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Abstract

The analysis of alignments of functionally equivalent
proteins can reveal regularities such as correlated positions
or residue patterns which are important to ensure a specific
fold and various cellular functions. Many approaches are
found in the literature which try to identify correlated posi-
tions to predict the residues that are close to each other in
the three-dimensional folded structure. However, the qual-
ity of the predictions remains disappointing. One of the
problems is that the statistical correlation measures that
were used cannot do justice to the underlying complex bio-
logical and physicochemical realities.
In this paper we evaluate the biological requirements for
a correlation measure and explain why a completely auto-
matic approach is unlikely to succeed. We then propose a
novel and flexible criteria for correlation of residue posi-
tions in protein sequences, which can be optimized for dif-
ferent requirements. To apply this definition we developed
the tool VisAlign that combines an automatic calculation
of correlations with an interactive visualization. This al-
lows the user to visually explore alternative alignments and
thereby conveniently test various hypothesis and to detect
regularities in the aligned sequences.

1. Introduction

In recent years the amount of protein sequence data has
grown explosively, due mainly to the availability of auto-
mated sequencing machines. The need for powerful tech-
niques to analyze the data is greater than ever, as whole
new genomes are now rapidly becoming available. Much
interesting information is hidden in the databases and pos-
sibly could answer many questions of scientific and medic-
inal interest. One of those questions is what restrictions are
protein sequences subjected to. More and more functionally
equivalent variants of protein sequences are known. What
do they have in common? What residue patterns would
be acceptable to ensure a specific fold and a certain func-

tion? We can compare known functionally equivalent pro-
teins by aligning their sequences. This could reveal cer-
tain regularities such as the need for an amino acid with a
specific physicochemical property and correlations between
positions. As a general rule, acceptable spatial and elec-
tronic features of a protein can be satisfied by alternative
ensembles of amino acid residues. Identifying all these by
only visual inspection of regularities in aligned sequences
is unrealistic. Therefore, automatic methods are needed to
support the search. However, automatic methods usually
require detailed background knowledge that is not yet ex-
istent. Furthermore, generally valid principles might not
be universally applicable to all proteins. In our approach
we try to combine the advantages of automatic calculations
with an interactive visualization. The alignment is visual-
ized as usual but the inspection is supported by an under-
lying algorithm that calculates correlations between the se-
lected columns of the alignment and all the other columns.
All the relevant parameters can interactively be changed by
the researcher and immediate feedback is provided. This
enables the user to easily test different hypothesis as well as
to perform context-sensitive studies.

2. Problem Statement

Proteins are chains of amino acids. Twenty different
amino acids are coded for by most genes, although the ge-
netic code of some organisms can occasionally also code
for additional amino acids. Amino acids differ from each
other in their physicochemical properties. Figure 1 illus-
trates these properties. Not every combination of amino
acids forms a functional protein. On the other hand, there
is not only a single valid sequence for a specific function,
since alternative variants can be found in nature. It seems
that proteins are usually fairly robust to amino acid substi-
tutions. In order for a protein enzyme to be functional a re-
stricted combination of amino acids that compose an active
site must be present. These key sites must be held in place
by a suitable scaffold provided by other portions of the pro-
tein. This is only possible if a correct, three dimensional
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Figure 1: Physicochemical properties of the 20
amino acids (redrawn from [16])

21327007   NKSVYPMMSVFKVHQALALCNGFDN--KGISLDTLVNINRDKLDPKTWSPMLKDYSGPV---ISLTVRDL
56707801   ASFYFPICSTYKFLVVGAILKQSM--TDNKLLNQKIKISKN--QIVEYSPITRRHIN-----QIMTVKQL
61099446   ADQPFPMASTSKVAIAAVYLAGVDAG--------------------KWSLSSEWRLPRPG-GKYVPAKTL
16263522   GEQRFSLQSVMKVVVAAAVMQAVD---DRRIALGDRLTIRRGDLSVNIQPIADIVAERGS--FETSIGDL
23100527   ETKQMRSASIIKLFILASAYHLKE---KGKISLTDQIKLS----SNDFVQGSG-VISYLSDVKFLTYQQL
51892073   ARDPYLPASTFKLPVALCVLEAID---AGEMAWNTLVTYT----EEDYEPVGAGGFAQAAFGSRWTVRNL
79038994   GATSFPQGSLRRIWLGAVLLEAVD---QGELSLDQRVPLQ------TRARGPERHEQ---------VSAL
29376069   GQHEFYTASTIKVPLTMLVADTVAS---GQKKWTDLIPYNAEEDYEEGTGIIAYNIQP-----EYPLKTL
50954004   DHVVMPTASIGKVLLLVEVAARLQ----SGGLSSLALLDRAPQDAVGDSGIWQHLQVP-----ALPVADL
5738831    CDEPVVIASIFKVLLVLEFARQVA---AGQLDPRARVRVTAGDRLGGWGTAGCADDV------ELSLRDL
15806983   PDGVFPLASTYKQAVLWALLREFD---AGRISPNERFDVTPQNQSLGDYPYDGSNVR-----------EL
62514959   VDQPFPAASLIKLGIAAFVKEKAAD---DPSQLERQVTLP---ESVGGAGILRFMSP-----QAWRVRDL

Figure 2: Extract of an Alignment. Identical or
amino acids that are similar in their physicochem-
ical properties are placed at the same location
whenever possible.

fold occurs. Without the proper fold the protein sequence
has no function [15].

In the three-dimensional folded state amino acids which
are distant in the original linear polymer may now be close
together. This fact may provide a working hypothesis for
some discovered regularities among the aligned sequences
which involve amino acids which are very far apart in the
primary structure.

In order to dissect different proteins with the same func-
tion, their sequences are usually aligned. In a sequence
alignment two or more sequences are arranged such that
identical or similar amino acids are placed at the same lo-
cation whenever possible. Adjustments can result in gaps
within parts of the sequences. These are usually denoted by
dashes. Figure 2 shows such an alignment. Some similari-
ties between the sequences are obvious. For example there
are some columns that are invariant. Those amino acids
seem to be compulsory at this position for these proteins.
Secondly, there are several columns in which more than one
amino acid is found, but the number is much less than all
20 possibilities. An explanation might be that alternative
amino acids which share a property such as similar size or
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Figure 3: Illustration of the used concepts. j* de-
notes the selected basis column. A block is made
up of all the sequences that have an amino acid of
the same equivalence class value in the basis col-
umn(s). Correlations are searched for separately
in each block, but the strength of a correlations
depends on the amino acids of the whole column.

presence of an aromatic ring might be acceptable. However,
experimental studies have shown that all possible combi-
nations of seemingly acceptable variants won’t work [14].
Although several alternative amino acids might be found in
different aligned positions, not every combination of these
are actually biologically functional [4, 17]. This suggests
that the positions are not all independent of each other. As
an example, various amino acids may be observed at two
positions. Suppose that investigation shows they all hap-
pen to be small and very small amino acids. Combinations
involving only small or only very small may indeed be in-
acceptable. Only the ”small + very small” works, although
the location of each may well be unimportant. The mutual
effects compensate. Clearly, learning about the construction
rules for a specific protein means learning about the under-
lying correlation logic.

The starting point of our analysis is an alignment of
functionally equivalent protein sequences.

Definition 1 (Alignment Matrix)
An alignment matrix M is a matrix that consists of elements
Di j so that
∀i=1...N∀ j=1...M :
Di j ∈{A,C,D,E,F,G,H, I,K,L,M,N,P,Q,R,S,T,V,W,Y,−}.
(see Figure 3 for illustration)

To take into account the similarity of amino acids, equiv-
alence classes E(Di j) can be defined.
e.g.:
Ep(Di j) ∈ {polar, non polar}
Eh(Di j) ∈ {hydrophobic, hydrophilic}
Ec(Di j) ∈ {charged, non-charged}
Eb(Di j) ∈ {basic, acidic, neutral}



Ea(Di j) ∈ {presence, absence of aromatic ring}
Er(Di j) ∈ {presence, absence of reactive carboxylic acid}
Other equivalence classes and combinations of the above
mentioned are possible.

Correlations are calculated between one or multiple basis
columns and the remaining columns. So n! different com-
binations of n basis columns can exist. One may have to
distinguish between whole columns that correlate and only
some members of the columns. For example, the sequences
of all non-viral ubiquitins were examined recently [18]. An
interesting correlation was observed between residue posi-
tions 19, 24 and 57. At the first position, 19, one observed
almost only the amino acids ’P’ and ’S’; at the second lo-
cation almost only ’E’ and ’D’; and at position, 57, almost
exclusively amino acids ’S’ and ’A’. One of us reported [18]
that partial columns correlated perfectly to reveal a biologi-
cally interesting principle. There are three classes of ubiqui-
tins. Animals display the three-residue pattern ’PES’, plants
’SDA’ and fungi ’SDS’. The classification rule was so reli-
able, that an exception in the case of two parasite worms
was immediately apparent. Further investigation revealed
that the plant-like ubiquitin manufactured in this animal was
injected into the target plant and modified its metabolic be-
havior. Research questions were then stimulated, such as
whether these parasites manufacture both versions, and if
so, how segregation of two such similar proteins could be
accomplished to prevent interference. We propose that par-
tial column analysis could reveal either phylogenetic rela-
tionships, or alternative protein design patterns.

The matrix is partitioned by the basis columns. In the
following a single partition is denoted as a block.

Definition 2 (Block)
A block with respect to a basis column j∗ ∈ {1 . . .M} and an
equivalence class value e ∈ E(Di j∗) is defined as follows:
Block j∗(e) = {i ∈ {1 . . .N}|E(Di j∗) = e}
The set of all blocks with respect to basis column j∗ is:
Blocks j∗ = {Block j∗(e)|∃i : e ∈ E(Di j∗)}
The definition can be generalized for multiple basis
columns.

Correlations can now be considered as correlated
columns of blocks. Intuitively a column in a block that is
strongly correlated to the basis column would be one that
contains only amino acids of the same equivalence class
value. However, this does not fully determine the strength
of the correlation. If the same column in all the other blocks
also contains many amino acids of this equivalence class
value one would rather consider the correlation as weak
(see fig. 3). So the strength of a correlation depends on
the amino acids of the whole column.

Finding the optimal alignment of sequences is not triv-
ial. If no structural data is available that could guide the
analysis, then various algorithms can be used which rely on

various substitution matrices which weight how similar the
amino acids are to each other (e.g. [3]). Different matrices
can be used, based on physicochemical characteristics of
amino acids, putative phylogenetic relationships averaged
over different proteins, characteristics of the genetic code,
and so on. The resulting alignments can differ consider-
ably according to the matrix used. The difficulty is that this
approach reflects best guesses based on statistical assump-
tions, and may well be irrelevant when applied to various
portions of the similar proteins now being aligned. An in-
correct shift of the columns of some proteins can camou-
flage an important correlation.

Deriving patterns from aligned sequences is only mean-
ingful if these share within their overall sequences some
feature in common. This can be fulfilled by judicious se-
lection of the sequences. In addition, the number of se-
quences in a block must be statistically significant to avoid
spurious correlations. To a large extent subjective judge-
ment may be necessary. The researcher might not know in
advance how many amino acids contribute to various struc-
tural and signalling patterns, especially for those which re-
main to be discovered, and the amount of sequence data
currently available might only permit tentative hypothesis.
Ideally the dataset would not be limited to closely related
strains or species of organisms.

3. Related Work

A lot of the existing approaches to automatically detect
correlated positions are motivated by ab initio structure pre-
diction, e.g. [13, 6, 11, 19]. It is assumed that the amino
acids of correlated positions may often be near each other
in the final folded three-dimensional structure. This would
mean that correlations could give important clues with re-
spect to the folding of the protein. However, so far the ac-
curacy of the reported calculations is rather disappointing
(e.g. [13]: 20-68% (one-time 100%), [11]: 37-68%, [19]:
14.4-38.76%.). According to the authors the enormous vari-
ations in the accuracy of the prediction of near residues are
due to the different alignments and the special character-
istics of the protein family. This implies that the applied
correlation measure was not universally valid. To calculate
the correlations statistical measures were used mainly, such
as the Pearson Correlation Coefficient or the Chi-Square-
Test. One of the disadvantages of these methods is that they
do not take into account that sometimes amino acids may
be substituted because of similar physicochemical proper-
ties. The problem is that at the current state of biological
research permissible substitution cannot in general be pre-
dicted a priori. This would require much specific context
knowledge up front. Furthermore, some of the statistical
approaches can only find correlations based on all members
at a column position. But the alignment might also contain



correlations which are restricted to some of the proteins (or
organisms). For example, different environmental demands,
such as extreme temperature habitats, may demand for only
those organisms an especially stable folded protein. This
could be attained by additional S-S bridges or a particularly
tight hydrophobic core. Unfortunately, several other rea-
sons for the disappointing quality of predictions are imag-
inable, such as poor alignment of the sequences, unsuitable
statistical assumptions and missing consideration of other
context dependencies.

Another interesting work is [14]. It was motivated by
the search for the rules that lead to proteins with a specific
fold. To calculate correlations, so called statistical coupling
analysis (SCA) was used (see [1] for further details). The
results of the study were used to build artificial proteins.
In the experiment 25% of the proteins were able to adopt
a fold when the calculated correlations were used to build
a protein. By comparison 67% of the natural sequences
could fold under the test conditions. Interestingly, none
folded properly, when the only restriction was that one of
the amino acids that were found in nature at this position
had to be used. This demonstrates the existence of correla-
tions but also poses the question as to why so many proteins
were not able to adopt a fold.

Since correlations are nothing else than rules of the form
”if ... in column x then ... in column y” instead of sta-
tistical calculations, then Association Mining might be an-
other helpful technique [2]. To overcome the problem that
this technique is usually independent of the order of items
(in this case of the order of amino acids along the chain)
we started with a preprocessing step in which the corre-
sponding column index was added to every amino acid in
the alignment. Afterwards the standard Association Mining
algorithm was executed. Unfortunately this leads to huge
numbers of rules which cannot be visually examined by an
expert anymore. A major drawback is that this and other
methods do not know in advance how many columns are rel-
evant to explain some feature. A collection of 50 columns
may show strong correlations, but unknown to the mathe-
matical treatment is which of these belong to what underly-
ing factor, or even whether they all are needed for one single
protein feature.

Besides the automatic approaches several tools exist
which display an alignment and allow user-defined colors
to be assigned to the amino acids (see e.g. [10, 8]). The ad-
vantage of such a visualization is that context-dependency
can be considered and that the experience and background
knowledge of the user can be used. However, a significant
number of sequences have to be used to get reliable results
and an effective search for correlations by merely looking
at various alignments is nearly impossible.

All the previous efforts were either pure automatic ap-
proaches or static visualizations. In our project we try to

Data Alignment Visualization Automatic
Calculation

User Interaction

Figure 4: Pipeline of the Exploration Process.
The aligned sequences are visualized and the
correlations are calculated for the selected basis
columns. After each change the visualization is
updated to display the results. The user can influ-
ence the process at several stages.

combine both methods. Instead of requiring reliable knowl-
edge about the nature of the correlations we provide an en-
vironment in which different hypothesis can be tested. The
results of automatic calculations can be intelligently visual-
ized and are therefore convenient to analyze. The relevant
parameters can easily be varied and immediate visual feed-
back is provided. This allows the user to search for corre-
lations by interactively exploring various alignments and to
draw on expert knowledge of patterns, both structural and
informational, which he is familiar with.

4. Integrating automated and visual data ex-
ploration

The exploration process can be visualized as a pipeline
(see fig. 4). As input to the process protein sequences have
to be provided that all share at least one biological function.
Those sequences have to be aligned. This can either be done
with one of the many alignment algorithms that exist or by
an expert. However, a high quality alignment is essential to
get reliable results. This alignment can be visualized. After-
wards, the user can select basis columns for which the cor-
relations are to be calculated. This triggers an update of the
visualization to display the result. The user can influence
the process at several stages. First of all basis columns have
to be chosen for which the correlations are calculated. Sec-
ondly, the user can vary the definition of correlation. After
each change the calculation of the correlations is redone and
the visualization is updated. Furthermore the user can filter
the results and adapt the visualization according to personal
preferences and the exploration task. The following sec-
tions will explain the last two steps of the pipeline and the
interaction with the user in detail.
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Figure 5: Illustration of the parameters Purity Diff,
Purity Ratio, and Clearness. Whereas the Purity
parameters represent the impurity of the corre-
lated column, the Clearness value measures the
strength of the correlation.

4.1. Automatic calculation of correlation

To be able to search for correlations a definition is
needed. The definition must take into account the require-
ments stated in section 2. Because sometimes only part of
the column is correlated we separately search in every block
for correlations between the basis column and each other
column. The simplest definition would be to take a column
of a block as correlated to the basis column if all the amino
acids of the column belong to the same equivalence class
value. Thereby column 6, block 1 and columns 6 and 14,
block 3 in figure 5 would be correlated to the basis column
10. But there may be reasons why we would like to toler-
ate some impurity in our correlated columns, such as doubt
as to whether our alignment is optimal. Therefore we in-
troduced two parameters, Purity Diff and Purity Ratio that
allow to define how much impurity can be tolerated in a
column.

Whereas Purity Diff counts the number of different
equivalence class values, Purity Ratio measures the rate of
the most frequent equivalence class value in this column of
the block.

Definition 3 (Purity Diff)
The Purity Diff of column j′ with respect to equivalence
class value e∗ of basis column j∗ is defined as:
Purity Diff j∗, j′(e∗) = ‖∩k∈Block j∗ (e∗)E(Dk j′)‖ 1 2

1‖ ‖ denotes the absolute value
2Note that this is a set and not a multiset which means that multiple

entries of the same value are reduced to one entry

Definition 4 (Frequency of equivalence class value in col-
umn of block)
The Frequency freq(e∗,e′) of equivalence class value e′ in
column j′ with respect to equivalence class value e∗ of basis
column j∗ is defined as:
freq j∗, j′(e∗,e′) = ‖{i ∈ Block j∗(e∗)|E(Di j′) = e′}‖

Definition 5 (Frequency of most frequent equivalence class
value)
The Frequency max freq of the most frequent equivalence
class value m in column j′ with respect to equivalence class
value e∗ of basis column j∗ is defined as:
max freq j∗, j′(e∗) = {freq j∗, j′(e∗,m)|∃m : ∀k 6= m, m,k ∈
E(Di j′), i ∈ Block j∗(e∗), freq j∗, j′(e∗,m)≥ freq j∗, j′(e∗,k)}

Definition 6 (Purity Ratio)
The Purity Ratio of column j′ with respect to equivalence
class value e∗ of basis column j∗ is defined as:

Purity Ratio j∗, j′(e∗) =
max freq j∗, j′ (e

∗)
|Block j∗ (e∗)|

Figure 5 illustrates the two parameters. In block 1 col-
umn 14 contains two different amino acids. Let us assume
that all amino acids have separate equivalence class values.
The Purity Diff for column 14, block 1 would be 2. Be-
cause both equivalence class values occur twice, the Pu-
rity Ratio would be 50% (2/4). In column 18 of block 1
we have three different amino acids, so Purity Diff would
be 3. However, Purity Ratio is still 50% since the most
frequent amino acid is C and occurs twice and in total we
have four amino acids in the block. Combining the two pa-
rameters allows even finer tuning. For example setting the
maximum value of Purity Diff to 2 and the minimum value
of Purity Ratio to 50% would mean that column 14, block
1 would still be taken as correlated to the basis column but
not column 18, block 1.

However, the purity values do not capture the strength
of a correlation. In figure 5 both column 6 and column 14
in block 3 have a Purity Diff value of 1 and a Purity Ratio
value of 100%. But of course column 14 is stronger cor-
related to column 10 than column 6 since in column 6 al-
most all the amino acids outside of block 3 are the same
than the ones in block 3. It seems rather that in column 6
a P would always be the best choice no matter what amino
acid we have in column 10. To reflect this we introduced
a new parameter, the Clearness. The Clearness of a col-
umn measures the frequency of an equivalence class value
in the block in relation to the frequency of this equivalence
class value in the whole column. However, this is not a suf-
ficient definition, since we can have more than one equiv-
alence class value in a column. Therefore we calculate the
Clearness separately for every equivalence class value of
the block and take the average value as the Clearness for
the whole block.



Definition 7 (Frequency of equivalence class value in
whole column)
The Frequency freq(e′) of equivalence class value e′ in
column j′ is defined as:
freq j′(e′) = ‖{i ∈ {1 . . .N}|E(Di j′) = e′}‖

Definition 8 (Clearness)
The Clearness of column j′ with respect to equivalence
class value e∗ of basis column j∗ is defined as:

Clearness j∗, j′ =
∑e′∈D j′

freq j∗, j′ (e
∗,e′)

freq j′ (e
′)

Purity diff j∗, j′ (e
∗)

Figure 5 shows some examples. In column 6 we have 4
P’s in block 3 and 10 in total in the column. So the Clear-
ness value for column 6, block 3 is 4/10 = 0.4. In contrast to
this we have 4 C’s in column 14 in block 3 and none in the
rest of the column. So the Clearness value for column 14,
block 3 would be 4/4 = 1. Column 18, block 3 shows an ex-
ample for multiple equivalence class values in one column.
Since the Clearness for C would be 0.5 and the Clearness
of M would be 0.25 we get a total Clearness of (0.5 + 0.25)
/ 2 = 0.375.
Even as the purity values say nothing about the strength of a
correlation, the Clearness says nothing about the purity of a
column. If a column of a block contains amino acids of two
different equivalence class values and no other block con-
tains amino acids of the same equivalence class values the
Clearness would be 1. This reflects the fact that those two
equivalence class values seem to require a particular equiv-
alence class value in the basis column and therefore are an
interesting observation.

Lastly we have to consider that partitioning the se-
quences into blocks according to the equivalence class val-
ues of the basis column can lead to subsets with only few
sequences. However, if the number of sequences becomes
too small it is no longer meaningful to derive rules. There-
fore a Support parameter is introduced which allows to de-
fine what a statistically significant subset of the alignment
is.

Definition 9 (Support)
The Support of Block j∗ that is made up by equivalence class
value e∗ of basis column j∗ is defined as:

Support j∗(e∗) =
‖Block j∗ (e

∗)‖
N

If the support of a block is below the given threshold all
the correlations in that block are discarded since they are
not statistically significant observations.

Input: min Support, min Clearness, min Purity Ratio,
max Purity Diff, Blocks j∗

Result: Matrix C

for each block in Blocks j∗ do
for each column in block do

if isBasisColumn(column) then
continue

end if
Purity Ratio
← frequencyOfMostFrequentEquivClass(column, block)

|block|

Purity Diff
← numberOfEquivClasses(column, block)

for each equivalence class value in column do
cl sum
← cl sum + frequencyOfEquivClass(column,block)

frequencyOfEquivClass(column)

end for
Clearness← cl sum

numberOfEquivClasses(column, block)

// check if column is correlated
if Clearness ≥ min Clearness &&
Purity Ratio≥ min Purity Ratio &&
Purity Diff ≤ max Purity Diff then

for each cell in column do
C[cell]← TRUE

end for
else

for each cell in column do
C[cell]← FALSE

end for
end if

end for
end for

for each block in Blocks j∗ do

Support← |block|
N

// check if block has enough support
if Support < min Support then

for each cell in block do
C[cell]← FALSE

end for
end if

end for

Algorithm 1: Calculate correlated columns



To finally decide if a column of a block is correlated
to the basis column for each column the Purity Diff, the
Purity Ratio, the Clearness and the Support is calculated.
Only if all three values are below or above the given thresh-
olds is the column of the specific block marked as corre-
lated. Algorithm 1 summarizes the decision process.

4.2. The VisAlign Tool

The algorithm in section 4.1 provides a matrix in which
each cell is marked as either correlated or not correlated
to the basis column. Because there are no settings for the
parameters that can be universally accepted as correct, the
result has to be evaluated for biological relevance. This can-
not be automated at the current state of cellular knowledge.
The sensible thing to do would be to test different hypoth-
esis by trying different parameter settings. So the presenta-
tion of the result has to be in a form that is easy to evaluate
for scientists. Visualizing the results would surely be very
helpful. In our approach we display the alignment as in ev-
ery commonly used Alignment Viewer (e.g. [8, 10]) but
additionally display the calculated correlations by greying
out all the columns which are not correlated with the se-
lected basis column(s). This permits the user to easily grasp
the results and to perceive existing patterns. Furthermore
patterns that are only valid in a specific context can also be
identified.

We embedded this visualization in a framework that pro-
vides further support for the exploration endeavor. Figure
6 shows a screenshot of our VisAlign tool. At the moment
it consists of five main components: the Alignment Viewer,
the Parameter Window, the Mapping Window, the Proper-
ties Window, and the 3D-Viewer (not yet implemented in
the prototype).

The AlignmentViewer depicts the alignment and the ba-
sis columns can be selected. Each amino acid is displayed
in the color of its equivalence class value. Furthermore, as
already stated above, the result of the calculation is visual-
ized by greying out all the cells which are not correlated to
the basis columns.

The algorithm that determines the correlated columns
expects maximum or minimum values of the parameters
which can be used as a threshold to decide whether a col-
umn is correlated or not. In the Parameter-Window the
user can set those values and easily vary them to test differ-
ent settings. Changing the parameters results in immediate
recalculation of the correlations and visual feedback in the
AlignmentViewer.

The Mapping-Window enables the user to group the
amino acids into equivalence classes. Thereby similar prop-
erties of the amino acids can be taken into account or hy-
pothesis in which the user is only interested in a specific
property can be tested. Furthermore the colors can be

Figure 7: Block coloring scheme to visualize the
different strength of the correlations. The brighter
the color of a column is the stronger the correla-
tion is.

choosen in which the amino acids of each equivalence class
value should be displayed.

The Properties-Window allows changes in the visual-
ization such as fading the invariant columns in and out, dis-
playing the names of the proteins and of the amino acids
and to change the size of the cells and therefore zoom in the
alignment. Depending on the task which has to be accom-
plished this can help to focus on the most important parts of
the alignment.

In the 3D-Viewer the three-dimensional structure of one
of the proteins is shown. It is linked to the AlignmentViewer
and allows to determine the positions of the columns in the
three-dimensional molecule and to select interesting basis
columns.

Additionally, the displayed correlations can be filtered if
information about the three-dimensional structure is avail-
able. To test hypothesis that are supposed to be only valid
in a specific context, the search for correlations can be re-
stricted to a specific type of secondary structure (not yet im-
plemented in the prototype) or to a certain distance around
a basis column. Then the tool will display only those cor-
relations that are within the defined context. The rest of the
calculated correlations are faded out such that they are still
distinguishable from the areas where no correlations have
been found. This permits to check how significant the hy-
pothesis is for the specific context.

Sometimes it also can be helpful to lower the threshold
for the Correlation value. This is especially important if
columns are only partially correlated to the basis column.
However, since in general higher clearness implies some-
thing more worthy of attention, a special type of visualiza-
tion was developed which also shows the strength of the
correlations. Instead of assigning the colors according to
the equivalence class values the amino acids belong to in
this visualization the colors are assigned blockwise and the
strength of the correlation is mapped to the intensity of the
color. Figure 7 shows a screenshot of the AlignmentViewer
when this alternative coloring scheme is used.



Figure 6: The VisAlign Tool. The main component of the tool is the AlignmentViewer. Here the alignment
is visualized and the calculated correlations are displayed. The other components support the user in the
visual exploration process by allowing to filter the correlations, to conveniently vary the parameters that
define correlations and to adapt the visualization to personal preferences and the exploration task.

5. Application

In the following section a sample explorative session
with the VisAlign tool is shown. The dataset that is used
consists of 24 β -lactamase sequences (part of the data used
in [5]). They were aligned using the ClustalW algorithm
with default settings [12]. Of course this is not a statisti-
cally significant number of sequences if all possible corre-
lations are to be considered. But since they are unambi-
giously alignable and significantly different it serves as a
nice example dataset.
One of the most important properties of an amino acid is hy-
drophobicity. It is vital for the stability of the protein struc-
ture that mostly hydrophobic amino acids are in the core of
globular proteins. If a hydrophobic amino acid in the core
is mutated into a hydrophilic one, it can be highly destabi-
lizing for the protein structure. This is why we would like
to examine our sequence alignment with respect to the hy-
drophobicity of the amino acids.
The first step is to group the amino acids into equivalence
classes according to their hydrophobicity. In the visualiza-
tion we display all the hydrophobic amino acids in dark
green and the hydrophilic ones in light green. Figure 8a
shows the alignment. In order to see how many columns
have either a hydrophobic or a hydrophilic amino acid we
set the parameters Purity Ratio and Clearness to 100% and
select one of the invariant columns. In the resulting visual-

ization all the columns not satisfying our criteria are greyed
out (see figure 8b). 65 of our 153 columns are determined
by this property. By setting the Purity Ratio value to 95%
we see that 13 columns more appear colored, those with
only one deviating amino acid. In our further exploration
we would now like to have a closer look at the columns
which are variant with respect to hydrophobicity. There-
fore we grey out all the invariant columns and only display
the rest (see figure 8c). We select another column as basis
column and the tool immediately recalculates the correla-
tions and updates the visualization. This is repeated to test
different basis columns. Figure 8d shows one of the cor-
relations we found. Armed with potentially interesting ob-
servations, generality can be tested by including additional
beta-lactamases, and biological explanation can be sought.
As already stated in section 3 most approaches assume that
correlations mostly occur between columns which are close
to each other in the folded three-dimensional structure. As
a test, the structure data of one of the used sequences was
loaded, which is based on x-ray crystallography [7]. This
allows one to calculate the distances between the columns.
To find out how far apart our amino acids are we now grad-
ually reduce the maximum distance. It is noteworthy that
the four columns are not all near to the basis column. The
distances are as follows: column 17 is approximately 21
Ångström from the basis column, for column 67 the value
is 15 Ångström and column 43 is the nearest one being sep-



arated by only 10 Ångström. The 3D-Viewer that is being
planned will additionally show the location of the amino
acids in the three-dimensional structure.

6. Future Work

The number of possible combinations of basis columns,
properties and parameter settings is enormous. Therefore
filtering mechanisms will be very helpful to the user. At
this time only filtering by distance to the basis columns has
been implemented. We plan to also allow the correlations
to be restricted to portions of the overall sequences, such as
protein domains which generally interact weakly with each
other.

Furthermore, we would like to integrate known amino
acid patterns which are used by proteins to communicate
with other biomolecules or determine their location in the
cell (or whether they are to be sent outside the cell mem-
brane).

Databases such as Prosite [9] will be of much value
for this purpose. These function-based patterns place con-
straints on the location of the amino acids, and will influ-
ence greatly how the alignments should be assembled. Iden-
tification of these experimentally established patterns will
often reveal the basic principle of many correlations which
our tools will identify. Our goal is to draw attention to pat-
terns whose cause cannot yet be ascertained through other
tools or algorithms. This would help the user to see what
is already knowable and to concentrate on the protein parts
which still need explaining.

Strong correlations between columns which are not
caused by features identifiable by protein pattern-based
databases nor secondary structures, such as alpha-helices
and beta-sheets, would point out the possibility of hidden
information whose meaning needs to be extracted. Further-
more, the validity of the claimed patterns could be checked
against large datasets. Preliminary tests (not reported here)
show that some reported beta-lactamase sequences lack a
Prosite pattern which almost all the others in the dataset
have, although the function is indeed surely present.

Another challenge is to distinguish between statistical
artefacts which may be due to common descent and not
enough time has transpired for mutations to occur, and cor-
relations necessary for real functional reasons. With this in
mind we intend to calculate the probability that a correla-
tion is due to chance and include this in the visualization
to help the user judge how much effort should be invested
in searching for underlying reasons. We also plan to calcu-
late the probability that known functional patterns may have
arisen by random mutations.

As ever more structural and informational patterns are
identified, our visualization tool will permit a more thor-
ough overview of a protein family and its component fea-

(a) Hydrophobic amino acids are displayed in dark green and
hydrophilic ones in light green.

(b) Only the columns that are either purely hydrophobic or
purely hydrophilic appear colored.

(c) Only the columns that are variant with respect to hy-
drophobicity appear colored.

(d) The visualization shows one of the correlations with re-
spect to hydrophobicity that has been found with the tool.
Assumedly, a otherwise necessary hydrophilic amino acid in
column 39 is compensated by hydrophobic amino acids in
colums 17, 43, and 67.

Figure 8: Different steps of the exploration pro-
cess with an alignment of 24 β -lactamase se-
quences.



tures. Interestingly, preliminary tests already suggest that
some amino acids share multiple design constraints. The
exact nature of these constraints needs to be elucidated.
However, we predict that these particular amino acids are
likely to be intolerant to substitution via random mutations,
and this may explain why less variability is found at some
positions than anticipated.

7. Conclusion

We have proposed a novel correlation measure for pro-
tein sequences which offers adjustable parameters. In con-
trast to previous approaches found in the literature we
avoided statistical simplifications but tried to capture the
underlying complex biological relationships. We recognize
that the physicochemical and functional basis for correla-
tions are not universal and fixed, but rather depend on con-
text. Typically, only a few specific amino acids are involved
mutually to solve a particular protein requirement, and al-
ternative solutions will work. The nature of the correlations
therefore depends on the protein feature involved and the
quality and quantity of the data available. Furthermore, we
introduced our tool VisAlign which allows the visual ex-
ploration of alignments of functionally equivalent protein
sequences. By integrating the automated calculation of cor-
relations and a rapid visual representation of the results, the
tool supports the user in the search for promising patterns
and in testing hypothesis.
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