
Butterfly Plots for Visual Analysis of Large Point Cloud Data

Tobias Schreck
Technische Universität Darmstadt

tobias.schreck@gris.informatik.tu-darmstadt.de

Michael Schüßler
Siemens ElectroCom

Postautomation GmbH, Berlin
michael.schuessler@siemens.com

Katja Worm
Siemens ElectroCom

Postautomation GmbH, Berlin
katja.worm@siemens.com

Frank Zeilfelder
Technische Universität

Darmstadt
frank.zeilfelder@gris.informatik.tu-

darmstadt.de

ABSTRACT

Visualization of 2D point clouds is one of the most basic yet one of the most important problems in many visual data analysis
tasks. Point clouds arise in many contexts including scatter plot analysis, or the visualization of high-dimensional or geo-spatial
data. Typical analysis tasks in point cloud data include assessing the overall structure and distribution of the data, assessing
spatial relationships between data elements, and identification of clusters and outliers. Standard point-based visualization
methods do not scale well with respect to the data set size. Specifically, as the number of data points and data classes increases,
the display quickly gets crowded, making it difficult to effectively analyze the point clouds.
We propose to abstract large sets of point clouds to compact shapes, facilitating the scalability of point cloud visualization with
respect to data set size. We introduce a novel algorithm for constructing compact shapes that enclose all members of a given
point cloud, providing good perceptional properties and supporting visual analysis of large data sets of many overlapping point
clouds. We apply the algorithm in two different applications, demonstrating the effectiveness of the technique for large point
cloud data. We also present an evaluation of key shape metrics, showing the efficiency of the solution as compared to standard
approaches.

Keywords: Visual Analytics, Point Clouds, Visual Aggregation, Shape Construction, Shape Refinement.

1 INTRODUCTION

Visualization of 2D point clouds is one of the most ba-
sic yet one of the most important task in many data anal-
ysis scenarios. Point clouds are an ubiquitous type of
data arising in many data analysis tasks. E.g., point
clouds may be obtained by plotting pairs of selected
attributes of a multivariate data set against each other,
obtaining scatter plots which are useful for analysis of
correlations, clusters, and outliers. As another example,
high-dimensional data sets can be visually inspected by
obtaining projections to low-dimensional display space,
e.g., by using Principal Components Analysis or Mul-
tidimensional Scaling techniques. As a third example,
the visualization of geo-spatial data often has to deal
with sets of points representing certain locations. Typ-
ical analysis tasks in point cloud data include assess-
ing the overall structure and distribution of the data, as-
sessing spatial relationships between data elements, and
identification of clusters and outliers.

Standard point-based visualization methods do not
scale well with respect to the data set size. More specif-
ically, as the number of data points and data classes
increases, the display usually gets crowded quickly.
Then, it is very difficult for the user to distinguish dif-
ferent point clouds from each other, or to correctly per-
ceive their shape. Both effects harm the effective vi-
sual analysis in standard point cloud visualization ap-
proaches.

A typical example where the user is confronted with
large sets of point clouds is projection-based visual
analysis of high-dimensional data, e.g., in a database
exploration application. Assume a database consisting
of thousands of multidimensional records in many dif-
ferent groups. Projection of the records to 2D display
space, which is desirable for visual analysis of database
content, will most likely lead to cluttered and crowded
displays of many overlapping point clouds.

The scalability problem may be addressed by aggre-
gation or reduction on either the data level, the visu-
alization level, or both. In this paper, we propose to
abstract sets of point clouds to compact shapes called
Butterfly shapes. We demonstrate the suitability of
these shapes for the effective visualization of large point
cloud data. We develop an algorithm for constructing
shapes that (a) enclose all members of a point cloud,
that (b) are compact in terms of covered space, and that
(c) provide good perceptional properties. We apply the
algorithm on two large data sets, demonstrating the ef-
fectiveness of the approach. A systematic evaluation
of the shape construction algorithm is given, including
practical parameter setting recommendations.

2 RELATED WORK
The need to visualize point cloud data arises in many
important application areas. Point-based data is ob-
tained e.g., by projecting high-dimensional input data
to display space for visual analysis. Principal Compo-

nents Analysis (PCA) [10] or Multidimensional Scal-
ing (MDS) are two popular techniques for projecting
high-dimensional input data to low-dimensional display
space. Projection-based applications include e.g., the
analysis of high-dimensional financial data [3], or mul-
timedia database exploration [13]. Other applications
often relying on point cloud data visualization include
the analysis of geo-spatial and bivariate data. Multi-
variate data can be visualized by so-called scatter plot
matrices.

Many of these applications require the appropriate vi-
sualization of point data. The Bag Plot [14] is a statis-
tical technique that visualizes core and peripheral ar-
eas of 2D point data. The over-plotting problem which
may occur in large geo-spatial data sets is addressed
in [12, 7] by introducing certain geometric distortions
and rearrangement of points within their neighborhood.
In [8], the authors consider the efficiency of rendering
very large sets of point data using improved data struc-
tures and rendering algorithms.

A promising approach to visualize large point cloud
data is based on visual abstraction of point clouds by
shape. The reconstruction of surface from unorga-
nized 3D point sets is a challenge currently addressed
in point-based Computer Graphics. E.g., in Computer
Aided Design, the reconstruction of shape from CAD
models given in point-based representation is addressed
[2, 11]. In Image Processing [5], an important problem
is the segmentation of shapes in digital images, which is
addressed e.g., by means of morphological operations.

In [15], we proposed to abstract large point-cloud
data by forming convex hulls over thinned point clouds.
However, in many cases thinning (data reduction) is not
an option, as the whole data set needs to be analyzed
and outliers may play an important role. In this paper,
we therefore develop an effective point cloud visualiza-
tion not requiring data reduction.

3 SHAPE ABSTRACTION
In this section, we discuss basic requirements for ab-
stracting point clouds by shapes, and introduce an al-
gorithm for construction of compact shapes completely
covering clouds of points.

3.1 Requirements analysis
Traditionally, point clouds are visualized by represent-
ing each data item by a symbol. Symbol position rep-
resents attribute values, while the symbol itself encodes
the class a point belongs to. Usually, form and color is
used to indicate class labels. This, however, is not ex-
pected to scale with the number of classes. Regarding
color, there is evidence that human perception is limited
to discrimination only about ten colors simultaneously
[16]. The situation is less clear regarding usage of sym-
bol shape, but it can be expected that also, perceptional
limits exist. Figure 3 (bottom-left) gives an example

Figure 1: Left: Convex hull enclosing a set of points.
The middle and right images show the initial and the
first sub-refinement steps respectively, applied on the
hull boundary line p1p2.

symbol plot of a medium size data set. The number of
data items and different classes (45) makes it extremely
difficult to perceive even the most essential characteris-
tics of the data distribution.

Abstraction of point clouds by suitable shapes is a
promising approach to improve a point cloud display in
case of many different clouds overlapping each other.
An appropriate shape abstraction replaces sets of points
by a number of shapes, reducing plot complexity and
at the same time, visualizing the essence of the data
characteristics.

Shape-based abstraction of large sets of point clouds
should provide that the shapes (a) are as compact as
possible, and (b) are as predictable as possible. When
visualizing many shapes simultaneously, more com-
pact shapes usually reduce the degree of overlap among
the different shapes, thereby supporting shape discrim-
ination. On the other hand, overlap often cannot be
avoided on large data sets, even for the most compact
shapes. Then, it should be possible for the user to men-
tally reconstruct as much of the occluded shapes as pos-
sible based on the clues given by the non-occluded parts
of the shapes. We call this property shape predictabil-
ity. A tradeoff exists between the two criteria: More
compact shapes typically involve boundaries of higher
complexity, thereby harming predictability.

Many ways exists to abstract point clouds to shapes.
Shapes can be formed to cover the point clouds com-
pletely, or just partially. The shapes can be as simple
as a bounding disc or rectangle, or be of higher com-
plexity. The shapes may be allowed to contain holes,
or not. In [15], we previously proposed to form con-
vex hulls over point clouds thinned for outlier points
at the periphery of the point clouds. The convex hulls
were found to be more effective that bounding discs and
boxes for visual analysis in large point cloud data.

We here are concerned with forming shapes for com-
plete coverage of the point clouds. This is desirable
as in many applications, it is interesting to analyze
the characteristics of outlier points with respect to the
whole point distribution. Without outlier removal, the

Figure 2: Butterfly shapes resulting after the initial (outer shapes) and first sub-refinement steps (inner shapes)
have taken place on the convex hulls of several point clouds. Significant reduction of the convex hull area between
56% and 20%, and between 74% and 46% are observed as a result of the first and second refinement steps.

compactness of the convex hull abstraction suffers, as
its area is sensitive with respect to outliers. In the next
section, we develop a shape abstraction covering all
points of a given point cloud, which is both compact
and offers good perceptional properties.

3.2 Butterfly shape construction
The convex hull [6] is the most compact convex enclo-
sure of a number of points. This makes it a good start-
ing point for a refinement process aimed at reducing
the shape area. Our basic idea is to iteratively replace
the straight convex hull boundary lines by curves more
tightly fitting to the interior points of the point cloud.

We describe our algorithm by means of a construc-
tive example. Consider a set of points P ∈ ℜ2, |P| > 2
with associated convex hull consisting of n boundary
lines. Partition the convex hull into n triangular seg-
ments by connecting the center of gravity c of the
point cloud with the end points of each convex hull
boundary line. Figure 1 (left) illustrates such a parti-
tioning, and Figure 1 (middle) closes up on segment
seg1 = 4(c,p1,p2). Refinement of the convex hull
takes place by two steps: Mandatory initial refinement
of each convex hull boundary line by exactly one curve
segment, followed by optional recursive sub-refinement
of the output of the initial refinement. The optional
sub-refinement is controlled by an area reduction-based
threshold test, and a global limit of the maximum al-
lowed recursion depth.

The initial refinement stage works by replacing each
convex hull boundary line by a curve connecting the
line end points and fitting to a control point cp. This
control point is found as the point closest to the line to
be refined and located inside the respective convex hull
segment. In case the given segment does not contain
any data points, we take the center of gravity c as the
respective control point. Figure 1 (middle) illustrates
the initial refinement of boundary line p1p2 by a curve
from p1 to p2 controlled by cp1, which is the data point
closest to line p1p2 and contained in seg1.

After the initial refinement step has taken place, we
optionally continue to refine the found curve segment.

To this end, we partition each convex hull segment into
two triangular sub-segments formed each by the cen-
ter of gravity, the segment’s initial control point, and
either one of the segment line end points. Refinement
may continue recursively on the sub-segments until ei-
ther all data points are exhausted, or a termination cri-
terion is met. Figure 1 (right) illustrates the first sub-
refinement step applied on seg1. The respective sub-
segments are given by triangles seg1,1 =4(c,p1,cp1)
and seg1,2 =4(c,cp1,p2). We refine seg1,1 by a curve
between p1 and cp1 controlled by cp2, and seg1,2 by a
curve between cp1 and p2 controlled by c.

The refinement of convex hulls by this scheme is ex-
pected to show two effects: A recovery of area from
the initial convex hull, and an increase in boundary cir-
cumference and complexity. We reflect this trade-off by
evaluating a test prior to executing each candidate sub-
refinement step. Specifically, we execute a candidate
sub-refinement step only if

(a) its recursion depth is within a limit ρ , and

(b) it recovers at least a fraction τ of convex hull area.

ρ and τ are useful for balancing area reduction and
shape complexity. Note that we evaluate this test only
on recursive sub-refinement steps, and not on the ini-
tial refinement step which is executed mandatorily. The
rationale is to avoid shapes mixing unrefined segment
lines with curves, a combination which according to our
experiments showed undesirable perceptional effects.
Also, the type of curve used for refinement needs to be
specified. We experimented with different curve types,
and found the Bézier Cubic Spline [4], obtained by dou-
bling the control point, giving good results. This curve
tightly fits its control point, and runs strictly within
the triangle spanned by the given start, end, and con-
trol point. The latter property in conjunction with our
convex hull segmentation scheme provides that the ob-
tained shape completely encloses the given point cloud.

Algorithm 1 gives our convex hull refinement algo-
rithm. It consists of the main procedure butterfly
taking as input a point cloud P, an area reduction thresh-

Figure 3: Butterfly plots obtained using refinement thresholds τ = {0.00, 0.02, 0.04} and unlimited recursion
depth, for a data set consisting of 45 classes (top row, left to right). The bottom row shows plots using labeled
point clouds, and enclosing convex hulls and minimum bounding boxes. The butterfly plot approach improves
over these standard point cloud visualization methods, allowing effective visual point cloud analysis.

old τ , and a recursion depth limit ρ . Note that in pro-
cedure refine the term |l ∪ curve(l.p1,cp, l.p2)| de-
notes the area enclosed between a (segment) line l and
a refinement curve connecting l’s end points. It cor-
responds to the area reduction achieved by applying
a given refinement step. Figure 2 shows exemplary
results obtained for several point clouds from a data
set to be further discussed in Section 4.2. The shapes
were obtained by setting τ = 0 and ρ = {0,1}, respec-
tively. We observe the shapes are compact and possess
a smooth, predictable boundary of limited complexity.
We decided to call the obtained shapes butterfly shapes,
as one can recognize certain similarities between the
shapes and the insect, on an abstract level.

4 APPLICATION
We next present two Butterfly shape applications,
demonstrating the effectiveness of the technique.

4.1 Database exploration data set
The first application is in database exploration. Visual
database exploration methods often provide graphical
representations of the database objects and their interre-
lationships. In [13], the visual exploration of a database

of more than 850 3D CAD models [9] was demon-
strated by means of PCA projection of corresponding
object feature vectors. We visualize that database to
support exploration of the relationship between differ-
ent object classes under a given feature vector repre-
sentation. We generate a Butterfly-based plot of the
database as follows. We first map the database to 2D by
PCA analysis of the database feature vectors (specifi-
cally, complex-SH 3D features [1] were used). Together
with a classification associated to the database [9], 45
2D point clouds are obtained, for which we generate
a Butterfly shape each. We sort the shapes decreas-
ingly by size, and given each a distinct color sampled
equally from the rainbow palette. A Butterfly plot of
the database is obtained by rendering all shapes in or-
der, using the associated color at medium transparency.
Note that color here supports visual class discrimina-
tion but does not carry additional information.

The top row in Figure 3 shows Butterfly plots ob-
tained for ρ = ∞ and τ = {0.00, 0.02, 0.04}. The left-
most plot represents the maximum refinement possible
for a Butterfly plot, yielding a skeleton-like abstraction
of the point clouds allowing effective visual perception
of two salient data characteristics: Location of point
cloud centers, and distribution of cloud member points.

Figure 4: Zooming into a dense area of the Butterfly (τ = 0) and convex hull plots from Figure 3.

The center is easily perceivable by the shapes’ main
area, which is also pointed to by the various curve seg-
ments. By construction, we know that each corner point
of the shape contains at least one data point. Thereby,
we can follow the elongated attachments to analyze the
relation between point cloud center and member points.
Butterfly plots for τ = 2% and τ = 4% are shown in Fig-
ure 3 (middle and right image in top row). As expected,
less refinement takes place, resulting in less compact
shapes which emphasize to a larger extent the degree of
outlier distribution: Usually, for more scattered point
clouds, Butterfly shapes of larger area result. The user
can be allowed to adjust parameters ρ and τ interac-
tively to analyze both data characteristics.

For comparison, Figure 3 shows plots of the data us-
ing colored labels (bottom left), and enclosing convex
hulls (bottom middle) and minimum bounding rectan-
gles (bottom right). Neither of these plots is effective
for analyzing the given data set. In the colored label
plot, it is extremely difficult to discriminate the 45 dif-
ferent class labels or to asses the class distributions.
In the other two plots, due to the size of the shapes,
too much overlap prevents effective usage (cf. also 4
for a closeup.) The Butterfly plots, on the other hand,
manage to effectively visualize the most important data
characteristics: The number of classes, the distribution
of class member points, and the relationship between
the classes can easily be analyzed.

4.2 Pattern recognition data set
The second application is in the field of pattern recog-
nition. The task under consideration is recognition and
identification of postal stamps in images of mail pieces.
Automatic stamp recognition is needed in postal sort-
ing machines, e.g., for checking the correct franking
value. The system described here is part of automatic
mail sorting systems operating in several countries.

Part of the stamp recognition process is extraction of
color features from possible stamp regions in the mail
piece image, and matching these features to a set of
known prototypes from a stamp image database. The
color value of each pixel in a region is entered into a
color histogram, then relative frequencies in each his-
togram bin are used as features. Therefore, the feature
vectors have the same size as the histogram, which is
typically a few hundred. For purposes of stamp image
analysis and recognition performance tuning it is desir-
able to visualize these feature vectors with their respec-
tive class memberships. Besides the high dimensional-
ity of the respective feature space, the large number of
stamp classes poses additional visualization problems.
Typically, the stamp image database contains some 100
to 500 stamp types (classes), each represented by up to
10 specimen.

The feature vectors of the samples of a given class
should, in theory, be all identical. In practice, however,
variations in illumination, image background and stamp
region detection lead to significant deviations within the
sample feature vectors. During performance tuning of
the stamp recognition system, often the question arises
why some sample images of a given class could not be
recognized correctly but were rejected by the classifier.
An analysis of such cases is often tedious and involves
investigating feature and classifier properties.

To support this process, we designed a Butterfly plot-
based visualization for analysis of the deviations be-
tween class prototypes and rejected samples. Figure
5 (top) displays the PCA-projected prototypes of 109
stamp classes in a butterfly plot. Four different stamp
classes of which samples were rejected by the classi-
fier are highlighted by increased butterfly color opac-
ity. The rejected samples are marked by their true class
labels, and connected to their respective class centers
using straight lines. The display allows the visual anal-

Input: 2D point set P, refinement threshold τ , recursion limit ρ

Output: Closed sequence of curve segments S
procedure butterfly(P, τ, ρ):

S←{}
point c← c(P) /* find center of gravity */
polygon CH←CH(P) /* find convex hull */
/* calculate minimum area reduction required */
area a← τ ∗ |CH |
/* loop convex hull boundary lines and refine */
for each line l ∈ CH boundary do

S← S +refine(P, l,c,0,ρ,a)
return S

Input: Point set P, line l, point c, recursion level r, recursion limit ρ ,
area a
Output: Set of connected curve segments S
procedure refine(P, l, c, r, ρ, a):

control point cp← getControlPoint(P, l,c)
/* evaluate if area reduction threshold is met */
boolean area_accept← (|l∪ curve(l.p1,cp, l.p2)| ≥ a)
if (r > 0∧ (¬area_accept ∨ r > ρ)) then

/* discard refinement step: area reduction of non-initial refine-
ment step below threshold, or recursion limit exceeded */
return {}

if (cp = c) then
return curve(l.p1,c, l.p2) /* P exhausted for this segment */

/* recurse */
S1← refine(P,(l.p1,cp),c,r +1,ρ,a)
S2← refine(P,(cp, l.p2),c,r +1,ρ,a)
if (S1 = {}‖S2 = {}) then

/* at least one sub-refinement failed */
return curve(l.p1,cp, l.p2)

return S1 +S2 /* sub-refinement successful */

Input: Set of points P, line l, point c
Output: Control point cp
d(): Distance between a point and a line
procedure getControlPoint(P, l, c)

point set Pcand ← P∩4(l.p1, l.p2,c)
/* remove line end points, keep center of gravity */
Pcand ← Pcand\(l.p1, l.p2)
/* find nearest neighbor to l from Pcand */
cp← p ∈ Pcand |6 ∃q : q ∈ Pcand ∧d(q, l) < d(p, l)
return cp

Algorithm 1: Butterfly shape construction.

ysis of the problematic samples in context of the whole
classifier data.

Interestingly, in this example data set we recognize
that many of the displayed rejected samples have sim-
ilar deviations from their class center. A view focus-
ing on the rejected classes is shown in Figure 5 (bot-
tom left). We learn that similar deviation patterns are
most dominant in classes 22 and 88, while for classes
6 and 77, more diverse deviation patterns occur. We
suspect systematic differences between the stamp pro-
totypes used by the classifier, and the stamps seen on
the rejected sample mail pieces. The reasons for these
differences may be various, but the fact that there are
systematic differences is very helpful and motivates fur-
ther analysis. We have implemented interaction func-
tionality which enables the user to perform drill-down

analysis. E.g., we may choose to further inspect the
lower bundle of rejected class 77 samples. To this end,
the system can identify and highlight those prototype
classes which (in the PCA-projection) interfere most
with the mass of rejected samples. This is done for class
77 in Figure 5 (bottom right). Such drill-down analysis
of the relationship between rejected samples and inter-
fering neighboring classes in projected feature space is
expected to be a useful tool in the process of classifier
tuning.

5 EVALUATION AND DISCUSSION
Generation of Butterfly plots requires specification of
the area reduction threshold τ and the recursion depth
limit ρ . In experimenting with the data discussed in
Section 4.1 useful parameters were found quickly, by
testing just a small number of settings. Specifically, we
found that ρ ∈ {0,1} and τ ∈ [2%, . . . ,10%] gave useful
results in that application. Generally, the choice of pa-
rameters will depend both on data and given task. For
dense, mixed class distributions, lower area recovery
thresholds and larger recursion limits produce leaner
shapes, avoiding excessive overlap. For less crowded
data sets, one can use higher thresholds.

In experiments we observed important shape met-
rics at different parameter settings. A series of plots
was generated for the CAD database discussed in Sec-
tion 4.1 by varying τ while allowing unlimited recur-
sion depth. Figure 6 (top) shows the average size and
overlap1 of the Butterfly shapes, relative to the corre-
sponding convex hull plot. At τ = 0.00, the Butter-
fly plot shows just about 7% (30%) of the area (over-
lap) of the corresponding convex hull plot. Increasing
τ to 0.15 drives up relative area (overlap) of the But-
terfly plot to 47% (55%). After that, the metrics in-
crease slower, converging to 54% (63%) relative area
(relative overlap) at τ = 0.30. After that the metrics re-
main stable, as practically all candidate sub-refinement
steps are rejected and only initial refinement steps are
performed. We also observed the average number of
curve segments, relative to the average number of con-
vex hull segment lines (Figure 6 (bottom)). This metric
can be interpreted as a measure of shape complexity.
At τ = 0, the Butterfly shapes on average consist of 2.4
times the number of segments of their corresponding
convex hulls. Increasing τ quickly leads to a reduction
in Butterfly shape complexity.

Similar results were obtained for the data set from
Section 4.2. The analysis of these shape characteristics
may serve for automatic determination of good param-
eter settings. Assume that shape complexity would be
the most important aspect to control in a given appli-

1 Size is measured by the number of pixels covered by a shape, and
overlap is measured as the average number of shapes covering each
non-empty pixel. Measures taken on a 1200∗1200 pixel display.

Figure 5: Visualizations based on the Butterfly plot, applied to a pattern recognition application.

Shape sensitivity (3D database data set)

0%

10%

20%

30%

40%

50%

60%

70%

0% 5% 10% 15% 20% 25% 30%

Refinement threshold

B
ut

te
rf

ly
 /

C
on

ve
x

H
ul

l

overlap area

Shape sensitivity (3D database data set)

100%

125%

150%

175%

200%

225%

250%

0% 5% 10% 15% 20% 25% 30%

Refinement threshold

B
ut

te
rf

ly
 /

C
on

ve
x

H
ul

l

segments

Figure 6: Evaluation of key Butterfly shape metrics.

cation. Then, by observing the shape complexity be-
havior, the system could apply the well-known elbow
criterion to find τ = 0.05 as a good parameter selection.
It is also possible that the user specifies an overlap or
shape complexity target which the system in turn uses
to determine τ and ρ .

6 CONCLUSION
We addressed the problem of visualizing large point
cloud data by abstraction to compact enclosing shapes.
We introduced an algorithm that recursively refines the
convex hull of a point cloud by curve segments, adapt-
ing to the given data. Two parameters allow to adjust
the shape construction process to data and user require-
ments. By application and evaluation, it was shown
that the generated shapes are an effective tool for visual
analysis of large point cloud data.

One of the greatest challenges in the visualization of
large point cloud data lies in optimizing the perception
of shape discrimination, in presence of high degrees
of overlap between the point clouds. In future work,
usage of color for shape discrimination could be opti-
mized, considering the perceptional and spatial prox-
imity of shapes and color. Also, additional shape con-
struction methods can be thought of, and their compact-
ness and perceptional properties should be studied. We
currently work on employing appropriate distance field
representations for point cloud visualization in conjunc-
tion with advantageous spline operators, and already
obtained promising first results.

A widely unsolved problem is the visual analysis sup-
port for extremely large point data sets. In certain clas-
sification applications, tens of thousands of point pairs

may arise, each forming a separate class. As such data
distributions pose challenges to any point-based visu-
alization technique in general, we presume that in this
case suitable data preprocessing is required. Also in
this case, computational efficiency concerns may arise,
a point which we did not address in this work. Finally,
it would be a good idea to do user studies on the percep-
tional effects of different shapes in different user tasks.
Results thereof could guide future work in constructing
shapes for visual analysis of large point cloud data.

ACKNOWLEDGMENTS
We thank Tatiana Tekušová of Fraunhofer IGD for help-
ful discussion. We also thank the anonymous review-
ers for providing valuable comments which helped im-
prove the work.

REFERENCES
[1] B. Bustos, D. Keim, D. Saupe, T. Schreck, and D. Vranic. An

experimental effectiveness comparison of methods for 3D sim-
ilarity search. Int. Journal on Digital Libraries, 6(1), 2006.

[2] J. Daniels, L. Ha, T. Ochotta, and C. Silva. Robust smooth fea-
ture extraction from point clouds. In Proc. IEEE Shape Model-
ing International, 2007.

[3] T. Dwyer and D. Gallagher. Visualising changes in fund man-
ager holdings in two and a half-dimensions. Information Visu-
alization, 3(4):227–244, 2004.

[4] Gerald E. Farin. Triangular bernstein-bézier patches. Computer
Aided Geometric Design, 3(2):83–127, 1986.

[5] R. Gonzalez and R. Woods. Digital Image Processing. Prentice
Hall, 3rd edition, 2007.

[6] R. Graham. An efficient algorithm for determining the con-
vex hull of a finite planar set. Information Processing Letters,
1:132–133, 1972.

[7] A. Herrmann and D. Keim. The gridfit algorithm: An efficient
and effective approach to visualizing large amounts of spatial
data. In Proc. IEEE Visualization, 1998.

[8] M. Hopf and T. Ertl. Hierarchical splatting of scattered data. In
Proc. IEEE Visualization, 2003.

[9] S. Jayanti, Y. Kalyanaraman, N. Iyer, and K. Ramani. Develop-
ing an engineering shape benchmark for cad models. Computer-
Aided Design, 38(9):939–953, 2006.

[10] I. Jolliffe. Principal Components Analysis. Springer, 3rd edi-
tion, 2002.

[11] I. Kyriazis, I. Fudos, and L. Palios. Detecting features from
sliced point clouds. In Int. Conference on Computer Graphics
Theory and Applications, 2007.

[12] C. Panse, M. Sips, D. Keim, and S. North. Visualization of geo-
spatial point sets via global shape transformation and local pixel
placement. IEEE Transactions on Visualization and Computer
Graphics, 12, September-October 2006.

[13] J. Pu, Y. Kalyanaraman, S. Jayanti, K. Ramani, and Z. Pizlo.
Navigation and discovery in 3d cad repositories. IEEE Com-
puter Graphics and Applications, 27(4):38–47, 2007.

[14] P. Rousseeuw, I. Ruts, and J. Tukey. The bagplot: A bivariate
boxplot. The American Statistician, 53(4):382–387, 1999.

[15] T. Schreck and C. Panse. A new metaphor for projection-based
visual analysis and data exploration. In IS&T/SPIE Conference
on Visualization and Data Analysis, 2007.

[16] C. Ware. Information visualization: Perception for Design.
Morgan Kaufmann, 2000.

