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Abstract: Analysts interact with OLAP data in a predominantly “drill-down” fashion,
i.e. gradually descending from a coarsely grained overview towards the desired level
of detail. Analysis tools enable visual exploration as a sequence of navigation steps
in the data cubes and their dimensional hierarchies. However, most state-of-the-art
solutions are limited either in their capacity to handle complex multidimensional data
or in the ability of their visual metaphors to provide an overview+details context.
This work proposes an explorative framework for OLAP data based on a simple
but powerful approach to analyzing data cubes of virtually arbitrary complexity. The
data is queried using an intuitive navigation in which each dimension is represented
by its hierarchy schema. Any granularity level can be dragged into the visualization to
serve as an disaggregation axis. The results of the iterative exploration are mapped to a
specified visualization technique. We favor hierarchical layouts for their natural ability
to show step-wise decomposition of aggregate values. The power of the tool to support
various application scenarios is demonstrated by presenting use cases from different
domains and the visualization techniques suitable for solving specific analysis tasks.

1 Introduction

The last decade has witnessed an explosion of visual interfaces for OLAP (OnLine An-
alytical Processing) - dashboards, charts, maps and scatterplots - which have impacted
the business intelligence modern analytics. Interactive features, such as zooming, slicing,
brushing and filtering, are becoming a commonplace in analysis software. With ever-
growing volumes of accumulated data visualization becomes indispensable for extracting
useful knowledge from data by a human expert. Adequate visual presentation helps to
rapidly reveal patterns, recognize trends or anomalies. Especially the ad hoc queries,
when an expert is guided by a mere guess or a hypothesis about the knowledge hidden
in the “raw” data, benefit from the ability to visually specify the data set of interest and
interact with it.

Analysis tools that abound the market offer a multitude of features and functions that



require training and skill to understand and use. Feature overload and usability deficiencies
often lead to loss of orientation and discourage users from using novel techniques. The
work reported in this paper is an attempt to design an OLAP interface advanced in terms of
its exploration and visualization capabilities, but simple and intuitive in its usability with
minimum training requirements. The applicability of a particular visualization technique
depends on multiple criteria, such as the type of the analytical task, data volume and
complexity, user preferences and skills. Our approach is to account for a variety of tasks
by designing a comprehensive framework, in which users can experiment with various
layouts and techniques to find satisfactory solutions to specific problems.

OLAP systems employ multidimensional data model to structure “raw” data into multidi-
mensional cubes in which each data entry is shaped into a fact with associated numerical
measure(s) and descriptive dimensions that characterize the fact [PJO1]. The values within
a dimension can be further organized in a containment type hierarchy to support multiple
granularities. The table containing the facts is referred to as fact table; other tables, called
dimensional tables, store the dimensional values and the hierarchical relationship among
them. Analytical queries aggregate measure values over a range of dimension values to
provide the view of the desired dimensionality and granularity. The most common OLAP
operations are slice-and-dice to define a sub-cube, drill-down and roll-up to perform ag-
gregation and disaggregation, respectively, along a hierarchical dimension, drill-across to
combine multiple cubes, ranking to find the outlier values, and rotating to see the data
grouped by other dimensions.

While analytical queries aggregate over detailed data, visual exploration evolves in the in-
verse direction, i.e. descending from coarsely grained aggregates to more detailed views
via stepwise decomposition along selected dimensions. The prevailing “from-overview-
to-details” query direction is reflected in the structure of a typical OLAP data browser:
each data cube is presented as a hierarchy of its dimensions where each dimension is a
recursive nesting of its granularity levels, starting from the coarsest granularity and con-
tinuing with each finer level as a child of its predecessor. Users proceed by selecting the
measure(s) and the aggregation function to invoke, the dimensions to use as decomposi-
tion axes, by filtering the selected data set and manipulating the visual representation of
the result. These query steps are performed irrespective of the type of query and the cho-
sen visualization technique. Therefore, we see a great usability improvement potential in
designing a common uniform navigation framework for satisfying any type of analytical
query.

The rest of the paper is organized as follows. Some outstanding related work on OLAP
visualization is discussed in Section 2. In Section 3 we describe the data navigation as
the core component of our proposed visual OLAP interface for visual exploration of data.
Section 4 identifies the visualization techniques which best fit the needs of explorative
analysis. Section 5 introduces the explorative framework as an abstraction of the mapping
between user interaction and visual data representations. Finally, the concluding remarks
are found in Section 6.



2 Related Work

An attempt to address the related work on designing visual interfaces for exploring multi-
dimensional data in its entirety would explode the scope of this work. We limit ourselves
to naming a few solutions which offer distinguished features relevant for our work.

Eick at al. presented a survey of common visual metaphors and associated interaction
techniques with improved visual scalability, i.e. the capability to effectively display large
volumes of multidimensional data [EK02]. The proposed techniques were implemented in
the ADVIZOR system, in which each visual metaphor has a single zoom path. Rather than
displaying multiple granularities within the same visualization, multiple perspectives, i.e.
linked views displayed on the same screen, present various projections of data.

Stolte et al. proposed a class of multiscale, i.e. supporting multiple zoom paths, visu-
alization techniques for data cubes in [STHO3]. Implementation of these techniques is a
part of an advanced system called Polaris [STHO02], as well as its commercial successor
Tableau Software [T06], which extend the Pivot Table interface by offering a combination
of displays and tools for visual specification of analysis tasks.

Techapichetvanich et al. proposed a visualization framework for OLAP based on the Hier-
archical Dimensional Visualization (HDDV) technique [TD05] which uses colored stacked
bars. Each bar shows the results of decomposing the root aggregate along a chose dimen-
sion, whereas the color is used to mark the portion of values satisfying the specified range
condition. Bars are not explicitly linked to each other, allowing to split the same aggregate
along multiple dimensions.

A work by Hellerstein et al. [HACT99] elaborates on the mechanisms to improve human-
computer interaction and user control when analyzing massive data sets. Their proposed
framework combines visualization and data mining techniques to guide the user through
the data discovery process.

ProClarity was the first to introduce a hierarchical drill-down visualization called De-
composition Tree [P06], which places each aggregate into a node and its constituent sub-
aggregates, obtained by drilling down into any dimension, to its child nodes. Child nodes
display the next level of detail from left to right by value and percentage of the total.
ProClarity’s technique is designed to expand node by node for the “’speed-of-thought”
analysis, is limited to decomposing a single measure and has no visual formatting of the
values. Besides, it is rather wasteful in terms of display utilization and is thus infeasible
for exploring large data volumes.

Further enhancements to the hierarchical disaggregation are found in the OLAP web client
Report Portal 2.1 released by XMLA Consulting [R06]. Report Portal offers graphical
decomposition trees, such as BarChart and PieChart Trees, which arrange the entire drill-
down view into a chart hierarchy. Moreover, drill-down steps are not aligned into dimen-
sional levels, thus allowing to expand “sibling” values along different dimensions.

In a previous work we introduced an explorative framework based on enhanced decom-
position trees [VMO06] which implement various tree layouts and allow to choose between
different visual presentations within the nodes. Schema-based navigation approach en-



ables efficient browsing and fast generation of visual hierarchies, support of complex di-
mensional hierarchies and parallel exploration on multiple cubes along shared dimensions.
Classification of supported dimensional patterns can be found in [MS06]. In this work we
concentrate on the database aspects of transforming the cube schema into frontend naviga-
tion, translating user interactions into OLAP queries and arranging the results of successive
query steps into a specified visual format.

Whenever a data cube contains spatio-temporal characteristics, the analysis may benefit
from specialized exploration techniques for space-time patterns. A synopsis of techniques
for spatio-temporal exploration arranged according to the data and task types is produced
in [AAGO3]. Kuchar et al. [KHHP06] point out that time dimension is not an ordinary data
attribute and that, therefore, to ensure satisfactory analysis, interaction and visualization
techniques have to incorporate explicit awareness of temporal characteristics.

3 Datacube as a Navigational Hierarchy

The entire explorative framework can be considered as composed of an input and an output
area for specifying queries and presenting query results, respectively. The input element
is the navigation which displays the structure and the contents of the data in form of a
browser for visual querying. The main area of the graphical interface serves for outputting
the results of user interaction in a selected visual format.

To be visually navigable, the facts are modeled according to the multidimensional data
model.Thereby, a straightforward spreadsheet approach with no distinction between struc-
ture and contents is inadequate for managing complex data where explicit knowledge of
the structure is needed to ensure the validity of generated OLAP operations.

3.1 Conceptual and Logical Design

Conceptual design is the initial phase of building a data cube. At this stage, the developer
investigates the user requirements as well as the available data and defines the structure
of the fact tables and of the associated dimensional hierarchies using modeling techniques
such as ER or Multidimensional ER model, UML or Dimensional Fact model.

The challenges of designing a data cube are demonstrated at an example drawn from an
existing university data warehouse. Decision-makers expect the data from decentralized
procurement systems to be extracted into a single fact table Expenditures with measures
amount and items for the amount paid and the number of ordered items, respectively.
The facts are determined by dimensions category for cost type, project as the order’s
destination, funding as the funding source, institution as the origin of the order, and period
for tracing the date of the purcgaethe expenditure was registered. Figure 1 shows the
expected structure of the cube as a dimensional fact schema. The schema is designed using
the Dimensional Fact model, introduced by Golfarelli et al. in [GMR98] and extended by
super-/subclass relationships to account for heterogeneity in dimension institution.
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Figure 1: Dimensional fact schema of data cube Expenditures

With the exception of funding, dimensional values are further arranged into hierarchies.
Dimensions are presented as directed graphs with aggregation levels as nodes and “rolls-
up-to” relationships between them as edges. A dimension’s graph is rooted at an abstract
node with a single value T, interpreted as all. The bottom-level node of each dimension
is linked directly to the fact table. Temporal dimension period is a classical example of a
multiple hierarchy: days can be aggregated along three distinct aggregation paths.

A dimension worthwhile special treatment is institution. It is typical for institutional hier-
archies to be unbalanced and consist of multiple sub-classes, each with its own attributes
and hierarchical levels. However, an analysis task may require a heterogeneous hierarchy
to be “fetched” into a single dimension by means of generalization, i.e. superclass/subclass
relationships. Standard OLAP tools, incapable of supporting generalization hierarchies,
would only work on separate data marts, one for each homogeneous sub-class. Our ap-
proach admits heterogeneity within a dimension but enforces the hierarchy’s subdivision
into homogeneous disjunct subclasses to ensure correct aggregation (further details can be
found in [MS06]). Back to the example at hand, all institutional instances are subdivided
into sub-classes of administrative and teaching institutions, each with its own hierarchy.

Relational OLAP employs star or snowflake schema, both based on arranging the data in
fact and dimensional tables. Fact table is constrained to have one column per measure, as
well as one column per dimension for storing the references to the values in the respective
dimensional table. Star schema places the entire dimension, however complex it might
be, into a single relation by pre-joining all aggregation levels, similarly to a spreadsheet.
Snowflake schema normalizes hierarchical dimensions by placing each granularity into a
separate table, thus eliminating redundant storage and facilitating consistency of updates.

Snowflake schema becomes the only option when dimensional hierarchies are prone to
irregularities, such as heterogeneity, non-strictness, missing values, mixed granularity etc.
Figure 2 shows the resulting snowflake schema institution. An auxiliary relation subclass
stores the IDs and the names of all defined subclass categories. The constraint of being
referenced by just a single attribute in the fact table is satisfied by the trick” of merging
the primary keys from service and chair into a single relation institution.
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Figure 2: Logical design of the complex dimension institution

Upon the completion of the normalized snowflake schema, a star-schema view of the each
homogeneous (sub-)dimension is generated. The view is defined as a join between all
dimensional levels and its purpose is simply to facilitate the generation of the OLAP query
from the visual navigation events (further explanation is given in the next subsection).

3.2 Navigation Hierarchy

Users access the data via a file-browser-like navigation hierarchy. The top-level naviga-
tion objects are the data cubes, consisting of three types of objects, namely the dimen-
sional hierarchies, the measures, and the aggregation functions applicable to the measures,
as shown in Figure 3(a). Dimensions are represented by their hierarchy schemata in a
top-down fashion: the top level is the abstract root node T (with the exception of non-
hierarchical dimensions which do not need an extra root node); each further hierarchy
level is a sub-folder nested in the folder of its parent level. Non-hierarchical dimension
levels, i.e. those with the finest granularity, are presented by non-folder icons.
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Figure 3: Schema-based data browser for querying OLAP cubes
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Figure 4: Navigation-to-database mapping fragment

Figure 3(b) shows the browser hierarchy of institution. Notice, that unlike the dominating
OLAP navigation approaches, which directly display the data hierarchy of a dimension,
our schema-based approach explicitly presents the hierarchy schema. Each schema node
has a dimensional data table related to it; the values at each level are accessed via a “lens”
icon, as illustrated in Figure 3(b) for the node department. Dimensional data can be fur-
ther explored in the context of its hierarchy: data entities are supplied with “back” and
“forward” arrows to navigate to that entry’s parent and child values, respectively.

Once the user has chosen the measure m and the aggregation function a from fact table f,
the query can be initialized as SELECT a(m) FROM f. Selection of any sub-dimension
d; in dimension d is interpreted as a drill-down along d:

SELECT d;.id, a(m) FROM f JOIN ... JOIN d; GROUP BY d;.id.

Filtering along any dimension is done by setting/unsetting values displayed in the dimen-
sion’s popup data view and is reflected in the WHERE clause.

Since dimensions in the snowflake schema are linked to the fact table only via the bottom
granularity level, all higher levels referenced by a query need to be joined all the way down
in order to reach the fact data. Figure 4 shows the correspondence between the navigation
nodes and the data tables for the subtree of administrative institution. Black arrows show
the corresponding join attributes of all tables. Notice the beneficial effect of the joined
view adm_inst: any dimensional node irrespective of its depth can be joined with the fact
table directly via this view, without having to traverse the navigation tree. Materialization
of the joined views may be considered for improving the query execution time due to
spared intra-dimensional joins.

Information about the structure of the data cubes, necessary for generating the data browser
and mapping navigation events to database queries, is stored as metadata. The metadata
has been modeled in accordance with the specification of the Common Warehouse Meta-
model (CWM) [Obj06]. In the recent years, CWM has evolved into a widely adopted
standard for metadata interchange in the data warehouse environment. OLAP package of
this model provides all necessary concepts (e.g., multiple hierarchy, generalization rela-
tionship, etc.) for describing data cubes as navigation objects in an explorative interface.



4 Visualization of OLAP Queries

Confronted with evaluation of thousands of tuples returned by an OLAP query, users tend
to focus on a few outstanding values and discard the remaining data, or run another query
to retrieve the next-level aggregates (drill-down or roll-up) w.r.t. the ones obtained previ-
ously. While this strategy can be successfully applied for reporting tasks, the exploratory
analysis is driven by finding information hidden in the data via ad hoc queries. In such
scenarios, abstract visual representations (i.e., overviews) facilitate the comprehension.

As data volumes for analysis are huge and a lot of insight is hidden at lower granularity
levels, coarsely grained aggregates play rather an auxiliary role in explorative queries. The
analyst needs to assess the data at different aggregation levels and compare the aggregates
at the same level as well as across levels. As an example, one might want to compare
expenditures of departments with each other, but comparison of a small department with a
project team of approximately the same size would also make sense.

Multiscale visualization techniques are effective for facilitating the exploration process
because they change the visual representation to show the data at different levels of ab-
straction: at a high level, there are just few coarsely grained values; as the user zooms, the
data density decreases, allowing to show more detailed representations of individual data
points [STHO3]. Preservation of the overview throughout the course of interaction (zoom-
ing and panning) becomes crucial as otherwise the user might easily lose the context.

Eventually, scalability of the visualization techniques, i.e. the ability to display ever grow-
ing number of items in a limited screen while avoiding clutter and overlap, becomes a
challenge [EKO02]. This challenge turned display space into a scarce resource, which in
turn lead to the development of space-filling visualization techniques that attempt to uti-
lize the whole available display space.

4.1 Hierarchical Visualization Techniques for OLAP

There are many factors to evaluate when identifying visualization techniques adequate for
a specific application. Visualization encompasses anything from simple charts to highly
unique representations, from static diagrams to complex interactive views. In the analysis
tools of the current state of the art , traditional visualization techniques such as charts,
plots, or pivot tables, prevail. Their main advantages are simplicity, straightforward inter-
pretability, and familiarity. However, the applicability of these techniques is rather limited.
For example, the charts only allow uniform granularity, which makes it impossible to com-
pare aggregates across granularity levels within the same view. Furthermore, previously
visualized values get lost each time a drill-down or a roll-up step is performed.

The standard interface for a series of successive disaggregation steps is a pivot table, which
nests multiple granularities along its two axes. Evidently, pivot tables are not effective for
exploratory analysis because of textual list-based representation of the data. For some
query types, the resulting pivot table can be replaced by a visual spreadsheet technique.
Consider applying a non-cumulative aggregation function, such as MIN, MAX, or AVG, in
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which case the aggregates at all levels remain within comparable ranges. This common
value range opens up an opportunity to map the values to attribute color and transform the
pivot table into a hierarchical HeatMap. Figure 5 contains an example of such HeatMap:
bottom-level nodes are represented as cells in an array; higher level nodes are shaped as
rectangles spanning the width of their subtrees, similarly to the cells in a pivot table. The
visualization is obtained by a 3-step drill-down along the subtree of teaching institution
for the measure amount’s maximum value. A logarithmic scale of the colormap copes
with the skewness of the resulting distribution; sliders at the colormap’s poles are useful
for dynamically adjusting the visualization’s sensitivity to outliers.

Due to the hierarchical characteristics found in many dimensions of data cubes, hierar-
chical visualization techniques lend themselves to be utilized in the analytical process. In
general, the analyst follows a top-down approach starting at the higher aggregation levels,
because the limited amount of aggregates makes it easier to retain an overview. Step-wise,
he either decides to apply slice-dice or drill-down operations to reduce the subset or to
retrieve more details.

Traditionally, node link diagrams are used to represent hierarchical data in a compact yet
intuitive way. Given a good spatial embedding of the nodes of such a tree, it is easy to
determine connectivity characteristics of individual nodes. In the context of visualizing
OLAP data, a technique, called Decomposition Tree, proposed by ProClarity [P06], and
their visually enhanced variants [VMO6] bridge the gap from spreadsheet or chart views
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Figure 7: Decomposition Tree with space-filling bars

to hierarchical views. Decomposition tree preserves the aggregates computed in previous
steps, similarly to pivot tables, but employs a node-link tree layout to show the parent-child
relationships between the sub-aggregates. Figure 7 gives an example of a decomposition
tree, which arranges the child sub-aggregates of each value into a space-filling bar chart.
The values at each level and across levels are visually comparable to each other via the
size of their rectangle areas.

The connection layouts, based on node-link diagram supports immediate perception of
child-parent relationships, however, it is not efficient in terms of display utilization be-
cause most of the pixels are wasted as background. Moreover, the nodes at lower levels
quickly run out of space for displaying the labeling information. Here, the enclosure, also
known as “value-by-area”, visualization techniques offer a space-optimized solution. The
most commonly used enclosure techniques are TreeMaps [Shn92] and their variations,
employing rectangular node shape, and radial layouts, such as the SolarPlot [Chu98] and
InterRing [YWRPO3], in which the aggregates are laid out radially, with the most aggre-
gated values at the center and finer granularity levels farther away from the center.

Figure 8 shows the results of querying a data cube containing student enrollments from a
university data warehouse, visualized using a SolarPlot. The aggregated measure (number
of enrollments) values are mapped to the size of the circle segments in each ring. For
examining the distribution of foreign students over departments, the analyst filtered out
Germany in the dimension country (German: Land), retrieved the sub-aggregates at sub-
continent (Ger.: Subkontinent) and, subsequently, at country level, and, in the final step,
added the dimension department (Ger.: Institut) as the outer ring. SolarPlot technique
overcomes the problem of nested rectangle layouts (TreeMaps) that allocate progressively
less space to the nodes at lower tree levels. This is due to the fact that outer rings intrin-
sically occupy more space than the inner ones. One drawback is that large proportions of
the usually rectangular screen stay unused.
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4.2 Temporal and Spatial Visualization Techniques

In the multidimensional data model, spatial and temporal components of the data are
treated just like any other dimensions. However, to fully exploit the potential and the
richness of spatio-temporal data attributes, the awareness of their specific characteristics
has to be incorporated into the data warehouse and the analysis tools on top of it.

The outstanding role of the temporal dimension in OLAP is reflected in the data warehouse
definition: “...a subject-oriented, integrated, time-variant, non-volatile collection of data in
support of management’s decision making process” [I[nm02]. Rivest et al. [RBMO1] point
out that space is the other of the two analytical components, needed to take full advantage
of a data warehouse, and that spatial dimensions, just like temporal ones, should be con-
sidered standard for any data warehouse implementation. Indeed, there is an estimation
that about 80% of all data stored in corporate databases has a spatial component [Fra92].

The requirements towards a visual interface in handling spatio-temporal data is twofold:
1) to communicate spatial or temporal patterns hidden within the data, and 2) to facilitate
query specification by building up a mental image of the data distribution which helps in
restricting too generally formulated queries to data regions of interest.

Example 1. To visualize the temporal evolution of a certain measure within a data cube,
a recursive pattern visualization [AKK95] can be adapted to fit into a calendar view, sim-
ilar to the calendar-based visualization [VWVS99]. Figure 6 demonstrates the results of
analyzing the volumes of email communication along time dimension using the above
approach. As the information can be displayed at several granularities without changing
position of the underlying data items, this technique has proven to be very scalable. Re-
cursive pattern calendar view can be used as an exploration technique in its own right,



or as a node-level view in a decomposition tree, to combine temporal exploration with
dis-aggregation along other dimensions.

Example 2. Spatial attributes, such as address, location coordinates, position, orientation,
or size, are a frequently encountered dimension in many data cubes. Geography is often
used as an exploration axis due to the fact that other data characteristics (i.e., consumer
behavior) may strongly vary in space. However, in straightforward techniques, such as
highlighting a map or a cartogram according to the measure’s value, large countries -
which do not necessarily represent more data elements than small countries - dominate the
visual impression and a lot of display space remains unused.

Distortion approaches are employed to overcome the disadvantages of classical maps. The
measure under analysis is used as a distortion parameter as demonstrated in [KMPT05].
In case of a gap-free rectangular distortion, the resulting map degrades to a TreeMap, as
in the Hierarchical Network Map technique [MVO06]. Figure 9 reveals the geographical
distribution of the network traffic at a network gateway. The approach simultaneously
displays two measures: one value is mapped to the size of the rectangular areas whereas
the other is shown by color. In this example, the size of the country’s or the internet
backbone system’s node is proportional to the number of IP addresses they represent, and
color shows for the actual traffic volumes registered at each node.

5 Exploratory Framework

Interactive visualization is defined by Colin Ware in [War04] as “a process made up of
a number of interlocking feedback loops that fall into three broad classes. At the lowest
level is the data manipulation loop, through which objects are selected and moved using
the basic skills of eye-hand coordination. ... At an intermediate level is an exploration
and navigation loop, through which an analyst finds his or her way in a large visual data
space... At the highest level is a problem-solving loop through which the analyst forms
hypotheses about the data and refines them through an augmented visualization process.”

The exploratory framework introduced in this work supports the interactive visualization
process, described above, by defining an appropriate interface for 1) data navigation, i.e.
translating visual navigation steps into database queries, 2) visualization, i.e. mapping the
retrieved data into a selected visual format, and 3) interaction, i.e. stepwise manipulation
of the generated view to solve the defined analytical task. In section 3 we already described
our approach to data navigation. Therefore, the focus in this section is on the last two steps
that address the generation and iterative refinement of the visualization.

The previous section contains just a limited selection of visualization techniques from a
multitude of potentially applicable ones. The challenge of integrating various layouts into
a unified framework is to find a common abstraction interface for them all in order to
enable their generation by invoking the same navigation events.

As all supported visualization techniques are based on a hierarchical layout, each visual-
ization is a tree, i.e. a directed acyclic graph with all edges oriented away from the root.
Any two nodes of the tree connected by an edge are characterized by parent-child relation-



Estonia

Netherlands

Figure 9: Hierarchical Network Map showing aggregated network traffic of the countries
with a drill-down into Germany’s node showing the level of its internet backbone systems.

ship. In the context of disaggregation the tree abstraction can be narrowed to the notion of
a decomposition tree: the nodes contain the aggregate values and the edges are labeled by
the respective dimensional characteristics of their nodes. Depending on the layout (e.g., in
“edge-less” space-filling approaches), the labels can be placed inside the nodes.

Child level aggregates are obtained by decomposing a node or the entire tree level along a
dimensional category. At this point, the visualizations can be classified according to their
node properties. In plain-value-node techniques, as found in Figures 8 and 5 , each tree
node refers to a single aggregate value, mapped to node’s area and/or color. Chart-node
approaches, as in Figures 7 and 6, allow decomposition inside the node, i.e. a node is
composed of all child values of an aggregate, obtained by decomposing the latter along a
specified dimension and arranged into a chart or other 2-dimensional view.

Further common elements of the presentation layer can be defined as follows:

Dimensional axis corresponds to a dimension category, represented by a node in the nav-
igation hierarchy. Every distinct value of the dimension’s values is interpreted as a co-
ordinate (e.g. axis month, coordinate March). Each level of the tree, and — in case of a
chart-node layout — also each node has its own dimensional axis.

Decomposition axis is the dimensional axis chosen for the disaggregation step, resulting
in populating the chart-nodes’ contents or adding a new level to the tree. Decomposition
schema is the lattice of all decomposition axes in the visual hierarchy.

Core axis is defined for the class of space- and/or time-aware visualization techniques.
These approaches treat the respective spatial or temporal dimension differently from any
other dimension, for example, in the recursive pattern, the only valid decomposition oper-
ation is that along the time axis whereas other dimensions may be only used for filtering.

Tree split generates a new level of the tree by dis-aggregating the values in the bottom-



level nodes along the specified decomposition axis. In terms of OLAP operations, dis-
aggregation corresponds either to a drill-down, i.e. descending in the granularity of the
same dimension, or to a nesting, i.e. decomposing along a category from a different dimen-
sion. This separation is important for chart-node techniques, which distinguish between a
primary, an inner, and an outer split:

e Primary split is the first decomposition step which generates the subset of aggregates
to populate the chart view of the root node.

o [nner split is a drill-down into a category of the primary split. The inner split refines
the granularity within the node’s chart.

e Outer split is a decomposition step along any axis that is not a part of the primary
split axis’ dimensional hierarchy. Outer split leaves the dimensional axis of the
nodes’ inner charts unchanged.

The above defined abstractions of the presentation are fundamental for implementing a
uniform approach to generating a visualization and interacting with it. Once a visualiza-
tion technique has been chosen, the view is instantiated with the measure(s) and the ag-
gregation function selected from the cube’s navigation hierarchy. Decomposition steps are
performed by dragging the dimensional nodes from the navigation into the visualization
area. Filtering can be performed in the background by setting the values to hide/display in
the data browser, or directly, by deleting nodes or entire sub-trees from the visualization.

Further interaction techniques, such as zooming, rearranging the layout, swapping axes,
sorting, brushing, re-scaling etc. are supported. However, these features are not specific to
our framework and therefore, we omit further details.

6 Conclusion

In this work, we introduced a framework for interactive hierarchy-driven exploration of
OLAP data, in which the data navigation as well as the visualization approaches are based
on the hierarchical view of the data. Hierarchical structures enjoy growing popularity in
visual analysis. Multidimensional data cubes do not only contain hierarchically structured
data but are also explored in a predominantly hierarchical fashion by iteratively refining
the subset of interest and its dimensionality and granularity. We identify two key issues
in supporting powerful visual analysis, namely, (1) data navigation for specifying iterative
queries and (2) minimization of cognitive process, or appropriate presentation.

As the first building-block of the framework, we proposed a schema-based data naviga-
tion which facilitates visual specification of OLAP queries. Unlike traditional direct data
tree navigation, found in many OLAP interfaces, our approach strictly distinguishes be-
tween the schema of a hierarchical dimension and the data that populates it. Representing
dimensions by their schema results in a highly compact navigation, admitting multiple
and generalization hierarchies. The ability to stay at the schema level allows the user to
generate a visualization of a large data set with a small number of drag&drop operations.



In the next step, we identified scalable visualization techniques that are able to cope with
the challenge of representing potentially large result sets of OLAP queries. Hierarchical
layouts are appreciated for their natural ability to show the data of different granularity
in the same view. An explorative query in a data cube can be viewed as a series of dis-
aggregation and filtering steps, therefore the sub-aggregates computed at each step can be
displayed in form of a decomposition tree. Special characteristics of time and space di-
mensions were taken into account as those two dimensions are prominent in the context of
data warehouses and full account of their specific requirements is likely to reveal valuable
patterns in the course of exploration.

By defining a common abstraction level for mapping the results of user interaction into
a visual presentation, we could integrate manifold visualization approaches for solving a
variety of exploration and conventional reporting tasks in the data warehouse context.
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