
THE PROBADO-FRAMEWORK: CONTENT-BASED
QUERIES FOR NON-TEXTUAL DOCUMENTS

Rene Berndt1; Harald Krottmaier1; Sven Havemann1; Tobias Schreck2.

1Computer Science, Graz University of Technology

Inffeldgasse 16c, 8010 Graz, Austria
e-mail: {h.krottmaier|s.havemann|r.berndt}@cgv.tugraz.at}

2Computer Science, Technische Universitaet Darmstadt
Fraunhoferstrasse 5, D-64283 Darmstadt, Germany

e-mail: {tobias.schreck@gris.informatik.tu-darmstadt.de}

Abstract
In this paper we describe the system architecture of PROBADO, a project funded
by the German Research Foundation (DFG). Its main goal is to provide a general
library infrastructure for dealing with non-textual documents, in particular for
content-based searching. PROBADO provides an infrastructure that allows inte-
grating existing data repositories and content-based search engines into one com-
mon framework. The system architecture has three layers interconnected by a
service-oriented architecture (SOA) currently using SOAP 1.1 as the communica-
tion protocol. The layers are: [1] a front-end layer, responsible for providing the
user interface [2], a core layer, responsible for scheduling requests from the inter-
face to different repositories, and [3] a repository wrapper layer, responsible for
enabling existing repositories and search engines to interface to the system. The
functionality of each layer is described in detail. The general architecture is com-
plemented by a brief introduction to the domain-dependent functionality currently
provided.

Keywords: Generalized documents; multimedia retrieval; search engine ar-

chitecture; web services.

1. Introduction

Textual documents are very well integrated in the workflow of today’s libraries.
Texts can be indexed automatically, metadata is almost automatically attached as
well, and well-established user interfaces are available for retrieving and working

Harald Krottmaier, Rene Berndt, Sven Havemann, Tobias Schreck 486

with them. However, libraries have to deal more and more with multimedia docu-
ments: Digital images, 2D and 3D drawings, videos, animations, music in various
formats, and even scanned 3D objects with millions of points. Multimedia data can
be very domain dependent, such as weather data, physical measurements, or a col-
lection of gears from mechanical engineering.

These types of digital content are not easily indexed, it is still difficult to re-
trieve such documents using search techniques such as query-by-example, and a
variety of software tools are required to work with them.

It is the goal of the PROBADO project to make it as easy as possible for libra-
rians and end-users to access and work with multimedia documents in real world
digital libraries. To this end, PROBADO provides a framework for content-based
indexing and retrieval of non-textual documents.

2. Background and Related Work

Building a Digital Library system is a complex process which requires addressing
many conceptual and implementation aspects. On the conceptual level e.g., deci-
sions have to be taken as to which kinds of document types and user interaction
modalities to support. On the implementation level, many choices have to be made
regarding the software technology, e.g. storage, description, transmission and
presentation of content. Often, these aspects depend on each other on both the
conceptual and implementation level, and they vary over the lifetime of the sys-
tem. Digital Library systems are often confronted with conflicting requirements.
For example, scalability with respect to the size of the repositories and number of
users is required. On the other hand, the flexibility to integrate additional data
types, retrieval methodologies, and content presentation modalities is required.
These are some of the evaluation criteria to judge the effectiveness and efficiency
of Digital Library systems. However, due to the diversity of document types and
retrieval tasks to be supported, an objective comparison between such systems is
difficult; very often the answer is simply “it depends”.

Certain results from theory and practice can be used to guide the implementa-
tion of a Digital Library. On the conceptual level, results from Software Design
and Database Research indicate that a layered software design is advisable, at least
providing a front-end and a back-end layer is reasonable to control complexity.
The front-end layer can then be customized depending on the type of document to
support. In the case of 3D object retrieval, several systems provide, for example,
sketch-based user interfaces [1,2]. The back-end layer is responsible for evaluating
the queries and for returning a ranked list of results to be presented in the fron-

The PROBADO-Framework: Content-Based Queries for non-textual Documents 487

tend layer. In many systems an intermediate layer is also required for translating
requests back and forth between the front- and back-end layers. The intermediate
layer may provide important system services including indexing, user administra-
tion, or load balancing, or guarantee data consistency. One example of a Digital
Library using a sophisticated middle layer is the DelosDLMS research prototype

[3]. It employs the ISIS/OSIRIS middleware, providing monitoring of distributed
processes and load balancing aspects. Modular architectures such as aDORe define
conceptual reference architectures and sets of protocols by which system modules
can communicate with each other [4].

Several popular Digital Library reference implementations exist which could
serve as the basis for building customized Digital Library systems in practice. One
often heard of alternative is FEDORA [5], an open-source system initially devel-
oped at Cornell University that is used as a document server in many research li-
braries. It follows conceptually the METS [15] approach and can specify certain
complex document relationships using a template-based approach. DSpace [6] is
another popular open source system developed by MIT and Hewlett-Packard. Fur-
ther systems include the Greenstone digital library [7] developed at the University
of Waikato, and OpenDLIB [8]. These systems have in common the fact that they
are good starting points to set up a digital document server with support for OAI-
oriented metadata. However, neither of these systems includes any specific sup-
port for dealing with non-textual documents, let alone content-based indexing and
retrieval.

3. Requirements and Assumptions

The first assumption is that the document repositories belong to stake holders, and
not to PROBADO. The owners of multimedia libraries will want to keep their data,
and they typically only want make them searchable through PROBADO. So a con-
tent-based search in PROBADO yields as search result a set of hyperlinks of
documents that match, but the target of the hyperlink belongs to the institution
running the repository. The second assumption is that there may be more than one
search engine per media type. A content-based search engine in principle receives
as query the same media type as it looks for: A search engine for 2D drawings gets
a drawing to search for. However, the content of the drawing may in fact be de-
scribed in various ways: Line density, detail level, color histogram to look for,
shapes to look for, or for the similarity to a blurred low-res bitmap that is specified
in the search.

The third assumption is that it is possible to have more than one user front-end

Harald Krottmaier, Rene Berndt, Sven Havemann, Tobias Schreck 488

per search engine. So-called combined queries contain query data which go to
more than one search engine; and cross-media queries even involve a query over
more than one media type. An example is the search for a specific musical box (3D-
object) that plays a certain type of melody (music).

The multimedia content PROBADO has to deal with is very heterogeneous,
which is a great challenge for the system architecture. Multimedia indexing and
retrieval is fundamentally different from text indexing and retrieval: We anticipate
that there will always be new multimedia types, search engines, and repositories
to add, the reasons are:
- Media type dependency: Surprisingly, the set of digital media types still keeps

growing, from classical images, video, music, over 2D vector drawings and 3D
meshes to animations (Flash) to RSS and Twitter. Also temperature measure-
ments or deformable body simulations can be considered multimedia data.

- Domain dependency: Even within the same media type, different search en-
gines (back-end) and query interfaces (front-end) may be necessary: Comic
strips and architectural drawings are both 2D vector data. Buildings and
scanned seashells are both represented as triangle meshes. Each of them, how-
ever, needs its own approach.

In order to make adding a new search engine or query front-end to the system as
simple as possible, PROBADO must require only a few basic things.

Every repository that is registered needs to deliver to PROBADO (in regular
time intervals) for each document a reduced core set of Dublin Core metadata.
This makes it in fact possible to specify the text search in these multimedia data as
the main search type that seeks through all registered repositories. – Every reposi-
tory that is registered may specify additional Dublin Core metadata, depending on
the media type and search domain (extended metadata set). Typically, some of
these data are derived directly from the document (derived metadata). – Every
search engine that is registered with PROBADO must be able to “speak” the com-
mon PROBADO multimedia query language.

4. System Architecture

The proposed architecture of the PROBADO framework is divided into 3 layers,
see Figure 1. Communication between the layers is implemented using web ser-
vices. Therefore, it will be possible to expand the functionality as long as the
PROBADO protocol is implemented.

The PROBADO-Framework: Content-Based Queries for non-textual Documents 489

4.1. Layer 1 – Front-end

The front-end (Layer 1) is divided into two parts. Both parts are capable of pre-
senting result lists of user queries. The first part is a lightweight web interface for
handling textual access methods for searching in the metadata. The second part
consists of a set of domain specific query clients. Each domain can provide special-
ized user interfaces for formulating content-based queries. Examples are a query-
by-humming interface for music retrieval or a complex sketch-based interface for
searching in 3D-document collections. The domain specific query clients can either
be accessed by a web browser (with suitable plugin) or by extend stand-alone
software clients.

Search Interfaces integrated in Web Browser
The PROBADO web service is currently hosted on a MS-IIS 7.0 running on Win-
dows Server 2008. Even with standard HTML/Javascript, the user has access to all
available search options, the core-metadata queries as well as content-based que-
ries handled by the domain specific query engines in the repository layer. The web
interface can also be augmented with specialized user interfaces for non-textual
queries that can be easily integrated with web pages. These interfaces are usually
implemented as browser plugins, for example, a JAVA3D interface for graphical
input of musical queries, or a Silverlight/Native plugin for interactively assembled
3D queries. In particular, the lack of support for hardware-accelerated 3D within
browsers makes native plugins necessary, which are unfortunately platform de-
pendent.

Figure 1: Query result sets for music and for 3D.

Search Interfaces integrated in 3rd party Software
Besides using web based clients it is also possible to use stand-alone software, or
even to enhance 3rd-party software with the ability to access the PROBADO
framework by using the product’s plugin mechanism. A prototype is a script for

Harald Krottmaier, Rene Berndt, Sven Havemann, Tobias Schreck 490

the Google Sketchup modeling tool that allows using a created model as 3D query
by sending it to the PROBADO content query (Figure 2).

Figure 2: Google Sketchup used to formulate a 3D query.

4.2. Layer 2 – PROBADO Core

The core (Layer 2) is accessible through a well defined SOAP-API. In addition to
the core metadata (see Metadata database), this layer also contains administrative
data about the registered repositories (see Repository database), data on user ses-
sions (such as query results and relevance feedback), and user profiles. The key
part of this core layer is the dispatcher, which either schedules queries to go direct-
ly to the core layers’ metadata query engine (for efficiency, the core metadata are
mirrored in the core layer of PROBADO), or sends them to the appropriate query
engines located at the repositories. Result lists returned by the repositories are ag-
gregated by the dispatcher, previews (e.g. thumbnails) are also integrated, and
hyperlinks to special functionalities provided by the PROBADO framework (for
example, an annotation service for non-textual documents) are created.

Repository database
This database stores all needed information about the registered repositories. The
specific pieces of information, like title of the repository, description, accepted
formats, etc. are shown in Table 1.

This database also keeps track of the current status of the repository (see Table 2),
in particular, its online status. In case the repository is not available, a short mes-
sage to inform the users (e.g. through the PROBADO portal web page) is stored.
An optional time-span can specify update intervals to contact the server about me-
tadata updates or system information requests. This should coordinate the load on
the repository (e.g., to avoid sending requests while the repository database is
running a backup).

The PROBADO-Framework: Content-Based Queries for non-textual Documents 491

Name Description
DC_title The title of the repository.
DC_identifier The unique identifier of the repository. This is usually the URL

of the WSDL description of the repository.
DC_description A short description of the repository.
DC_publisher Name of the publisher/organization that created/hosted the

repository.
DC_language All languages of the documents contained in the repository

(ISO639-2).
DC_subject Classification of the repository.
DC_format MIME-types of the documents in the repository.
DC_type Main subject area of the repository (e.g. “3D”, “music”,etc.)

Table 1 Repository data.

Name Description
Available Status flag if the repository is accessible or currently offline

because of maintenance or problems.
Info Description of the current status of the repository (e.g. “Repo-

sitory down due to maintenance).
UpdateRange Time-span in which meta-data update and system information

requests should be sent.

Table 2 Repository status information.

Table 3 shows the entries describing each of the query engines of a repository. This
information is used by the Dispatcher in order to route the search requests to the
correct query engine, depending on type and domain.

Name Description
Name Name of the query engine (optional)
Retrievaltype The type of queries accepted by this query engine (Fulltext,

Core_Metadata, Repository_Metadata, Content_based)
Queryformat Specifies the accepted MIME-types for the retrieval type

“Content_based”.

Table 3 QuerEngine information.

Metadata database
This central component of the core layer contains a subset of the original reposito-
ry-specific metadata for all documents of all attached repositories. The schema of
this database is mainly based on the Dublin Core (Table 4). Currently this database

Harald Krottmaier, Rene Berndt, Sven Havemann, Tobias Schreck 492

this database is mainly based on the Dublin Core (Table 4). Currently this database
is hosted on a MS-SQLServer and the web services access the database using
“LINQ-to-entities” (Language integrated query). The Entity Framework (EF) pro-
vides an object-relational mapping (ORM) to the database, so that the web service
can operate on the conceptual schema of the database. The advantage of ORM is
that the application – in our case the web services – can be abstracted from the
physical schema, which makes this solution more independent from changes on
the physical schema.

Name Description
DC_title Title of the document.
DC_identifier Unique identifier (URN or DOI).
DC_description A short textual description of the document.
DC_language Language of the document in ISO 639-2 language-codes.
DC_date One or more dates associated with the document, e.g.

<DC_date category=“Urauffuehrung in Prag”>1787-10-
29</DC_date>
<DC_date category=“Erstauffuehrung in Wien”>1788-05-
07</DC_date>

DC_creator Creator/contributor.
<DC_creator role=“Komponist”>Wolfgang Amadeus Mozart</
DC_creator>
<DC_creator role=“Librettist”>Lorenzo da Ponte</DC_creator>

DC_subject Subjects for classifying the document.
DC_format MIME type of the document.
DC_type Subject area of the document, e.g. Music, 3D…
Repository_id Id of the repository containing the document.

Table 4 Core metadata schema.

4.3. Layer 3 – Repository

The repository wrapper (Layer 3) connects the registered repositories to the core
layer using a well-defined interface of SOAP-based web services. This layer acts as
a façade and simplifies the access to the different repositories connected to the core
layer. Each repository stores document collections of specific subject areas (such as
3D-documents or music) and the associated metadata. Access to each repository is
provided by a set of query engines. Each of the connected query engines is regis-
tered with the core layer and provides a specific search functionality (like the
query-by-humming for music collections). Using such a wrapper the repositories

The PROBADO-Framework: Content-Based Queries for non-textual Documents 493

can run independently and still provide their full set of search features to the
framework without losing control over the documents. If the search engine is lo-
cated with the repository, the data in the repository do not even have to leave the
repository in order to build a search index.

Each repository hosts its own metadata database. This database may also use a
domain-dependent schema. All that is required for mirroring these entries in the
core-database is a mapping to the Dublin Core subset, e.g. by providing a special
database view.

Figure 4: PROBADO 3D repository.

The various query engines are responsible for handling the SOAP requests from
the core and returning the result set. There is no limitation on how many query
engines a repository implements. Technically a query engine is implemented as

Harald Krottmaier, Rene Berndt, Sven Havemann, Tobias Schreck 494

web services. The following query engines are the most common ones and are im-
plemented by the music and the 3D repository:
- Repository metadata search
- Fulltext query (e.g. searching in song text, or description or additional resources)
- Content based query (e.g. query-by-example).

Figure 4 shows the typical structure of a repository. The documents itself are not a
direct part of this layer. They can be hosted by the content provider, in order to
control access control, e.g. pay-per-view payment control stays in the responsibil-
ity of the content provider.

5. Communication

To establish an open architecture, PROBADO implements communication be-
tween the layers using well-defined SOAP-web services as described in Section 4.
The first step for a document repository to connect to the core layer is by deliver-
ing specific information. A repository may have several query engines for separate
types of query operations. For each of its query engines, a repository has to declare
a particular query type and the accepted query format. Whereas the query format
specifies what kind of data the engine accepts as an input (e.g. text strings, SQL
statements, or MIDI files), the query type describes what kind of retrieval it pro-
vides (e.g. full-text retrieval, SQL-based database search, query-by-example for
symbolic music). In a second step, each repository has to provide the set of core
metadata derived form the internal metadata set, to the core layer.

A user can access the PROBADO framework using either the lightweight web
interface or one of the domain specific clients provided by layer 1. Each of these
clients directs its queries (containing the query data itself, a session ID, a desired
range of query results, and optionally particular repository IDs) to the core layer.

In the core layer, each incoming request is processed by the dispatcher. Queries
on the core metadata are passed to the core’s local query engine. All other queries
are distributed to either the user-specified repositories or to all connected query
engines accepting the particular query format as an input (alternatively, all reposi-
tories providing a particular query type can be used). Upon receiving a query,
each query engine calculates a ranked list of query results.

While collecting the results of the queried repositories, the dispatcher merges
these to a single result list. This list constitutes the basis for the response to a user
query. It contains specific details for each matching document, particularly a doc-
ument ID, rank, title, description, accessibility information, context information,
document type, and associated links. Furthermore, global information for each

The PROBADO-Framework: Content-Based Queries for non-textual Documents 495

query like the total number of results, the range of results, the session ID, the query
data itself, and IDs of involved repositories are stored.

When getting a response the front-end is responsible for presenting the result
list in an appropriate format. Again there are the standard web interfaces for a ba-
sic display of the results (default) as well as the specialized client applications for
creating complex representations (e.g. playback of audiovisual content). Regarding
the result list a user has different options. Beside the details page available for each
match, PROBADO provides a document preview.

ProbadoSearch.wsdl describes the the interface between the front-end (layer 1)
and the core system (layer 2). The web service exports two methods for accessing
the search functionality of the core:

• doProbadoContentSearch
• doProbadoMetadataSearch.

doProbadoContentSearch

Element Description
Metadata One or more key/value pairs containing the metadata.

e.g. <Metadata key=“creator”>Mozart</Metadata>
Each value has to be encoded in a single, if two or more values
are required for the same key; e.g.
<Metadata key=“creator”>Wolfgang Amadeus Mozart</ Meta-
data>
<Metadata key=“creator”>Lorenzo da Ponte</Metadata>

CoreSearch Specifies if the query shall be performed on the core metadata
or will be used for a repository-specific query.
Default is to search within the core metadata.

Table 5 Elements of the doProbadoMetadataSearch.

doProbadoContentSearch
This method performs a content-based query.

Element Description
QueryData Contains binary data used for the content-based query; the

mimetype is specified by an attribute.
Parameter One or more parameters as key/value pairs,

e.g. <Parameter key=“engine”>sketch</Parameter>
A fulltext search is performed by using
<Parameter key=“Fulltext”>query</Parameter>

cont’d

Harald Krottmaier, Rene Berndt, Sven Havemann, Tobias Schreck 496

 cont’d
SortBy The sort order of the results, e.g. <SortBy key=“date”>
RepositoryId Specifies one or more repositories where the search will be

performed. If no RepositoryId is given the request is sent to
all registered repositories.

StartIndex Starting index of the results to return (used for paging of re-
sults).

Count The maximum number of results to return (used for paging
of results).

SessionId The session id of the core system.

Table 6 Elements of doProbadoContentSearch.

Result type
The result message contains besides “SearchQuery”,”StartIndex” and “SessionId”
(which are just a copy of the request message), the following entries are returned:

Element Description
TotalResultCount Total number of results matching the query.
Count Number of results returned.

Table 7 Common result elements.

For each search result item the following data entries are returned:

Element Description
DocumentId The core-specific document id.
Ranking A value ranking
Title The title of the document.
Accessible Information how the document can be accessed (free,

pay-per-view, etc.)
ContextInfo Repository-depending information (e.g. short description,

position within the document).
DocumentType Mimetype des Dokuments.
LinkToDocument The URL of the document.
LinkToPreview The URL of the preview of the document (e.g. a 3D model

with a low polygon count).
LinkToThumbnail The URL of the thumbnail (e.g. a screenshot of a 3D model)
RepositoryId Id of the repository.

Table 8 Elements of a single result item.

The PROBADO-Framework: Content-Based Queries for non-textual Documents 497

Request

<SOAP-ENV:Envelope
xmlns:SOAP-ENV=“http://schemas.xmlsoap.org/soap/envelope/”>
<SOAP-ENV:Body>
<rep:RepositoryContentSearch
xmlns:rep=“http://www.probado.de/2008/01/31/RepositorySearch.xsd”>
<rep:QueryData rep:mimetype=“text/plain”>
VGVzdGZpbGU=
</rep:QueryData>
<rep:Parameter rep:key=““/>
<rep:SortBy rep:key=““/>
<rep:StartIndex>0</rep:StartIndex>
<rep:Count>10</rep:Count>
<rep:SessionId>283E0C02C11BD8DB68CE8FFFD059DB64</rep:SessionId>
</rep:RepositoryContentSearch>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Response

<soapenv:Envelope
xmlns:soapenv=“http://schemas.xmlsoap.org/soap/envelope/”>
<soapenv:Body>
<ns1:RepositorySearchResult
xmlns:ns1=“http://www.probado.de/2008/01/31/RepositorySearch.xsd”>
<ns1:TotalResultsCount>158</ns1:TotalResultsCount>
<ns1:ResultElement>
<ns1:DocumentId>changeme:103</ns1:DocumentId>
<ns1:Ranking>-1.0</ns1:Ranking>
<ns1:Title ns1:category=“unkown Category”>JAVA Programming Guide -
Quick Reference</ns1:<ns1:Accessible>unkown</ns1:Accessible>
<ns1:ContextInfo>Java Programming Guide - Quick Reference Java Pro-
gramming Guide - Quick
<ns1:DocumentType>application/pdf</ns1:DocumentType>
<ns1:LinkToDocument>offis.core.probado.de/dokument?doc=changeme:103</
ns1:LinkToDocument>
<ns1:LinkToPreview>offis.core.probado.de/preview?doc=changeme:103</ns
1:LinkToPreview>
<ns1:LinkToThumbnail>offis.core.probado.de/thumbnail?doc=changeme:103
</ns1:LinkToThumbnail>
</ns1:ResultElement>
<ns1:ResultElement>
. . .
</ns1:ResultElement>
<ns1:SearchQuery>java</ns1:SearchQuery>
<ns1:StartIndex>0</ns1:StartIndex>
<ns1:Count>10</ns1:Count>
<ns1:RepositoryId>Probado-Core-OL</ns1:RepositoryId>
<ns1:SessionId>283E0C02C11BD8DB68CE8FFFD059DB64</ns1:SessionId>
</ns1:RepositorySearchResult>
</soapenv:Body>
</soapenv:Envelope>

Table 9 Example SOAP request and response.

Harald Krottmaier, Rene Berndt, Sven Havemann, Tobias Schreck 498

The two SOAP messages described in RepositorySearch.wsdl “doRepositoryCon-
tentSearch” and “doRepositoryMetadataSearch” use the same structure as the do-
ProbadoContentSearch/doProbadoMetadataSearch (with the exception of the field
“RepositoryId”). An example SOAP request and response are shown in Table 9.

6. Conclusions and Future Work

The PROBADO system architecture as it was presented in this paper is only the
first approximation to an integral framework for content-based queries in non-
textual documents. Clearly, the priority was to design the system in a way that it
imposes only minimal restrictions on the kinds of (i) repositories, (ii) query en-
gines, and (iii) user interfaces that are to be registered. The goal was to reduce the
hurdles for integrating with PROBADO as much as possible. Using standard web
technologies, new repositories with different data types (e.g., photo or movie ar-
chives) can now easily be integrated. The PROBADO core layer allows associating
flexibly query interfaces with repositories. One road of future work in PROBADO
will be to extend the set of supported document types. However, eequally impor-
tant at the current stage of the project is to advance from the restricted test opera-
tion to an enhanced test operation with first experiments on the integration of new
external search services.

When the integration with the illustrated loose coupling works, future work
will be to intensify the interaction between the different system components. The
relevance feedback functionality, for example, requires some cross-media reason-
ing, to find a correlation between queries issued and results accepted. Another
challenge is to allow active navigation through the result space, by continuously
modifying a query, also allowing the possibility to backtrack.

A more far-reaching goal would be a front-end technology that allows blending
seamlessly from using one query engine to another. This could be important when,
e.g., through relevance feedback, a user apparently changes the domain or the me-
dia type while navigating through the space of search results. This could be re-
flected in the user front-end: A search starting from 17th century church music
could go over to church architecture and finally to the design of Gothic window
tracery. In that case, one would expect a specialized graphical user interface to pop
up that allows the interactive entrance, on a high level of abstraction, to the com-
plex (and refineable) set of parameters of such a window.

The PROBADO-Framework: Content-Based Queries for non-textual Documents 499

Acknowledgments

The PROBADO project is funded by the German Research Foundation DFG. Its
consortium consists of the University of Bonn, Technische Universitaet Darmstadt,
the German National Library of Science and Technology in Hannover, and the Ba-
varian State Library in Munich. Cooperation partners are Graz University of Tech-
nology and Technische Universitaet Braunschweig. For further information, please
refer to the PROBADO website at http://www.probado.de.

Notes and References

[1] FUNKHOUSER, T., MIN, P., KAZHDAN, M., CHEN, J., HALDERMAN, A.,
DOBKIN, D. and AND JACOBS, D. A search engine for 3D models, ACM Trans-
actions on Graphics 22, 1, (2003), p.83-105.

[2] HOU, S., JIANTAO, P. and RAMANI, K. Sketch-based 3D Engineering Part Class
Browsing and Retrieval. EuroGraphics Symposium Proceedings on Sketch-
Based Interfaces & Modeling, (2006), p. 131-138.

[3] AGOSTI, M., BERRETTI, S., BRETTLECKER, G., DEL BIMBO, A., FERRO, N.,
FUHR, N., KEIM, D., KLAS, C.-P., LIDY, T., NORRIE, M., RANALDI, P.
RAUBER, A., SCHEK, H.-J., SCHRECK, T., SCHULDT, H., SIGNER, B. and
SPRINGMANN M. DelosDLMS - the Integrated DELOS Digital Library Man-
agement System. DELOS Conference 2007. Lecture Notes in Computer Science
4877, Springer 2007.

[4] HERBERT VAN DE SOMPEL, JEROEN BEKAERT, XIAOMING LIU, LUDA
BALAKIREVA and THORSTEN SCHWANDER aDORe: A Modular, Standards-
Based Digital Object Repository. The Computer Journal 2005 48(5):514-535.

[5] Fedora Commons (http://www.fedora-commons.org/).
[6] DSpace (http://www.dspace.org/).
[7] Greenstone (http://www.greenstone.org/).
[8] OpenDLib (http://opendlib.iei.pi.cnr.it/home.html).
[9] Open Archives Initiative.
[10] DIET, J. and KURTH, F. The probado music repository at the bavarian state library.

Proceedings of the 8th International Conference on Music Information Re-
trieval (ISMIR 2007). (2007) 501-504

[11] KROTTMAIER, H., KURTH, F., STEENWEG, T., APPELRATH, H.J. and
FELLNER, D. Probado - A generic repository integration framework. In: Proc. Euro-
pean Conf. on Research and Advanced Technology for Digital Libraries,
Springer-Verlag (2007) 518-521

[12] BLUEMEL, I., KROTTMAIER, H. and WESSEL, R. The probado framework: A

Harald Krottmaier, Rene Berndt, Sven Havemann, Tobias Schreck 500

repository for architectural 3d-models. In: Browsing architecture. Metadata and
beyond, Fraunhofer IRB Verlag (2008).

[13] WESSEL, R., BLUEMEL, I. and KLEIN, R. The room connectivity graph: Shape
retrieval in the architectural domain. In: Proc. Int. Conf. in Central Europe on
Computer Graphics, Visualization and Computer Vision. (2008).

[14] Generative Modeling Language (http://www.generative-modeling.org/).
[15] METS Metadata Encoding & Transmission Standard (http://www.loc.gov/

standards/mets/).

June 2009
Printed on demand
by "Nuova Cultura"

www.nuovacultura.it

Book orders: ordini@nuovacultura.it

