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Abstract—
The extraction of relevant and meaningful information from multivariate or high-dimensional data is a challenging problem. One reason for
this is that the number of possible representations, which might contain relevant information, grows exponentially with the amount of data
dimensions. Also, not all views from a possibly large view space, are potentially relevant to a given analysis task or user. Focus+Context
or Semantic Zoom Interfaces can help to some extent to efficiently search for interesting views or data segments, yet they show scalability
problems for very large data sets. Accordingly, users are confronted with the problem of identifying interesting views, yet the manual
exploration of the entire view space becomes ineffective or even infeasible. While certain quality metrics have been proposed recently to
identify potentially interesting views, these often are defined in a heuristic way and do not take into account the application or user context.
We introduce a framework for a feedback-driven view exploration, inspired by relevance feedback approaches used in Information Retrieval.
Our basic idea is that users iteratively express their notion of interestingness when presented with candidate views. From that expression,
a model representing the user’s preferences, is trained and used to recommend further interesting view candidates. A decision support
system monitors the exploration process and assesses the relevance-driven search process for convergence and stability. We present an
instantiation of our framework for exploration of Scatter Plot Spaces based on visual features. We demonstrate the effectiveness of this
implementation by a case study on two real-world datasets. We also discuss our framework in light of design alternatives and point out its
usefulness for development of user- and context-dependent visual exploration systems.

Index Terms—View Space Exploration Framework, Interesting View Problem, Relevance Feedback, User Preference Model

1 Introduction

Our current data-agnostic society is driven by the prevalent perception
that most data contains valuable information, which can be retrieved in
a later information retrieval process. To this end, all kinds of data are
stored and analyzed. The business consultancy McKinsey even fore-
casts that the “data scientist” will become one of the most important
jobs in the US in the coming decade [24]. While the collected data
may be rich in information, it is still highly challenging identifying
appropriate views on the data sets. As an example, an n-dimensional
numeric data set allows to render (n× (n−1)/2) distinctive views only
by using a projection onto two distinctive dimension axis. This spans
a large exploration space in which interesting views need to be iden-
tified. To make matters worse, the most valuable data views exists in
relation with the users’ current tasks, intentions, and current context.

A range of approaches to deal with the interesting view problem
were developed over the years. For example, Focus+Context systems
[28, 3] lead the users in an overview to areas of interest and let them
explore these areas with drill-down mechanisms. Focus+Context sys-
tems are an established and approved method, but often tend to be
expert systems restricted to specific data set characteristics and/or user
interactions. These systems potentially introduce misleading abstrac-
tions, which ultimately can lead to wrong exploration paths. Semantic
zoom interfaces [5] help also to deal with this problem. Here, the user
explores the data set at varying levels of abstraction/detail, starting
with a highly aggregated version of the underlying data. The more the
user “zooms” into the data, the more details become assessable. Al-
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ternatively, cluster-based navigation systems partition the exploration
space into a range of distinctive clusters that are represented by a small
amount of prototypes. Choosing the prototypes relates directly to the
interesting views problem. A further well-understood, yet simple, ap-
proach to tackle the interesting views problem is to focus on faceted
search algorithms that operate on the available meta data. This re-
quires a manual annotation and insertion of meta data, which is often
prone to errors or missing values.

Directly related to the interesting views problem is that a query
formulation [23] on complex data sets is difficult. This is primarily
due to the fact that the collected data sets are multivariate and high-
dimensional in nature. To tackle this problem, novel querying mecha-
nisms, such as query-by-example or sketch-based interfaces were de-
veloped. Here, the systems rely on the assumption that users have a
priori an initial understanding of the interesting patterns under investi-
gation. This explicit definition of interest is time consuming, particu-
larly if interest rules need to be updated during the exploration process.

In this paper we present a novel approach to the interesting view
problem, which focuses on the interplay between the user and an
automatic decision-support system. In an iterative work flow the
user assesses whether a set of presented views are of interest or not.
These views can be arbitrary, but suitable, visualizations for the high-
dimensional data exploration task at hand. A classification system
learns from the previous user decisions, while notifying the user in
case of potentially wrong decision paths and major decision path di-
vergence. The general idea is inspired by multimedia retrieval ap-
proaches, where the user’s explicit relevance feedback on retrieval re-
sults is used to recommend additional previously unseen results [23].
In contrast to the major work in this field, the presented relevance feed-
back mechanism is incorporated into a feedback loop, which adapts to
the earlier user decisions.

Our approach relies on the basic assumption that for most and even
complex data visualizations a comprehensive set of feature vector de-
scriptors can be found, either in the data-, in the image space or in a
combination of the latter, that can be mapped to its analytic benefit.

The outlined approach has to be seen as a framework for an in-
teractive relevance feedback driven data exploration process. One of
the benefits of the framework is that a great variety of design alterna-
tives can be applied without changing the fundamental approach. We
are showing one reference implementation of the framework by using



Fig. 1. The user interacts in the View Space Explorer by choosing relevant or irrelevant examples (4) from a small sample set. An incremental decision
tree visualization (5) and a feature tube visualization (6) help to assess the exploration convergence. Specific decision support intervention points can be
enabled/disabled in (3). Additional decision support notifications are shown in (8).

an incremental decision-tree classification to guide the user in a large
scatter plot exploration space. However, it has to be mentioned that
we are not restricting ourselves to scatter plot visualizations, but al-
low any type of visualization technique as long as a descriptive feature
vector space can be found.

The remainder of the paper is structured as follows. In Section 2
we discuss related work. In Section 3 we introduce the general idea of
the interactive relevance feedback driven data exploration framework.
The following Section 4 describes our instantiation of the exploration
framework and discusses the design decisions and alternatives. Sec-
tion 5 details on the implementation of the decision support system
and its implications, while Section 6 shows the visual interface for the
view space exploration. Next, in Section 7 we present the results of
two case studies on real-life data. In Section 8 we discuss limitations
and possible extensions. Finally, Section 9 concludes the paper.

2 RelatedWork

Our work relates to interactive and automatic approaches for view
selection, relevance-driven information retrieval, and systems which
capture user feedback to guide the analysis process.

2.1 Interest-Driven Data Filtering for Visual Analysis

Methods for visual data analysis need to handle increasingly large data
sets. As the data size grows, so does the space of data views, which
are possible, given large data spaces and view parameters. Then, an-
alysts run risk of overlooking interesting views if relying only on in-
teractive navigation. To this end, intelligent methods for compress-
ing and filtering data for potential patterns of interest has recently be-
come a research focus. Overview-based approaches aim to generate
effective layouts over many candidate data portions, to efficiently spot
patterns of interest. Examples include the Value-and-Relation display
[36], which lays out pixel-oriented views based on their data similar-
ity. Another example is [33], where many time series are shown by
small glyphs which are layed out based on data similarity.

Besides overview approaches, automatic filtering of views for po-
tential structures of interest has been proposed. For scatter plots, the
Scagnostics approach [34] automatically analyzes structures in scatter
plots, which can be used to rank and filter. Recently, a clustering-
based overview approach was presented in the ScagExplorer [8]. In
case class information is given, scatter plots can be filtered for dis-

criminative views by class consistency measures [29]. Also, pro-
jection pursuit approaches, such as initially presented by Friedman
and Tukey [13], try to identify interesting 2D subspaces in high-
dimensional data (mostly depicted by scatter plot views). Further
heuristic interestingness filters for Scatter- and Parallel Coordinate
plots have been discussed in [31, 9] and may narrow down the po-
tentially large search space for high-dimensional data. In [32], an ex-
plorative overview of subspaces contained in high-dimensional data
based on mutual differences and clustering quality properties was in-
troduced.

2.2 Relevance-Driven and Image-Based Retrieval

In Information Retrieval, similar to Information Visualization, users
search for relevant information, but often without being able to pre-
cisely specify the pattern they are looking for. In context of document
retrieval, relevance feedback [2] allows to incrementally refine the user
query. Based on a set of example documents, users assign a degree of
relevance on them, based on the context of their information need.
This assignment information in turn is used to iterate the search, e.g.,
by query term expansion or by weighting of query terms, based on the
subset of relevant documents. This mechanism abstracts from the spe-
cific query formulation by the user, but may implicitly capture the user
information need. Relevance feedback methods have also been inten-
sively applied in content-based image retrieval [26, 30] and shown to
improve the retrieval performance.

Many image retrieval systems so far rely on low-level image fea-
tures, such as color histograms, edge histograms, or texture measures
[10], which are heuristically combined to form distance functions.
Relevance feedback methods for image retrieval may operate on these
low-level feature representations in various ways. One option is to
construct a new query vector by averaging the feature vectors of all
image examples marked by the user as relevant. Another option is
to train a classifier (e.g., SVM or Decision Tree [14]) from the set of
relevance information provided by the user.

2.3 Relevance-Driven Analytics and Distinction of our Work

According to our observation, the majority of Visual Analytics ap-
proaches which incorporate interest-driven data filtering rely either on
a) fixed heuristics for fully automatic filtering, or b) on fully interac-
tive filter specification by users. However, fixed heuristics may not
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Fig. 2. The interaction flow in the Feedback-Driven View Exploration Frame-
work: The user chooses a dataset of interest. A meaningful visualization
type is selected (automatically or manually). The underlying data is de-
scribed by means of feature descriptors. A range of representatives are
shown to the user, which are interactively tagged for their relevance in the
exploration process. A model learner tries to reflect the user’s preferences
and shows a new representatives set to the user.

necessarily map to a given users’ information need, which may de-
pend on data and context. Moreover, fully interactive search may not
be feasible due to large search spaces. Surprisingly few works provide
user-adaptive data filtering heuristics. In [22], intelligent visual ana-
lytics queries are proposed. The user marks a section within a given
visualization as interesting; the system then computes certain distri-
bution measures given in the data section, and automatically retrieves
similar data segments from a larger database. The assumption is that
the additionally retrieved data will add to the user information need.
In [16], user data navigation is supported by a Bayes classification
approach. The method learns to distinguish between interesting and
uninteresting data sections while users pan and zoom an information
landscape. The classifier is then utilized to suggest navigation paths of
interest to a given user.

Two further recent works exploit user interaction to improve the
analysis process. In [4], users interact by with the marks in a 2D pro-
jection of high-dimensional data, to express their notion of data cor-
respondences. This input is used to adapt the data similarity function
and re-project the data. Along similar lines, the approach in [12] al-
lows users to interact with the positioning of documents in a 2D doc-
ument landscape collection, to express document-level relationships.
The system then learns and highlights the document terms which are
most descriptive of the expressed document relationships.

In our approach, we apply ideas of relevance feedback-driven im-
age retrieval to the problem of exploring large view spaces. Based on
user examples, a decision tree is trained to identify additional interest-
ing views based on Scagnostics features. We instantiate the approach
for scatter plots described with Scagnostics features. Our approach is
novel in that we a) introduce the concept of relevance feedback to scat-
ter plot exploration, and b) that we make explicit the gained knowledge
by a decision tree, which is used to guide and monitor the user explo-
ration process. In that, our approach is related to [16] where a Bayes
classifier is used to navigate a 2D information landscape. Our ap-
proach differs from [4, 12] in that the latter works consider user feed-
back in one single 2D view of the data, which is continuously updated.
We here aim at retrieving sets of relevant 2D views in an iterative pro-
cess. Furthermore, we do not update a data similarity function but
use a Decision Tree classifier to capture user feedback and expressed
interestingness relationships.

3 A Framework for Feedback-Driven View Exploration

The basic idea of a feedback-driven view exploration approach is to
put users into a steering position to determine what they want. Fig-

ure 2 outlines the main work flow in the semi-automated exploration
process. In a normal sequence of actions the user chooses a data set
under investigation and decides for a meaningful visualization to as-
sess the underlying data. The framework uses an appropriate feature
descriptor from the data- and/or the image space to represent the data.
The resulting feature vectors are the basis for the visualizations. In
case of a feature descriptor operating on the data space characteristics,
such as the data distribution or compressibility, will be represented.
An example would be to measure the convexity of a scatter plot. Im-
age features will be used to reflect the visualization’s –or depiction’s–
characteristics. An example would be to measure the number of inter-
est points for a real-world image. For the overall exploration the choice
of the feature descriptor is crucial, since every descriptor is only capa-
ble of reflecting certain characteristics of the underlying data.
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Fig. 3. Four different sets are distinguished in the approach: (1) The ex-
ploration set ES contains all possible views. (2) A sampled version of the
exploration set will be presented to the user (RS). (3) The user annotates
this set for interesting, respectively uninteresting, views (AS+ versusAS−).
(4) A classifier learns a mapping of the exploration set into potentially inter-
esting views (CS+), respectively uninteresting views (CS−).

As Figure 3 depicts, from a potentially very large exploration set,
denoted as ES, only a limited amount of visualizations can be pre-
sented initially to the user. We will denote this subset as the represen-
tation set RS. The choice of the items in RS can be random, determin-
istic, or iteratively adaptable (cf. Section 5). In the general feedback-
driven view exploration framework the representation choice adapts
according to the user’s decisions. In an exploratory search phase a
uniformly distributed sample should be made available, while in a
confirmatory search only subpopulations of ES need to be presented.
Generally, users might not be able to manually assess the entire data
set. Hence, after a broad beginning only parts of the exploration space
will be presented to the user. From RS the users can either choose
visualizations of interest or express their dislike. Thus, an implicit
knowledge gets explicitly available and accessible to the framework.
A model learner is used to reflect the expressed user preferences by
classifying the unseen items in ES as potentially relevant, denoted as
CS+, or potentially irrelevant, denoted as CS−. We can assess the
model learner’s (un-)certainty in the classification. Relevant and irrel-
evant items can be matched to both classification sets CS+and CS− to
find visualizations with an (un-)certain interestingness mapping.

The task is now to find a good mapping f : ES 7→ RS, such that the
user on the one hand will find interesting patterns and on the other hand
is still able to explore the dataset without loosing too many details. A
secondary goal is to let the user iterate only a few times through the
feedback loop.

Another basic idea of the feedback-driven view exploration frame-
work is that user decisions should have an impact on the exploration.
Hence, the task of a decision support system, as described in Section 5,
is to assess the stability and convergence of the exploration path. Fig-
ure 4 outlines potential intervention points in the feedback-driven view
exploration framework. As an example, the choice of the data set im-
plies a (feature-based) modeling of the data. While this choice might
be appropriate in an early exploration phase, it might be too restrictive,
respectively broad, in the later phases. Thus, it might be beneficial to
switch from a scatter plot visualization view to a parallel coordinate
visualization with an appropriate modeling scheme. One heuristic for
this recommendation could be that the exploration path stays rather
unspecific and does not converge even after a number of iterations.
Another intervention point is the outcome of the model learner. Here,
the decision support acts as a supervision instance, which, e.g, allows
assessing the certainty of the classification subsystem.
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Fig. 4. The Decision Support can change essential parameters in the Rele-
vance Feedback Driven View Exploration Framework if the exploration con-
vergence stagnates: For example, it can recommend switching to a more
appropriate visualization type with an appropriate modeling scheme or ask
for a confidence score if the user annotation is obviously misleading.

4 Exemplified Instantiation of Feedback-Driven View Exploration
Framework

In the following section we want to present one instantiation of the
general semi-automatic exploration work flow from Section 3. In each
of the following sections we will outline the overall idea for the respec-
tive work flow step, describe the current implementation and reflect
our design rationale by describing alternatives and further prospects.

4.1 Visualization

The general idea of the Visualization step is to illustrate the given
exploration set (ES) in a reasonable manner. This step initiates our
framework’s interaction pipeline in Figure 2. The choice of the visu-
alization technique is important and depends on the given data set. Ef-
fective visualizations help in the decision-making process, while read-
ing ineffective visualizations can be time-consuming and potentially
leads to wrong decisions.

In our exemplified instantiation of the feedback-driven view explo-
ration framework we use scatter plot visualizations to represent a con-
tinuous high-dimensional data set. The choice of this visualization has
several reasons. First of all, scatter plots prove to be powerful and intu-
itive visualizations for user decisions. They are used in a large variety
of domains and are familiar to most users. Second, we can separate
the high-dimensional data set into individual plots allowing the user to
judge the importance over all pairwise dimension combinations.

As mentioned above, the choice of the visualization technique de-
pends on the data set under consideration. In our case, scatter plots
are appropriate, but in case of other data types, such as temporal, hier-
archical or textual data, alternative visualization techniques are better
suited for the view space exploration in our pipeline. To name just
a few alternative examples, line charts are suitable for temporal data,
treemaps can represent hierarchical data, and word clouds can be used
to depict text content.

4.2 Modeling

The general idea of the Modeling step is to characterize all visualiza-
tions of the exploration set ES and to compute a uniform model for
the Model Learning step (cf. Section 4.5). It computes a feature-based
vector for every visualization. By this means, the similarity for each
individual visualization can be automatically compared and used for
further sampling or classification methods.

We decided to use the Scagnostics approach [34] to characterize
the scatter plot contents, since it is capable of describing point dis-
tributions by meaningful measures. This approach extracts a nine di-
mensional feature vector characterizing the scatter plots for: outlying,
skewed, clumpy, convex, skinny, striated, stringy, straight, and mono-
tonic features. These measures can characterize the shape of scatter
plots well. Thus, the decision classifier can identify the user’s prefer-
ences in the form of “find more dense” or “find highly coherent scatter
plots”.

Depending on the chosen visualization (cf. Section 4.1), different
descriptors have to be used to extract feature vectors. While, Ker-
nel Density Estimators or Regressional features could be used to ex-
tract suitable features for scatter plot point distributions, image-based
descriptors will be more appropriate to describe real world images.
In the case of structure conveying visualizations, such as treemaps or

matrices, one option is to apply an Edge-Histogram Descriptor or line
extraction algorithm [11] to describe the general shape of the visual-
izations content. For text visualizations, a dictionary-based approach
can be applied to compare the textual content inside visualizations.

4.3 Representatives

The general idea of the Representatives step is to select a manage-
able number of items from the exploration set ES. This presentation
set, denoted as RS, is presented and judged by the user. Hence, its
functionality highly influences the exploration process. The selection
procedure is exchangeable in our implementation of the view space
exploration pipeline.

In the current implementation, we are experimenting with content-
based sampling-based approaches, such as discussed in [15], to select
a range of items in ES. A Min-/Max sampling option selects two
representatives for each of the feature value ranges (cf. Section 4.2).
For the Scagnostics example, 18 representatives can be judged by the
user: two items (one min-value and one max-value representative) for
each of the nine Scagnostics features. To increase the number of items
in RS and to reflect the data distribution, a quantile sampling, a (strat-
ified) bootstrapping and a stratified normal sampling method can be
applied. The user can select how many items should be retrieved, re-
sulting in | f eatures| × requestedSamplingItems items in RS.

One reason to apply sampling is that RS is available instanta-
neously without much computational effort. One obvious disadvan-
tage is that the sampling potentially shows a series of outliers in the
data distribution. However, this effect can be neglected in case of the
quantile sampling method (amountQuantiles > 2).

As stated above further design alternatives are possible and may be
considered if the representation items are not perceived as appropriate.
One computational expensive solution would be to apply a density-
based clustering in every projection pane of the feature space. N mod-
eling features would lead then to N projection panes. From the clus-
tering results a range of representatives could be selected by choosing,
e.g., the medoid of the found clusters.

4.4 Relevance Feedback

The general idea of the Relevance Feedback mechanism in a semi-
automatic exploration pipeline is to give the user the ability to steer
the retrieval process. The user can categorize the presented items into
relevant, irrelevant, and neutral examples. Relevant annotated items,
denoted as AS+, represent potential hits for the search process. Irrel-
evant examples, denoted as AS−, depict items that lead to wrong or
uninteresting search paths.

In the current implementation, depicted in Figure 1, the user can
click on green and red buttons to express his like, respectively dislike.

Alternatively to the binary decision approach, a weighted relevance
feedback could be implemented for finer granularity assessment of the
user feedback. In this case, the users would have to judge the interest-
ingness of the presented items in terms of a linear scale. Also a star
rating, as it is known from product reviews, would be possible. We de-
cided against a weighted relevance feedback system, since these kinds
of decisions might be hard to judge for the user in the beginning of the
exploration process and involve additional interaction overhead.

4.5 Model Learning

The goal of the Model Learning step is to reflect the user’s preferences.
In the best case, the system learns the user’s intention after only one
iteration and retrieves only positive examples. The worst case scenario
is that the model learning cannot grasp the user’s intention after a finite
number of steps, leading to always negative examples. The pipeline
would then iterate until all irrelevant items are excluded and only rel-
evant examples are left. Hence, the search eventually converges.

A model learner has to be able to revise and refine previous deci-
sions. Whenever the system restricts existing decisions we assume that
the user also refined his/her understanding of the explored items. Thus,
we assume that the exploration path is “correct”. On the other hand,
a revision of existing decisions corresponds to a potentially “wrong”
exploration path.



Fig. 5. Potentially wrong decisions are intercepted by the decision support
system to keep the model learning in a consistent state. The outcome of
each decision can be anticipated without applying it to the model learner by
using the quick-check functionality button.

On top of the exploration steering function of this component we
put another prerequisite on the system: It should externalize its de-
cisions in a visual depiction (cf. Section 6.2). In our current imple-
mentation we decided to use a classification system to approximate
the user’s preferences. Our model learner is inspired by the idea of an
iterative decision tree, such as presented in [35]. In contrast to a nor-
mal decision tree, iterative decision trees retain most of its structure
after the initial training. This allows the user to perceive the structural
development over time and can only be achieved if a fundamental con-
finement of the decision tree algorithms gets derestrict: Nodes corre-
sponding to a parameter (-range) can occur multiple times in the same
decision tree. However, in line with the decision tree logic, these mul-
tiple occurrences may not violate already applied range restrictions
(value > 0.5 leads to yes, but also value ≤ 0.5 should lead to yes).

In a standard course of action, we are expanding the decision leafs
in each learning iteration of the pipeline. We are differentiating be-
tween outer decisions and inner decisions. While outer decisions mod-
ify the outer boundary of the decision space formed by the n selected
features (cf. Section 4.2), inner decisions lead to subareas in the al-
ready excluded/included decision space, which should be included,
respectively excluded, from the search.

For outer decisions two cases are possible without violating the idea
of a decision tree: 1) A yes node, representing a set of relevant clas-
sified items, on a yes path gets split up. In this case, the user found
that the classification is too unspecific and should be narrowed. One
example for this case is shown in Figure 12 (c), where the monotonic
feature range was modified from [0.09,1.0] to [0.12,1.0]. 2) A no
node,representing a set of irrelevant classified items, on a no path gets
split up. In this case, the user found that the classification is too spe-
cific and should be broaden.

Inner decisions are improving constraints set in earlier decisions.
Here, also two alternatives are possible without violating the decision
tree idea: 1) A no node on a yes path gets split up. In this case the user
found that learned constraint is limiting the exploration and should be
made less restrictive. 2) A yes node on a no path gets split up. In this
case the user found that learned constraint was not restrictive enough
and should be strengthened. One example for this case is shown in
Figure 12 (c), where a monotonic value above 0.006 alone would lead
to a positive classification. This classification gets restricted by the
sparsity feature descriptor below 0.11. In both presented cases of an
inner decision parallel decision paths, or split-ups, could be a result.

Alternatively, adaptive learning systems could be applied to learn
the user preference model. Here, for example multi-agent learners,
such as presented in [27] could incorporate likelihood considerations
into the learning process, which would be beneficial if many views
show similar content. The application of neural networks, such as pre-
sented in [37], could be an alternative. Both mentioned model learners
are able to learn non-linear decision boundaries in high-dimensional
decision spaces. We decided against these sophisticated methods due
to the following reasons: 1) They mostly cannot meet our prerequisite
of being visually interpretable/traceable. 2) Their application would
lead to immense computational efforts and results in long waiting
times for the users. 3) Many of these approaches require a full training

Fig. 6. Additional meaningful decisions can be recommended to the user by
retrieving the most similar scatter plots to the already relevant, respectively
irrelevant, annotated views.

after each of the user decisions. Support-Vector machine classification
has been considered, but is not yet implemented. Here, visual depic-
tions are available, such as presented in [17]. The training process is
more complex than with the presented approach, but still feasible and
a full training is not always necessary as [6] demonstrates.

5 Enhanced Decision Support for Feedback-Driven View Exploration

One of the primary advantages of the presented exploration frame-
work (cf. Section 3) is that it allows for an automatic supervision of
the exploration process. This supervision can be used to investigate
and monitor the actions taken by the user. Thus, it becomes possible
to make use of a user feedback loop whenever an action is not mean-
ingful, potentially incorrect, or could be improved on the fly.

Users are notified about a potential intervention with the help of
dialogs. These dialogs contrast the current user selection with an auto-
matically created suggestion. Most importantly, the decision support
system forecasts both options’ outcome and presents them to the user.

In the case of conflicting decisions (cf. Section 5.1) between the
user and the decision support system, the user decision are preferred
to the algorithmic decisions.

In the following we are referring to our implementation of the
feedback-driven view exploration framework as it is described in
Section 4. Specifically, we are rendering scatter plot visualizations
modeled/described by the scagnostic feature set. We are applying a
sampling-based approach to find representatives. The user gives bi-
nary feedback, whether an item is relevant or rather irrelevant; the in-
cremental decision tree algorithm classifies the exploration set ES into
positive CS+and negative classified items CS−.

5.1 Handling Potentially Wrong Feedback Decisions

Decisions are ambiguous and potentially wrong if the same view (scat-
ter plot) has been marked both irrelevant and relevant in the current
iteration. In both cases the user has to revise and disambiguate the
current decision in an Error Dialog, depicted in Figure 5.

The error dialog allows previewing the decision outcome with
the help of a quick check functionality. Its purpose is to anticipate
the CS+ and CS− outcome without applying the decisions to the clas-
sification model learner.

If this kind of error occurs multiple times the decision support sys-
tem suggests enabling an auto-highlighting functionality that keeps
track of the annotation sets and holds them in a consistent state.

5.2 Handling Missing Decisions

Missing decisions can occur whenever the same scatter plot is shown
multiple times in one presentation set and the user marks a scatter plot
as relevant, respectively irrelevant, but does not apply the same choice
on the second occurrence of the scatter plot. Multiple occurrences can
happen, e.g., when applying sampling-based representation finding ap-
proaches on a small data set. In case of Min-/Max sampling, multiple
presentations of the same item are even likely and cannot be ruled out.

The decision support system keeps track of these missing values
and fills them automatically to retain a consistent learning model.



5.3 Recommending Additional Decisions
The decision support system is able to do more than a mere failure
handling. If the user is satisfied with her/his relevance feedback in
one iteration, the intra-presentation set similarity to the positive and
negative examples is calculated. If the similarity for an unannotated
scatter plot is high to one of the items in AS+ or AS− it becomes an
annotation candidate for the respective annotation set. More specif-
ically, we are calculating for every view in AS+ and AS− a ranked
list of similar views from ES. We are using the Euclidean distance
on the Scagnostics feature vectors for calculating the similarity score.
These ranking lists are unified for each annotation class by taking
into account (a) a minimum similarity threshold –since we want to
show only highly similar views– and (b) the potential reoccurrence
of one view in the candidate lists –since we want to eliminate dupli-
cate candidate views. The outcome of including annotation candidates
into AS+ and AS− are presented to the user in the query-expansion
dialog shown in Figure 6. Here again, the user has the functionality
to anticipate (quick-check) the results without applying them to the
model learner.

5.4 Exploration Set Expansion
Another decision support system functionality aims at assessing the
search stability and convergence. For example, if the decision tree
classifies more than 50% (user-parameter) of ES as irrelevant in the
first iteration a great variety of potential scatter plot patterns may be
lost. If the selected parameter is exceeded, the decision support system
evaluates the classification certainty by comparing all irrelevant clas-
sified items (CS−) to the items in the annotation set AS+ and AS−.
We construct a certainty ranking for all items in CS−. Again, we are
using the Euclidean distance on the Scagnostics feature vectors for
calculating the ranking score. The subset of items in CS− that have
a distance higher than an adaptive threshold are treated as uncertain
classification decisions and may be taken again into the exploration
set ES for a further refinement. The certainty threshold increases with
the number of feedback iterations. In other words, the fewer decisions
have been taken by the user the less uncertainty is accepted. Figure 7
shows the exploration set expansion dialog.

Fig. 7. The classification system’s certainty is assessed in the background.
A histogram view shows the number of (un-)certain decisions. If the classi-
fier eliminates a great variety of scatter plot patterns (red bars), the user may
decide to retain uncertain scatter plots. Uncertain decisions correspond to
the scatter plots whose distance to the negative annotated set is larger than
an adaptive certainty threshold.

6 View Space Explorer
In the following we will describe our graphical user interface for the
Feedback-Driven View Exploration Framework. Figure 1 depicts the
visual interface, consisting of the View Explorer, the primary inter-
action component, and a range of meta visualizations, which help to
track changes in the exploration process.1

6.1 View Explorer
The View Explorer displays the presentation set RS to the user. It
is depicted in Figure 1 (4). The scatter plot selection process is de-
scribed in Section 4.3. The displayed views are ordered according to
the feature descriptor and the selected sampling method; i.e. for each
applied feature descriptor one high and one low value in the case of
Min-/Max sampling. While an alternative option would have been to

1A video showing the functional components and the main interaction work
flow is available in the supplementary material.

Fig. 9. Users can annotate scatter plot views as uninteresting, neutral, or
interesting with the red, white or green buttons. A tool tip shows that the
view was selected into the presentation set RS, since its outlying value is in
the 2nd quantile of the respective feature range.

sort the views according to their feature vector similarity, the applied
ordering allows perceiving the feature descriptor’s value ranges more
effectively. A detail view for the user annotation options is depicted
in Figure 9. A tool tip shows, next to the scatter plot’s id and its axis
metadata, a visual indication of the sampling set choice; the circled
number represents the selected 2nd quantile.

6.2 Meta Visualizations

Two meta visualizations help the user to assess if an exploration path
leads to a convergence (only interesting views). On top of that, the de-
cision support system uses the displayed data to quantitatively assess
the exploration convergence.

Feature Tube: Figure 10 shows the Feature Tube, a stacked his-
togram view per feature descriptor (cf. Section 4.2). The histograms
are sorted in ascending order to reveal the feature’s value distributions.
The current decision path corresponds to an interval selection in the n-
dimensional feature space, where n is the number of features under
consideration. In our case, nine Scagnostics feature histograms are
rendered. We are showing the decision path by a tube overlay, high-
lighting the selected feature intervals of interest. The overlay can be
used to assess the specificity of the search. A narrow tube relates to
a highly specific query –potentially in an advanced status of the ex-
ploration process– while a broad tube shows that the exploration is
unspecific. Selected intervals can vary in their density of contained
items (or views). Dense/sparse intervals show that the current explo-
ration specificity maps to many, respectively few, possible views. By
perceiving the change of Feature Tube between two model learning
phases, users are able to judge their exploration advancement. Brush-
ing and Linking is used to retrieve a scatter plot selection from the
view explorer in all feature histograms.

Fig. 10. The Feature Space Tube represents visually the exploration pro-
cess advancements. A narrow tube overlays (right) corresponds to a highly
specific query, while a broad tube (left) represents an unspecific exploration.



(a) 1D decision on one classification attribute (b) 2D decision on two classification attributes (c) nD decision on n classification attributes

Fig. 12. The incremental decision tree allows assessing the complexity of the formulated exploration query. Additional meta visualizations depict the value
distribution for 1D classification decisions (decision on one classification attribute), 2D decisions in a confusion matrix and nD decisions in a MDS projection
of the classified items similarity.

Incremental Decision Tree: Figure 1 (5) and Figure 12 shows the
Incremental Decision Tree, a visualization for the current classifier de-
cisions. In an incremental decision tree every framework iteration cor-
responds to one level of the decision tree: Level 1 decisions corre-
spond to the projection of the n-dimensional decision space onto the
one dimensional subspace of the corresponding classification attribute.
Level 2 decisions span a confusion matrix, in which the true-positive
(upper right) field corresponds to all positively classified items (CS+),
the true-negative field (lower left) corresponds to all negatively clas-
sified items (CS−). The items in false-positive (upper left) and false-
negative (lower right) are potential mis-classifications and cannot be
rejected without any reservation. Thus, they remain in the exploration
set ES. Level decisions > 2 can be depicted with a MDS projection of
the pairwise item similarity. We use of the classical MDS implemen-
tation in MDSJ [25] for our purposes. During the annotation phase the
user sees the tree visualization, as depicted in Figure 1 (5). However,
if the user wants to get more details about the model learner meta visu-
alizations for the 1D, 2D and nD levels are shown in a dialog on top of
the incremental decision tree (Figure 12). The purpose of these meta
visualizations is to allow the user to interpret how many items the clas-
sifier rejected from the exploration. Furthermore, the user can perceive
how many items where close to the calculated decision border.

6.3 Measures of Exploration Convergence

For a quantitative assessment of change in the exploration process we
are quantitatively measuring the appearance development of the fea-
ture tube and the incremental decision tree visualization. For the fea-
ture tube we are storing the covered tube area for each pipeline it-
eration and calculate the areal difference of the two shapes. If the
difference area decreases in two subsequent iterations, the search con-
verges gradually and we are able to measure a convergence factor. If
the area change stagnates or even increases the user did not advance in
the view exploration. For the incremental decision tree, we are able to
measure a binary convergence factor. Either, in the negative case the
model learner returns the same decision tree several times (no further
learning improvement) or new tree leafs need to be added (learning
progress). If the classification training results in the same tree twice
we are interpreting the result as an exploration stagnation.

A wide range of other convergence measurements are possible. The
simplest is to relate the number of items in ES before and after an ap-
plication of the classifier. Another option is to calculate a similarity
value for the decision tree appearance before and after the application
of the classifier, as e.g., presented for general tree structures in [19].
However, this option can only be applied if the decision tree is built
from scratch, rather than not incrementally. In the future we are plan-
ning to experiment with an adaptive convergence measure that takes
multiple decision criteria into account. In all cases of a slow or stag-
nating convergence we are applying counter measurements to steer the
exploration process. The first measurement is to intervene in the rep-
resentation finding (cf. Section 4.3). In our case, we are changing the
used sampling function. The next level of intervention is to increase
the number of suggestions for annotation candidates (cf. Section 5.3).

While the number of suggestions decreases in the normal convergence
cases, we are here boosting the lowest similarity, such that more (even
less similar) items are recommended for annotation.

7 Case Studies
To present the applicability of our View Space Explorer we showcase
two exemplary exploration scenarios on two well-known, real-life nu-
meric datasets: The Wine and the Communities and Crime data set,
both from the UCI Machine Learning Repository [1]. The two cho-
sen datasets vary in size and complexity. We chose the wine dataset,
because of its low number of scatter plot axis combinations and thus
its understandability. This allows us to focus on the decision support’s
interventions in the exploration process. The second dataset (commu-
nities) is significantly more complex in the number of dimensions and
allows us to focus –next to the presentation of (hidden) patterns– on
the convergence development like it is necessary for information re-
trieval systems. We conducted our case studies with Ph.D. and Master
students from the computer science area.

In the case studies we are searching for correlations in the axis com-
binations. The exploration of data correlations is challenging, since
users must be able to describe the correlation to be found. In the
feedback-driven view exploration approach we assume that users do
not know in advance, which (Scagnostic) feature might be beneficial
for the current question.

Wine Data Set The Wine data set results from a chemical analy-
sis of 178 wines sub-categorized into three classes (red, white, rose
wines). In total the dataset comprises 14 numeric continuous at-
tributes, such as alcoholic strength, color intensity, or magnesium. We
derived 90 axis combinations and converted them to scatter plots -short
SPs- with 178 data points each.

Figure 11 shows us a sequence of interactions on the wine dataset.
In the first iteration (Figure 11 (a)) the user annotated four relevant and
six irrelevant SPs from 24 initially presented SPs. The presentation
set RS results from a normal bootstrapping sampling of the initial 90
SPs. A review of the four relevant annotated SPs shows that they share
a high monotonic value. Satisfied with the first annotation round the
user clicks on Apply and sees a dialog, in which the decision support
recommends adding 15 SPs to AS+ and 68 SPs to AS− (Figure 11
(b) background). The user declines both recommendations. Hence,
the classifier is trained on the initial annotation set and results in 27
positively and 63 negatively classified SPs. A review of the classifi-
cation uncertainty shows that all decisions were certain (Figure 11 (b)
front). Thus, the user can assume that no SP is lost due to a misclassifi-
cation. The feature tube reveals that the highest concentration is in the
monotonic value. It appears to be beneficial to choose SPs with a high
monotonic value for this task. In the second feedback round the user
selects seven relevant and six irrelevant SPs and the decision support
recommends adding one relevant and four irrelevant SPs. Once again
the user declines all recommendations. The subsequent classification
results –again– in the same 27 positively and 63 negatively classified
SPs. No more exploration progress is apparent and thus the user will
see the same SPs in each subsequent feedback round. Accordingly,



(a) In the first annotation round the user selects
four relevant and six irrelevevant scatter plots.

(b) The decision support recommends adding a
range of similar scatter plots to both annotation
sets; After the classifier is trained all decisions are
judged as certain.

(c) The final result shows several data correlations.
E.g. The amount of ash and flavoid influences a
wine’s color.

Fig. 11. Finding correlations in the Wine data set; After three annotation iterations the exploration set with initially 90 scatter plots is reduced to 14 scatter
plots, containing the annotated data correlations.

the decision support switches the sampling method to “Stratified boot-
strapping”. In a final annotation round six relevant and five irrelevant
SPs are chosen and the exploration finishes with 14 SPs.

In the 14 result SPs some patterns become visible (Figure 11 (c)).
For example, the SPs 8 and 12 show that the wines’ color is positively
correlated with the amount of ash and the amount of flavonoids. A
meta research reveals: “Flavonoids are antioxidant compounds found
in plants, as well as tea, red wine and chocolate, . . . ” [20].

Communities and Crime Data Set The Communities and Crime
dataset combines socio-economic, law enforcement, and crime data
for the US in the years 1990 to 1995. After a filtering of missing
values the dataset contains 123 dimensions. All in all, 7002 scatter
plots were generated from the possible axis combinations.

Figure 12 shows a sequence of actions on this data set. The final
result of the exploration is given in Figure 1. Our goal is again to find
hidden data correlations that can be semantically interpreted.

In order to decrease the exploration set not too much in an early
exploration phase, the user selects SPs with a high skewness. This fea-
ture describes indirectly the data density and gives an intuition about
the interrelation of two dimensions. As Figure 12 (a) depicts, the user
selects five relevant and six irrelevant SPs. Subsequently, the deci-
sion support recommends 2247 positive and 2045 negative SPs. This
large amount of recommendations indicates that the decision support
is uncertain about the exploration path direction. The user declines all
recommendations and receives a classification uncertainty of 12.28%
for the irrelevant classified SPs. Moreover, the uncertainty visualiza-
tion in Figure 12 (a - front) depicts that the majority of distances is
significantly above the uncertainty threshold. Thus, the user decides
to expand the exploration set with the uncertain SPs. All in all, the
exploration set is reduced to 5251 SPs, leading to an exploration set
decrease of 25.0%.

In the following second annotation round the user tries to narrow
down the exploration and annotates thus six irrelevant and five relevant
SPs with a stronger visible correlation. The annotation is depicted in
Figure 12 (b). Due to the reason that the recommendation threshold is
adapted iteratively, a significantly lower amount of SPs (91 relevant;
344 irrelevant) gets recommended. However, the user once again de-
clines all recommendations. In the subsequent certainty assessment
the user sees that in 28.81% of the irrelevant classified decisions the
classifier is uncertain. Hence, the user decides again to retain all un-
certain scatter plots. All in all, the exploration set is reduced to 2536
SPs, leading to an exploration set decrease of 51.7%.

In the third annotation round, depicted in Figure 12 (c), the user
searches for SPs with a rather round scatter plot distribution, which
relates to the Scagnostics convexity feature. Thus, the user annotates
seven irrelevant and six relevant SPs and the decision support recom-
mends adding one relevant and seven irrelevant SPs. One positive rec-
ommendation is accepted. The classification uncertainty is 34.12%.
Accordingly, the exploration set is expanded with all uncertain SPs.
All in all, the exploration set is reduced to 1900 SPs, leading to an

exploration set decrease of 25.1%.
In the final annotation round the user chooses to filter SPs with a

low density distribution, which relates to a strong skinny value. These
dimension combinations often occur if a categorical value is related
to a numeric value. Thus, six relevant and six irrelevant SPs are an-
notated. The decision support recommends adding 1 relevant SP. The
classification uncertainty is 9.74%. In this annotation round the explo-
ration set is not expanded anymore. All in all, the exploration set is
reduced to 235 SPs, leading to an exploration set decrease of 87.6%.
The search converges and we see the final result in Figure 1.

According to the result set depicted in Figure 1 we can come to the
following conclusions: First, we found that a high crime rate exists
in areas, where the percentage of households with public assistance
income is high. A similar correlation exists with the percentage of
unemployment in these areas (SP A). Second, we found that in these
areas the police budget is higher than in areas with a low crime rate (SP
D). Third, we found that the police budget correlates with the number
of police cars (SP B). Generally, SP C shows that more drug units exist
the larger is the variety of drug types in that area.

8 Discussion and Extension

While our technique has proven useful, we have identified several ar-
eas where improvements or alternatives should be explored.

Firstly, we want to apply the view space exploration framework on
data sets which allow for more than one meaningful visualization. As
an example, we could represent the Wine or Communities and Crime
data sets from Section 7 also with Parallel-Coordinate-Plots. This
would allow representing different data aspects more prominently. In
these cases, the view selection space will increase drastically, lead-
ing to new visualization and computation challenges. In line with
this question we want to investigate when proven visualization tech-
niques for building overviews without abstractions, esp. Scatterplot-,
Parallel-Coordinate-, or Generalized Plot Matrices [7, 18, 21], can be
outperformed with our iterative exploration approach. On the other
hand, for arbitrary visualizations, which can not be represented in a
small multiple manner, layout based approaches will not scale due to
the screen space restrictions.

Secondly, we are already experimenting with a tight integration of
the decision support system with the user feedback loop and the model
learner. While the intervention process appears to improve the explo-
ration, many alternatives to assess the search stability and convergence
are possible. One particular research challenge is the degree of in-
tervention in the process. Certain user groups might wish for guid-
ance, others might feel uncomfortable with this supervision. Related
to this question is that it might be beneficial to enhance Decision Sup-
port with a query negation function, allowing query suggestions, like
’Show non-correlated variables, instead of correlated’.

Thirdly, we are planning to experiment with implicit and finer-
granular relevance feedback mechanisms. Specifically, a range of de-
sign options becomes available, ranging from time-to-click measures



(a) First annotation round: The user selects five relevant and six irrelevevant
scatter plots; The classifier uncertainty value is 12.28%; The exploration set
is reduced to 5251 SPs.

(b) Second annotation round: The user selects five relevant and six ir-
relevevant scatter plots; The classifier uncertainty value is 21.96%; The
exploration set is reduced to 2536 SPs.

(c) Third annotation round: The user selects six relevant and seven irreleve-
vant scatter plots; The classifier uncertainty value is 34.12%; The exploration
set is reduced to 1900 SPs.

(d) Fourth annotation round: The user selects six relevant and six irrelevevant
scatter plots; The classifier uncertainty value is 9.74%; The exploration set is
reduced to 235 SPs.

Fig. 12. Finding correlations in the Communities and Crime data set; After four annotation rounds the exploration set with 7002 scatter plots is reduced to
235 scatter plots, containing data correlations.

to eye-tracking approaches, to assess relevance of a view. It will also
be interesting to explore, similar to the document term highlighting
mechanism of [12], ways to highlight which local patterns would be
responsible for a given scatter plot view being relevant for a user.
9 Conclusion

The interesting view problem is prevalent in visual data exploration
approaches whenever the number of available data views to be inves-
tigated exceeds the user’s willingness or ability to judge the views.
While previous approaches centered around establishing effective
overview abstractions to guide the user to interesting views, the focus
is shifting to an automated calculation of interestingness. Whenever
a proper definition of interestingness can be established it needs to be
transformed into a quality measure. However, in most cases the formu-
lation of interestingness is neither possible nor stable. Rather so, the
understanding of interestingness develops in the sequence of actions
taken on the data.

In this paper we motivate an iterative and interactive view space ex-
ploration approach that does not rely on any visual abstractions. We
introduced a general feedback-driven view exploration framework in
which a relevance feedback mechanism is applied to retrieve user pref-
erences. On the automatic side, the system learns the user preferences
and finds new interesting views by applying a classification on the
data. The more the search advances, the more user preferences are

learned and transformed to specific queries on the underlying data.
To showcase our general ideas, we presented one instantiation of the
feedback-driven view exploration framework. In this instantiation we
render scatter plot visualizations modeled by the Scagnostic feature
set. It has to be noted that the general idea is not limited to scatter
plots, but allows rather any type of visualization technique as long as
a descriptive feature vector space can be found. A sampling-based ap-
proach is used to find potential interesting views from an exploration
set. In every interaction loop the exploration set is incrementally re-
duced by implicit queries resulting from the user’s binary relevance
feedback. An incremental decision tree algorithm classifies the ex-
ploration set into potentially relevant and irrelevant items. A novel
decision support system is applied on top of the framework that su-
pervises the decision process. It is used, on the one hand, to handle
potentially inconsistencies in the annotation process and, on the other
hand, to evaluate automatically the exploration convergence.

We evaluated our approach with a case-study driven evaluation,
conducted to showcase its usefulness on two real-world data sets. The
results reveal that our feedback-driven view space exploration frame-
work shows to be effective and enhances the user understanding.

In conclusion, the presented feedback driven view space exploration
framework serves as a basis for a range of visual analytics systems that
allow tackling the interesting view problem.
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