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Abstract 

High-resolution urban data at house level are essential for understanding the relationship between objects of 

the urban built environment (e.g. streets, housing types, public resources and open spaces). However, it is 

rather difficult to analyze such data due to the huge amount of urban objects, their multidimensional character 

and the complex spatial relation between them. In this paper we propose a methodology for assessing the spa-

tial relation between geo-referenced urban environmental variables, in order to identify typical or significant 

spatial configurations as well as to characterize their geographical distribution. Configuration in this sense re-

fers to the unique combination of different urban environmental variables. We structure the analytic process 

by defining spatial configurations, multidimensional clustering of the individual configurations, and identify-

ing emerging patterns of interesting configurations. This process is based on the tight combination of interac-

tive visualization methods with automatic analysis techniques. We demonstrate the usefulness of the proposed 

methods and methodology in an application example on the relation between street network topology and dis-

tribution of land uses in a city. 

 

1 Introduction 

"All geographic data leaves its users, to some extent, uncertain about the nature of the real world" (Goodchild, 

2005). This situation, which often stems from data resolution constraints and from their multidimensional 

character regarding space, time and objects, has affected socio-geographic research of the urban environment.  

Until recently, urban environment research was limited to the use of large-scale aggregate data based on the 

level of administrative areas. The basic problem of using aggregated spatial data for geographical analysis 

stems from the fact that the distribution of objects within the areas is unknown. As a result, the aggregated 

data are not sufficient to capture the micro-scale situations, in which the main dimensions of urban environ-

ment – the built-up environment's properties, the individuals' socio-demographic properties and the individu-

als' behavior and perception – come together.   

This situation has nonetheless changed recently due to improvements in GIS (Geographic Information Sys-

tem) technology and the construction of new geographic databases. Today it is possible to obtain geo-

referenced high-resolution data (i.e. there is a link between the attribute of the object and is geographic loca-

tion) on different types of urban objects in urban locations: (1) daily movement data, e.g., positioning data col-

lected by global positing system (GPS) and location based services (LBS) technology to surrogate daily 

movement data from mobile usage patterns (e.g. Ratti et. el., 2006); (2) distribution of built-up environmental 

objects e.g., road networks, or housing, and (3) functional and socio-demographic objects, e.g., house-level 

socio-demographic and land-uses data. 

 The increasing availability of geographic data at high resolution and in good quality actually motivates the 

investigate the relation between these different types of urban objects at the same geographic scale, i.e. the 

house level scale, of diminishing gaps between data that represent different types of urban objects. This ability 



can be essential for identifying and understanding the variety of socio-demographic phenomena that incorpo-

rate different urban objects at different spatial dimensions. For example, it is possible to investigate how 

building types or the location of urban services are correlated with the spatial distribution of the populations' 

socio-demographic attributes. It is also possible to integrate high-resolution built-up and socio-demographic 

data with empirical data (i.e. data collected during interviews) to better understand the individuals’ preference 

features – for instance, the choice of urban parks and commercial areas and their mode of transportation. 

Nevertheless, use of high-resolution geographic data comes at a price. Despite their potential, it is rather 

difficult to use these data in research. Unlike the situation of aggregate data at the level of geographic areas, 

high resolution geo-referenced data at house level have no defined geographical boundaries and therefore, the 

main challenges of research are to identify patterns of interest based on huge amounts of urban objects with 

respect to their attributes and the complex spatial relation between them.  

In this paper, we apply our methodology for assessing the spatial relation between high resolution geo-

referenced urban land-uses (e.g. residence buildings, commercial open spaces as well as infrastructure objects 

such as street network) and the topological attributes of the urban street network, in order to identify typical or 

unique land-use spatial configurations and to characterize their geographical distribution. Configuration in this 

sense refers to the combination of the two geo-spatial attributes.  

The proposed methodology uses a Visual Analytics framework, which combines interactive visual informa-

tion displays with automatic data analysis techniques. The framework consists of first displaying geographic 

information, on which users can interactively segment the data into spatial configurations of interest. These 

are then clustered to reveal frequent or significant groups of configurations. In addition, appropriately de-

signed cluster visualization is interactively linked with the original map display. Thus, the system is designed 

to support the user in understanding the joint properties of geospatial and multivariate data. 

The structure of the paper is as follows: In Section 2, we provide a review of the related work from the geo-

graphic and visual analytics perspective. In Section 3, we introduce our methodology and an exemplary im-

plementation. In Section 4, we apply our framework on a high-resolution real world dataset of an urban envi-

ronment, and demonstrate the flexibility it offers to analyze the data for various interesting correlations. In 

Section 5, we discuss our approach, the obtained results, and outline future work in the area. 

 

2 Related Work 

2.1 Geographic Data Analysis for Urban Environments 

Visual and analytical comparison between spatial distributions of objects and attributes within GIS frame-

work is an essential tool for understanding and explaining geographic phenomena in urban areas. To resolve 

the problems entailed by high-resolution data (i.e. neighborhoods definition and cartographic constraints re-

sulting from mapping high resolution data over large area) previous studies suggested local geo-statistics 

methods. One of the main methods for analyzing and presenting high-resolution data is to use local indices of 

spatial association (LISA). These indices are based on the comparison of the characteristic of a given spatially 

located object and its neighbors (Anselin, 1995; Benenson & Omer, 2003). Applying these measures helps the 

observer identify spatial variance and small clusters in the spatial distribution of socio-demographic attributes 

in urban areas (Talen & Anselin, 1998). A production of thematic maps at different aggregation scales enables 

also to identify the natural geographic scale for the investigated phenomena. Previous studies suggested such 

local geo-statistics measures and aggregations for analyzing and overcoming the cartographic constraints of 

high-resolution data for assessing accessibility to urban services (e.g. Talen & Anselin, 1998; Omer, 2005), 

residential segregation (e.g. Omer & Benenson, 2002; Wong, 2003) etc. 

2.2 Analysis the Effect of Street Network Topology 

Much evidence has been collected indicating that the topological characteristics of a street network have the 

potential to affect the spatial distribution of activates and land-uses in the city. Studies have found that these 

topological properties of individual streets are significantly correlated to the spatial distribution of retail and 

services (Porta et. el., 2006) and human movement rates (e.g. Hiller et. el, 1993; Jiang, 2007). However, we 

have no sufficient knowledge on these relations i.e. why certain topological properties are more appropriate 

than others for predicting human activities in the city.  



2.3 Visual Analytics of High-Dimensional Data 

Owing to our data transformation applied (see Section 3), this work relates also to the wider area of visual 

analytics in high-dimensional data sets. Work in this area is concerned with finding appropriate visual repre-

sentations for data sets, which by their dimensionality exceed the number of direct visual variables available 

(e.g., position, color, and shape (Ware, 2004)). Mapping approaches such as Parallel Coordinates (Inselberg 

and Dimsdale, 1990), Iconic Displays (Everitt and Nicholls, 1975), Dimensional Stacking (LeBlanc et al, 

1990), or Scatter Plot Matrices (Wilkinson et al, 2005) define certain mappings from multiple dimensions to 

visual variables and geometric arrangements that represent the properties of all dimensions simultaneously. 

Interaction techniques address the problem of high-dimensional data analysis by allowing efficient navigation 

through the space of low-dimensional projections. Examples for these kinds of approaches can be found in 

(Wilkinson et al, 2005, and Elmqvist et al, 2008). Dimension reduction approaches operate by first reducing 

the number of dimensions before visualization takes place. Prominent dimensionality reduction techniques in-

clude Principal Components Analysis (Jolliffe, 2002) or Multidimensional Scaling (Cox and Cox, 2001). The 

general aim of dimensionality reduction is to capture as much information as possible in a limited number of 

dimensions. However, the reduced dimensions often are a linear or non-linear combination of all input dimen-

sions, and therefore not straightforward to interpret by the user.  

2.4 The Self-Organizing Map Approach in the Geographic Context 

The SOM algorithm (Kohonen, 2001) is a technique which combines dimensionality and data reduction, and 

implicitly yields a mapping of data elements to position. The algorithm is especially suited for visualization of 

its output (Vesanto, 1999). It has been successfully applied to many data analysis problems including in geo-

temporal data (Guo et al, 2006), textual data (Honkela et al, 1997), and financial data (Deboeck and Kohonen, 

1998). The SOM approach has also been leveraged in Geospatial data analysis before. In (Spielmann, 2008) 

an interactive system linking a standard land-covering map with a SOM-based clustering of demographic re-

cords was introduced. It allowed the user to select demographic records and simultaneously display them on 

the SOM (allowing inspection of multivariate properties) and on the map (allowing inspection of spatial dis-

tribution). The system was shown to be useful for joint analysis of multivariate and geospatial data properties. 

In  (Bacao, 2005), the basic SOM algorithm was extended by a learning constraint that considers for each data 

record also its geospatial coordinates. This algorithm produces clusters, which also partially reflect the geo-

spatial position of data records in the SOM network, a property which SOM usually does not consider. Our 

approach relates to both works (Spielmann, 2008; Bacao, 2005) in that we apply the SOM algorithm in a joint 

geospatial and multivariate data analysis. In extension to (Spielmann, 2008), we provide an improved SOM 

display, which allows perception of the distribution of multivariate records already on the SOM display, re-

ducing the need for additional detail views to understand the multivariate data properties. 

 

3 Analytic Methodology 

Analysis of high resolution urban environments requires methods to define units of investigation (for ex-

ample, buildings, streets, etc), and allows analysts to interactively extract configurations and patterns of inter-

est. Here we propose a methodology that enables analysts to conduct their investigations exactly for this pur-

pose based on a modular pipeline, in which information visualization and guided analysis constitute the core 

part. Consequently, the proposed methodology can be viewed as a modular framework, in which techniques 

can be chosen by their appropriateness for the research tasks and data.  

The pipeline of analysis is triggered by analytic questions and suitable data sources. Here the first step is to 

find a visual mapping that allows analysts to view and understand the distribution of the data, which is a 

highly complex task since high resolution data in the geographic domain is large and heterogeneous. The sec-

ond step requires analysts to define and segment units of investigation, in which configurations and pattern of 

interest may be possible. However, a high level of refinement through iterations is required, once the results 

are obtained. These steps are followed by automatic analysis techniques that can extract frequent patterns and 

significant configuration that reflect the analysts’ expectations. The results of the automatic techniques have to 

be made accessible in an interactive visual way, in order to allow reasoning and refinement of previous deci-

sions that are required to sharpen and finalize the results. As such, the pipeline and methodological framework 

are highly iterative and combine visual and automatic analysis techniques. The following diagram (Figure 1) 

provides a high level overview of the described pipeline.  
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Figure 1. Visual Analytic Pipeline showing the interleaving stages of the analytic process. 

In the following, we describe a concrete instantiation of the presented methodology by describing the key 

analytic question of interest and the database schemes available in a selected domain. We then present the de-

tails of the applied analysis procedures, visual mappings, and user interactions supported by our system.  

3.1 Analytic Questions 

Within the developed methodological framework, we aim to investigate the relation between the topologi-

cal structure of urban street network and the spatial distribution of urban land-use in the city of Raanana, Is-

rael. We investigate whether the spatial distribution of topological properties in a given street network corre-

lates with the spatial distribution of land-uses. Due to the multidimensional nature of the proposed approach it 

can be used to identify typical land-uses spatial configurations and to investigate how they are influenced by 

the topological properties of urban street network. This means to investigate the effect of topological structure, 

not only on the spatial distribution of one land-use, but also on the formation of land-use spatial configura-

tions, with respect to their geographical location. Accordingly, the analytical questions in this research are:  

- Are there typical and significant correlations between the topological properties of streets and land-

uses’ spatial configurations?  

- What are the geographic patterns of identified typical land-use configurations?  

- Which topological properties are more significant than others for formation of land-use spatial configu-

rations? 

3.2 Data Schema of Concern 

To illustrate the potential of the proposed methodology, we conducted a detailed investigation of one city’s 

land-use and street network. The data obtained for analysis was the spatial distribution of the land-use and the 

topology of the street network in the city of Raanana, Israel. We used two kinds of geographic data sets of 

Raanana. A street network data set (a total of 324 streets), and a land-use data set, at the level of individual 

buildings (a total of 8664 buildings). The source of the data is the 2002 Infrastructure Database of the Israeli 

Central Bureau of Statistics (www.cbs.gov.il), which are organized within a GIS framework. 

On the land-use side, the data sets specify in real-world coordinates the presence of urban infrastructure 

elements. These include public-service installations such as education facilities, recreational areas, medical at-

tention facilities, or recreational areas. They also include industrial area data, telecommunication installations 

and so on. By their nature, the infrastructure elements have a spatial extension and are therefore encoded by 

polygonal descriptions of the covered area. 

The topology of urban streets takes individual streets as nodes (vertices) and street intersections as edges of 

a connectivity graph. The graph forms a basis for structural analysis using the centrality measures (Jiang & 

Claramunt, 2004; Jiang & Omer, 2007) initially developed for the description of social networks (Freeman, 

1979). A graph G(V,E) is defined as a pair of a finite set of vertices V = { v1, v2, …., vn} and a finite set of 

edges E = {vi , vj}. Three centrality measures – degree, closeness, and betweenness – are used to describe the 

status of individual streets, in terms of which streets intersect with other streets. Degree indicates how many 



other streets are connected directly to a particular street, a characteristic that reflects the level of a street's inte-

gration with its neighboring streets. In a graph, the degree is the number of nodes that link a given node. 

Formally, the degree centrality for a given street (node) vi is defined by: 
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Where n is the total number of streets (nodes) within a street network (vertices of the graph G).    

 

Closeness indicates how close a street is to other streets by computing the shortest distances between every 

street node to every other street node, a feature that reflects how well a street is integrated within the network. 

Formally, the closeness measure is defined by:   

where d is the shortest (topological) distance between two given streets (vi, vk) in the street network (graph). 

 

Betweenness centrality indicates the extent to which a street is located between pairs of streets; as such, it 

directly reflects the intermediate location of the specific street in the entire street network. Accordingly, we 

define the betweenness centrality as follows: 
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where Pjk denotes the number of shortest paths from  j to k and Pjik is the number of shortest paths from j to k  

that pass through street i, so CB is the proportion of shortest paths from i to j that pass through k. 

Figure 2 shows the topology and land-use of the urban environment. Topology is mapped to color using a 

heat map having red colors for high and yellow colors for low centrality values. The land-use is mapped to a 

diverging color schema for six categories (educational institutions, public services, culture, commerce, indus-

trial buildings and parks). 
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Figure 2. Map representation of the considered urban environment of the city of Raanana: Topology (degree centrality) 

on the points and land-use on the polygons of the image. Values of topology are mapped to a diverging colomap go-

ing from yellow (low values) to red (high values). Land-use types are mapped to a discrete color schema for educa-

tional institutions, public services, culture, commerce, industrial buildings and parks. 

3.3 Segmentation and Definition 

The data sets described are large and complex, requiring appropriate data segmentation to facilitate the analy-

sis and visual representation. To facilitate the investigation, analysts have to define the combination of urban 

environmental variables of interest into spatial configurations. In order to find appropriate configuration units, 

we conduct a four stage process: Firstly, we structure the elements of our investigation by their spatial loca-

tion and neighboring elements. In the particular case, the elements of our investigation are named streets de-

scribed by the topological value. Secondly, we create a structure, in which each named street is described by 

its own topological value and those of the connected ones. Thirdly, we describe each street by the presence of 

infrastructural elements in its neighborhood. The overall description of each named street is then obtained as a 

(high-dimensional) vector of association frequencies for each infrastructure element type. Finally, we partition 

into configuration units consisting of created multidimensional feature vector for each named street. In the 

particular case, the partitioning referred only to represent each street individually. However, any other level of 

resolution is practicable for this step. A schematic representation of this process is shown in Figure 3. 

 



 

Figure 3. Stepwise generation of neighborhoods of relating elements and associating these with the neighboring infra-

structural elements. As a result, each element is described by a multidimensional vector consisting of all its neighbors 

and surrounding infrastructural elements.  

3.4 Analysis of Configuration Units 

Having applied the above mentioned preprocessing, we obtain a large number of street descriptors, which 

represent the local spatial pattern of land-uses and infrastructure of a given city. In order to perform a correla-

tion analysis between these local patterns and a selected overall/global target variable, like the topological 

structure of street network, we first conduct a cluster analysis of all named street descriptions. 

We chose to use the SOM algorithm (Kohonen, 2001) for cluster analysis. It is a combined vector quantiza-

tion and projection algorithm. It produces a network of reference (prototype) vectors from a set of input data 

vectors by means of a competitive learning process. During the learning process, which takes place after an 

appropriate initialization of reference vectors has been performed, input data is sequentially presented to the 

network. Then, the currently best matching (in the nearest neighbor sense) cluster prototype is determined, 

and this prototype together with a neighborhood of prototypes is then adjusted toward the presented input (cf. 

Figure 4). As a function of time, during learning the degree of adjustment of prototype vectors is reduced, and 

stable results are obtained. The SOM reference vectors represent clusters in the input data set and are typically 

modeled on a 2D grid. Practically, one important property observed on the SOM analysis output is that the ar-

rangement of prototype vectors approximates resembles the topology of data vectors in input space. 

We perform SOM cluster analysis based on the vector descriptions of the infrastructure descriptions associ-

ated on average with each neighborhood (see Section 4). For setting of SOM parameters, we rely on rule-of-

thumb settings typically recommended (Kohonen et al, 1996). 

As a result, we obtain a network of clusters describing prototypical distributions of infrastructure elements 

over named streets in our data sets.  

 

 

Figure 4. During the SOM learning process, sample input vectors are iteratively presented to the map, which is gradu-

ally adjusted to the presented input. The process yields set of cluster prototype vectors which are arranged on a regu-

lar grid that approximately represents the topology of the input data (Kohonen, 2001). 

3.5 Visualization of Configuration Types 

The SOM analysis yields an intermediate cluster result, which we visualize together with the quantitative 

information of the selected street network topology measure. We visualize land-use characteristics of each 

group (cluster) of named street patterns as a radial Parallel Coordinate Plot (Van Long, 2009). The basic idea 

is to map each land-use dimension to one axis emanating radially from the origin in an equally-spaced angular 

direction. Following the parallel coordinate approach, we connect the coordinate positions of each dimension 



in the SOM prototype vector by straight, bold lines. A high-dimensional glyph results in form of a radar-like 

chart. On this chart, we also overlay the set of street samples represented by the SOM prototype vector, by 

means of opacity bands (Fua, 1999). The street network topology value which is to be correlated with the land 

use prototypes is mapped to the background color of the group diagrams. To this end, we again use the yel-

low-red color-map introduced in Figure 2. The final analytic view is constructed by drawing radar charts for 

each group of named streets yielded by the SOM analysis, using the grid structure of the SOM. The display al-

lows to visually assessing several data aspects. The distribution of land-use over the different groups can be 

assessed by comparing the shape of the diagrams. The land-use properties can be correlated with the network 

topology properties by means of the background coloring. The opacity bands allow to assess the crispness of 

the groups in terms of the spread of group member attributes around the prototypes. Figure 5 illustrates the 

construction of one group glyph. 

 

                   
 

Figure 5. We show the properties of land-use types occurring in a group (cluster) of configuration types by means of a 

radar-plot (left image). The six radial axes refer the six land-use types (as described previously). Samples of the clus-

ter are overlaid by opacity bands, indicating the distribution of represented sample data points (second image from 

left). The street topology measure is mapped to the background color of the image (third image from left) using the 

same color-map as for the data themselves. 

3.6 Interaction Facilities 

In order to facilitate user interaction, we implemented three major interaction techniques at different stages 

of the analytic pipeline (as shown the methodology section (Section 3) in Figure 1). In the data mapping stage 

users are able to select the relevant variables for their analysis. Users have to determine the “independent vari-

able” of their analysis, which was the land-use in the current example. Users also have to select the “depend-

ent variable” of the analysis, which was the topology of street networks in the presented example.  

The main concern of the analysts is defining the neighborhoods of the elements, in the current example we 

used a Delaunay triangulation, which can obviously anytime be replaced by any other structural analysis tech-

nique or spatial clustering method. Choosing the right methods for this task is crucial and requires domain 

knowledge and optimal parameterization of the methods.  

The number of automatic pattern extraction techniques is practically unlimited, if we take the combination 

of their parameters also into account. In the current example we successfully showed that Self-Organizing 

Maps are effective and useful for the current task and data. However, this method can be exchanged for dif-

ferent algorithms. Finding the best parameter settings is a highly iterative task, since only rule-of-thumb sug-

gestions exist that require constant refinement. In order to facilitate this interaction, we provide a mouse-over 

function for the generated SOM-clusters which show the location of the cluster members in a geographic map. 

Consequently, the analysts can investigate the spatial features and distribution of the created clusters in addi-

tion to the distribution of the selected variables in the SOM-cluster itself. As a result, refinement of the prop-

erties of the clustering algorithm can be used to obtain smaller/larger units and higher/lower levels of distinc-

tion between cluster centers.  

One of the required properties of information displays is that users can alter the color maps and their scaling 

in all visualizations. This feature is implemented at every stage of the analytic pipeline, in which visualization 

is involved. Currently we implemented a continuous heat-map color-map (from yellow to red) for the topo-

logical variable, and a discrete color map for the land-use representation. Users can also apply non-linear 

(square-root and logarithmic) scaling to the continuous color-mapping, in case this is required to compensate 

for skewed data distributions. 



 

4 Results 

In order to show the usefulness of the proposed methodology’s instantiation, we present here its potential to 

identify typical and significant land-use spatial configurations, to locate land-use spatial configurations of in-

terest and to characterize their geographical distribution. As described above, the investigation was conducted 

based on the relation between the spatial distribution of land-use and the topology of street network in the city 

of Raanana. The first action in implementing the methodology is a creation of clusters for different spatial 

land-use configurations using self-organizing maps. The resulting clusters are than colored with the three cen-

trality measures of the street topology, as shown in Figure 6. Therefore, the resulting representations have the 

same cluster configurations, but different coloring for closeness, betweenness, and degree centrality measures. 

This possibility enables us to compare between these topological measures in term of their relation with each 

of the identified land-use configurations. In addition, the number of occurrences for each cluster is indicated 

in the upper left corner together with the average centrality measure in brackets.  

Such presentation opens the possibility for identification of frequent and typical land-use spatial configura-

tions with respect to the relation between land-use and street topology. 

  

       

Figure 6. The correlation of Closeness (left), Betweenness (middle) and Degree (right) values with the spatial configura-

tions of land-uses in Raanana. 

In general, the spatial distribution of education (1), culture & leisure (3) and parks and open spaces (6) is 

relatively high in all clusters and has limited variation between the clusters. Medium spatial distribution of the 

public services (2) is visible with high variability of the centrality measures. High variations in the spatial dis-

tribution of commerce (4) and industry (5) are visible, which is assumed to be influenced by the centrality 

measures of street network topology.  

Closeness reveals a positive correlation with the availability of commerce, as shown in columns 3 and 4 of 

Figure 6 (left). Low closeness values show low availability, and high closeness values a high availability of 

commerce. This means that the difference between these configurations located on the 'edges of closeness 

centrality' – the most accessible places versus inaccessible places – is in the availability of commerce. Inter-

estingly, the lowest closeness value (Column 3 – Row 1) has low availability of commerce and also of public 

services and industry. The highest closeness values (Columns 3-4 – Rows 3-4) show high availability of 

commerce and public spaces with low availability of industry.  

When comparing these findings with the levels of betweenness and degree, three interesting configurations 

can be extracted as perceivable in Figure 6: 

Configuration 1: High availability of commerce, with low availability of industry (Columns 3 and 4 – Rows 

3 and 4) having high values of closeness, showing also high values for betweenness and degree. Such a con-

figuration is expected to be located in the center of the city. In the case of Raanana, it is located along the 

main street (Weitzman Street) of the city. This configuration is shown in the left image in Figure 7. 

Configuration 2: High availability of commerce and industry (Columns 1 and 2 – Rows 3 and 4) having 

high and medium closeness values and low or medium betweenness and degree values. This constellation de-

scribes the industrial area of Raanana in the north-east corner of the city. The described pattern is typical for 

industrial areas, which are accessible, but are located in a well separated district of the city. This configuration 

is shown in the middle image in Figure 7. 



Configuration 3: High availability of educational institutions, culture and leisure and parks and open spaces 

(Columns 1 and 2 – Row 1) with tendencies to lower closeness values and higher betweenness values. Such 

configurations are mostly characterized residential areas with high socio-economic standards. This finding 

seems reasonable since such a combination of topological properties means to live in residence places which 

are close to other parts of the city but which are not served for movement or transit between other parts of the 

city. A geographical mapping of this configuration of interest (e.g., for spatial equity, socio-spatial planning 

policy) shows clearly that it has an expected peripheral pattern. This configuration is shown in the right image 

in Figure 7. 

 

       

Figure 7. Geographic location of different spatial configurations: High commerce area (left), industrial area (middle) 

and residential areas (right). The SOM-clusters showing the different configurations are shown in the left upper cor-

ner. The named streets included in the clusters are highlighted on the map in red color.  

 These examples illustrate how locating the identified typical configurations on the geographic map are 

helpful in defining empiric findings. The explanation may concern previous knowledge on the development 

history and planning policy of Raanana as well as theoretical models that are suggested to elucidate on the 

spatial structure of land-uses in the city. Thus, the methodology enables us to identify typical and significant 

correlations between the topological properties of streets, or their combinations, and land-use spatial configu-

rations, and further to explore their geographic patterns. This framework also helps to determine how the 

topological properties of a given street and its interrelation affect the functional content of its surroundings, 

i.e., which topological properties are significant for the formation of land-use spatial configurations?    

 

5 Discussion and Conclusion  

We described an analytic framework to assess urban spatial configurations. The methodology is applied on 

local land-use spatial configurations, and the local (i.e. degree centrality) and global (i.e. closeness centrality 

and betweenness centrality) of street networks’ topologic properties in the city of Raanana. The methods used 

for analysis are based on SOM-clustering to group similar configurations, and on geographic views, which 

support analysts to iteratively extract interesting configuration patterns. These views, the more abstract cluster 

visualization, and the more concrete geographic map are highly interactive and strongly coordinated to each 

other. The contribution of the suggested methodological framework is clear: traditional local spatial analysis 

methods (i.e. local geo-statistics measures and aggregation at different scales) for analyzing and presenting 

high-resolution geographic data are typically limited to geographical presentation of one attribute only and 

blur the results by aggregation. Against this background, the proposed methodology has potential to shed light 

on the relation between multiple structural and geographical dimensions of an urban environment by keeping 

the individual objects as the level of investigation. Thus, the methodology enables investigation of local spa-

tial relations between huge amounts of individual buildings with respect to their local and global attributes 

without loss of data as a result of aggregation. It is also possible to apply this methodology at different geo-

graphic scales and to explore the 'natural' geographic scale for the investigated phenomena. For now, we sup-

pose that the main practical application of the proposed methodology is a an examination of a variety of urban 

spatial forms in order to reveal their unique spatial configuration with respect to functional and social compo-

sition of different city types. Such application has the potential to improve our knowledge on the relationship 



between urban forms and the formation of land use spatial distribution in cities and can be used to support ur-

ban spatial policy.  

   

Future work will explore additional multivariate visualization options, e.g., other glyph based approaches 

and graph-based representations. Currently, we support the visual correlation analysis between multidimen-

sional variables in an abstract manner (Section 3.5), and in a separate geographic visualization of selected 

clusters (Section 4). Joint representation of these views is a challenge, which we like to address in the future. 

The method proposed on (Bacao, 2005) seems an interesting starting point to this end.  On the algorithmic 

part, many options are open to implement additional algorithms (multi dimensional scaling, principal compo-

nent analysis, etc.), which might be appropriate for different analytic questions in this context. Applying our 

approach on other domains is certainly a long-term perspective. 
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