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Figure 1: ThreeGrid TreeMapvariants applied on a hierarchically structured data set of 35 time series objects.

Abstract

Hierarchical relationships play an utmost important role in many
application domains. The appropriate visualization of hierarchi-
cally structured data sets can contribute towards supporting the data
analyst in effectively analyzing hierarchic structures using visual-
ization as a user friendly means to communicate information. Infor-
mation Visualization has contributed a number of useful techniques
for visualization of hierarchically structured data sets. Yet, the sup-
port for certain regularity requirements as arising from many data
element types has to be improved. In this paper, we analyze an ex-
isting variant of the popularTreeMapfamily of hierarchical layout
algorithms, and we introduce a novel TreeMap algorithm support-
ing space efficient layout of hierarchical data sets providing global
regular layouts. We detail our algorithm, and we present applica-
tions on a real-world data set as well as experiments performed on
a synthetic data set, showing its applicability and usefulness.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display Algorithms; H.4 [Information Systems]: In-
formation Interfaces and Presentation—General.

Keywords: Information Visualization; Hierarchic Data; Layout
Generation; TreeMap Family of Layout Algorithms.

1 Introduction and Background

Growing volumes of information are produced by modern informa-
tion systems, resulting in the need for appropriate tools for handling
the Information Overloadphenomenon [Thomas 2005]. Informa-
tion Visualization aims at providing tools for visually supporting

the processing of growing information loads by users, leveraging
the strong human capabilities for visual information perception and
processing [Keim 2002]. While information usually comes in a
wealth of facets, one highly important data characteristic present
in many application domains are hierarchical relationships among
the elements of a data set. E.g., consider directory information,
network structures, geo-related hierarchical relationships, or orga-
nizational structures, and so on.

Information Visualization to date has contributed with helpful ideas
for displaying hierarchies. One of them is the Cone Tree technique
[Robertson et al. 1993], a 3D visualization that orders child nodes
on a circle below or next to their parent node. When the links be-
tween parent and child nodes are drawn, cone-like structures ap-
pear. Other research focused on using planar methods to display
hierarchies, as any tree can be drawn in 2D without intersecting
edges. One possibility to display a hierarchy is the Hyperbolic Tree
[Lamping et al. 1995]. This visualization technique enables focus
and context visualizations by taking advantage of a hyperbolic pro-
jection which scales nodes according to their proximity to the focal
point. Another technique for visualizing hierarchical data sets is the
so-called Interring [Yang et al. 2002] which displays nodes of a hi-
erarchy by ring segments. The center of the Interring represents the
root node of the hierarchy. All child nodes are arranged on concen-
tric circles; the further they are away from the root node, the deeper
their level within the hierarchy. For each node, all respective ances-
tor nodes can be found in between the ring segment representing
the considered node, and the center of the Interring.

In this paper, we develop a novel visualization approach suited for
the space-efficient layout of hierarchically structured data sets re-
quiring a highdegree of regularityin the display. Many impor-
tant data types such as time series, images, or abstract and multi-
dimensional data types require special consideration of regularity
in the display in order to effectively compare many different ele-
ments along a given hierarchical structure imposed on the elements.
Our work is inspired by the popular TreeMap [Shneiderman 1992]
family of layout algorithms. One central advantage of TreeMaps is
that they recursively subdivide the display in a space-filling manner,
fully utilizing the available display space. Thereby, they produce
space-efficient overviews over hierarchically structured data sets.
Meanwhile, several applications of the TreeMap algorithm, such as
SequoiaView[SequoiaView Homepage ] based on [van Wijk and



van de Wetering 1999] or theMap of the Marketbased on [Wat-
tenberg 1999], have found their way into practice. By design, the
standard TreeMap algorithm does not consider display regularity,
thus it is not directly suited for visualization of arbitrary data ele-
ments. Variants of the algorithm have been developed addressing
the regularity problems present in the original approach (cf. Sec-
tion 2). We here propose a TreeMap variant specifically addressing
regularity requirements.

The remainder of this paper is structured as follows. In Section 2,
we discuss the original TreeMap algorithm as well as several ex-
tensions related to our work. In Section 3, we then develop a fam-
ily of new TreeMap algorithms based on analysis of the TreeMap
variants discussed in Section 2. In Section 4, we apply three in-
stantiations of our layout algorithm family as well as one related
TreeMap variant on a hierarchically structured time series data set,
demonstrating the usefulness of our techniques. In Section 5, we
go on to formally evaluate the space efficiency characteristics of
our algorithms by performing a range of layout experiments based
on synthetic data sets modeling different classes of hierarchic struc-
tures. Finally, Section 6 concludes and outlines future work in the
area.

2 Existing TreeMap Layout Algorithms

In this Section, we review the TreeMap family of layout algorithms
based on which we will develop theGrid TreeMaplayout scheme.
In Section 2.1, we first recall the standard continuous TreeMap al-
gorithm by Shneiderman. In Section 2.2, we then discuss the Quan-
tum TreeMap algorithm.

2.1 Continuous TreeMaps

The standard TreeMap algorithm [Shneiderman 1992] is a simple
yet powerful layout technique supporting hierarchically structured
data. To date it has triggered many applications, extensions, and
several commercial products based on the algorithm. While in prin-
ciple the technique is applicable to any data type, usually it is ap-
plied for layout of categorical, scalar-valued, or low-dimensional
data collections. As input the algorithm accepts a hierarchy of data
elements as well as a root display area. The layout is generated by
recursively traversing the hierarchy top-down, splitting the display
rectangle alternatingly horizontally and vertically on the fly. The
final display is space–filling, overlap–free, and communicates two
salient data properties: It visualizes (a)hierarchical relationships
of the data elements via the splitting and nesting structure of the
display, and (b)quantitativeinformation regarding the distribution
of data elements by the size of respective display rectangles. The
latter property is guaranteed by determining split points for split-
ting a given input rectangle in linear proportion to sums of weights
obtained from counts or other quantitative measures underlying the
data elements to be laid out. The basic TreeMap algorithm is illus-
trated in Figure 2. In the remainder of this paper, we will refer to the
original TreeMap algorithm as theContinuous TreeMap(CTM), as
it continuously places split points in linear proportion to sums of
underlying weights.

Due to splitting of rectangles in linear proportion to sums of under-
lying weights, the continuous TreeMap may produce tessellations
consisting of many different rectangle aspect ratios, depending on
input data characteristics. Then, it may be hard for the user to select,
compare, and trace rectangles throughout the hierarchy [Vernier
and Nigay 2000; Bruls et al. 2000; Bederson et al. 2002]. Sev-
eral TreeMap variants have been proposed modifying the splitting
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Figure 2: The standard Continuous TreeMap (CTM) algorithm al-
ternatively splits display rectangles along horizontal and vertical
lines while recursively traversing a hierarchically structured data
set in top–down direction. In this illustration, a data set of 5 el-
ements organized in 2 groups (left image) is laid out by using the
number of leaf elements as the weights for split point determination
(right image). While the display is space–filling and overlap–free,
display regularity is low due to differing rectangle aspect ratios, and
the non-alignment of rectangles resulting from continuous splitting.

process in order to produce more uniform rectangle aspect ratios.
Optimizing rectangle aspect ratios incurs certain additional costs
as compared to the original TreeMap algorithm, such as increased
computing complexitydue to optimization steps [Wattenberg 1999;
Vernier and Nigay 2000],reduced orderingby switching of layout
directions [Bruls et al. 2000], or reduced size to weightproportion-
ality [Dayal et al. 2005].

2.2 Quantum TreeMaps

It has been recognized that besidesoptimizingaspect ratios, in many
applications it is desirable toguaranteeconstant size and aspect ra-
tios for all of the rectangles to be laid out. This is motivated by sup-
porting visual comparability when displaying multi-dimensional or
abstract data types such as images [Bederson et al. 2002] or time
series data [Dayal et al. 2005], which call for regularity-providing
layout generation algorithms. Consider for example the problem
of laying out sets of hierarchically structured time series, or more
generally, bar chart data. Then, in order to be able to compare time
intervals and value magnitudes, there must not be too many dif-
ferent scales present in the display tessellation. Figure 3 shows an
example of visualizing a set of bar charts using the CTM algorithm.
Clearly, it is hard to compare periods in time and value magnitudes
throughout the display, as practically every time series rectangle is
assigned unique scales for itsx andy axes.

In order to support regularity in TreeMap displays, in [Bederson
et al. 2002] it was proposed to perform a quantization of the output
of the TreeMap algorithm, where width and height of the resulting
rectangles are allowed to assume only integer multiples of prede-
fined height and width quanta. The so-calledQuantum TreeMap
(QTM) guarantees consistent rectangle aspect ratios, and by design
places all data elements on unique positions on a global regular grid.
The basic idea is to first perform continuous splitting, and then,
based on this (intermediate) result, search for a good quantization
of the split points allowing to lay out the number of data elements
requested by the given data subset. It has to be defined what consti-
tutes a good quantization, but usually, the amount of wasted space,
or the deviation from the continuous rectangle in terms of aspect
ratio or symmetric area difference are candidates for optimization.
Figure 4 illustrates the QTM technique.

By design, QTM does not obey the space-filling property of the
original algorithm. In [Bederson et al. 2002], the authors performed
an experimental analysis of thedisplay overheadmetric, which is
the amount of display space not occupied by data elements. The
authors concluded that display overhead is not critical when laying
out data sets consisting of many elements per hierarchical group.



Figure 3: In practice, the CTM algorithm produces many different
aspect ratios andx/y-scales in its layout. Thereby, it is difficult to
present important data types such as time series inside the obtained
rectangles in a useful way. The image shows the CTM layout of the
data set used in Section 4. Clearly, it is hard to effectively compare
the data set elements.
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Figure 4: The Quantum TreeMap (QTM) quantizes the results of
continuous splitting to a suitable amount of rows and columns on
a global regular grid. Left is shown the global grid and the first
split line from the example in Figure 2 (the dashed line). Based on
the adopted searching heuristic, different allocation outcomes are
possible (middle and right images).

In this paper, we will revisit the QTM algorithm in an experimental
analysis, and will compare it against ourGrid TreeMapalgorithm
developed in the next Section.

3 Grid TreeMap Algorithm

The Quantum TreeMap provides layouts with guaranteed constant
size and aspect ratios of the data rectangles, and with consistent
alignment of the elements on a global grid. There exist two sources
O for potential display overhead (loss in display utilization effi-
ciency):

O1 QTM is not always able to quantize layout partitions to grid
dimensions corresponding to the exact number of elements to
be laid out (grid cells may be left unoccupied; first source of
potential display overhead).

O2 QTM performs on-the-fly quantization of split points. During
processing of the algorithm, the resulting global layout may
grow or shrink in width and height, deviating from the ini-
tial root display rectangle. The final result may have to be be
(isotropically) scaled back into the original root display rec-
tangle. Whenever the aspect ratios of the root display and the
resulting grid differ, then display overhead due to scaling will
occur (second source of potential display overhead).

We presume that based on the hierarchic characteristics of the in-
put data set, significant display overhead may occur in QTM. We
therefore researched an alternative quantization scheme we call the
Grid TreeMap(GTM). Instead of first performing the continuous
TreeMap on the root display rectangle and then quantizing the re-
sult to the grid, we go the other way round. We first decompose
the root display rectangle to a grid of sufficient dimensionality, and
then perform the TreeMap algorithm directly on the resulting grid.
The grid dimensionality is found such that (a) the number of rows
and columns is sufficient to hold all the data elements, (b) no more
than one row or one column is only partially occupied with data
elements, and (c) the aspect ratio of the resulting grid slots matches
a predefined (targeted) aspect ratio as closely as possible. We then
perform the TreeMap algorithm on this grid by alternatingly scan-
ning rows or columns to assign data elements to slots on the grid
(cf. Figure 5). We presume this approach to be more space effi-
cient than QTM for certain data set characteristics, at the same time
producing regular layouts. We recognize that by using scan based
assignment of elements to grid slots, we will encounter “stair-step”
effects, thus split boundaries (hierarchical separators) are not guar-
anteed to be straight lines anymore. It will be the responsibility of
the following rendering techniques to compensate for the loss of the
straight line property, which by design is provided in the CTM and
QTM methods.
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Figure 5: With theGrid TreeMap(GTM), first the display rectangle
is decomposed into a grid of sufficient dimensionality to hold all
data set elements. Then, on this grid GTM performs slicing and
dicing by alternatingly scanning rows and columns. The right two
images show the GTM algorithm allocating the first and the second
hierarchical partitions of the hierarchy denoted on the left.

3.1 Rendering Grid TreeMaps

One property of the Quantum TreeMap not present in the Grid
TreeMap is that in the former, groups of elements are separated by
straight lines. With QTM, the TreeMap user can trace connections
of the straight lines to quickly recognize hierarchical relationships
present in the data. With GTM, which performs scan line based
partitioning of grid slots, we do not have the straight line separa-
tor property, and it is expected that this negatively affects the ready
perceivability of hierarchic relationships without providing appro-
priate visual support. Therefore, we have to pay close attention to
the way by which we indicate the hierarchy separators. We have
experimented with several different separating schemes, and found
three of them effective for rendering GTM layouts of different data
hierarchy patterns:

1. GTM-N (Nested): Draw enclosing boundaries around groups
of elements. Free the required display space by simultane-
ously scaling down all grid rectangles such that the display
can accommodate all boundaries without over plotting.

2. GTM-S(Split Lines): Keep the distance between adjacent grid
slots constant, but indicate split line depth (hierarchy level) by
appropriately setting the drawing attributes color, thickness,
and shape of the respective split lines.

3. GTM-B (Burst): Indicate hierarchy by varying the distance
between groups of elements with the splitting depth. Let



greater distance between groups of rectangles indicates higher
(closer to the root) hierarchic separations.

GTM-Split keeps the amount of display space dedicated to hierar-
chic information constant, but is not expected to scale for arbitrary
deep hierarchies due to the fixed amount of display space reserved
for the split lines. GTM-Nest and GTM-Burst do not guarantee a
bound for the fraction of display space allocated for indicating ar-
bitrarily deep or wide hierarchical relationships, but we will see in
the next Sections that the techniques work well in practice. The
proposed rendering techniques are illustrated in Figure 6. In the
next sections, we will apply the GTM variants on a real-world data
set, and perform experiments on synthetic data assessing the quality
of the layout algorithms.

GTM-Nest

(a) Nest

GTM-Split

(b) Split Lines

GTM-Burst

(c) Burst

Figure 6: Three rendering methods for visualizing hierarchical re-
lationships for Grid TreeMap layouts. Cf. also Figure 5.

4 Application

We here present the application of the QTM and GTM algorithms
on a data set consisting of daily stock price time series obtained
from [S&P500 stock price archive ]. We like to render the data us-
ing the familiar bar chart drawing technique, which requires a high
degree of regularity in the display to support effective comparative
analysis. To allow the analyst to gain a quick overview over a set of
bar charts, the corresponding layouts should produce regular tessel-
lations. Note that a continuous layout as provided by the classical
CTM (c.f. Figure 3) is clearly inappropriate for this task, and we
recognize the need for quantized layouts.

In order to impose a meaningful hierarchical ordering on the data
set, as a preprocessing step we apply theHierarchical Agglomera-
tive Clustering Algorithm(HAC) [Han and Kamber 2001] on the
data set. The HAC iteratively merges pairs of sets of elements
which exhibit highest similarity at the given iteration. The result
is a binary tree which when properly visualized is a nice tool for
analyzing similarity relationships in a set of objects on which a
meaningful similarity scale can be defined. Note that binary-tree hi-
erarchies are a stress test for the layout algorithms. The heighth of
a balanced tree with fanoutf containingn leafs (data elements) log-
arithmically depends onf , ash = logf n holds. This in turn means
that binary trees give deepest hierarchies (more hierarchy levels) as
compared to trees with fanout larger than 2. Thereby, the display
has to communicate more information and consequentially, has to
allocate more display space resources for hierarchy visualization.

For generating the layouts, we used a subset of the time series data-
base consisting of 60 series with 48 values each. We configured
the HAC algorithm to use the Euclidean distance between time se-
ries normalized for offset and scale. Such normalization is a useful
preprocessing step when calculating time series similarity [Keogh
2004]. The resulting tree is of height 11, which leads to a high de-
gree of data partitioning, stressing the layout algorithms. We set the
targeted aspect ratio (as width : height) to 4 : 1, which seems rea-
sonable for rendering bar charts of the considered length. We set the
root display to 1200×900 pixels. Where needed, we set indention

of grid rectangles and thickness of splitting / nesting lines to rea-
sonable parameters which try to be space efficient, and at the same
time support perception of hierarchical separation relationships.

In the following, we consider asdisplay overheadthe fraction of
the root display rectangle which is not occupied by time series (bar
chart) rectangles. Specifically, empty space as well as space oc-
cupied by split lines or used for element separation contributes to
display overhead. In case of QTM and GTM-B which may return
layouts violating the aspect ratio of the root display rectangle , we
isotropically scale back the layout to fit the root display rectangle
prior to measuring display overhead.

4.1 Quantum TreeMap

Figure 7 (a) gives the result of the QTM layout of the hierarchically
clustered data set. The display aligns all time series rectangles on
a global grid, and guarantees that all rectangles have the same size
and aspect ratio. Due to the binary branching in the HAC tree, the
tree height is significant and results in a complex set of hierarchi-
cal relationships among the time series. This in turn stresses the
layout in terms of display overhead. When allocating inner tree
nodes, QTM searches for grid layouts which locally minimize dis-
play overhead. Therefore, the total display overhead of a given
data partition not only depends on the current quantization decision
made for the given tree node. It also depends on the quantization
steps performed when subsequently laying out the subtrees rooted
at the given node, as well as the layout of the siblings of the con-
sidered tree node. By design, QTM is a greedy layout algorithm
which does not consider global effects in the local layout decisions
it makes, and consequently, the display overhead is expected to be
high if the tree structure is complex and deep. The overall over-
head in the QTM display of this data set amounts to 71%, which
is significant. On the other hand, the QTM retains the straight line
property when separating groups of elements in the display. This
makes it rather easy for the analyst to trace partition borders in or-
der to understand the hierarchical relationships in the data set.

A more subtle problem coming along with the uneven distribution
of elements to embedding rectangles is that of potentially reduced
perceivability ofbalancing relationships. Note that in the QTM dis-
play, the size of rectangular display partitions does not have to be
proportional to the number of contained data elements. E.g., con-
sider in Figure 7 (a) the first top-level partition of the data set in-
dicated along the straight horizontal line at about1

3 height. Within
this partition, the data is subsequently separated into two groups
containing 15 and 3 elements, respectively (the left and the right
partition in the topmost display partition). As a result of the final
quantization layout, the second-level (vertical line) separator be-
tween the two groups is placed at1

2 display width. At first, this
might mislead to assuming both partitions to be balanced, as the
display areas in the left and right hand side partitions are equal. Yet,
the population of these areas with data elements is quite uneven (15
and 3 elements, respectively).

4.2 Nested Grid TreeMap (GTM-N)

Figure 7 (right) gives the result of the GTM-N (nested) layout of
the data set. The algorithm first generates the Grid TreeMap layout,
and then draws thin boundaries around groups of elements. Here,
we drew boundaries of 1 pixel width around groups of elements
which belong together along the hierarchy. We also indent adjacent
lines by 1 pixel. The deeper a given hierarchy, the more grouping
lines have to be drawn. Consequently, the bar chart boxes have to



(a) Quantum TreeMap (QTM) (b) Nested Grid TreeMap (GTM-N)

Figure 7: Quantum TreeMap (a) and nested Grid TreeMap (b) layouts of 60 time series, organized by similarity using the hierarchic agglom-
erative clustering algorithm (HAC) for preprocessing.

be scaled down to free up the space required for border drawing.
We chose to simultaneously scale down all rectangles by the same
amount as required by the hierarchy, to keep the data elements at
the same size and consistently positioned on the global grid.

The display overhead metric amounts to roughly 70%, which is
comparable to the QTM result. The reason is the depth of the hi-
erarchy. As the HAC tree is of height 11, and considering we have
to allocate at least 2 pixel per hierarchic boundary on each side
of the respective rectangles, it is not surprising that the rectangles
are scaled down significantly. On the other hand, as compared to
QTM most of the space not occupied with bar charts is occupied
by nesting boundaries, indicating hierarchic information. We note
that the topmost separation levels are clearly perceivable, as there
is a visual cumulative effect when many lines are drawn in paral-
lel. Also, the number of elements contained in subtree partitions
is better perceivable, as there is no “dead space” like in the QTM.
It is somewhat more difficult to trace the lower separation borders.
Eventually, we have to rely on the pixel-level to completely assess
the full hierarchical structure.

4.3 Hierarchic Split Lines Grid TreeMap (GTM-S)

The Grid TreeMap with hierarchic split lines (GTM-S) uses visual
attributes of split lines of fixed maximal width in order to commu-
nicate hierarchical separations throughout the data tree. Design-
ing split lines which are visually discriminating and at the same
time are capable to encode ordinal relationships (tree levels) is not
an easy task. We experimented with several different settings, and
found the scheme given in Figure 9 a good compromise, although
other schemes are possible. We employ color, split line width, and
dashing as visual attributes. Figure 8 (a) shows the resulting Grid
TreeMap layout using hierarchic split lines. We have indented the
rectangles by 10 Pixels each to free space for drawing the hierar-
chical split lines. We notice that the top separation levels in the
hierarchy (i.e., the bright most split lines) are best perceived. Trac-
ing the lower-level split lines is somewhat harder, as the lines get
increasingly thinner, but still it is possible to do so using the legend.
The overall display overhead of 31% is reasonably smaller than the
one resulting from QTM and GTM-N.

4.4 Burst Grid TreeMap (GTM-B)

GTM-N and GTM-S draw enclosing boundaries and hierarchic split
lines to communicate hierarchic relationships among subsets of
data elements. Another alternative we tested is to visualize the
separation relationships by depth-dependent horizontal and verti-
cal spacing between the individual data element groups. In our
strategy, groups of objects get “burst apart” such that groups sep-
arated on higher hierarchy levels get separated by more horizontal
or vertical space between them. We implemented a policy which
during the layout generation performs the bursting by translating
rectangle partitions: In a sequence of scanning rows (columns), the
partitions get burst apart along vertical (horizontal) directions. We
model the “bursting distance”d(l) separating the sibling element
groups rooted at an inner tree node of levell in a tree of heighth as
linearly depending on the respective hierarchy levell :

d(l) =
h− l

h
×Dmax

It results that the topmost partitions (rooted at hierarchy levell = 0)
get allocated the distanced(l = 0) = 1× Dmax for separation,
while the consecutive split levels are allocated a linearly decreas-
ing amount of maximal bursting distance. In practice, we get good
results by settingDmax= min(width,height) of the grid cells.

Figure 8 (b) shows the GTM-B layout of the clustered data set.
Translating the groups proportional to the splitting level supports
perceivability of the splitting hierarchies. There is a tradeoff be-
tween the space-efficiency and the usage of bursting: Larger burst
distances (implemented by higherDmaxsettings) consume more dis-
play space leading to higher display overhead rates for a given data
set. Still, display utilization is reasonable. In this example, the
space used for bursting was 53% of display space. We note that
other than in the previous variants, the individual rectangles are not
aligned on a global grid anymore due to the continuous calculation
of the amount of translation. Note also that the resulting layout
may need to be scaled back into the original root display area (like
QTM), possibly resulting in scaling overheadO2 (c.f. Section 3).



(a) Split Line Grid TreeMap (GTM-S) (b) Burst Grid TreeMap (GTM-B)

Figure 8: Splitline-based (a) and Burst Grid TreeMap (b) layouts of the same data as in Figure 7.

Figure 9: Split line legend for the GTM-S layout in Figure 8 (a).

5 Evaluation of Space Efficiency

We recognize two important criteria for evaluating the quality of
the proposed layout algorithms. One criteria is theeffective per-
ceivability of hierarchical relationshipsby the user. Evaluating this
metric formally is difficult as it would require a carefully designed
user study which at present is beyond our resources. We note that
we regard the discussion in Section 4 as supporting the effectiveness
of the GTM techniques in visualizing hierarchical relationships in
regular displays. A second obvious evaluation criterion is thedis-
play utilizationwhich contrary to the hierarchy perceivability can
be automatically evaluated using the display overhead metric. We
experimentally measured the display overhead during batch exper-
iments to layout synthetically generated data sets of different size
and hierarchy characteristics. Specifically, we considered different
balanced and unbalanced hierarchy models for laying out 5 up to
200 time series objects inside a 1200×900 root display area.

5.1 Balanced Hierarchies

We first evaluate the display overhead modeling the hierarchy as a
balancedtree with constant fanoutf at each inner tree node. Figure
10 gives the display overhead results for fanout settingsf = 2 (left
chart) andf = 8 (right chart), respectively.

GTM-Nest and GTM-Split clearly show decreasing space effi-
ciency for growing numbers of elements. As the tree height grows
with the number of elements, GTM-Nest has to allocate more space
for boundary drawing, which is freed by scaling down the grid cells.
In case of the binary tree (f = 2), already at 100 elements, space

required for boundaries consumes more than 60% of display re-
sources. Practically, rendering more that 100 elements in the given
tree structure and root display (1200×900) using GTM-N thereby
is problematic. Again, as noted in the preceding Section, using bi-
nary trees is a stress test for the Grid TreeMap. In case of trees
of higher fanout this problem diminishes, as then tree height grows
less aggressive. In case off = 8, GTM-N’s space efficiency im-
proves to at most 50% of display overhead for 200 elements.

GTM-Split allocates constant inter-cell distances irrespective of the
hierarchy structure (note the identical display overhead curves in
Figures 10 and 11). As the number of cells grows, so does the
amount of inter-cell spacing required for drawing attributed split
lines. The amount of space allocated for hierarchy visualization
amounts to 20% for few elements up to a maximum of 60% for 200
elements.

GTM-Burst indicates hierarchical separations by translating parti-
tions of elements apart along opposite directions. The amount of
translation negatively depends of the hierarchy level. Therefore,
trees with high fanout at higher tree levels (close to the root) con-
sume the most space for bursting. Forf = 2 we observe reasonable
display overhead numbers around 50% for most data sizes. With
f = 8 the amount of space required is rather high (up to 80%) for
most data sizes.

The Quantum TreeMap results show an oscillating display usage
pattern. In our implementation, we let QTM search for a good lo-
cal quantization by either extending the number of columnsor the
number of rows to accommodate the number of elements to lay out
in each iteration, and using theareaof the alternatives as the selec-
tion criteria. In the hierarchy model considered here, a large part of
the display overhead in QTM is due to scaling overhead (overhead
sourceO2 in Section 3). In our experiments, many resulting QTM
layouts are larger in width than in height, so isotropically scaling
back the result into the 1200×900 display sacrifices vertical space.
Due to the balanced structure of the hierarchy, overhead sourceO1
makes up only a smaller part of the loss in display space. The lat-
ter finding is in accordance with the results from [Bederson et al.
2002]. With the data considered here, QTM overhead oscillates
around 60% (50%) atf = 2 ( f = 8), with significant variance.
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Figure 10: Display overhead for GTM-{N,B,S} and QTM, for balanced hierarchies with tree fanouts of 2 and 8, respectively.

5.2 Unbalanced Hierarchies

We also evaluated the display overhead when modeling the hierar-
chy as anunbalancedtree. We keep fanoutf at each inner tree node
constant but populate the leftmost child of each inner tree node with
the triple number of leaf elements rooted at the respective node, as
compared to its right hand side siblings. Figure 10 gives the results
for fanout settingsf = 3 (left chart) andf = 4 (right chart), respec-
tively, for this tree model. We chose these fanout settings to get
tree structures of sufficient depth for our experiments. We obtain
unbalanced trees where data is unevenly distributed along the tree
paths.

We observe the same metric readings for GTM-Split, as by de-
sign its space occupancy is invariant with respect to tree structure.
GTM-Nest, due to the unbalanced hierarchy structure, has to dedi-
cate less display space to the group boundaries as compared to the
low-fanout tree results in Figure 10 (left). We observe maximal
hierarchy overhead of about 80% (70%) for 200 elements using a
fanout of f = 3 ( f = 4). We note that for element counts up to about
140, in both hierarchies we still have around 100%−60%= 40%
space left for element rendering. GTM-Burst is significantly im-
pacted by the deeper hierarchies resulting from the unbalanced tree
structure, as it has to bust apart more element partitions, andd(l) is
diminishing at a slower rate (cf. Section 4.4). Also,O2 overhead
occurs for GTM-Burst. Maximum overhead is in the range of 80%
for both fanout settings, and for most data sizes. An exception is the
interval between 40 and 100 elements withf = 4, where overhead
is around 60%.

5.3 Experiments Summary

We can summarize the experimental findings as follows. GTM-
Burst delivers efficient layouts in terms of the hierarchy overhead
metric for hierarchical structures of comparably low fanout, as then,
less space is allocated for bursting apart partitions (cf. Section 4.4).
GTM-Nest delivers efficient layouts in the opposite case, namely,
when fanout is high and resulting tree depth is comparably low.
The limiting factor in GTM-Nest is the tree depth, as the maximal
hierarchic level in the data set dictates the amount of down scal-
ing that has to be applied on all grid cell rectangles (recall that we
target regular layouts, so we demand uniform scales for all rectan-
gles). GTM-Burst and GTM-Nest therefore are recommended for
complementary use depending on the hierarchical structure to be
visualized. GTM-Split provides a middle ground and is promising

in case the number of elements in the data set is not too large, irre-
spective of the hierarchical structure present, up to a limit dictated
by the number of levels we can visually discriminate using split
line drawing attributes. We estimate the latter limit to be around
10 levels, which should be sufficient to support many real-world
applications.

We also evaluated the Quantum TreeMap algorithm as a base line
competitor for our algorithms. As the charts show, there are data
constellations where either one of the Grid TreeMap algorithms
outperforms the QTM, in term of the display overhead metric. We
conclude that Grid TreeMaps are a practical option for visualiz-
ing regularity-requiring, hierarchical data sets. Depending on the
nature of the data (hierarchical structure, data set size), the most
appropriate GTM variant may be selected interactively by the user
or automatically by the visualization system as based on the display
overhead metric.

Regarding the rather high degree of display overhead in QTM, we
note that the numbers may be due to our chosen implementation
(cf. Section 5.1). Other quantization heuristics are possible, and we
have not attempted to optimize the searching strategy to the con-
sidered data set characteristics. We note that traditionally, TreeMap
algorithms perform greedy optimization, and this is rather a fea-
ture than a drawback of the techniques. The TreeMap philosophy is
to provide fast algorithms suited for online layout generation. We
therefore have not attempted to further optimize the quantization
in our QTM implementation in a back-tracking manner, as we feel
this would not be in accordance with the tradition of TreeMap al-
gorithms. We rather take QTM as a reference for assessing the per-
formance of our Grid TreeMap variants, which are designed to give
compact representations based on the linear nature of the TreeMap
algorithm family.

6 Conclusions

We have presented novel layout techniques based on the idea of
applying the recursive TreeMap algorithm on a regular grid of dis-
play cells. The introduced Grid TreeMap layouts provide a high
degree of regularity, and thereby are suited for layout of hierarchi-
cally structured, complex data sets requiring regularity such as time
series data, images, and multidimensional data, among others. De-
pending on the nature of the data set in terms of hierarchy fanout,
degree of tree balance, and data set size, different Grid TreeMap
rendering variants using boundaries, split lines, or translation-based
separation, can be recommended. We applied the techniques for
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Figure 11: Display overhead for GTM-{N,B,S} and QTM, for unbalanced hierarchies with tree fanouts of 3 and 4, respectively.

visualizing hierarchically clustered time series data, and we per-
formed synthetic experiments allowing to evaluate the algorithm
performance in terms of perceivability of hierarchical relationships
and display overhead.

In this paper we have focussed on designing the basic layout gen-
erators, and will address improved rendering for the different Grid
TreeMap variants in the future. Several options for visually sup-
porting the perceivability of hierarchical structures using cell con-
nectors, indication of bursting directions, usage of shading and
cushions and so on are possible. Also, interaction techniques such
as mouse-over-based highlighting functionality like implemented in
the SequoiaView system [SequoiaView Homepage ] seem a promis-
ing extension for supporting hierarchical perception and navigation
by the user. Evaluation of the effectiveness of hierarchical struc-
tures perception should be addressed by a formal user study. In this
paper we assumed all the data elements to require the same layout
(size and aspect ratio) for their enclosing element rectangles. An-
other interesting problem is to design regularity-providing layout
generators for data where the elements require differing element
layouts.
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