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Abstract. The goal of visual analytics (VA) systems is to solve complex problems
by integrating automated data analysis methods, such as machine learning (ML)
algorithms, with interactive visualizations. We propose a conceptual framework
that models human interactions with ML components in the VA process, and makes
the crucial interplay between automated algorithms and interactive visualizations
more concrete. The framework is illustrated through several examples. We derive
three open research challenges at the intersection of ML and visualization research
that will lead to more effective data analysis.

1 Introduction

Many real-world data analysis problems are intrinsically hard. On the one hand, data
complexity and scale preclude simply looking at all the raw data, and make algorithmic
approaches such as ML seem very attractive and even inevitable. On the other hand, the
analytical power of ML cannot be fully exploited without effective human involvement.
It remains a challenge to translate real-world phenomena and often ill-defined analy-
sis tasks into ML-problems (including the application of appropriate methods). More
importantly, it is crucial to incorporate the knowledge, insight, and feedback of the hu-
man into the analytical process, such that hypotheses can be refined and the models
can be tuned. By integrating ML algorithms with interactive visualizations, VA aims
at providing a visual platform for the analyst to interact with their data and models [1].
Despite much effort to date, though, solutions from each field (ML and VA) are still
not interwoven closely enough to satisfy many real-world applications [2, 3]. Toward
effective integration, previous studies have proposed a series of conceptual frameworks
that characterize the interplay between these approaches [1, 2, 3, 4]. However, these
frameworks were mostly designed from an interactive visualization perspective, focus-
ing on characterizing the role of the “human in the loop”. A tighter connection with the
different ML paradigms (unsupervised vs. (semi-)supervised learning; classification,
regression, clustering, etc.) and their algorithmic implementation specificities (e.g.,
SVM vs. random forests in classification) is still largely missing. Therefore, a deeper
focus on scenarios at which particular ML steps and VA methods can be supportive is
desired. While illustrating inspiring examples, we identify aspects of ML methods that
are amendable to be controlled interactively by the analyst. Our proposed conceptual
framework opens the perspective for new ways of combining automated and interactive
methods, which will lead to more tightly integrated and ultimately more effective data
analysis systems.
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Fig. 1: Proposed conceptual framework: A typical interactive VA/ML pipeline is shown on the
left (A–D), complemented by several interaction options. Interactions generate changes to be
observed, interpreted, validated, and refined by the analyst (E). Visual interfaces (D) are the
“lens” between ML models and the analyst. Dashed arrows indicate that direct interactions in the
visualizations have to be translated to ML-pipeline adaptations.

2 Human-centered Machine Learning Framework

Our framework combines, embeds, and complements existing theories on interactive
ML and VA by integrating and generalizing observations from examples that have
emerged. The framework (Figure 1) consists of a typical VA/ML pipeline (A–D) and
the analysts’ validation and refinement process (E). An analyst might interact with each
single step in this pipeline through a visual interface (D), which acts as a mediator or
“lens” between the human and the ML components (dashed arrows). The changes are
then traversed back to the visual interface and shown to the analyst (solid arrows).

Edits & Enrichment (A): While in ML data is usually seen as “un-touchable”, many
visualization systems allow and support analysts in cleaning, wrangling, editing, and
enriching data [5], also during the analysis process. For example, a domain expert
may iteratively add more labels in the training of a classification. Several strategies
have been developed to make this process more efficient (e.g., inter-active learning [6]).
Alternatively, an analyst might also simply want to run through some “what-if scenar-
ios” to understand hypothetical assumptions about the data. Data operations are then
followed by a “warm restart” of the ML pipeline, iteratively traversing through to the
analyst. Consider iPCA [7] (Figure 2-a), an example that allows analysts to adjust a
point in several views or spaces (e.g., projection or eigenvector view) and at the same
time enables the analyst to observe the changes of that items’ values in data space. Re-
moving data items allows observing how the projection changes. In ForceSPIRE [8]
(Figure 2-c), analysts may add textual annotations to documents, which are then in-
cluded into the analysis process (i.e., similarity calculation).

Preparation (B): Many ML models incorporate model-independent preprocessing steps.
Whereas edit and enrich interactions focus on single observations, preprocessing affects
a uniform transformation of features for a larger set of observations. Typical examples
are transformations, such as standardization, scaling, or more complex methods (e.g.,
Fourier or wavelet transform), and weightings. Weightings may be filtering (0-weights)
of data items, as well as feature selection. Feature weighting can be supported in the



Fig. 2: A selection of examples that effectively involve analysts into the ML processs. Courtesy
of Jeong [10], Mülbacher [11], Endert [8], van den Elzen [12].

form of relevance, metric, or kernel learning. With this respect, we often observe a gap
in the “judgment of (dis)similarity” between human and “default” ML methods. Ana-
lysts often focus on specialized characteristics of their data. This requires us to include
feature weightings or more complex (dis)similarity functions. The Dis-Function [9]
system, for instance, allows analysts to drag and drop data points, causing the system
to calculate a new distance function. By immediately revealing the resulting changes in
the underlying model, such approaches give the analysts a convenient way to explore
possible parameterizations of preprocessing steps.

Model Selection & Building (C): At the very core of VA, analysts might need to directly
interact with ML models. We distinguish two general forms of model interactions. In
Model Selection, an analyst needs to choose among different ML algorithm families,
or a set of pre-built model results, a process that can also be supported (semi-) auto-
matically (e.g., cross validation, bootstrap) but also visually. For example, the analyst
may select and refine regression models [11] (Figure 2-b) or build classifier ensembles
by discovering several combination strategies [13]. Model Building interactions focus
on directly changing a given ML model through adjusting parameters. While internal
parameters are optimized automatically, others such as design or form, and meta or hy-
per parameters, need to be adapted by the analysts according to their assumptions. We
found several model building interactions that can roughly be grouped into ML model
changes that affect its form, constraints, quality, or accuracy. Form parameters define
the basic structure (such as the number of neurons in a neural network), whereas con-
straints may reflect more detailed assumptions (e.g., pinning a node in a force-directed
layout [8]). Other examples allow for adjusting the quality or accuracy of the ML result,
e.g., by interacting with the confusion matrix of a classifier [14].

Exploration & Direct Manipulation (D): Interactive visualizations serve as an aid or
“lens” that facilitates the process of interpretation and validation, but also make ML
interactions accessible to analysts. Usually, simple exploration interactions, such as
changing the visual encoding or navigation, do not feed back to ML components. How-
ever, the previous paragraphs contain various examples that allow interactions in visual
interfaces, which are “passed through” to ML changes, indicated by the dashed arrows
in Figure 1. This concept has become known as “semantic interaction” that maps intu-
itive interactions to complex ML changes [8]. Therefore, different aspects of the ML
parts may be visualized, such as data and model spaces (Figure 2-a), pre-built model
variants including their characteristics (Figure 2-b) and quality (Figure 2-a/b/d), but
also the ML structures (e.g., [12], Figure 2-d).



Validation & Interaction (E): In VA systems following our framework, analysts would
be actively involved in an iterative process of observing, interpreting, and validating the
system’s outputs followed by subsequent refinement. Such an approach would foster
direct usage of ML tools by domain experts. Visual interfaces that are easy-to-use and
-understand enable such analysts to bring in their domain knowledge more effectively
(as illustrated in the previous paragraphs) and consequently adapt the ML components
in order to further advance in data-intensive, yet ill-defined analysis tasks [15].

3 Challenges & Opportunities

Designing Interaction for ML Adaption: A variety of different ML algorithms includ-
ing a large set of design options and parameters do exist. Yet, there is no general way
to interface these with visualizations. Consequently, existing systems are often limited
to a small set of ML techniques and parameters. Furthermore, when switching between
the different ML models with current interfaces, such changes, however, would likely
result in discontinuous interruptions of the human’s analysis process. Hence, novel ap-
proaches will become necessary that smoothly support analysts to make sense of such
changes. In addition, existing examples such as ForceSpire and iPCA have nicely illus-
trated how understandable, direct interactions can be combined with model changes in a
simple setup. Direct manipulation has been proven to be an effective and easy-to-use ac-
cess to computational tools [16]. It has, however, been rarely explored in the context of
ML so far. Often, ML models are designed for unique configurations, whereas in VA it-
erative refinement is needed. Mapping user inputs to more complex algorithmic actions
(along the entire ML pipeline) remains an open challenge, which is then to translate
these inputs to data-, preprocessing-, ML model-adaptions, or combinations thereof. —
Opportunities: At the core of our conceptual framework lies the idea that the underly-
ing ML design options and meta-parameters (which cannot be optimized automatically)
can be steered via iterative and accessible user interactions. Accessible interactions and
smooth transitions between different ML models will support analysts to form an intu-
ition or mental model [17] about the underlying data as well as the function or behavior
of complex ML methods. Consider the case of switching between different ML mod-
els: At which point does the system realize—from user feedback—that the chosen ML
model might not be proper anymore? It then could select an alternative and smoothly
transfer between the two. Instead of linear projection with PCA, it might for instance
suggest some more complex nonlinear dimensionality reduction method like multidi-
mensional scaling or t-SNE. Continuous model spaces [18] give first ideas towards such
solutions, which are dependent on the ML models’ meta or hyper parameters and their
interpretability. Further, more general ways to use and adapt ML through very sim-
ple expert feedback (e.g., labeling or rating) would allow us to leverage a larger and
more powerful set of ML methods. The previous examples illustrate that there is huge
space for future research, given the large variety of ML techniques and their associated
parameter spaces. A joint effort from both communities (ML and VA) is needed.

Guidance: Another major challenge is how to sufficiently support domain experts in
steering this ML pipeline. Analysts are often overwhelmed, due to the variety of ML
variants and parameters in addition to the large amount of data and tasks. Furthermore,



their analysis problems are often ill-defined, resulting in a rather exploratory or com-
plex analysis process. Consequently, analysts may change, adapt, or switch between
tasks very often. While the analyst may be able to provide crucial missing information
towards solving ill-defined problems, they might lack programming and statistical ex-
pertise and therefore require very individual guidance. — Opportunities: It will be im-
portant to better understand the tasks, practices, and stumbling blocks of domain experts
(which likely will differ from those of ML experts). The design study methodology is a
viable approach towards gaining better understanding of such user characteristics [15]
and providing appropriate guidance. Furthermore, enhanced measures and tools could
be used in order to point analysts to interesting data, parameterizations, and ML mod-
els through automatic recommendations. While many measures exist, both depicting
data and perceptual characteristics, currently it is not well understood how they can be
effectively leveraged in interactive analytical processes. Consider a relevance feedback
learning approach, where an analyst provides iterative feedback about the interesting-
ness of different ML models/visualizations. How could the system detect if a pattern
was spotted and the analysis task changes from overview to detail? Therefore, we en-
vision the usage of data and analytic provenance information (e.g., interaction logs) in
order to guide the analysis process according to the analysts’ needs, which may be de-
rived based on their behavior. In the VA community, research has been carried out on
recording, visualizing, and reusing analysis provenance. However, no work has been
carried out on modeling such information to help shape or refine analysis problems or
even ML methods. This could be an interesting topic for involving the ML community.

Measuring Quality & Consistency: In the envisioned rich human-in-the-loop analysis
process, it will be crucial to assure both ML model quality and visualization quality. Yet,
the two types of quality assurance do not always align. For example in a visual embed-
ding, there might be a trade-off between the preservation of the original data structure
and the readability of patterns due to intrinsically high dimensionality. While quality
measures exist for both aspects, the challenge will be to help analysts to find the right
balance between the two, so meaningful analysis can be carried out. Beyond measuring
ML and visualization quality, our framework suggests a third type of quality assess-
ment, the level of consistency between the ML model and the analyst’s expectations.
While an ML model will surely seek to “truthfully” reflect the data, essential pieces of
information known by analysts may be unavailable to the machine. In this case, the
set of ML assumptions may be incomplete, a common challenge in exploratory data
analysis. —Opportunities: To externalize this missing human information, it is neces-
sary to check the consistency between what the model presents, and what the analyst
expects. If inconsistent, the analyst will either suspect a problem with the ML model
and provide feedback about missing information, or accept that the expected patterns
do not exist in the data. If consistent, analysts will usually conclude with a confirmation
of their exception. Note, though consistency between human and machine is desirable,
it does not guarantee correct reflection of the underlying ground truth in the data per
se. Currently the consistency check is often done manually. Automatic methods that
systematically check consistency, highlight inconsistencies, and recommend appropri-
ate actions could help. Joint effort from both communities (ML and VA) is needed to
enhance these measures, especially by combing and bridging them.



4 Conclusions

We propose a framework that characterizes potential forms of human interaction with
ML components in a VA process. In general, VA tools have the potential for improved
support of ML interpretation, understandability, validation, and refinement through in-
teraction. However, current VA tools and ML components are posing many interesting
challenges for future work. Towards addressing these challenges, closer collaboration
between ML and visualization researchers is vital.
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