenberg [13] and
by Bartolomeo & Hu [4]. It improves the readability of streamgraphs by aligning each layer’s orthogonal and vertical orientations.© IEEE
2022.

main idea of improving readability by minimizing sine il-
lusion effects in streamgraphs. Such effects reflect the ten-
dency of humans to take the orthogonal rather than the
vertical distance between two curves as their distance.
In SineStream, we minimize this illusion by optimizing
the ordering of the different streams. Quantitative exper-
iments and user studies demonstrated that SineStream
improved the readability and aesthetics of streamgraphs
compared to state-of-the-art methods.

In comparison to the approaches in Sections 3.1
and 3.2, we, however did not use ML in this example, but
classical optimization (simulated annealing in this case).
In vain, the idea to automatically optimize visual param-
eters based on human perception is the same, though. An
interesting question for future work is, of course, how far
MLmight be able to provide further improvements for such
approaches as well.

4 Discussion

Theprevious sections described examples of howmachine
learning and visualization can benefit each other. There
were several challenges that we faced when seeking to
combine the two fields, though, which we will discuss in
the following. Before concluding, we also want to high-
light the limitations of the current state of our work.

4.1 Challenges

Based on our experience working on these topics, we now
want to take a step back and reflect on some challenges in
combining ML and VIS.

Domain problems with increasing complexity
Both, ML and VIS can often be seen as providing a “ser-
vice” to other domain-specific problems. Data-driven ap-
proaches leveraging ML and/or VIS have become a stan-
dard approach in many application domains now. Tack-
ling the complexities of solving these domain problems,
however, often requires a collaborative effort combing ex-
pertise from different fields. In our own work, we sought
to address this challenge by following a user-centered de-
sign process that is fine-tuned to the needs of solving ill-
defined problems via data analytics: design studymethod-
ology [56]. We found that design studies foster a good way
to do interdisciplinary research including VIS researcher,
ML researchers (ML), and domain experts, for projects that
require to go beyond the scope of “just” combiningML and
VIS. There are different ways of how design studies can
be initiated. Traditionally, one would start with character-
izing the problem through working with domain experts.
However, there are also data-first design studies [45]where
VIS/ML researchers actually start with visualizing/mod-
eling the data, in order to ideate potential problems that
might be solved with the data at hand or identify the re-
spective target groups. Along this line, we still see a po-
tential gap of model-first design studies where one would
start with certain types of models and reach out to do-
main applications afterwards, at least for ill-defined prob-
lems.

Interaction
Our work on combining ML and VIS so far has primarily
focused on visual encoding. For the entire visual analysis
process, however, interaction is equally important. Closely
intertwining analytical interactions with ML components
bears huge potentials. Recently, Fan and Hauser have, for
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instance, shownhowML-based approaches can be used to
substantially improve linking and brushing interactions,
which are a corner stone in many multi-view visual ana-
lytics systems. More generally, Endert at al. [19] developed
a toolkit which allows direct interactions to a scatterplot
and change location of two points based on domain expert
knowledge. The model, which is a dimensionality reduc-
tion technique, is then updated accordingly. The outcome
scatterplot is now a combination of the result from the
model and expert knowledge. In the same ground, Inter-
active Learning [9] provides interaction to leverage analyt-
ical human labeling in the computational modeling pro-
cess.

A long-standing challenge related to interaction is the
question when a human-in-the-loop is actually needed
and when we can simply automatize a problem. In our
early work [56], we argued that it depends primarily on
two factors: information location and task clarity. Infor-
mation location can be in the head of the analyst or it
can be externalized into a computer. The latter is a criti-
cal prerequisite for automation. Task clarity depicts how
well- or ill-defined a problem is. Ill-defined problems need
to be clarified by a human-in-the-loop. At themoment, au-
tomatic ML approaches shine at well-defined tasks. Many
important scientific problems, however, are by definition
ill-defined [59]. The interesting question is in how far
ML-based automatic approaches might become capable
to address more ill-defined problems in the future. For
sure, the ML advancements over the last decade have
been impressive. At the same time, problems are becom-
ingmore complex (see above), calling for collaboration be-
tween increasingly powerful ML models and increasingly
skilled analysts and experts. Characterizing this dynami-
cally changing space is an ongoing and highly interesting
challenge at the intersection of VIS and ML.

Data acquisition
One ML-relevant issue, in general, is the acquisition of
data. ML is data-intensive, and a lot of labeled data is re-
quired. In the case of applyingML for VIS based onpercep-
tual, we need user studies that generate many labeled vi-
sualizations describing what humans see in it. ClustMe [1]
was built on a study with 1000 scatterplots and 34 partic-
ipants; for other tasks, the scope of such a study might
be much larger. Today, we can use Amazon’s Mechanical
Turk to gather label data from a large population. Yet, set-
ting up such studies to collect clean and valuable data
can be a challenge, even for seemingly “easy” perceptual
tasks such as class separability or cluster separation. In
ClustMe [1], participants only labeled scatterplots into two

classes: “only one blob” vs. “more than one blob”. When
collecting enough data, even these very simple tasks can
generate an interesting distribution across different users.
For other tasks, the labeling schema might not be that
clear cut, though, and participants might disagree more
on the presence of a pattern. Thus, it is critical to define
tasks accurately and find strategies to resolve disagree-
ments.

Data scale and usage
Another challenge is that VIS and ML operate under dif-
ferent paradigms when it comes to the amount and usage
of data. The VIS applications normally use relatively small
datasets compared to the ML applications. The main rea-
son is that most visualization needs to be interactive and
need to update in milliseconds for users to stay engaged.
This limitation does not apply to ML techniques, where a
system does not need to be that responsive to queries by
the user. One step that is done towards responsive visual-
ization with large datasets is Progressive Analytics [22].

4.2 Limitations

We would like to explicitly remind the reader that these
above contributions are only from our own experiences.
We would like to encourage further collaborations be-
tween the VIS and ML approaches with this article. The
presented approaches should not be seen as a compre-
hensive characterization of all combinations of VIS and
ML, but only as some examples. Of course, there are many
other ways to combine ML and VIS.

From the approaches presented in this article, we
would like to highlight two concrete limitations. First, we
see one current limitation in the area of explaining ML
models through effective interactive interfaces [15, 17]. Cur-
rently,most systems are based on the linking andbrushing
technique. While this is a strong technique, for effective
integration of VIS and ML, we will also need semantic in-
teraction [19], interactive learning [7], and maybe even in
devices other than mouse and keyboard [38].

Second, in using ML to improve VIS, we found that
there are limitations to modeling human perception.
ClustMe [1] and SepMe [3] are two approaches that heavily
rely on the data gathered in studies. With these ML tech-
niques, we are steering into the domain of User Modeling.
Suchamodel canonly express a general notion for the task
at hand sinceML techniques can only aggregate the results
of a study and thus can differ from an individual’s percep-
tion and judgment.
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5 Conclusion

We presented a flashback of our own experiences of how
machine learning and visualization can benefit from each
other.We took a step back, reflectingwhatwehave learned
on different ways to bridge the two fields of ML and VIS.
From our experiences and own perspectives, we also iden-
tified two critical challenges and two limitations faced
when combingmachine learning and visualization, which
we see as research opportunities for future work and hope
that others will join us inworking on these interesting top-
ics.
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