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ABSTRACT

Methods for management and analysis of non-standard data often rely on the so-called feature vector approach. The technique
describes complex data instances by vectors of characteristic numeric values which allow to index the data and to calculate
similarity scores between the data elements. Thereby, feature vectors often are a key ingredient to intelligent data analysis
algorithms including instances of clustering, classification, and similarity search algorithms. However, identification of appro-
priate feature vectors for a given database of a given data type is a challenging task. Determining good feature vector extractors
usually involves benchmarks relying on supervised information, which makes it an expensive and data dependent process. In
this paper, we address the feature selection problem by a novel approach based on analysis of certain feature space images.
We develop two image-based analysis techniques for the automatic discrimination power analysis of feature spaces. We eval-
uate the techniques on a comprehensive feature selection benchmark, demonstrating the effectiveness of our analysis and its
potential toward automatically addressing the feature selection problem.
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1 INTRODUCTION
Modern applications generate, store, and process mas-
sive amounts of data. This data is not limited to raw
textual or numeric records, but includes complex data
like biometric data (e.g., fingerprints, normalized face
images, iris data), multimedia data (e.g., images, audio,
video, geometric objects) or time related data streams
(e.g., financial pricing streams, network monitoring
streams). Methods for analyzing such complex data
typically rely on the feature vector (FV) paradigm [5],
describing the instances of any complex data type by
vectors of characteristic numeric properties (features)
extracted from the instances, allowing the calculation
of distances between FV representations of the data
objects [8]. The similarity between two data objects
is then associated with the distance between their
respective FV representations.

FVs are required by many important automatic data
analysis algorithms like clustering, similarity search, or
classification. We can informally define the effective-
ness (or quality) of a FV extractor as the degree of re-
semblance between distances in FV space, and similar-
ity relationships in object space. Extracting effective
FVs for a given data type, i.e., features that describe
relevant properties of the object instances and allow
their meaningful discrimination, however, is a challeng-
ing task. It usually requires a lot of experimentation
and supervised information, e.g., a human expert, or
labeled training data for benchmarking and optimiza-
tion of candidate FVs. However, in many data analysis
scenarios, the data is neither fully labeled, nor has the
analyst a–priori knowledge how to classify the data.

Complementing and extending previous work, we
propose a novel approach to analytically measure the
quality of a given FV space. The approach relies on

the image-based analysis of certain views on the com-
ponents of compressed versions of the candidate FV
spaces. The key assumption underlying our analysis is
that the degree of heterogeneity of features in a can-
didate FV space is an indicator for the discrimination
power (effectiveness) in that FV space. Based on this
hypothesis, we develop two image analysis functions
allowing visual or automatic benchmarking of candi-
date FV spaces. The analysis aims at identifying the
most effective FV space from a set of candidate FV
spaces for a given data set. A key property of our anal-
ysis is that by relying on the Self-Organizing Map al-
gorithm for clustering (cf. Section 3), it operates in a
largely unsupervised way. Specifically, it does not re-
quire supervised training data.

2 RELATED WORK
In this section, we review the feature vector approach
for data analysis applications.

2.1 Feature Vector Approach
Similarity measures between complex data objects are
usually implemented by two main approaches. The
transform approach considers suitably defined costs of
efficiently transforming one object into the other. E.g.,
the Edit or Levenshtein distance [5] is a distance mea-
sure for text based on insert, update, and delete oper-
ations. The second main approach for calculating ob-
ject distances is the feature vector (FV) approach [5]. It
extracts characteristic numeric values from the objects,
forming vectors in high-dimensional FV space. E.g.,
text documents can be described by so-called t f × id f
vectors based on term occurrence histograms [2]. An-
other example are 3D geometric models, which can be
described by histograms of curvature, by volumetric



Complex data instances

selection, parameterization,
benchmarking

Clustering

Classification

Similarity Search

Fingerprinting

FV representation

FV extractor distance function

Applications

Manhattan, Euclidean,
Mahalanobis, etc.

Figure 1: The feature vector approach typically relies on supervised information for benchmarking.

properties, or by features derived from 2D projections,
among others [3]. The similarity between objects is as-
sociated with the distance between their FV representa-
tions (e.g., using the Euclidean norm). While it is more
general and usually simpler to implement, a drawback
of the FV approach is the need to identify good (dis-
criminating) features for a given database of a given
data type. Unfortunately, for most data types there is no
absolute or optimal set of features known which should
be used, but often, different features are equally promis-
ing candidates a-priori. Figure 1 (left part) illustrates
the FV extractor definition phase. Highlighted is the
FV selection and optimization loop, which usually is
the most costly step in designing discriminating FV ex-
tractors. To date it relies heavily on the usage of su-
pervised information, and on intensive experimentation
and manual tuning.

FV-based applications rely on a representation of the
input data in a discriminating FV space to produce
meaningful results. The right part of Figure 1 names
a couple of important FV-based applications. These
include similarity search, where distances between a
query object and candidate elements are used to pro-
duce answer lists. FV-based distances are also heavily
used in Clustering and Classification [8, 5]. In Classi-
fication, unknown data instances are assigned the class
label of the most similar class according to a classifier
trained by supervised training data. In Clustering, dis-
tances between data instances are used to automatically
find clusters of similar elements.

2.2 Measuring FV Space Quality
The FV selection problem is usually addressed by the
benchmarking approach: Based on supervised infor-
mation, candidate FV vectors are calculated for a ref-
erence data set. Class information or a human expert
then judge the quality of the FV extraction by means
of precision statistics or manual evaluation of the de-
gree of resemblance between distances in FV space and
similarity relationships in object space. In a number
of domains, reference benchmarks have been defined.
E.g., in similarity search of 3D geometric models, the
Princeton Shape Benchmark [14] consists of a database

of 3D models with associated class labels. Using the
benchmark, candidate 3D FV extractors can be bench-
marked numerically in terms of precision of solving
classification and similarity search problems [14] Prob-
lematic is that the supervised approach is expensive, as
it requires either a large labeled object collection, or a
human expert to manually evaluate the quality of FV-
based distances. Also, the approach is data-dependent:
Whenever the underlying application data changes, the
benchmark needs to be updated in order to reflect the
target data characteristics. Unsupervised benchmarking
to this end is highly desirable, but a difficult problem.

Certain statistical approaches were proposed for un-
supervised FV space quality estimation [9, 1]. These
works are of rather theoretical nature and to the best of
our knowledge have not been practically leveraged yet.
In [13], the distribution of distances between clusters
found in FV space was used for FV quality estimation.
Here, we consider the distribution of individual compo-
nents of cluster centers found in FV space.

3 FEATURE SPACE IMAGING
We recall the Self-Organizing Map algorithm and the
component plane visualization. Both form the basis of
the FV space analysis technique proposed in Section 4.

3.1 Self-Organizing Map Algorithm
The Self-Organizing Map (SOM) algorithm [10] is a
combined vector quantization and projection algorithm
well suited for data analysis and visualization purposes
[15]. By means of a competitive learning algorithm,
a network of reference (prototype) vectors is obtained
from a set of input data vectors. The reference vectors
represent clusters in the input data set and are localized
on a low-dimensional (usually, 2D), regular grid. An
important property of the algorithm is that the arrange-
ment of prototype vectors on the grid approximately re-
sembles the topology of data vectors in input space. The
SOM is a compressed FV space representation obtained
in an unsupervised way. Figure 2 illustrates two steps
in the training of a SOM, during which data vectors are
used to update the network of referencevectors..



Figure 2: The SOM algorithm learns a network of pro-
totype vectors representing a set of input data vec-
tors. During the learning process, sample input vectors
are iteratively presented to the map, adjusting the best
matching prototype vector and a neighborhood around
it toward the sample [10].

3.2 SOM Component Plane Images
Under the FV approach to similarity calculation,
distances in object space are estimated by dis-
tances between FV space representations of the
objects. E.g., the Euclidean distance, defined as
d(x,y) =

√
∑

n
i=1 (xi− yi)2 for two vectors x,y ∈ Rn

in n-dimensional vector space is widely used. It
is ultimately the characteristics of the components
(dimensions) in FV space which contribute to the
calculated distances. To analyze the characteristics
of the FV space components, we can visualize the
individual dimensions by means of Component Planes
(CPs) [15] obtained from the SOM representation.
A CP visualizes the distribution of a given vector
component over the calculated SOM. Recall that each
SOM reference vector is located at a unique position on
a regular grid. We can visualize the Component Plane
image for component c by simply drawing a matrix
of dimensionality corresponding to the SOM grid,
color-coding each cell according to the normalized
component value of the SOM reference vector at the
respective SOM grid position. The values are normal-
ized and color-coded such that the full component span
[cmin,cmax] is visualized.

Figure 3: Three Component Plane (CP) images for a
Self-Organizing Map of size 32× 24 calculated from
the VOX FV space (cf. Section 5). Applying [min,max]
normalization and applying the color scale shown be-
low, each image visualizes the distribution of a given
vector component on the SOM grid.

Figure 3 illustrates three CPs from a FV space fur-
ther discussed in Section 5. The images allow the ef-
ficient visual analysis of the distribution of component
values. While the localization of component values on
the SOM is not of primary concern here, their overall

distribution is. As will be demonstrated, the hetero-
geneity of the component distribution may be used as
an indicator for the discrimination power contained in a
given FV space. This in turn is valuable for analyzing
and evaluating a given FV space. Note that this analy-
sis is unsupervised up to the setting of the SOM training
parameters, for which in turn data-dependent heuristics
and rules of thumb are known [11].

The characteristics of all components of a d-
dimensional FV space may be visualized by laying
out all d CP images obtained from the respective FV
space’s SOM in a matrix layout. This visualization
(Component Plane Array, CPA), gives a compact image
of the distribution of FV components. We can use the
CPA (a) to visually assess overall component distribu-
tion characteristics, and (b) to identify the correlation
structure of the respective FV space. Figure 4 shows
the CPA of the CP images from the 343-dimensional
VOX FV space (cf. Section 5).

Figure 4: Component Plane Array (CPA) image of the
343-dimensional VOX FV space (cf. Section 5).

4 COMPONENT IMAGE ANALYSIS
In [13], we proposed to use images based on distances
between cluster prototypes (so called U-Matrices [15])
as well as based on Component Plane Arrays for com-
parative visual analysis of discrimination power in dif-
ferent FV spaces. We argued that discrimination power
may be estimated from the degree of heterogeneity of
distances and components in the SOM representation.
The key hypothesis was that the more uniformly dis-
tributed the individual distances and components are,
the better the chances that the given FV space mean-
ingfully discriminates object clusters. In [13, 12], we
supported this hypothesis by systematic correlation ex-
periments based on an analytic measure for the hetero-
geneity in distance images. In this work, we comple-
ment [13, 12] by developing analytic measures for the
heterogeneity in component images and using them in
a similar experiment.



Figure 5: The dtb score is calculated over the differ-
ence image (right column) between an original Com-
ponent Plane image (left column) and a blurred version
of it (middle column). The top row shows a CP image
of low heterogeneity, while the bottom row shows one
containing more heterogeneity (the dtb scores amount
to 17.84 and 81.14, respectively, in this example).

4.1 Function Based on Difference Image

The first function for measuring the degree of hetero-
geneity in a Component Plane image is based on the
unsharp image filter, a standard digital image process-
ing technique [7]. It measures the degree of CP image
heterogeneity by the amount of image information lost
when blurring the image. We implement the measure
by considering a given Component Plane image as a
gray-value image CP(x,y) in the domain [0,1]. We blur
the image by moving an averaging kernel k over the im-
age, replacing each gray value by the average over all
pixels within the neighborhood k around that pixel. We
then compare the original image with its blurred ver-
sion CPk(x,y) by summing the absolute differences of
the original and the blurred image pixels. Intuitively,
in regions with low image heterogeneity, the values of
the blurred pixels will be similar to the original val-
ues, yielding low differences. Conversely, in image
regions with much heterogeneity, the blurring process
will smooth out much of the image heterogeneity, re-
sulting in higher differences.

We call this function dtb (difference to blurred) score,
and parameterize it with the blurring kernel size k. It is
defined as:

dtb(CPi,k) = ∑
x

∑
y
|CPi(x,y)−CPk

i (x,y)|, (1)

where CPi(x,y) is the gray value Component Plane im-
age for FV component i, and CPk

i (x,y) is a blurred ver-
sion obtained by applying the blurring kernel k on CPi.
Figure 5 illustrates the calculation of the dtb score for
two CP images. The dtb score is easily extended to
work on Component Plane Arrays of n CP images by
averaging the dtb scores for all individual CPs:

dtb(CPA,k) =
1
n

n

∑
i=1

dtb(CPi,k). (2)

Figure 6: The Entropy score E measures Component
Plane image heterogeneity by averaging the Entropy
values calculated for all sub-images of a CP image.
The top row shows a CP image of little heterogene-
ity, while the bottom row shows one containing more
heterogeneity. The right column visualizes normalized
entropy scores evaluated on 16×12 sub-images as a
gray-value image. The E scores amount to 0.97 and
1.37, respectively, in this example.

4.2 Function Based on Image Entropy
Again we consider each Component Plane image CP
as a gray value image in the domain [0,1]. Since we
are interested to assess the distribution of gray values
H in the image, we are computing histograms over the
gray levels. The histogram over gray values in a 2D im-
age can be regarded as a 1D function H(g) where the
independent variable is the (appropriately quantized)
gray value g, and the dependent variable is the num-
ber of pixels H(g) with that gray value. Since all pix-
els in the image show a distinct gray value, the sum
of the histogram bins must be equal to the number
of image pixels N = x ∗ y = ∑

Gmax
g=Gmin

H(g), and g cor-
responds to the index of quantized gray values, e.g.,
Gmin = G0 = 0 and Gmax = G255 = 255 for a 8-bit quan-
tization to 256 unique gray values. The histogram func-
tion is equal to the scaled probability distribution func-
tion p(g) of gray levels in that image: p(g) = 1

N H(g)
where ∑

Gmax
g=Gmin

p(g) = 1. Based on the probability dis-
tribution we compute a measure for the information
contained in the image. In general, any function σ()
can be used , but a common way of doing so is applying
Shannon‘s Entropy E [6], which in theory is a measure
for the number of bits required to efficiently encode an
image [7]. If the probability of gray level g in a given
image is represented as p(g), the amount of information
E contained is E = −∑

Gmax
g=Gmin

p(g) log2(p(g)). Maxi-
mum information content results if each gray level has
the same probability (a uniform histogram corresponds
to maximum information). Minimum Entropy results if
the image contains only one single gray level.

Since the task is not only to analyze the whole im-
age, but also analyze local patterns in the image, we
use a regular grid gc of size s = |gc| to partition the in-
put image CP into s grid cells gc j(CP), j = 1, . . . ,s, and
then apply the method described above to compute the



Entropy values for each grid cell as E(gc j(CP)). We
average over the local Entropy scores to arrive at the
global image Entropy score for a Component Plane im-
age CP:

E(CP) =
1
s

s

∑
j=1

E(gc j(CP)) (3)

Figure 6 visualizes the Entropy-based analysis on two
Component Plane images. To obtain the overall entropy
score E(CPA) for a Component Plane Array CPA, we
finally average the Component Plane Entropy scores
E(CPi), for all n Component Plane images CPi con-
tained in CPA:

E(CPA) =
1
n

n

∑
i=1

E(CPi) (4)

The higher the ranking score E(CPA) of the Component
Plane Array, the higher the heterogeneity we associate
with the underlying FV space.

5 EVALUATION
Next we evaluate our analysis methods in terms of how
good they resemble supervised analysis methods rely-
ing on human expert benchmarking. We base our eval-
uation on a FV vector benchmarking data set from the
field of 3D similarity search, where the task is to define
the most discriminating FVs for 3D geometric models,
which in turn should allow the most effective similarity
search using FV space distances. Equipped with a num-
ber of 3D FV spaces of significantly varying discrimi-
nation power, we generate Component Plane Array im-
ages, and compare their unsupervised image analysis
scores with respective supervised benchmark scores.

5.1 Benchmark Dataset
The dataset used is the train partition of the Princeton
Shape Benchmark (PSB-T) [14], popular for evaluating
3D similarity search algorithms. The PSB-T consists
of 907 3D meshes modeling objects like animals, hu-
mans, vehicles, and so on. The models were manually
grouped into 90 equivalence classes by shape similar-
ity [14]. This constitutes the ground truth for evalua-
tion of the retrieval precision of a given candidate FV
space. Briefly, evaluation is done by using each object
as a query against the benchmark. The list of answers
obtained is evaluated by precision–recall statistics over
the relevance of the answers [14, 2]. These statistics in
turn are used to rank the effectiveness of the different
FV extractors.

From a variety of FV extractors studied in previous
3D retrieval work [4, 3], we use a subset of 12 of the
most robust methods to extract 3D FVs from the PSB-
T benchmark. The individual methods consider geo-
metric model properties such as curvature, volumetric-
and image-based features and vary in dimensionality
(tens to hundreds of dimensions). The individual FV

spaces possess varying average discrimination power -
some FV spaces work well for similarity searching, oth-
ers perform poorer. Table 1 gives the used FV space
names (FV name), along with respective FV dimen-
sionalities (dim.) and R-precision (R-prec.) as the su-
pervised discrimination precision score [4], relying on
the PSB reference classification. Larger R-precision
scores indicate better discrimination. Note that un-
like other data analysis domains (e.g., classifier analy-
sis), in multimedia retrieval precision scores below 50%
are not uncommon [14, 4], depending on the bench-
mark considered. Also note that the dimensionality of
each feature vector extractor was set a–priori to maxi-
mize the method-specific discrimination power by su-
pervised benchmarking. While basically, all the fea-
ture extractors can operate at arbitrary resolution, each
of them has a specific optimum dimensionality setting
beyond which it looses discrimination precision due to
introduction of sampling noise and other effects [4].

5.2 Analysis Score Calculation
For each of the 12 PSB-T FV spaces, we generated
Component Plane Array images by first calculating
Self-Organizing Maps for the FV spaces, using rectan-
gular SOM grids of size 32×24. We iterated 150 times
over all database elements during SOM calculation,
stabilizing the SOM results. For each calculated
SOM and vector component, we then generated a
Component Plane image by scaling the respective
component values linearly to the interval [0,1] and
applying the color scale included in Figure 3. The
actual Component Plane images were rendered as
320× 240 checkboard-like raster images, where each
component value was used to color-code the respective
cell on the SOM grid.

We then apply our visual analysis functions intro-
duced in Sections 4.1 and 4.2 on the generated im-
ages. We obtain an aggregate analysis score for each
FV space by averaging the analysis values for each of
the respective components. The dtb scores were cal-
culated by applying Equation 2 from Section 4.1 using
a rectangular kernel of 5× 5 pixels for blurring. The
Entropy scores were calculated by evaluating Equation
4 from Section 4.2 on the CPA images. 8 bit gray
value quantization was used, and the sub-image grid gc
for analyzing each Component Plane image was set to
16×12, yielding grid cell sizes of 20×20 pixels. Fig-
ure 8 shows the Component Plane Array images of the
considered FV spaces.

5.3 Results and Comparison
Table 1 lists the dtb and the E scores for each of
the 12 FV space representations of the PSB-T bench-
mark. By their definition, increasing score values in-
dicate increasing component heterogeneity. Comparing
the scores with the R-precision values, we observe a



Table 1: FV spaces with supervised discrimination
benchmark scores (R-precision) and unsupervised
image-analysis scores.

FV name dim. R-prec. dtb E comb.
DSR 472 42.61% 28.33 20.73 587.23
DBF 259 31.16% 27.15 21.46 582.30
VOX 343 31.13% 25.29 15.38 388.94
SIL 375 28.15% 31.94 21.30 680.26
CPX 169 27.08% 26.01 18.93 492.50

3DDFT 173 25.08% 20.41 18.31 373.76
GRAY 120 22.54% 28.66 19.41 556.22

RIN 155 22.52% 15.53 14.68 228.07
H3D 128 20.20% 25.07 18.19 456.06
SD2 130 18.36% 11.74 15.18 178.24
COR 30 15.75% 17.83 18.97 338.24

PMOM 52 14.82% 12.22 5.80 70.89

high degree of resemblance of the R-precision scores
by our analysis scores. This is an interesting result, as
our analysis scores are based on purely unsupervised
(i.e., automatically extracted information), while the R-
precision scores rely on expert-generated supervised in-
formation (the PSB classification).

We take a closer look at the resemblance between the
unsupervised and the supervised benchmark scores. Ta-
ble 2 presents the discrimination power ranks assigned
to the individual FV spaces, for the R-precision eval-
uation, as well as the unsupervised CPA-based analy-
sis. We use the R-precision ranking as the base line,
and compare the deviation of the ranks assigned to the
FV spaces by the image analysis functions. Again, the
image-based analysis functions closely resemble the su-
pervised ranking, deviating just one or two ranks pos-
itively or negatively from the supervised ranking, for
most of the candidate FV spaces. Specifically, the best
and the worst performing FV spaces, according to su-
pervised benchmarking, are clearly identified by the au-
tomatic analysis. This avoids the risk of erroneously
choosing one of the bad performing FV spaces when
relying purely on the automatic discrimination power
analysis for FV space selection.

While both analysis functions come close to the base-
line supervised ranking, there are certain differences
in the rankings. Considering the functions implement
different heterogeneity definitions, a natural idea is to
combine both scores into an ensemble score, unifying
both “opinions” on FV space discrimination. Building
ensembles by combining classifiers of different types
is a well-known approach for improving classification
accuracy. As both measures indicate increasing com-
ponent heterogeneity by increasing scores, we are able
to combine them simply by multiplication. The last
columns in Tables 1 and 2 list the combined score re-
sults. The FV ranking based on the combined unsuper-
vised score closely resembles the ranking based on the
supervised benchmark, over- or undershooting only a
few ranks for most of the FV spaces.

Table 2: Position errors of the unsupervised ranking,
measured against the supervised ranking. Errors do
occur, but they are rather small on average.

FV name R-prec. dtb E comb.
DSR 1 +2 +2 +1
DBF 2 +2 -1 +1
VOX 3 +3 +6 +4
SIL 4 -3 -2 -3
CPX 5 0 +1 0

3DDFT 6 +2 +1 +2
GRAY 7 -5 -3 -3

RIN 8 +2 +3 +2
H3D 9 -2 -1 -3
SD2 10 +2 0 +1
COR 11 -2 -6 -2

PMOM 12 -1 0 0

The correlation of the individual and the combined
scores with the supervised rankings can be analytically
compared by Spearman‘s Rank Correlation Coefficient,
a normalized measure for the degree of correlation be-
tween sorted lists. According to this measure, dtb and
Entropy achieve 74.8% and 64.3% rank correlation, re-
spectively. The combined score improves over the in-
dividual scores, achieving a correlation of 79.8%. We
also evaluated the correlation of the supervised and the
unsupervised scores by means of regression analysis.
Figure 7 gives the regression analysis of the R-precision
and the combined scores using the logarithmic regres-
sion model. The correlation is confirmed at squared
correlation coefficient R2 = 51%.

5.4 Discussion
Summarizing the experimental results, our image-based
FV analysis approximately resembles the supervised
benchmarking of the PSB-T benchmark described
in 12 candidate FV spaces. The evaluation supports
the idea that unsupervised FV space benchmarking
is possible using image-based analysis of certain
(SOM-)compressed FV space views. We state that we
also performed extensive experiments on synthetically
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generated data sets that simulate FV spaces of varying
discrimination power, validating our results. The
estimator is proposed as a tool to complement the
supervised FV selection approach, or even to replace it
in cases supervised selection is too expensive. While
the estimator did not perfectly resemble the supervised
benchmarking results in our experiment, it shows
promising selection results. An advantage is that it is
data independent: Contrary to benchmark-based FV
selection, which requires to define a new ground truth
whenever the database content changes substantially,
our method works automatically.

The image-based analysis may also serve for au-
tomatic pre-screening (pre-selection) of candidate FV
spaces prior to interactive visual inspection by the user.
Figure 8 shows the 12 CPA images sorted by the com-
bined analysis score. The ranking of CPA images is
in accordance with the overall FV specific component
heterogeneity characteristics. The most heterogeneous
FV spaces (SIL, DSR, DBF) are ranked at the top posi-
tions, allowing to quickly identify them as the best FV
representations for this data set. Note that in our data
set, the discrimination power of the 12 FV spaces cor-
relates with the dimensionality of the respective feature
vectors. This however is coincidential, as each of the
methods was a-priori set to its method-specific optimal
dimensionality (cf. Section 5.1). Further increasing the
dimensionality of the feature spaces does neither signif-
icantly change their supervised nor their unsupervised
discrimination power scores.

6 CONCLUSIONS
FV space discrimination analysis is an important
problem in many application domains relying on
FV representations for similarity calculation. We
introduced an approach for automatic, unsupervised
FV space discrimination analysis based on analysis
of certain component-based image representations of
compressed FV spaces. The method allows unsuper-
vised benchmarking of FV spaces. It is particularly
useful when there is no ground truth available for the
data for which FVs need to be extracted. In case where
supervised information is available, our approach
is still recommended as an additional unsupervised
“opinion” on the discrimination power to expect in a
given FV space. Experiments performed on a compre-
hensive data set showed that the FV ranking produced
by the proposed method correlates with that of a
corresponding supervised discrimination benchmark.
An additional advantage of the method is that it has
an intuitive visual representation (heterogeneity of
the CPA images) that can be well understood and
interpreted by the user.

In future work, the image-based analysis functions
could be further refined, and the approach should be
tested on additional benchmark data sets. Also, it is

regarded promising to combine the component-based
analysis functions with the distance-based analysis
function proposed and evaluated in [13, 12]. In the long
term, discrimination power estimators based on other
unsupervised FV space metrics should be researched.
Ultimately, theoretical foundations and limitations of
unsupervised discrimination power estimation should
be elaborated on.
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Figure 8: Component Plane Array images for the 12 studied 3D FV spaces, sorted by their combined unsuper-
vised image analysis scores (first number given in brackets, below). From top-left to bottom-right, the analysis
scores are decreasing, indicating a decrease of the heterogeneity or spread of component values of respective
FV dimensions. This unsupervised score closely resembles supervised benchmark scores (second number given
in brackets, below). It is proposed as a fully automatic estimator of FV discrimination power.


