
X-tree

Daniel Keima, Benjamin Bustosb, Stefan Berchtoldc, and Hans-Peter Kriegeld

a Department of Computer and Information Science, University of Konstanz
b Department of Computer Science, University of Chile

c stb ag, Germany
d Institute for Computer Science, Ludwig-Maximilians-University Munich

SYNONYMS
Extended node tree

DEFINITION
The X-tree (eXtended node tree) [1] is a spatial access method [2] that supports efficient query processing for
high-dimensional data. It supports not only point data but also extended spatial data. The X-tree provides
overlap-free split whenever it is possible without allowing the tree to degenerate; otherwise, the X-tree uses
extended variable size directory nodes, so-called supernodes. The X-tree may be seen as a hybrid of a linear
array-like and a hierarchical R-tree-like directory.

HISTORICAL BACKGROUND
The R-tree [3] and the R*-tree [4], spatial access methods with a hierarchically structured directory that use
minimum bounding rectangles (MBRs) as page regions, have primarily been designed for the management of
spatially extended, two-dimensional objects, but have also been used for high-dimensional point data. Empirical
studies, however, show a deteriorated performance of these spatial access methods for high-dimensional data.
The major problem of these index structures in high-dimensional spaces is the overlap between MBRs. In
contrast to low-dimensional spaces, there is only a few degrees of freedom for splits in the directory. In fact, in
most situations there is only a single good (overlap-free) split axis. An index structure that does not use this
split axis will produce highly overlapping MBRs in the directory and thus show a deteriorated performance.
Unfortunately, this specific split axis might lead to unbalanced partitions. In this case, a split should be avoided
to prevent underfilled nodes.

It is well established that in low-dimensional spaces the most efficient organization of the directory is a hierarchical
organization. The reason is that the selectivity in the directory is very high which means that, for example for
point queries, the number of required page accesses directly corresponds to the height of the tree. This, however,
is only true if there is no overlap between directory rectangles which is very likely for low-dimensional data.
It is also reasonable, that for very high dimensionality a linear organization of the directory is more efficient.
The reason is that due to the high overlap, most of the directory if not the whole directory has to be searched
anyway. If the whole directory has to be searched, a linearly organized directory needs less space and may be
read much faster from disk than a block-wise reading of the directory. For medium dimensionality, an efficient
organization of the directory would probably be partially hierarchical and partially linear. The problem is to
dynamically organize the tree such that portions of the data which would produce high overlap are organized
linearly and those which can be organized hierarchically without too much overlap are dynamically organized in
a hierarchical form.

The X-tree is directly designed for the managment of high-dimensional objects and based on the analysis of



problems arising in high-dimensional data spaces. It extends the R*-tree by two concepts: overlap-free split
according to a split history, and supernodes with an enlarged page capacity. The algorithms used in the X-tree
are designed to automatically organize the directory as hierarchical as possible, resulting in a very efficient hybrid
organization of the directory.

SCIENTIFIC FUNDAMENTALS
It has been observed experimentally that in high-dimensional spaces portion of the data space covered by more
than one MBR in an R*-tree quickly approaches the whole data space. This is due to the criteria used by the
R*-tree to split nodes, which also aim at minimizing the volume of the resulting MBRs. The high amount of
overlap between MBRs means that, for any similarity query, at least two subtrees must be accessed in almost
every directory node, thus reducing the efficiency of the index structure.

To avoid this problem, the X-tree maintains the history of data page splits of a node in a binary tree. The root
of the split history tree contains the dimension where an overlap-free split is guaranteed (that is a dimension
according to which all MBRs in the node have been split previously). When a directory node overflows, this
dimension is used to perform the split. However, the overlap-free split may be unbalanced, i.e., one of the nodes
may be almost full and the other one may be underfilled, thus decreasing the storage utilization in the directory.
The X-tree does not split in this case but creates a supernode instead. A supernode is basically an enlarged
directory node, which can store more entries than normal nodes. In this way, the unbalanced split is avoided and
a good storage utilization is mantained, at the cost of diminishing some of the discriminative power of the index.

Figure 1: Structure of the X-tree

The overall structure of the X-tree is presented in Figure 1. The data nodes of the X-tree contain rectilinear
MBRs together with pointers to the actual data objects, and the directory nodes contain MBRs together with
pointers to sub-MBRs (see Figure 2). The X-tree consists of three different types of nodes: data nodes, normal
directory nodes, and supernodes. Supernodes are large directory nodes of variable size (a multiple of the usual
block size). The basic goal of supernodes is to avoid splits in the directory that would result in an inefficient
directory structure. The alternative to using larger node sizes are highly overlapping directory nodes which
would require to access most of the child nodes during the search process. This, however, is less efficient than
linearly scanning the larger supernode.

Note that the X-tree is completely different from an R-tree with a larger block size since the X-tree only consists
of larger nodes where actually necessary. As a result, the structure of the X-tree may be rather heterogeneous as

2



Figure 2: Structure of a directory node in the X-tree

indicated in Figure 1. Due to the fact that the overlap is increasing with the dimension, the internal structure of
the X-tree is also changing with increasing dimension. In Figure 3, three examples of X-trees containing data of
different dimensionality are shown. As expected, the number and size of supernodes increases with the dimension.
For generating the examples, the block size has been artificially reduced to obtain a drawable fanout. Due to the
increasing number and size of supernodes, the height of the X-tree is decreasing with increasing dimension.

Figure 3: Various shapes of the X-tree in different dimensions

The most important algorithm of the X-tree is the insertion algorithm. It determines the structure of the X-tree
which is a suitable combination of a hierarchical and a linear structure. The main objective of the algorithm is
to avoid splits which would produce overlap. The algorithm first determines the MBR in which to insert the
data object and recursively calls the insertion algorithm to actually insert the data object into the corresponding
node. If no split occurs in the recursive insert, only the size of the corresponding MBRs has to be updated. In
case of a split of the subnode, however, an additional MBR has to be added to the current node which might
cause an overflow of the node. In this case, the current node calls the split algorithm which first tries to find
a split of the node based on the topological and geometric properties of the MBRs. Topological and geometric
properties of the MBRs are for example dead-space partitioning, extension of MBRs, etc. The heuristics of the
R*-tree [4] split algorithm are an example for a topological split to be used in this step. If the topological split
however results in high overlap, the split algorithm tries next to find an overlap-minimal split which can be
determined based on the split history.

For determining an overlap-minimal split of a directory node, one has to find a partitioning of the MBRs in
the node into two subsets such that the overlap of the minimum bounding hyperrectangles of the two sets is
minimal. In case of point data, it is always possible to find an overlap-free split, but in general it is not possible
to guarantee that the two sets are balanced, i.e., have about the same cardinality. It is an interesting observation
that an overlap-free split is only possible if there is a dimension according to which all MBRs have been split
since otherwise at least one of the MBRs will span the full range of values in that dimension, resulting in some
overlap.

For finding an overlap-free split, a dimension according to which all MBRs of a node S have been split previously

3



has to be determined. The split history provides the necessary information, in particular the dimensions
according to which an MBR has been split and which new MBRs have been created by this split. Since a split
creates two new MBRs from one, the split history may be represented as a binary tree, called the split tree.
Each leaf node of the split tree corresponds to an MBR in S. The internal nodes of the split tree correspond to
MBRs which do not exist any more since they have been split into new MBRs previously. Internal nodes of the
split tree are labeled by the split axis that has been used; leaf nodes are labeled by the MBR they are related to.
All MBRs related to leaves in the left subtree of an internal node have lower values in the split dimension of the
node than the MBRs related to those in the right subtree.

Figure 4: Example for the split history

Figure 4 shows an example for the split history of a node S and the respective split tree. The process starts with
a single MBR A corresponding to a split tree which consists of only one leaf node labeled by A. For uniformly
distributed data, A spans the full range of values in all dimensions. The split of A using dimension 2 as split
axis produces new MBRs A and B. Note that A and B are disjoint because any point in MBR A has a lower
coordinate value in dimension 2 than all points in MBR B. The split tree now has one internal node (marked
with dimension 2) and two leaf nodes (A and B). Splitting MBR B using dimension 5 as split axis creates the
nodes B and C. After splitting B and A again, the situation depicted in the right most tree of Figure 4 is
reached, where S is completely filled with the MBRs A, B, C, D, and E.

One may find an overlap-free split if there is a dimension according to which all MBRs of S have been split. To
obtain the information according to which dimensions an MBR X in S has been split, the split tree has to be
traversed from the root node to the leaf that corresponds to X. For example, MBR C has been split according
to dimensions 2 and 5, since the path from the root node to the leaf C is labeled with 2 and 5. Obviously, all
MBRs of the split tree in Figure 4 have been split according to dimension 2, the split axis used in the root of the
split tree. In general, all MBRs in any split tree have one split dimension in common, namely the split axis used
in the root node of the split tree.

The partitioning of the MBRs resulting from the overlap-minimal split, however, may result in underfilled nodes
which is unacceptable since it leads to a degeneration of the tree and also deteriorates the space utilization. If
the number of MBRs in one of the partitions is below a given threshold, the split algorithm terminates without
providing a split. In this case, the current node is extended to become a supernode of twice the standard block
size. If the same case occurs for an already existing supernode, the supernode is extended by one additional
block. Obviously, supernodes are only created or extended if there is no possibility to find a suitable hierarchical
structure of the directory. If a supernode is created or extended, there may be not enough contiguous space on
disk to sequentially store the supernode. In this case, the disk manager has to perform a local reorganization.

4



The algorithms to query the X-tree (point, range, and nearest neighbor queries) are similar to the algorithms used
in the R*-tree since only minor changes are necessary in accessing supernodes. The delete and update operations
are also simple modifications of the corresponding R*-tree algorithms. The only difference occurs in case of an
underflow of a supernode. If the supernode consists of two blocks, it is converted to a normal directory node.
Otherwise, that is if the supernode consists of more than two blocks, the size of the supernode is reduced by one
block. The update operation can be seen as a combination of a delete and an insert operation and is therefore
straightforward.

KEY APPLICATIONS
In many applications, indexing of high-dimensional data has become increasingly important. In multimedia
databases, for example, the multimedia objects are usually mapped to feature vectors in some high-dimensional
space and queries are processed against a database of those feature vectors [5]. This feature-based approach is
taken in many other areas including CAD [6], 3D object databases [7], molecular biology (for the docking of
molecules [8]), medicine [9], string matching and sequence alignment [10], and document retrieval [11]. Examples
of feature vectors are color histograms [12], shape descriptors [13], Fourier vectors [14], text descriptors [15],
etc. In some applications, the mapping process does not yield point objects, but extended spatial objects in a
high-dimensional space [16]. In many of the mentioned applications, the databases are very large and consist of
millions of data objects with several tens to a few hundreds of dimensions.

FUTURE DIRECTIONS
The feature-based approach has several advantages compared to other approaches for implementing similarity
search. The extraction of features from the source data is usually fast and easily parametrizable, and metric
functions for feature vectors, as the Minkowski distances, can also be efficiently computed. Novel approaches for
computing feature vectors from a wide variety of unstructured data are proposed regularly. As in many practical
applications the dimensionality of the obtained feature vectors is high, the X-tree is a valuable tool to perform
efficient similarity queries in spatial databases.

CROSS REFERENCES
1. Spatial access method

2. Similarity search

3. Nearest-neighbor query

RECOMMENDED READING

[1] Berchtold, S., Keim, D., and Kriegel, H.-P. (1996). The X-tree: An index structure for high-dimensional data. In
Proc. 22th International Conference on Very Large Databases (VLDB’96), pages 28–39. Morgan Kaufmann.

[2] Böhm, C., Berchtold, S., and Keim, D. (2001). Searching in high-dimensional spaces: Index structures for improving
the performance of multimedia databases. ACM Computing Surveys, 33(3):322–373.

[3] Guttman, A. (1984). R-trees: A dynamic index structure for spatial searching. In Proc. ACM International
Conference on Management of Data (SIGMOD’84), pages 47–57. ACM Press.

[4] Beckmann, N., Kriegel, H.-P., Schneider, R., and Seeger, B. (1990). The R*-tree: An efficient and robust access
method for points and rectangles. In Proc. ACM International Conference on Management of Data (SIGMOD’90),
pages 322–331. ACM Press.

[5] Faloutsos, C. (1996). Searching Multimedia Databases by Content. Kluwer Academic Publishers, Norwell, MA, USA.
[6] Berchtold, B., Keim, D., Kriegel, H.-P. (1997). Using extended feature objects for partial similarity retrieval. The

VLDB Journal, 6(4):333–348.
[7] Bustos, B., Keim, D., Saupe, D., Schreck, T., and Vranić, D. (2005). Feature-based similarity search in 3D object

databases. ACM Computing Surveys, 37(4):345–387.

5



[8] Shoichet B. K., Bodian D. L., Kuntz I. D. (1992). Molecular docking using shape descriptors. Journal of
Computational Chemistry, 13(3):380–397.

[9] Keim, D. (1999). Efficient geometry-based similarity search of 3D spatial databases. In Proc. ACM International
Conference on Management of Data (SIGMOD’99), pages 419–430. ACM Press.

[10] Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. (1990). A basic local alignment search tool. Journal
of Molecular Biology, 215(3):403–410.

[11] Baeza-Yates, R. and Ribeiro-Neto, B. (1999). Modern Information Retrieval. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA.

[12] Shawney H., Hafner J. (1994). Efficient Color Histogram Indexing. In Proc. International Conference on Image
Processing, pages 66–70.

[13] Jagadish H. V. (1991). A retrieval technique for similar shapes. In Proc. ACM International Conference on
Management of Data (SIGMOD’91), pages 208–217. ACM Press.

[14] Wallace T., Wintz P. (1980). An efficient three-dimensional aircraft recognition algorithm using normalized fourier
descriptors. Computer Graphics and Image Processing, 13:99–126.

[15] Kukich K. (1992). Techniques for automatically correcting words in text. ACM Computing Surveys, 24(4):377–440.
[16] Murase H., Nayar S. K. (1995) Three-dimensional object recognition from appearance-parametric eigenspace method.

Systems and Computers in Japan, 26(8):45–54.

6


