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ABSTRACT

In explorative data analysis, the data under consideration often re-
sides in a high-dimensional (HD) data space. Currently many meth-
ods are available to analyze this type of data. So far, proposed
automatic approaches include dimensionality reduction and cluster
analysis, whereby visual-interactive methods aim to provide effec-
tive visual mappings to show, relate, and navigate HD data. Fur-
thermore, almost all of these methods conduct the analysis from a
singular perspective, meaning that they consider the data in either
the original HD data space, or a reduced version thereof. Addi-
tionally, HD data spaces often consist of combined features that
measure different properties, in which case the particular relation-
ships between the various properties may not be clear to the an-
alysts a priori since it can only be revealed if appropriate feature
combinations (subspaces) of the data are taken into consideration.
Considering just a single subspace is, however, often not sufficient
since different subspaces may show complementary, conjointly, or
contradicting relations between data items. Useful information may
consequently remain embedded in sets of subspaces of a given HD
input data space.

Relying on the notion of subspaces, we propose a novel method
for the visual analysis of HD data in which we employ an
interestingness-guided subspace search algorithm to detect a can-
didate set of subspaces. Based on appropriately defined subspace
similarity functions, we visualize the subspaces and provide navi-
gation facilities to interactively explore large sets of subspaces. Our
approach allows users to effectively compare and relate subspaces
with respect to involved dimensions and clusters of objects. We ap-
ply our approach to synthetic and real data sets. We thereby demon-
strate its support for understanding HD data from different perspec-
tives, effectively yielding a more complete view on HD data.

Index Terms: H.2.8 [Database Applications]: Data mining; H.3.3
[Information Search and Retrieval]: Selection process; I.3.3 [Pic-
ture/Image Generation]: Display algorithms

1 INTRODUCTION

The analysis of high-dimensional (HD) data is an ubiquitously rel-
evant, yet notoriously difficult problem. Problems exist both in au-
tomatic data analysis and in the visualization of this kind of data.
On the visual-interactive side, a limited number of available visual
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variables and limited short-term memory of human analysts make it
difficult to effectively visualize data in high numbers of dimensions.
For automatic pattern detection, a typically employed paradigm is
the one of clustering, which identifies groups of objects based on
their mutual similarity. Unlike traditional clustering methods, for
the mentioned HD data considering all features simultaneously is
not effective anymore due to the so-called curse of dimensional-
ity [3]. As dimensionality increases, the distances between any two
objects become less discriminative. Moreover, the probability of
many dimensions being irrelevant for the underlying cluster struc-
ture increases.

Global dimensionality reduction or feature selection methods do
not solve this problem as clusters may be located in different sub-
space projections of the feature space, i.e., projections obtained by
considering subsets of the original dimensions. For such scenar-
ios the clustering structure tends to be obfuscated in the original
feature space and traditional clustering algorithms as well as visual
analysis based on the full-space may fail. For large feature spaces,
interesting patterns may often be located only in subspace projec-
tions of the data. As insights may not be hidden in only one single
subspace, relevant analysis should consider also multiple subspaces
and their interrelations. Especially, for HD data we can expect to
have different views on the same data [11, 21], i.e., the same ob-
jects might group differently given different subspace perspectives
(see Figure 1 for an illustration). The existence of alternative rele-
vant subspaces may stem from the data description process, when
during preprocessing, features (dimensions) which describe differ-
ent semantic properties of the data, are combined. For instance, in
demographic analysis, households are often described by an array
of many variables, combinations of which constitute different con-
ceptual domains, such as wealth, mobility, or health. Likewise, it
may be the combination of otherwise not semantically related di-
mensions, which by their combination give rise to interesting pat-
terns. In the Data Mining community, a class of so-called Subspace
Analysis algorithms has been proposed to cope with the problem of
identifying interesting subspaces and clusters from a HD data set.
To date, however, there has been a very limited focus on the pre-
sentation and interpretation of the generated output. Furthermore,
subspace analysis often produces highly redundant results that need
to be further manipulated in order to get meaningful results [19].

We propose an initial step towards the use of Visual Analytics as
a way to explore alternative views generated by subspace analysis
algorithms. We define an analytical pipeline made of algorithmic
and visual components that permits to single out and explore alter-
native views in the data. After being analyzed by a subspace search
algorithm, the data is structured and further processed in an inter-
active visualization environment to reduce redundancy.

The main contribution of this paper is the operative definition
and implementation of this multistep pipeline which permits to sift
through an exponential number of subspace candidates and to re-
duce the problem to a handful of relevant views. More specifically,
we (1) introduce a mechanism to deal with subspace redundancy



by defining topological and dimensional subspace similarity and
by allowing flexible and interactive subspace aggregation; (2) we
provide a well-reasoned interactive visualization environment that
permits to compare and assess alternative views by visually com-
paring topological and dimensional similarities and strike a balance
between visual complexity and level of detail.

We evaluate our method through two case studies. The first is
based on synthetic data to check whether the tool does what it is
supposed to do. The second is based on real-world data to demon-
strate how the tool can help finding and interpreting alternative
views in HD data. We believe these results show the potential of
Visual Analytics in the context of automated mining algorithms. It
furthermore shows how the use of Visual Analytics can enhance
the understanding of the results of automated data analysis meth-
ods, and lead to new questions concerning more effective or more
efficient algorithms.
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Figure 1: Alternative data distributions and groupings [20] in two dif-
ferent subspaces of a larger HD data space (domain here: demo-
graphic data analysis). Our proposed visual analysis method inte-
grates the notion of alternative subspaces into the analysis process
and links it to the task of comparative cluster analysis.

2 SUBSPACE ANALYSIS

In this section, we discuss the challenges for visual subspace anal-
ysis in more detail and explain how we tackle these with our new
interactive, explorative framework supported by subspace search
algorithms.

As is commonly known in subspace clustering, dealing with HD
data in its subspace projections faces two main challenges. The
first, serious challenge is a reasonable scalability w.r.t. the dimen-
sionality of the data set. As for a d-dimensional data set the number
of possible subspaces S ⊆ {1, . . . ,d} is ∑

d
k=1

(d
k
)
= 2d − 1, many

subspace clustering approaches do not scale well for very HD data.
Every algorithm has to employ some strategy and heuristics to cope
with such an exponential search space. The second, closely related
challenge is dealing with high redundancy, that stems from the high
similarity of the exponentially many subspaces. If two subspaces
share a high proportion of dimensions, they are likely to exhibit a
very similar clustering structure [11]. A large search result with
high redundancy is, however, not beneficial for the user as it masks
the complete information and is hard to interpret.

A core task in analysis of HD data is to apply a clustering method
to reduce data complexity and identify groups of data for compari-
son. Different clustering algorithms follow different clustering no-
tions, e.g., there exist density- (e.g., DBSCAN [9]) or compactness-
based (e.g., k-Means) clustering methods, and their outcomes of-
ten depend crucially on non-intuitive parameter settings. Usually
several clustering attempts are required until the user has a usable
result. It is obvious that high runtimes of subspace clustering pro-
cesses (see Section 6.3) are not tolerable for such a workflow. Con-
sequently, we decided to start the visual data exploration one step
before the actual clustering process and decouple subspace search
and the actual clustering. Dedicated subspace search algorithms
[2, 7, 15] have been designed to efficiently filter and rank the possi-
ble subspaces according to specific quality criteria (or interesting-

ness measures, see also below). After subspace search has taken
place, an arbitrary clustering approach can be used to cluster in the
identified subspaces.

The use of subspace search for our purposes has several advan-
tages: (1) It helps to effectively filter out those subspaces that based
on low interestingness do not need to be considered by the user. (2)
Subspace search approaches are designed to reduce the search space
efficiently and they do not need to compute clusters. And (3) al-
though, subspace search approaches themselves also rely on certain
assumptions of what makes a subspace interesting, these assump-
tions do not necessarily lead to very different subspaces among dif-
ferent approaches. Therefore, the results are not as biased as they
are for different clustering algorithms, which enables the user to al-
ready obtain valuable results with one subspace search approach.
For example, the quality assessment based on the k-NN distance
[2], favors neither the DBSCAN nor the k-Means clustering notion.
And (4), integrating the subspace search into the HD analysis of-
fers the user the opportunity to obtain a visual, intuitive overview
of the clustering structure before even starting the actual clustering.
Thus, the user can assess the potential of the data to deliver valuable
clustering results at all; decide which subspaces are to be clustered;
decide which clustering notion to follow in each subspace (since the
notion does not need to be the same for all); more easily determine
meaningful parameter settings for clustering approaches.

Subspace search methods guide their search process by specific
interestingness scores that are defined heuristically. For example,
the method proposed in [7] considers as interestingness score the
variation of the density of objects across a regular cell-based par-
titioning of a given subspace. The underlying assumption is, that
higher variation of density provides higher probability that the sub-
space shows meaningful structure. As another example, the SURF-
ING method [2] relies on the histogram of the k-nearest neighbor
distances for all objects in a given subspace. It considers subspaces
with non-uniform distance distributions more interesting (as they
are an indication of the presence of strong clusterings). The under-
lying assumption is that for subspaces that show meaningful struc-
tures (e.g., clusters), different k-NN distances will occur. These and
other measures aim at identifying subspaces that show a high “con-
trast” with respect to the distribution of objects, allowing to spot
meaningful structure in the subspaces.

Subspace search methods also typically contain heuristic ap-
proaches for early abandoning uninteresting subspaces, as exhaus-
tive search would be prohibitively expensive. SURFING for ex-
ample is based on a bottom-up strategy for searching subspaces by
increasing dimensionality. It is based on testing additional dimen-
sions for subspaces already known to be interesting. The list of
currently interesting subspaces is continuously pruned to keep only
the most interesting subspaces and speed up the search. SURFING
has no dimensionality bias, assumes no specific clustering structure
and in practice, it is parameter free. Due to these properties, we rely
on this method in our proposed approach, using the implementation
provided to us by the original authors, but other subspace search al-
gorithms could be easily used as well.

Overall, using the results of a subspace search algorithm as a
starting point for our visualization has many advantages. Subspace
search methods such as SURFING employ efficient search strate-
gies tackling the efficiency challenge of subspace analysis. How-
ever, they typically do not solve the challenge of high redundancy.
This is exactly where our proposed visual analytical workflow in-
troduced next, starts from.

3 PROPOSED ANALYTICAL WORKFLOW

We propose a carefully designed visual-analytics workflow for
subspace-based exploration of HD data, making use of algorithmic
subspace search in combination with visual-interactive representa-
tions for user-based filtering and exploration. Our approach starts
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Figure 2: Our proposed analysis pipeline. A subspace selection algorithm is applied to automatically identify a candidate set of interesting
subspaces. A filtering step reduces the potentially large and redundant set of automatically obtained subspaces to a user-selectable number
of representing subspaces. Visual-interactive user exploration then proceeds on the subspace representations. Subspace analysis is also
supported by comparative cluster views, allowing users to identify meaningful similar, complementary or even conflicting clustering structures in
the set of subspaces.

(1) with an automatic subspace search step, where a large number
of interesting subspaces is selected by a subspace search algorithm.
Current subspace search methods provide an algorithmic handling
of the problem of finding interesting subspaces, yet they often pro-
duce too many subspaces that may also be redundant and thereby
overwhelm the interactive analysis (see also Section 2). We there-
fore employ similarity-based grouping of subspaces (2) and per-
form the interactive exploration of interesting subspaces based on a
few group representatives. Appropriate visual representations and
interactions support the visual interactive analysis (3) for better un-
derstanding the subspace search results, including the support for
comparative cluster analysis.

Figure 2 depicts our proposed analytical workflow. We next de-
tail the technical design decisions made for each of the analysis
steps, including discussion of alternatives.

3.1 Generation of interesting subspace candidates
The advantages for choosing subspace search, and in particular
SURFING, have been already discussed in detail in Section 2. We
observe that typically subspace search algorithms output a huge
number of subspaces. Since the examination of all subspaces is
infeasible, a common approach is to filter the subspaces based on
a certain threshold. This, however, ignores the fact, that the first
ranked subspaces might be only slight variations (i.e., high overlap
of dimension sets) of the same subspace and therefore are redundant
to each other. Yet, interesting subspaces with substantially differ-
ent dimension sets, as compared to the top ranked results, could
be found at much later ranking positions, and run the risk to be
neglected from the analysis. Therefore, we apply a grouping step
based on an appropriately defined notion of subspace similarity, as
described next.

3.2 Similarity-based subspace grouping and filtering
Given a large number of candidate subspaces, we apply hierarchical
grouping and filtering to yield a smaller set of mutually sufficiently
different, yet individually interesting groups of subspaces for inter-
active analysis. Our filtering and grouping operation is based on
a custom similarity function defined on pairs of subspaces accord-
ing to two main criteria: (1) overlap of the sets of dimensions that
constitute the respective subspaces, and (2) resemblance in the data
topology given in the respective subspaces.

(1) Similarity based on dimension overlap: Subspaces can be
similar regarding their constituent dimensions. We use the
Tanimoto Similarity [23] on bit vectors indicating the con-
tained (active) dimensions in a respective subspace (1 denotes
an active dimension, 0 the converse). The Tanimoto Similar-
ity is then computed as the fraction of dimensions contained
in both subspaces (AND-ing of the bit vectors), among the to-
tal number of different dimensions occurring in the subspaces
(OR-ing of the bit vectors).

(2) Similarity based on data topology: We also compare
subspaces with regard to their data distribution. Specifically,

we consider the similarity of k-NN relationships in the
respective subspaces. For efficiency reasons, we compute
the k-nearest neighborhood (k = 20) lists for a sample of
5% of the contained data points. The similarity between
two subspaces is then evaluated as the average percentage
of agreement of k-NN lists in the subspaces. This score
measures the similarity of the k-NN topology of the data,
where k is a parameter and can be adapted to the data
sets at hand by the user. Note that also other similarity
measures are in principle possible. For instance, the data
could be clustered and the similarity between subspaces
evaluated according to the resemblance of obtained clus-
terings by an appropriate measure such as the RandIndex [22].

These two distance functions are the basis for the subspace
grouping step in our analytical workflow as follows:

(1) Subspace grouping: We apply hierarchical agglomerative
grouping of subspaces based on the topologic distance func-
tion using Ward’s minimum variance method [30]. Based
on the dendrogram representation of the obtained hierarchical
grouping, the user chooses the hierarchy depth level to select
a number of groups. This way the user can easily decide how
many clusters are desired for the analysis.

(2) Subspace filtering: Based on the previously achieved group-
ing of subspaces, we filter one subspace from each group as
representative: For each group we consider the subspaces with
the lowest dimensionality and choose the one which exhibits
the highest interestingness score. We note that other rules for
filtering representatives are possible, but find that this rule is
robust and effective for users, as it tries to keep the dimen-
sionality as low as possible.

These steps together with both distance functions take us further
towards our goal of understanding the different kinds of relation-
ships between subspaces. They can complement, confirm, or con-
tradict each other and being aware of these relations can be crucial
for further mining tasks.
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Figure 3: Filtering cases that can be supported by our two defined
subspace similarity functions.

Four basic cases can be identified, each of which might be rel-
evant for a given subspace analysis task: (1) Subspaces that are
similar in both, their contained dimension sets and their data topol-
ogy (truly redundant subspaces); (2) Subspaces that are dissimilar



in both, their contained dimensions and their data topology (truly
complementary subspaces); (3) Subspaces that are similar w.r.t.
data topology but dissimilar regarding their contained dimensions
(confirmatory subspaces: we confirm the same data relationships
in different subspaces); and (4) Subspaces that are similar w.r.t.
their contained dimensions, but dissimilar regarding topology (this
is generally not expected but could indicate the existence of one or
a few dimensions which are by their nature very dominant for the
data topology). Figure 3 illustrates these four basic filtering cases.

3.3 Visual-interactive design
After hierarchical aggregation and/or filtering of the potentially re-
dundant set of subspaces have taken place, we apply a set of analyti-
cal views for exploring and comparing the subspaces. Our displays
are based on (1) scatterplot-oriented representations of individual
subspaces or groups of subspaces, (2) similarity-based or linear list
layouts for sets of subspaces, and (3) additional informative views
(parallel coordinates and color-coding for comparison of groups in
data).

The proposed design is the result of several iterations of alter-
native solutions in which we explored and compared several repre-
sentations. Two design choices are worth discussing here: (1) the
design of a visual representative for subspaces and (2) their layout.
We decided to represent subspaces with scatter plots because they
allow for the identification and comparison of groups in the data.
More abstract representations (like simple colored marks) would
require less space but would not allow the rich topological com-
parison provided by the scatter plots. In contrast, representations
that are more complex like, e.g., parallel coordinates would provide
a direct representation of the dimensions included in the subspace
but would make their representation much more cluttered. As for
the layout, we tried several tree and graph layouts to make the rela-
tionship between the subspaces and their shared dimensions explicit
but we found that this rarely provides interesting insights and makes
the visualization too cluttered to be of any use.

Scatter plots for subspaces can be generated by any appropriate
projection technique such as PCA [14], MDS [8] or t-SNE [29],
to name a few. We currently use MDS, but we experimented with
others and any other technique could be used as an alternative. For
a group of subspaces, one representative subspace is chosen (see
below). To convey the involved dimensions, we also add an index
glyph to the respective scatter plot (see Figure 4).

Figure 4: Subspace representation by 2D scatterplots with dimension
glyph. We can see two 5D subspaces (left) and one 4D subspace
(right) in the visual representations.

The analytical views are combined and linked in an application
that consists of the following components:

Linearly sorted view of subspaces. To obtain a first overview
of the output of the subspace search algorithm, we present all the
subspaces in a linear view. The MDS scatter plots representing the
individual subspaces are sorted left-to-right and top-down accord-
ing to the interestingness index provided by the subspace search
method. This view is exclusively used as a detail view for groups
of topologically similar subspaces. Figure 5(1) illustrates the sub-
spaces of the synthetic data set, which is described also later in
Subsection 4.1.

Subspace group view. In this view, groups of subspaces
that have been formed by hierarchical agglomerative grouping are
shown. Each group is represented by one selected subspace from
that group, using the filtering method as described in the previous
Subsection.

The representative subspaces are each visualized by an MDS
plot, and shown side-by-side (Figure 6(1) illustrates). A dimen-
sion histogram on top of it indicates the distribution of dimensions
contained by the subspaces in the group, where the length of the
bar encodes the frequency of the respective dimension. The last bar
encodes the percentage of subspaces contained in this group. It is
colored in orange to be easily distinguished from the others. Each
group of subspaces from the preceding view can be expanded and
its member subspaces can be seen and compared in detail (as Fig-
ure 6(5) illustrates). This allows a better understanding of the cur-
rent similarity threshold, and allows to expand or further collapse
the group structure based on visually perceived similarity between
subspaces. The user can investigate how similar the distribution of
dimensions is among different groups of subspaces. To this end, a
click on the dimension histogram icon of one particular group will
cross-highlight the dimensions of the selected group that are also
contained by other clusters. In summary, the subspace group view
allows a global comparison of non-redundant subspaces and their
similarities concerning the contained data topology.

Dimension-based subspace similarity view. We also support
the comparative analysis of all subspaces based on their similarity
regarding the set of active dimensions. To this end, a global MDS
layout, based on the Tanimoto distances between the subspaces, as
described in Section 3.2, is generated. Figure 6(4) illustrates the
subspace similarity view. For a high number of subspaces, this view
can only provide an impression of the similarity relationships but
by zooming more details become visible. The subspace group view
(based on data topology distance) and dimension-similarity view
(based on Tanimoto distance) are linked by color-coding (outer
frame coloring). Thereby, we can compare the similarity of sub-
spaces by their topological and dimension-overlap-based similarity.

Additional views and cluster comparison support. We also in-
tegrated details-on-demand for each subspace by a parallel coordi-
nates view (Figures 5(3) and 6(3) illustrate). Highlighting contained
dimensions helps to understand the difference of the subspaces in
more detail. Furthermore, interactive exploration of the subspaces
is enhanced by a single subspace view, providing an enlarged view
of a selected subspace scatter plot (Figures 5(2) and 6(2) illustrate
this). This view also allows to manually select clusters of objects
by a lasso tool. Cross-coloring of the selected points among the
other subspaces and within the parallel coordinates plot thus allows
comparative exploration of grouping structures – a core problem in
making effective use of alternative subspaces.

4 APPLICATION

We now demonstrate the analytical capabilities of our proposed ap-
proach. First, we use synthetic data as a proof of concept and exem-
plify the suggested workflow. We show how that relevant subspaces
can conveniently be identified. Then, we describe an explorative
setting in which interesting findings in alternative subspaces of a
real world data set are obtained.

4.1 Application Scenario 1: Synthetic Data

We used a 750 record sample of the first 12D synthetic data set pre-
sented in [10] (data set No. 2). This data set consists of four 3D
Gaussian clusters and two 6D Gaussian clusters. The remaining
dimensions contain uniformly distributed random noise. The first
step of our approach is to determine the interesting subspaces of the
high-dimensional data set, by running automatic subspace search
using SURFING (see Section 3). This subspace search returns a
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Figure 5: (1) Linearly sorted view of subspaces for the 12D synthetical data set from [10] showing the full result of SURFING, consisting of 296
subspaces. The selected subspace in this view is shown in a (2) single subspace view to enable interaction and in (3) a parallel coordinates
view with the subspace dimensions as the first axes (highlighted), and all the other data dimension as the last axes.

total of 296 subspaces identified as interesting, out of the 4095 pos-
sible subspaces. To get a first impression of these subspaces, we use
the linearly sorted view of subspaces shown in Figure 5, relying
on MDS representations of the data in the subspaces, and sorted by
the interestingness score in decreasing order.

The view shows the diversity of subspaces identified during the
automatic step. The first elements in the first row of the view are
very similar in terms of the point distribution (showing mostly scat-
tered and spherical point distributions). However, at later positions,
we also see other varieties of point distributions, including parallel
stripe patterns, and stripes mixed with spherical patterns. In a nor-
mal (non-visual) analysis case, relying just on the subspaces ranked
top by the interestingness score, the analyst might miss some of
these different characteristics of the subspaces.

The overview also confirms that the subspace search did return a
lot of redundant subspaces, judging by the shape of the MDS pro-
jection representations. The next step is therefore to group the sub-
spaces according to their similarity, allowing the user to abstract to
a smaller number of relevant subspaces to compare them in detail.
We used our similarity function based on the data topology, creat-
ing a hierarchal agglomerative clustering. Figure 6(1) shows that
the number of subspaces can be reduced considerably in a mean-
ingful way by the user. The navigation buttons, as shown in Fig-
ure 6(6), allow the user to move through each dendrogram level and
to find the desired level of redundancy. Here the dendrogram was
cut at 0.73, very close to the root. As a result, six groups are found
and visualized by their representatives. The number of groups can
be variated, and the user can also investigate different levels in the
dendrogram hierarchy. In this data we quickly found that six groups
is the right level of detail for our further investigation.

We investigate the components of each group of subspaces in
more detail. Figure 6(5) shows the group detail view of the orange,
green, and purple subspace groups as framed in Figure 6(1). Topo-

logically similar subspaces are grouped together. In this way, the
analyst is given an overview of the existing groups and, if needed,
can further compare individual group components.

On top of the scatterplots a dimension histogram is indicating
the distribution of dimensions for each group. The last bar of the
histogram is marked in orange and represents the percentage of sub-
spaces contained in this group. It is scaled logarithmically, so that
this bar is also visible for groups with few elements. A click on
the dimension histogram of one group representative highlights its
dimensions in all the other representatives. In Figure 6(1) the green
group was clicked. To understand why the green- and gray-framed
groups are split, we can consult the additional view in Figure 6(4).
It shows an MDS layout of all interesting subspaces based on the
dimension overlap (Tanimoto) similarity. In this view closeness of
two subspaces corresponds to dimension similarity. We see that the
green- and gray-framed cluster groups are located on the far left
side in the plot. This shows us that the subspaces are similar in
terms of dimensions, but being in different groups, they must show
different topological similarity according to our similarity measure.
This can be explained as all the subspaces of the gray-framed group
contain dimension d12, while none of the subspaces in the green-
framed group contain this dimension. This is visible by the bars
in the dimension histogram of the gray-framed group. As it is not
highlighted, it is not contained in the marked green-framed group.
This dimension is obviously responsible for a different data distri-
bution.

We can also go one step further in detailed comparison of sub-
spaces by cross-color-coding clusters of points in the MDS repre-
sentation. Our lasso tool allows the user to manually mark clus-
ters of points in the MDS subspace representation, which allows to
cross-compare the groupings among different subspaces. For ex-
ample, we manually marked six separate clusters of points in the
pink-framed subspace group (group number two in Figure 6(1))
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Figure 6: (1) Subspace group view for the 12D synthetic data set with six subspace groups. (2) Single subspace view showing the representative
subspace for the first group. (3) Details-on-demand in the parallel coordinates view for the selected subspace. (4) The MDS layout of the
subspace search results based on their dimension similarity. (5) Group detail view for the three (orange, green, purple) subspace groups.
(6) Hierarchical navigation buttons.

and assigned distinct colors. By analyzing the distribution of colors
among subspace group representatives, we see that other subspaces
merge some of these clusters and spread others. This is also true
for the purple framed group representative. The dark blue and pink
point cluster (the upper most in the original colored subspace) are
clustered in the purple subspace but some of their points also be-
came noise in this subspace.

Summing up, we can see how our visual analytics workflow
helps to deal with the extensive number of possibly interesting sub-
spaces in a natural overview-first based visual analytics workflow.
In a first step, the SURFING approach reduced the number of sub-
spaces of the 12 dimensional data set from 4095 to 296 interesting
ones. Since this set of subspaces still showed a high redundancy,
in our next step we grouped them using our topological similarity
measure. Based on the grouped subspaces, further investigations
coud take place for comparing the relations and distributions among
points of data within the subspaces.

4.2 Application Scenario 2: Exploration/discovery
We will now demonstrate the exploratory functionalities of our pro-
posed approach based on a real data set. We analyze the USDA
Food Composition Data Set (http://www.ars.usda.gov/), a full col-
lection of raw and processed foods characterized by their composi-
tion in terms of nutrients. The database contains more than 7000
records and 44 dimensions. After removing missing values and
outliers, as well as normalization 722 records (foods) remained for
which we selected 18 dimensions of the data set that where inter-
pretable to us.

From this input data set, application of the SURFING algorithm
returned 216 interesting subspaces for further exploration. To get a
first impression of this data, we investigated the linearly sorted view
(see Figure 8 for a cut-out). Many subspaces, in particular those
ranked with a high interestingness index, show a rather skewed dis-

BA DC

Figure 7: (A) Interesting spotted subspace (Carbohydrat,Fibre) pre-
senting two clusters. (B) Subspace (Carbohydarte,Lipid,Protein) in
the same cluster group of (A) where the cluster structure changes.
(C) Green marked third cluster in subspace from (B). (D) Subspace
(Fiber,Protein,VitD) of orange color-framed subspace group, where
the alternative clustering of points is visible.

tribution of points in our projection representation, concentrating
along the edges of the diagrams. Only later in the ranking, we
start to see the projections forming out more structure, that could
be meaningful. The red color framed subspace in Figure 8 seems
to be very interesting, forming long, clear stripes. With the help
of the single subspace view, we further investigated this subspace
(Iron,Maganase,VitD) by coloring each stripe with a different color
and compared the formation of these clusters across the other sub-
spaces. Most of them seemed to be overspread by the cyan class
(see Figure 8 right).

At the same time, it is clear that a high level of redundancy is still
present, and a further grouping is deemed necessary. Therefore, we
continued with our next analytical step, the subspace grouping by
agglomerative hierarchical clustering. We obtained different groups
of subspaces and found out that these clearly striped clusters only
appear in subspaces containing VitD.

We therefore reset the coloring and started a new interactive anal-
ysis step, beginning with this stage of our workflow. After testing
different filtering thresholds and comparing the topological- and the



Figure 8: (1) Linearly sorted view cut-out of subspaces for the 18D USDA Food Composition Data Set. The full result of SURFING, consisting
of 216 subspaces. We see a rather high level of redundancy. Subspaces exhibiting more structure are found in particular at the mid and end
positions in the ranking. Relying only on the numerically top ranked results, we would have omitted such interesting cases from the analysis.

dimension-based similarity relations, we obtained a number of 12
groups, and considered this suitable for subsequent analysis.

From the reduced number of representative subspaces, one par-
ticular subspace stood out to us (see Fig 9(1) for the group represen-
tatives and Fig. 7(A) for the interesting spotted one). This subspace
shows the most structure and allows to discern two point clusters
(pink and blue). We selected this specific subspace group (framed
brown in Figure 9) for further analysis. Cross-coloring is used to
highlight its group components, that are shown at the bottom of the
figure. It is visible that the group of subspaces are topologically
similar, consequently this subspace is a valid representative.

In addition, we observe that there are some subspaces in this
group where the clustering is changing. One example is shown in
Figure 7(B). We assigned the green color to the outstanding points
on the left side, as they seem to form a different structure. In the
group view (see Fig. 9(1)) we can see that this green cluster over-
spreads on five of the 12 subspace group representatives. After a
closer look to the components of the orange subspace group, we
spotted a sharply defined green cluster (see Fig. 7(D) and high-
lighted in Fig. 9(2)). By highlighting the dimensions of the orange
group, we can see that the brown group has a dominant dimension
(Protein) that is not contained by any subspace of the orange group.
We can therefore assume that this dimension is decisive for the clus-
tering of the points. In the dimension-based similarity view (MDS
Layout in Fig. 9(3)) the subspaces of the brown and orange groups
are far apart from each other, which supports our finding that the
groups contain different dimensions. Likewise we can see that the
group components of the brown group are scattered across the MDS
layout. This is due to the fact that the group subspaces are dissim-
ilar in terms of their dimensions, but their topological similarity is
dominated by the shared dimension (Protein).

Summing up, we demonstrated how our interactive, exploratory
workflow can be applied to real data. Compared to the previous sce-
nario, the information about the clusters is not known in real data
sets, meaning that several interactive attempts are needed to inves-
tigate the vast number of interesting subspaces provided by the sub-
space search algorithm. With the help of the topological similarity
functionalities, we could group the redundant clusters and have a
closer look in their topological change. Using the different linked
views of our approach helped us to identify different subspaces that
present alternative clusterings.

5 DISCUSSION AND POSSIBLE EXTENSIONS

We will now summarize the main goal of our system, and discuss
limitations and possible extensions next.

5.1 Summarizing the Main Goals of our Approach
Our presented approach supports visual-interactive analysis of HD
data from multiple perspectives based on the notion of automatic
subspace search. The core assumption for our approach is that
useful information could be extracted in a comparative way from
several different subspaces residing in a larger HD data space.
This assumption is the key driving force behind subspace search
and subspace clustering algorithms developed in the Data Mining
community over the past few years. We exploit algorithmic sub-
space search in an encompassing visual-interactive system. Our
approach is designed around Shneiderman’s Visual Information-
Seeking Mantra [27], applied to the problem of analyzing poten-
tially large sets of subspaces. Modern subspace search methods
such as SURFING efficiently identify candidate subspaces that are
expected to exhibit informative structure without restricting on a
specific nature of the structure. Specifically, interactively detecting
and understanding relevant structures in subspaces is an explicit
goal of our system. Our interactive support allows users to con-
dense and compare subspaces, and even groups in data. Thereby,
we close the analytical loop from algorithmic search of subspaces
to sense-making by the user. Subspace search algorithms are very
useful as a starting point. Since the identification based on inter-
estingness is done heuristically, the search methods alone cannot
solve the analytical problems at hand. To this end, capable visual-
analytic systems need to be designed based on the output of the
subspace search algorithm. We therefore designed, implemented,
and applied an encompassing system design based on a subspace
search method (exemplarily we used SURFING). It allows to ex-
plore HD data taking into account the curse of dimensionality and
the possibility to find alternative clusters in different subspaces.

5.2 Limitations and Possible Extensions
We identify the following limitations and improvement opportuni-
ties for our approach.

Computational scalability. We designed and tested our sys-
tem around data sets of moderate high-dimensionality of tens of
dimensions. For higher-dimensional data, we will have to deal with
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Figure 9: (1) Grouped view of subspaces for the 18D USDA Food Composition Data Set with 12 group representatives. (2) The brown and
orange group components are shown in the components view. (3) MDS Layout of the total number of subspaces with cross-colored group
representatives.

scalability issues in (1) computational complexity of the subspace
search and (2) scalability of the visual representation of subspaces.
Regarding (1), the search space increases exponentially with di-
mensionality. Subspace search algorithms probably need more ag-
gressive filtering mechanisms to keep the number of searched sub-
spaces tractable. A dynamically adjustable threshold could be use-
ful here. However, we still need to ensure that no relevant results
are excluded. To this end, sensitivity analysis is needed.

Visual scalability. Regarding (2), also scalable visual represen-
tations are needed for higher-dimensional data. We need to scale
with the number of subspaces and the representation of each sub-
space. Hierarchical grouping of subspaces is already included in
our system to scale with the number of subspaces. The linearly
sorted view per se does not scale with many subspaces, yet it can
be restricted to the representative subspaces obtained from hierar-
chical grouping. Visual representation of subspaces takes place by
projection to show the data points and an index view to show con-
tained dimensions. In particular, the latter will only scale for a lim-
ited number of dimensions. How to design set-oriented views to
compare many sets of dimensions is a challenging problem that if
solved, would improve our tool.

Projection-based subspace representation. We currently rep-
resent the subspaces by MDS projections of the data residing in
respective subspaces. However, projection typically induces loss in
information, that could be incorporated in our visualization, e.g.,
by showing the stress values in an overlay visualization [24]. In our
experiments, MDS performed very well compared to using PCA.
Yet, it would be interesting to test other projections. Also, other
subspace representations besides scatterplots could be thought of,
in essence similar to Value-and-Relation displays [33]. Likewise,
many different, useful similarity notions to group and compare sub-
spaces, such as notions based on stress measures, implicit cluster-
ing structures, relations to outliers, Scagnostics features [32], etc.
could be employed. Testing them in different application domains
is considered valuable future work. We note that our analytical ap-

proach can easily accommodate alternative subspace search algo-
rithms, representations, and filtering options.

Interpretable Dimensions. To relate subspaces and data groups
in subspaces, it is important for the analyst to be aware of the mean-
ing of the dimensions of the respective subspace. Our index-based
glyph does not convey information about the type of dimension.
More semantically meaningful dimension representations would be
useful. Detail-on-demand functions could be added to help the user
interpret the involved dimensions and properties of the data points
more efficiently.

Definition of interestingness and sensitivity to noise. Sub-
space search algorithms heuristically identify subspaces as interest-
ing based on certain properties of object relations. Based on the user
and application, additional interestingness formulations are possi-
ble and should be supported. Following best practices in data anal-
ysis, we have applied a data cleaning step (outlier and missing value
removal) to our tested data before we fed it into our system. The
SURFING algorithm is not robust with respect to missing values,
whereas it seems to be robust with respect to outliers. The original
paper does not discuss this aspect and we did not further investigate
it. The projections used to represent data distributions in subspaces
are sensitive to outliers and may generate clamped distributions if
not pre-processed. We postpone the analysis of this problem to fu-
ture work.

Automatic support for cluster comparison. Adding automatic
clustering of data points in subspaces would be useful as a post-
processing step. Equipped with automatic clustering, we can color-
code the found clusters. This could lead to new visual-oriented
interestingness measures useful for selecting interesting subspaces
in the future. User interaction with the subspace search output could
be a useful analytical feature for refinement. Allowing expert users
to split or merge subspaces, or construct new subspaces by adding
or removing dimensions, would be one option.

Usability and user adoption. Our current system design targets
users with expertise in data mining. End-user applications, e.g.,



in Market Segment analysis, could benefit from subspace analysis.
Yet we recognize that for end-users, the interface of our system
would need to be customized, possibly. Our experience in collabo-
rating with data mining experts showed that the tool can be useful
not only for data exploration but also as an evaluation tool to assess
the output generated by subspace analysis algorithms.

6 RELATED WORK

6.1 Visualization and Clustering of HD Data
Visualization of HD data is a long-standing research topic. Clas-
sic approaches include parallel coordinates, scatter plot matrices,
glyph-based and pixel-oriented techniques [31]. By an appropriate
sorting of dimensions and mapping them to visual variables, these
methods allow to overview and relate high-dimensional input data,
however we may run into scalability problems for large numbers
of dimensions or records. Dimension reduction methods such as
PCA [14] or MDS [8] can be used to reduce the data to a smaller
number of dimensions for subsequent visualization.

Identification and relation of groups of data is a key explorative
data analysis task. Often, user interaction is needed to identify and
revise the number and characteristics of data clusters found by au-
tomatic search methods. To this end, visual-interactive approaches
are useful. Although, many methods have been proposed, we can
only highlight few of them in an exemplary manner. In [25], inter-
active exploration of hierarchically clustered data along a dendro-
gram data structure is proposed to help users find the right level of
clusters for their tasks. In [34], the parallel coordinates approach
serves as a basic display to show data clustering results allowing
to compare clusters along their high-dimensional data space. Also,
2D projections, possibly in conjunction with glyph-based represen-
tation of clusters, are widely employed, a recent example is [6].

These approaches to visualization and clustering in HD data
spaces all have in common that they are based on a given full (or
reduced) dimensionality of the input data set. Thereby, they show
only a singular perspective of the usually multi-faceted HD data,
that might not be the most relevant one. As we show in this paper,
it is also useful to explore HD data for patterns in subsets of its full
HD input space to increase potential data insight.

6.2 Automatic and Visual-Interactive Feature Selection
In Machine Learning, feature selection is the problem of select-
ing from a large space of input features (or dimensions) a smaller
number of features that optimize a measurable criterion, e.g., the
accuracy of a classifier [18]. Most automatic feature selection
methods rely on supervised information (e.g., labeled data) to per-
form the selection. Therefore, they are not directly applicable
to the explorative analysis problem. In existing works involving
visual-interactive selections or comparison of features, the Rank-
by-Feature Framework [26] provides a sorted visual overview of
the correlation among pairs of features. In [13], the selection of
input features was supported by a measure of the interestingness of
the visual view provided by candidate features. An interactive di-
mensionality reduction workflow was presented in [12], relying on
visual approaches to guide users in selecting features.

In [4] and [5], interactive visual comparison was proposed to
relate data described in different given feature spaces based on
2D mappings and tree structures extracted from the different data
spaces. Furthermore, in [17] a visual design based on network and
heat map visualization was proposed to relate clusterings in dif-
ferent subsets of dimensions. In [34], dimensions are hierarchi-
cally clustered based on a simple value-oriented similarity mea-
sure. Based on this structure, user navigation can take place to
identify interesting subspaces. In a recent work [35], the output
of this simple search method was visualized by tree- and matrix-
based views, where each dimension combination was represented
by a single MDS plot.

In summary, many of these methods are applicable to compare
data regarding different criteria. However, most of them assume
the feature selection to be performed globally and do not take the
subspace search problem directly into account.

6.3 Subspace cluster analysis and visualization
As traditional full-space clustering is often not effective for reveal-
ing a meaningful clustering structure for HD data, in the emerging
research field of subspace clustering [16] several approaches aim at
discovering meaningful clusters in locally relevant subspaces. The
problem of finding clusters in HD data can be divided into two sub-
problems: subspace search and cluster search. The first one aims at
finding the subspaces where clusters exist, the second one at find-
ing the actual clusters. The large majority of existing algorithms
considers the two problems simultaneously and produces a set of
clusters, where each cluster is typically represented by a pair (O,D)
with O being the set of clustered objects (rows of the original data
table) and D being the subset of relevant dimensions (columns of
the original data table). Several methods have been proposed, that
differ to the clustering search strategy and constraints with respect
to the overlap of clusters and dimensions [7, 15, 21].

Only few works to date have considered visualization support
for subspace clustering. The VISA [1] system uses visualization to
help in interpreting the subspace clustering result. A global view
shows the similarity between clusters in terms of the number of
records and dimensions, and a detail view shows properties of indi-
vidual clusters. A disadvantage of this approach is that no visualiza-
tion or comparison for the data distribution in respective subspaces
is supported. Heidi Matrix [28] uses a complex arrangement of sub-
spaces on a matrix representation based on the computation of the
kNN in each subspace. The complex visual mapping scheme may
not be easy to use and its effectiveness to the best of our knowledge
has not been evaluated yet. [10] proposes an approach for finding
and visualizing interesting subspaces in astronomical data. Can-
didate subspaces are found from the data and ranked by a quality
metric based on density estimation and morphological operators.

We note that if we apply one of these subspace clustering vi-
sualizations, we immediately inherit two main challenges of this
paradigm that is still considered an open research issues, namely:
the efficiency challenge (relating to subspace cluster search) and
the redundancy challenge (relating to the typical redundancy of the
outputs generated).

7 CONCLUSIONS

We presented an encompassing visual-interactive system for
subspace-based analysis in HD data. Subspace-based analysis can
constitute a new paradigm for HD data analysis since informative
structures in the data can be found and compared in different sub-
spaces of a larger HD input space. We defined, implemented, and
demonstrated an analytical workflow based on automatic subspace
search. A larger set of automatically identified interesting sub-
spaces is grouped for interactive exploration by the user. A custom
subspace similarity function allows for comparing subspaces. Our
approach is able to effectively pin down several interesting views
and helps to come up with specific findings regarding similarities
of groups in data. We discussed a set of possible extensions of the
system, which could be addressed as future work.
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