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Abstract. We present a GPU algorithm for the nearest neighbor search,
an important database problem. The search is completely performed
using the GPU: No further post-processing using the CPU is needed.
Our experimental results, using large synthetic and real-world data sets,
showed that our GPU algorithm is several times faster than its CPU
version.

1 Introduction

Recent publications have studied the usage of GPUs as co-processors for database
applications. Not surprisingly, the first papers mainly focused on graphics related
operations in spatial databases, e.g., methods to accelerate the refinement step
of spatial selections and joins using the GPU [1] or how to integrate the hardware
acceleration provided by GPUs with a commercial DBMS for spatial operations
[2]. Govindaraju et al. [3] focused on general database operations on the GPU.

An important, but challenging, database problem is the nearest neighbor
(NN) search. The NN of a given query point q ∈ Rd in the database D ⊂ Rd

is defined as uNN = {u′ ∈ D | ∀u ∈ D, u 6= u′ : δ(u′, q) ≤ δ(u, q)} for a given
distance function δ. Finding the NN has many applications in fields like similarity
search in multimedia databases, data mining, and information retrieval. Several
indexing methods have been proposed for implementing NN search [4]. However,
most of the experiments reported in this area show that the performance of a
linear scan is highly competitive for high-dimensional data sets, and that it can
be faster than any index structure in such spaces. In addition, the famous results
by Beyer et al. [5] have shown that theoretically, for very high dimensionality,
the NN problem is inherently linear for a wide range of data distributions.

In this paper, we provide a GPU implementation of the linear scan based NN
search algorithm. We evaluate our solution using large real and synthetic data
sets, obtaining significant speed ups over the CPU-based algorithm.

2 GPU Implementation of Nearest Neighbor Search

A linear scan based NN search computes the distance δ between a query object
q ∈ Rd and all objects in the database D ⊂ Rd. The object with minimum
? On leave from the Department of Computer Science, University of Chile.
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Fig. 1. Data organization in textures (left), and how does FP1 work (right).
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Fig. 2. Texel processing by FP2 (left) and texture reduction by FP3 (right).

distance to q is returned as the NN. We depict now how to efficiently implement
this algorithm with the aid of a GPU. The first step of the algorithm is to load
the vectors into the graphics card texture memory. For this purpose, we create
d 2-D textures. Each of them stores one coordinate value of all vectors. As we
use the four color channels to store the data, each texel from the ith texture
contains the ith coordinate value of four different vectors (see Figure 1 (left)).

We use three fragment programs (FPs) to implement the linear scan. The
first FP computes the distance between each object u ∈ D and the query q. As
distance δ, we use the Manhattan distance (other metrics are possible). To fully
exploit the potential of the GPU, we compute the difference between coordinates
for several dimensions simultaneously. At each pass, the algorithm processes t
textures (dimensions) in parallel, for a total of d/t passes. The results from previ-
ous iterations are aggregated with the results of the current pass in an additional
texture texR (which initially contains zeros). Figure 1 (right) illustrates.

The next rendering pass determines the NN to q. The second FP computes
the minimum distance value within the color+alpha channels (dmin) and asso-
ciates this distance value to the index of its correspondent object (idxmin) (see
Figure 2 (left)). The FP compares the four values stored in each texel, keeping
the minimum value in the red channel and storing its associated index (an in-
teger value between 1 and n) in the green channel. The third FP searches the
minimum distance between four appropriately selected texels, and iteratively
reduces the texture size by a factor of 4 at each pass. The minimum distance
and its associated index are stored in the red and green channel, respectively
(see Figure 2 (right)). This iterative reduction is the tricky part in the search
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Fig. 3. Results varying dimensionality (left) and database size (right).

algorithm, and it is simulated by storing the results on the first quarter of the
original texture, and only this quarter is used at the next rendering step. The
algorithm stops when the texture has been reduced to size 1×1. Then, only one
texel is read back from the graphics card memory. The object whose index was
stored in the retrieved texel is returned as the NN of q.

3 Experimental Results

We used an NVIDIA GeForce 6800 Ultra graphics card with 256 MByte of mem-
ory. The CPU is a Pentium IV 3.0 GHz. The CPU algorithm was implemented in
C++ and compiled with the Intel C++ Compiler v8. We activated all optimiza-
tion flags for producing the fastest possible SSE2 enhanced CPU code. We used
the Cg compiler v1.3 for the GPU FPs. We measured query upload time, compu-
tation time, and texture download time (the databases are uploaded only once
into the graphics memory, thus this upload time is amortized over the queries).

The synthetic database consisted of 262,144 vectors (16-D to 256-D), with
random coordinates values uniformly distributed in the range [0.0, 1.0]. We aver-
aged the results over 1,000 random query vectors, and we got the best times using
t = 8. Figure 3 (left) shows the obtained results: The GPU algorithm achieved
an average speed-up factor of 6.4x. Our algorithm also scaled well when using
different database sizes. If the data did not fit into one texture, we partitioned
the data in blocks of about 1 million objects and run the algorithm on each block
iteratively. Figure 3 (right) shows the results for 1 to 7.5 million vectors.

We also tested our GPU algorithm using real-world databases. The first one is
the Forest CoverType (UCI-KDD-A) which contains data about different forest
cover types obtained by the U.S. Forest Service (54-D, 250,000 observations). The
second one is the Corel image features (UCI-KDD-B), which contains features of
images extracted from a Corel image collection (32-D, 65,000 images). Both sets
are available at the UCI KDD Archive [6]. The third one is a 3D CAD database
(512-D, 16,000 models). For each data set, we selected 1,000 random objects
as queries for the NN search. Figure 4 (left) shows the results. We observed
speed-up factors of, respectively, 6.4x, 4.5x, and 4.2x over the CPU algorithm.
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Fig. 4. Results using real data sets (left) and comparison between two GPUs (right).

Finally, we compared the GeForce 6800 Ultra card with one card from the
previous generation, namely the GeForce 5900 FX, to estimate what kind of
improvements one could expect for the future. With regard to hardware (pixel
shaders and memory bandwidth), the GeForce 6800 Ultra should be at least twice
as fast as the GeForce FX 5900. Figure 4 (right) shows the obtained results. For
the next generation of GPUs, we expect a similar speed-up factor.

4 Conclusions

We presented a GPU accelerated algorithm for NN search in high-dimensional
vector spaces. We described how to map vectors into texture data, without re-
strictions on the dimensionality of the data, and we showed that relatively simple
FPs (including a texture reduction process) can efficiently return the NN object.
Experimental results using synthetic and real-world data sets showed that our
GPU algorithm provide a significant speed improvement over the CPU algo-
rithm, with linear scalability in dimensionality and database size.
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