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Figure 1: User-interface of the XQuC system for the annotation of new question instances, verification of similar instances, and
conflict resolution of conflicting cases. The user can mark words that determined the annotation (highlighted in bold), specify
whether the speakers play a role, and define the certainty level for the annotation. Color coding is used to show whether the context
and question have been said by the same speaker (e.g., speaker who states the question, another speaker who adds context).

ABSTRACT

We propose a mixed-initiative active learning system to tackle the
challenge of building descriptive models for under-studied linguis-
tic phenomena. Our particular use case is the linguistic analysis
of question types, in particular in understanding what character-
izes information-seeking vs. non-information-seeking questions (i.e.,
whether the speaker wants to elicit an answer from the hearer or not)
and how automated methods can assist with the linguistic analysis.
Our approach is motivated by the need for an effective and efficient
human-in-the-loop process in natural language processing that re-
lies on example-based learning and provides immediate feedback to
the user. In addition to the concrete implementation of a question
classification system, we describe general paradigms of explainable
mixed-initiative learning, allowing for the user to access the patterns
identified automatically by the system, rather than being confronted
by a machine learning black box. Our user study demonstrates the
capability of our system in providing deep linguistic insight into this
particular analysis problem. The results of our evaluation are com-
petitive with the current state-of-the-art.

Index Terms: Mixed-Initiative Visual Analytics—Active
Learning—Visual Text Analytics— Question Classification;

1 INTRODUCTION

Machine learning has taken center stage in automated language
processing, particularly in areas where large corpora and curated
datasets are available. While these methods have produced notable
successes, they tendentially do not incorporate available deeper lin-
guistic knowledge and understanding gained over decades of linguis-
tic study. Furthermore, the models produced by automated learn-
ing often remain black boxes, not readily understood by linguists,
who aim at deducing general linguistic insights from data, e.g., in
the form of patterns and rules. Therefore, as with many other dis-
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ciplines that rely more and more on machine learning, the need for
explainable artificial intelligence systems is in high demand.1

Going beyond the mere understanding of machine learning mod-
els, the demand for incorporating the users’ domain knowledge into
the learning process has also increased. A common way in bring-
ing the human into the algorithmic loop is through mixed-initiative
systems. These are designed to allow for efficient and effective inter-
actions between humans and machines, acknowledging the advan-
tages (reasoning vs. computation) of each contributor, respectively.
A fruitful technique to achieve such processes is through visual ana-
lytics, as surveyed by Hohman et al. [17].

Hence, contributing to a tighter integration of machine learning al-
gorithms and expertise, we propose a paradigm for mixed-initiative
active learning in the context of computational linguistic methodol-
ogy. Our general model is applicable beyond the specific linguistic
use case, however, to maintain the scope of this paper, we showcase
the effectiveness of the proposed process on a concrete instantiation
of a question classification model. Following the design guidelines
proposed by Liu et al. [23], we define the main tasks of this explain-
able mixed-initiative active learning process as (1) understandabil-
ity; (2) refinement; and (3) justification. Moreover, we aim for a
high coverage of the search space for learning through ranking the
instances shown to the user, to achieve maximum gain through mini-
mum feedback.

Questions are abundant in everyday conversation (in a randomly
sampled 2-million tweets corpus compiled by Efron and Winget [7],
13% of phrases are questions). The phenomenon has so far been
understudied in computational linguistics, despite a recent aim on
the development of question answering systems [39]. The focus of
this paper lies in automatically determining whether questions are
information-seeking or non-information-seeking, i.e., whether the
speaker wants to elicit an answer from the hearer or not. Our ap-
proach generates linguistic insights that are representative for distin-
guishing different types of questions in natural language discourse.

In this paper our contribution is three-fold. (1) We introduce the
general paradigm of mixed-initiative active learning in linguistics

1https://www.darpa.mil/program/explainable-artificial-intelligence, ac-
cessed on 8/20/2018.



and define the main steps required for such a technique. (2) We pro-
vide a concrete instantiation of an eXplainable QUestion Classifier
(XQuC), discussing all relevant implementation details. (3) We eval-
uate our approach, confirming competitive classification accuracy
with the current state-of-the-art and verifying the linguistic insight
obtained through a set of learning cycles.

2 BACKGROUND

Visualizations for Text Analysis The significant growth of tex-
tual data and the development of text mining has led to the emer-
gence of visual text analytics [22]. There, interactive visualizations
are combined with text analysis techniques to enable effective data
analysis and exploration. Classification is among many other text
analysis tasks, such as information retrieval, natural language pro-
cessing, topic analysis, and explanatory analysis [22]. To support an
effective analysis, many visualization techniques have been studied
and developed over the last decades. These visualizations facilitate
data compression, summarization, and pattern recognition [5]. For
the classification task, visualizations can be used to describe learned
rules. Several visualizations have been developed, most frequently,
in the field of bio-informatics [4, 31, 35]. Commonly, a graph rep-
resentation is used to show the connections between different rule-
components [31, 35].

Active Learning and Labeling in Visual Analytics Active
learning is a subfield of machine learning that enables machines to
choose the data from which they learn. Settles [32] writes that “Ac-
tive learning systems attempt to overcome the labeling bottleneck by
asking queries in the form of unlabeled instances to be labeled by an
oracle (e.g., a human annotator).” These systems aim to achieve high
accuracy using as few labeled instances as possible [32]. Bernard
et al. [2] write that “Labeling data instances is an important task in
machine learning and visual analytics.” Machine learning (in par-
ticular active learning) follows a model-centered approach which
means that the system suggests new instances to be labeled based
on the underlying model; visual analytics are specified on rather
user-centered approaches where the user can select candidates for
labeling based on her observations [2]. Similar to other existing ap-
proaches [16,30], we combine active learning with visual interactive
labeling techniques to combine the advantages of both techniques.

Different variants of active learning have been applied across a
range of applications, in particular text classification [24, 33, 38],
named-entity recognition [34], semantic parsing [38] and syntactic
parsing [36, 37]. All these approaches require a gold-standard an-
notation of the seed set. Our approach employs linguistic rules in
order to generate the initial seed set and integrates the human in the
loop with a live annotation system that runs in parallel to the learn-
ing. The user receives immediate feedback on the performance of
the model and the impact of individual rules, providing a level of
explainability that was previously missing.

Questions in NLP Automatically distinguishing the different
types of questions is complex: One type of question is posed to
elicit information and get an answer from the hearer (canonical,
information-seeking questions—ISQs), for the other type the speaker
does not expect an answer but instead triggers a certain type of
speech act [6] (non-canonical, non-information-seeking questions—
NISQs). Examples of the latter are rhetorical questions or self-
addressed questions. In English, the surface syntactic structure
of both types is often identical, but they differ in terms of their
communicational goals, i.e. their pragmatics.

Most of the existing work has dealt with factoid ISQs such as
When was Alan Turing at Bletchley Park?, with the goal of building
Question-Answering systems, e.g., see Wang and Chua [39]. Com-
paratively less research has focused on identifying and understand-
ing NISQs, a class which features a number of different subtypes, for

Figure 2: The XQuC process: a linguistically-motivated, explainable
active learning workflow. The model is created based on linguistic
rules. The user is asked to annotate and verify samples, which
leads to the addition of extra rules and the improvement of existing
ones. The user’s actions and the model’s updates are reflected on the
visualization component generating linguistic insights.

instance rhetorical questions (Have you ever even touched a com-
puter?), echo questions (She said what?), ability/inclination ques-
tions (Can you pass the salt?), to name just a few. Among the few
approaches that explicitly focus on NISQs, [14, 21, 26], only [19]
take recent theoretical linguistic work on questions into account and
attempt a linguistic interpretation. This lack of linguistic motivation
has also been observed by Kübler et al. [20].

3 PARADIGMS OF MIXED-INITIATIVE ACTIVE LEARNING IN
LINGUISTICS

We propose a mixed-initiative active learning technique to tackle
the challenge of building descriptive models for under-analyzed lin-
guistic phenomena. In this section, we describe these steps as gen-
eral high-level components of a mixed-initiative active learning ap-
proach. A concrete instantiation of our proposed approach, tackling
the challenge of question classification, is presented in §4.

Mixed-initiative systems [18] combine the intuition and knowl-
edge of humans with the computational power of machines. In the
context of machine learning and visual analytics, such systems have
been proposed to refine and optimize models through achieving
minimum user-feedback for maximum learning-gain, e.g., recently
in the context of topic model optimization [10]. We propose a gen-
eral paradigm of mixed-initiative active learning for computational
linguistics as a method for effective utilization of the users’ knowl-
edge, as well as the generation of explainable linguistic insight. We
thus tackle three tasks, namely, (1) understandability of the effects
of the users’ interaction on the learned model; refinement of the
model based on the users’ domain knowledge; and (3) justification
of the linguistic insight obtained.

The process of active learning takes as input an unlabeled corpus
and outputs an annotated corpus, in addition to linguistic insight
(e.g., in the form of rules or deduced patterns). Before entering the
active learning loop, the model can be primed through heuristics
as optional seeds for the linguistic knowledge (e.g., a known set
of rules or expected patterns). This step primes the active learning
and avoids cold starts. Afterwards, the system enters the three-stage
loop of active learning. The current state of the model, as well as
the corpus annotations and linguistic patterns learned, are constantly
updated and represented through visualizations or simple log files.

The first step of the active learning loop is the instance sampling.
Here, the selection of the instances which require user-feedback de-
fines the search space considered by the algorithm. We aim at fulfill-
ing two criteria in this step, namely, high coverage, i.e., considering
a wide range of the search space through, for example, pool-based



Algorithm 1 Question Classifier

1: procedure CREATEMODEL
2: for i = 0 to initialRules.length do
3: initialRule← initialRules[i]
4: addRuleUpdateWeight(initialRule)
5: waitingQueue← all instances
6: sortToWeight(waitingQueue)
7: toAnnotate← waitingQueue[0]

. instances which are annotated by the user
8: annotated← annotate(toAnnotate, ø, ø)
9: updateModel(annotated)

sampling, probability-based sampling, feature distribution optimiza-
tion, etc.; as well as uncertainty improvement, i.e., considering
the most uncertain instances to make the most profit out of the users’
feedback, for example, through weighted average of rule support,
user confidence estimation, observed pattern frequency, etc.

The second step is the labeling. This is the main interaction
step between the users and the algorithm. A labeling interface
can be designed through a dialog system, a visualization, or other
interface design mediums. Such a labeling interface might also
incorporate different levels of user feedback and domain expertise.
The basic tasks that such an interface should provide are to label
an unannotated data instance, verify a given annotation, resolve
conflicts, provide an estimate of the users’ certainty and confidence,
as well as enable users to provide a justification for their decisions
(which can be used in the model training).

Lastly, the third step of the active learning process is the model
training and update. This step incorporates the newly obtained
knowledge in the current model, updating its current state and moni-
toring its quality. This step largely depends on the underlying model
and thus varies in each concrete instance of this process. However,
due to the modularity and abstraction of our active learning approach,
multiple models with varying parameters and learning approaches
could be trained side-by-side (within the same system) and treated
as an ensemble or as competing models.

4 XQUC: EXPLAINABLE QUESTION CLASSIFIER

Using XQuC, we train a rule-based classifier to distinguish ISQs from
NISQs. The system’s workflow is shown in Figure 2: We first cre-
ate training data by extracting questions and their context (two sen-
tences before and after the question) from the CNN corpus, a large
corpus of transcribed natural language dialog.2 Based on the infor-
mation in the context, the type of question is later disambiguated by
the human. We then use linguistic heuristics to generate a seed set
from that training corpus (§4.1). In this step, the classification model
is initialized (expressed by Algorithm 1). Afterwards, the active
learning process is started: In each step, we use a certainty-based
sampling in order to choose one to three questions that are then an-
notated by the user (§4.2). XQuC uses a visual user interface for the
annotation task and, additionally, shows the intermediate classifica-
tion results (§4.3). The visual representation helps to understand
and justify how users’ decisions influence the model’s performance.
The user can interactively refine the model, by interactively manipu-
lating its visual representation. In each learning step, the model is
updated, and new questions are sampled for the next iteration step.

The system has a server and client architecture. In the server
(programmed in Java), the classification model is generated and the
instance sampling for active learning is performed. In the client,
we use JavaScript and the D3.js3 library to create a visual interface
for question labeling and for visualization of the intermediate rules.

2http://transcripts.cnn.com/TRANSCRIPTS/, accessed on 8/20/2018.
3https://d3js.org/, accessed on 8/20/2018.

Algorithm 2 Model Update

1: procedure UPDATEMODEL(annotatedInst)
2: annotated← annotatedInst[0]
3: verified← annotatedInst[1]
4: resolved← annotatedInst[2]
5: addRuleUpdateWeight(annotated)
6: if verified 6= ø then
7: addRuleUpdateWeight(verified)
8: if resolved 6= ø then
9: addRuleUpdateWeight(resolved)

10: annotateInstaces()
11: sortToWeight(waitingQueue)
12: toAnnotate← waitingQueue[0]
13: toVerify← getSimilar(labeled)
14: toResolve← getConflicting()
15: annotated← annotate(toAnnotate, toVerify, toResolve)
16: if annotated!=ø then return updateModel(annotated)

4.1 Seed Set Generation

For generating the seed set, we capitalize on recent theoretical lin-
guistic insights on questions plus our own observations. The result-
ing heuristics are possible indicators of NISQs and fall broadly into
four categories: The first category consists of fixed lexical expres-
sions such as ‘give a damn’ [3], ‘on earth’ [1], ‘after all’ [28]. The
second category encompasses structural patterns such as modals at
the beginning of the question followed by negation (‘Wouldn’t you
say that...?’) [12] or the interrogative ‘why’ followed by the adverb
‘so’ or ‘that’ and some adjective (‘Why are you so angry?’). A third
category subsumes discourse-structural patterns between the ques-
tion and its context, e.g., if the same speaker utters a sequence of
questions right after one another [1], or simply continues talking
after posing a question, this is indicative of an NISQ. The same hap-
pens if the speaker consecutively repeats the same question or parts
of it. The fourth category represents various other “markers” found
in the data, such as questions within quotation marks and within a
speaker’s dialogue turn: Those indicate that a speaker is only quot-
ing someone else’s question. In the context of our work, we under-
stand heuristics as deduced patterns from datasets that can be further
generalized if verified over multiple resources. From such heuris-
tics, we generate seed rules which are added to the initial rule-based
model, described in §4.3.

4.2 Certainty-based Sampling

After generating the seed set and during each active learning step,
we sample instances to be annotated by the user. There are two
main approaches to instance sampling for active learning: pool-
based sampling [24] and query-by-committee algorithm [11]. The
former selects the best examples from the entire pool of unannotated
documents, the latter measures the variance indirectly, by examining
the disagreement among class labels assigned by a set of classifier
variants, sampled from the probability distribution of classifiers that
results from the annotated training examples.

In our approach, we use the certainty-based sampling. This
technique is similar to pool-based sampling: The system selects one
random instance which does not satisfy any existing heuristic of the
model. If all instances satisfy at least one heuristic, the next sample
is an instance of low certainty (described in §4.4). Here, the distance
between the sum of the rule weights of the two classes is the smallest
among all training instances.

4.3 Annotation

In the first iteration of the active learning, the user annotates only one
uncertain instance. In the following steps, at most three instances



Figure 3: Each rule consists of three parts: features describing the
context before, question, and context after. Color coding is used to
highlight whether two parts have different speakers. The opacity of
rule borders shows its level of certainty.

are shown at a time which are later used to update the model (as
shown in Figure 1).

The first question to be annotated is an instance which is extracted
using the certainty-based sampling (Algorithm 2 line 12). The
second instance is similar to the unannotated instance from the
previous iteration step (line 13). The aim is to obtain the user’s
approval (or disapproval) that the decision made in the previous step
was correct. We search for an instance which satisfies the heuristic(s)
defined in the preceding step, and suggest that this instance should
have the same label (as the unannotated instance from the preceding
step) (line 14). After the user has approved (or disapproved) this
suggestion, the model is updated accordingly (line 16). Depending
on the rules extracted in the preceding learning step, we search for
an instance which is detected as conflicting. This means that the
model cannot distinguish between the two classes (ISQ, NISQ) from
each other with a high certainty. The user is asked to resolve this
conflict to increase the stability of the model.

For each instance, the user can specify the part of the question or
its context which is assumed to be relevant for the classification task
and also whether meta information about the speakers (questioner
and answerer) is relevant. This information is sent to the server,
where a new rule is created or the weight of an existing rule is up-
dated accordingly. In order to create a rule, we integrate information
that can be accessed via off-the-shelf tools, such as the Stanford
CoreNLP software. For example, we use these to provide informa-
tion on part-of-speech (POS) tags and named-entities (NE). Our
system analyzes the underlying features of the selected text-regions
and extracts heuristics based on the sequential combination of these
features. If no text is selected, the system extracts a heuristic based
on the feature distribution in this particular instance. We take into
account that in some situations the user can be unsure about the cor-
rect label. Therefore, it is possible to specify the user’s confidence
level for each instance separately, i.e. confident vs. not confident,
or add a label NONE.

We create the rule-based model by applying a hierarchical graph
structure. Two graphs (one for each class) in a combination build
up the final classification model. Each seed and user-generated rule
is added as a node to the directed graph; the child and parent nodes
are updated accordingly. For each rule, we calculate and store its
weight in order to specify its significance for the learning process.
The rule’s weight is calculated as follows:

weight := support ∗
labelCount

∑
i

con f (i),

with con f (i) =

{
1, if label[i] == confident
0.5, otherwise.

A minimum and maximum threshold of the nodes’ support is used
to exclude too general or specific rules from the final model.

In order to create a better understanding on how users’ de-
cisions influence the model’s quality, we visually represent the
hierarchical graph structure utilizing a force-directed layout. Two
example rule instances are shown in Figure 3. After each iteration
step, the visualization is updated. If an erroneous rule is detected
by the user, she can change the rule or remove it from the model,

Figure 4: Supporting interface for the user: The user can choose to
define a specific rule which applies for one of the question types. The
rule can be created by dragging-and-dropping pre-selected linguistic
categories into place.

by interacting with the context menu of the particular node. This
supports the task of interactive model refinement.

Furthermore, we allow expert users to specify rules independently
of the displayed instances. Thus, we can include their knowledge
and expertise into the final model with a high level of confidence.
A rule is created by dragging and dropping predefined features in
a sequence (shown in Figure 4). The rule is assigned a name and
updates the current model accordingly. The linguistic categories
are extracted during a preprocessing step. Additional linguistic
categories can be added based on the performance of the model.

4.4 Question Classification
After the generation of seeds and during each active learning iteration
step, we classify instances using the temporal model and show
the classification results in the visual user interface. We calculate
the certainty of each instance having one of the two classes (ISQ
vs. NISQ). The certainty of an instance is calculated as follows:
certainty := ∑

count
i weight(i), where count is the number of rules

which satisfy the particular instance for the particular class.
If the difference between certainty values for the two classes (ISQ

and NISQ) is ≤ 0.2 (a heuristic chosen after the first evaluation of
the system), then the instance is labeled as NONE. Otherwise, the
instance has the label of its most certain class.

The classified instances are visually displayed in three groups,
as shown in Figure 5: ISQ, NONE, NISQ, respectively. The instances
are sorted according to their certainty. They can then be interac-
tively selected for a repeated annotation, if needed, which is another
way to refine the model.

5 EVALUATION

In order to evaluate our model, we train multiple classifiers:
SVM [15]; Decision Tree [29]; Naı̈ve Bayes [25]) to compare our
rule-based model against. We train the rule-based model with two
different settings. The results are provided below.

5.1 Data
To evaluate our system, we use the CNN corpus4. We employ
punctuation-based question extraction and additionally extract their
context (two sentences before and after the question). We create a
gold standard for which three linguistic experts each annotate 400
questions as ISQ or NISQ and we then take the result of the majority
vote as the ground truth. They additionally record a confidence score
(not confident vs. confident) for each question. Regarding the ISQ
vs. NISQ classification, Fleiss’ κ is 0.554.

5.2 Machine Learning Models
Machine learning algorithms have been used in previous work to
train question classifiers, mainly for social media data [14,21,27,40].
Although such data is complex and noisy (e.g., because of the length
of the turn, ungrammaticality of sentences and spelling mistakes), the

4http://transcripts.cnn.com/TRANSCRIPTS/, accessed on 8/20/2018.



(a) ISQs (b) NONEs (c) NISQs
Figure 5: Excerpt of the visualization component: Temporally classified instances are sorted according to their type and their certainty.
Instances that have been annotated by the user are marked with an icon; all others have been temporally classified based on the model’s rules.

Figure 6: Performance of Setting 1 for 30 learning iterations: Pre-
cision stays stable for both question types while recall steadily in-
creases for ISQ.

data is enriched with information like usernames, hashtags and urls,
which are used as additional features for the training and improve the
performance. This can be seen in the best-performing classifier to
have been evaluated in a comparable way to ours. [21] have trained
a Random Forest classifier and report 0.76 precision, 0.87 recall
and 0.77 accuracy in correctly classifying ISQs, using the question,
its context and the Retweet feature. The work does not provide
performance details for NIQs.

We train three commonly used classification models (SVM, Deci-
sion Tree, and Naı̈ve Bayes) to classify questions as ISQs vs. NISQs
and compare their performance with our rule-based model. For the
evaluation, we generate a bag-of-word representation of the ques-
tions and their context before and after. To reduce the chance that
the models overfit, we apply a lemmatizer and extract only n-grams
(unigrams, bigrams and trigrams) which occur more than three times
in the corpus. We use the WEKA framework [13] to train the classi-
fiers and evaluate their performance using 10-fold cross validation.

The results of the trained models are shown in Table 1. As the
results show, all models but the Decision Tree can classify ISQ in-
stances with a higher accuracy than the NISQ instances. The perfor-
mance of the SVM and Naı̈ve Bayes models are similar. However,
the Decision Tree model classifies most of the instances as belong-
ing to the NISQ class.

5.3 Experiments using XQuC

We conduct two experiments in order to evaluate our active learning
system. One expert from linguistics participate in each experiment.
In the first experiment (Setting 1), the rules for the rule-based model
are generated only from the questions themselves and the speaker
information. In the second experiment (Setting 2), the context before
and after are taken into account.

In both settings, the users are asked to perform 30 annotation
iterations. They are allowed to refine the model manually by deleting
false rules from the model’s visual representation.

Figure 7: Performance of Setting 2 for 30 learning iterations: The
results show how context information influences the classification in
that rules are more specific and thus capture less instances.

Setting 1 In the first experiment, the rules are from the question
itself and the speaker information. Figure 6 shows the model’s
performance for ISQs and NISQs. The precision for both classes
is relatively stable during the whole learning process. The recall
constantly increases for ISQs (from 0.20 in the third iteration to
0.58 in the last iteration), causing a slight decrease of the model’s
precision (from 0.82 in the third iteration to 0.70 in the last iteration).
After 30 iterations, less instances are classified as NISQs (recall is
0.41) than ISQs. However, the heuristics which are learned are more
descriptive. The precision for this class stays above 0.8 during the
whole learning process.

Setting 2 In the second experiment, the heuristics are generated
from the question, the context before and after, and the speaker
information. Figure 7 shows the performance of ISQs and NISQs.
In comparison to the first experiment, the final recall of ISQs is
reduced (from 0.58 to 0.29). However, the precision in the second
experiment rises higher (0.70 in the first experiment and 0.81 in the
second). The reason might be that the generated rules, when the
contextual information is taken into account, are more specific; thus
less instances are classified as ISQ. A similar observation can be
made for NISQs. Due to the context information, the rules created
are more specific. Thus, less instances are labeled as NISQs. In
iteration 28 the recall of the model for ISQs is lower and in the next
iteration increases again. The increase is influenced by a manual
refinement of the model; the user detected a falsely generated rule
(PROPER NOUN) which was then manually removed from the
graph representation. This observation shows the importance of a
visual feedback during the learning process which enables the user
to improve the model’s quality when it is needed. The final results of
the model after 30 iterations for both settings are shown in Table 1.

5.4 Use Case: Explainable Linguistic Insight

One of the core merits of our system lies in its explainability: We
can understand and justify how decisions of the user lead to a model



Figure 8: Continuously updated graph visualizing the linguistic patterns that have been learned for the ISQ class. A pattern can be modified or
removed in real-time by the user, using the functionality of its context menu.

Precision Recall F-Score

ISQ

SVM 0.729 0.701 0.715
Decision Tree 1.000 0.185 0.312
Naı̈ve Bayes 0.734 0.692 0.712

Setting 1 0.70 0.58 0.64
Setting 2 0.81 0.29 0.42

NISQ

SVM 0.673 0.706 0.689
Decision Tree 0.519 1.000 0.684
Naı̈ve Bayes 0.670 0.717 0.693

Setting 1 0.82 0.41 0.55
Setting 2 0.50 0.21 0.30

Table 1: Performance of off-the-shelf classifiers trained with a bag-
of-word model of frequent n-grams and overall results for Settings 1
and 2. ISQ are better classified when context is taken into account
(Setting 2), while NISQ seem to benefit more from the speaker
information (Setting 1).

and also gain linguistic insights into the phenomenon. Figure 8
shows examples of rules learned for ISQs.

For instance we can elicit patterns such as the following, where a
speaker is asking trivia questions (this can be ascertained by click-
ing on the pattern in the graph): a question ending with a PREPO-
SITION + what? followed by an alternative question, as in ... is
famous for Invention of what? The Smartphone or the World Wide
Web? This pattern is a counterexample to the observation that con-
secutive questions from the same speaker indicate NISQs [1]. An-
other indicator for NISQs found in this case is that the wh-word what
is not in the canonical clause initial position (for English). The ob-
servation thus has to be refined to take into account the proffering of
alternative questions following a question.

In contrast, the system can also empirically support claims in the
literature, as in the case of the NISQ rule “a speaker asks a question
ending with what? and continues with its answer” [1]. We again
have a wh-word in non-canonical position, but the speaker continues
by uttering declarative sentences, in this way indicating a NISQ, as
reported for examples like But guess what? The deal is....

5.5 Limitations and Lessons Learned
The evaluation exposes the benefits and limitations of our approach:
First of all, the real-time feedback after each iteration step showing
the influence of the decisions made by the user is important for de-
tecting automatically-generated errors and resolving them (as shown
in Setting 2). In comparison to the trained machine learning models,
our active learning system reaches a relatively high precision, but
a limited recall. The system can learn descriptive rules, but those
rules only cover a subspace of our training corpus.

During the experiments, we observed that even linguistic experts
had a challenge to label the data with a high confidence, as fre-

quently the instances were highly ambiguous. It confirms the need
for an iterative learning process which integrates the human in a
feedback loop. Only permanent feedback from the expert (e.g., man-
ual adaption of the model by wrongly learned information) can help
to generate a stable classifier.

Our observations show that, currently, the performance of the
system might be limited due to the features used for the learning
process. In order to improve the performance, we plan to integrate
additional features such as the similarity between the question and
its context, and prosodic features.

Another limitation of the system is the sensitivity of the rule-based
model: Setting 2 shows that a rule which is too general can negatively
influence the final model. If it is not detected and removed by the
user, it can have a negative influence on the model’s performance. In
order to make the model more stable, we could combine an ensemble
of models created by multiple users in a single classifier.

6 CONCLUSION

In this paper we have presented a mixed-initiative active-learning
system for question classification that generates explainable linguis-
tic insights in the form of classification rules. The results highlight
the complexity of the problem and prove the usefulness of the imple-
mented visual user interface, which, in turn, provides real-time feed-
back on the quality of the model and the generated heuristics to aid
in constantly improving the model’s performance. The question clas-
sification results are relevant, not only to generate linguistic insights,
but also to be used as an additional feature for further analysis tasks,
such as forum thread reconstruction [9]. There, the reconstruction of
reply-chains can be improved, by integrating information on whether
a stated question is an information-seeking one, or not. Further, the
classification results can be used to analyze speaker conversation pat-
terns such as the visual analysis provided by NEREx [8], which is tai-
lored to the analysis of content patterns and connections using named
entities and is extendable to include question relations. Furthermore,
in addition to application areas that rely on the results of the ques-
tion classification, our mixed-initiative approach enables the design
of exploratory visual analytics systems that support the interactive
understanding of the generated rules to deepen the linguistic insight
of under-resourced phenomena, such as in question classification.

In our future work, we aim at further refining the descriptor fea-
tures used in the classification. Moreover, we are currently investi-
gating different approaches with which users can provide and define
their own features, based on their understanding of the domain prob-
lem. Lastly, for the task of question classification, we intend to ex-
pand our interface to include prosodic information, either provided
by the dataset or by the users. The prototype will be made publicly
accessible in the VisArgue framework (http://visargue.inf.uni.kn/).
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[20] S. Kübler, E. Baucom, and M. Scheutz. Parallel syntactic annotation in
CReST. Linguistic Issues in Language Technology (LiLT), 7(4), 2012.

[21] B. Li, X. Si, M. R. Lyu, I. King, and E. Y. Chang. Question identifica-
tion on Twitter. In Proc. of the 20th ACM Conf. on Information and
Knowledge Management (CIKM’11), 2011.

[22] S. Liu, X. Wang, C. Collins, W. Dou, F. Ouyang, M. El-Assady,
L. Jiang, and D. Keim. Bridging text visualization and mining: A task-
driven survey. IEEE Trans. on Vis. and Computer Graphics, 2018.

[23] S. Liu, X. Wang, M. Liu, and J. Zhu. Towards better analysis of ma-
chine learning models: A visual analytics perspective. Visual Informat-
ics, 1(1):48–56, 2017.

[24] A. McCallum and K. Nigam. Employing em and pool-based active

learning for text classification. In Machine Learning: Proc. of the
Fifteenth Int. Conf. (ICML ’98), pp. 359–367, 1998.

[25] K. P. Murphy. Naive bayes classifiers. University of British Columbia,
18, 2006.

[26] S. A. Paul, L. Hong, and E. H. Chi. What is a question? Crowdsourcing
tweet categorization. In CHI 2011, Workshop on Crowdsourcing and
Human Computation, 2011.

[27] S. Ranganath, X. Hu, J. Tang, S. Wang, and H. Liu. Identifying
rhetorical questions in social media. In Proc. of the 10th Int. AAAI
Conf. on Web and Social Media (ICWSM 2016), 2016.

[28] J. Sadock. Queclaratives. In D. Adams, M. A. Campbell, V. Cohen,
J. Lovins, E. Maxwell, C. Nygren, and J. Reighard, eds., Papers from
the 7th Regional Meeting of the Chicago Linguistic Society, pp. 223–
232, April 1971.

[29] S. R. Safavian and D. Landgrebe. A survey of decision tree classi-
fier methodology. IEEE Trans. on Systems, Man, and Cybernetics,
21(3):660–674, 1991.

[30] C. Seifert and M. Granitzer. User-based active learning. In Data
Mining Workshops (ICDMW), 2010 IEEE Int. Conf. on, pp. 418–425.
IEEE, 2010.

[31] J. A. P. Sekar, J.-J. Tapia, and J. R. Faeder. Automated visualization of
rule-based models. PLoS Computational Biology, 13(11):e1005857,
2017.

[32] B. Settles. Active learning literature survey. Computer Sciences Tech-
nical Report 1648, University of Wisconsin–Madison, 2009.

[33] B. Settles. Closing the loop: Fast, interactive semi-supervised anno-
tation with queries on features and instances. In Proc. of the 2011
EMNLP Conf., pp. 1467–1478, 2011.

[34] D. Shen, J. Zhang, J. Su, G. Zhou, and C.-L. Tan. Multi-criteria-based
active learning for named entity recognition. In Proc. of ACL 2004, p.
Article No. 589, 2004.

[35] A. M. Smith, W. Xu, Y. Sun, J. R. Faeder, and G. E. Marai. Rulebender:
Integrated visualization for biochemical rule-based modeling. In 2011
IEEE Symposium on Biological Data Visualization (BioVis)., pp. 103–
110. IEEE, 2011.

[36] M. Steedman, R. Hwa, S. Clark, M. Osborne, A. Sarkar, J. Hocken-
maier, P. Ruhlen, S. Baker, and J. Crim. Example selection for boot-
strapping statistical parsers. In Proc. of HLT-NAACL 2003, pp. 157–
164, 2003.

[37] M. Tan, X. Luo, and S. Roukos. Active learning for statistical natural
language parsing. In Proc. of ACL 2002, pp. 120–127, 2002.

[38] C. A. Thompson, M. E. Califf, and R. J. Mooney. Active learning for
natural language parsing and information extraction. In Proc. of the
16th Int. Conf. on Machine Learning, pp. 406–414, 1999.

[39] K. Wang and T.-S. Chua. Exploiting salient patterns for question detec-
tion and question retrieval in community based question answering. In
Proc. of the 23rd Int. Conf. on Computational Linguistics (COLING10),
pp. 1155–1163, 2010.

[40] Z. Zhao and Q. Mei. Questions about questions: An empirical analysis
of information needs on Twitter. In Proc. of the Int. World Wide Web
Conf. Committee (IW3C2), pp. 1545–1555, 2013.


	Introduction
	Background
	Paradigms of Mixed-Initiative Active Learning in Linguistics
	XQuC: Explainable Question Classifier
	Seed Set Generation
	Certainty-based Sampling
	Annotation
	Question Classification

	Evaluation
	Data
	Machine Learning Models
	Experiments using XQuC
	Use Case: Explainable Linguistic Insight
	Limitations and Lessons Learned

	Conclusion

