
Euler Graph Transformations for Euler Diagram Layout

 Peter Rodgers Gem Stapleton John Howse Leishi Zhang
University of Kent University of Brighton University of Brighton University of Konstanz
 pjr@kent.ac.uk g.e.stapleton@bton.ac.uk john.howse@bton.ac.uk leishi.zhang@uni-konstant.de

Abstract— Euler diagrams are frequently used for
visualizing information about collections of objects and
form an important component of various visual
languages. Properties possessed by Euler diagrams
correlate with their usability, such as whether the
diagram has only simple curves or possesses
concurrency. Sometimes, every diagram that represents
some given information possesses some undesirable
properties, and reducing the number of violations of
undesirable properties is beneficial. In this paper we
show how to count the number of violations from the
reduced Euler graph. We then define various
transformations on the Euler graph which can reduce
the number of violations of a given property, but
sometimes at the expense of increasing the number of
violations of another property. These transformations
can be used to improve the quality of the drawn
diagram, which is important for effective information
visualization.

Keywords-Euler diagrams; Venn diagrams; graph
transformations.

I. INTRODUCTION
Euler diagrams have been used in a wide variety of

applications, including the visualization of statistical data
[8], representing non-hierarchical computer systems [2] and
in visual semantic web environments [5]. They have also
formed the basis of a number of visual languages, including
spider diagrams [6], Euler/Venn diagrams [14] and Venn-II
diagrams [11]. They generalize Venn diagrams [10]
because, although they can contain all possible zones (like
Venn diagrams), they do not have to.

Euler diagrams are considered a useful visual tool
because they can intuitively show the intersection,
containment and disjointness of sets of items, as shown in
Figure 1. This figure also serves to motivate the subject
matter of this paper. It shows three different ways of
displaying the same information, each with different
wellformedness properties evident. The diagram in Figure
1a has two curves running together (concurrency) and two
tri`ple points (3-points). The diagram in Figure 1b has a
self-intersecting curve and one 4-point. Finally, the diagram
in Figure 1c has two curves with the same label, and is said
to have “duplicated curve labels”. In this paper we provide a
transformation system for taking a diagram with particular

wellformedness properties and converting it to a diagram
with alternative properties.

The usability of Euler diagrams is dependent on their
appearance. In particular, there are a number of topological
features that are considered to have a strong impact on
usability. These are termed wellformedness properties, and
include: concurrency, ݊-points, disconnected zones,
duplicated curve labels and self-intersecting contours. The
terms used here are explained in Section II. It is possible to
count the number of occurrences of these properties in a
diagram, and one goal of ensuring Euler diagram usability
would be to reduce the count.

It is also possible to interchange properties, as shown in
Figure 1, where the diagrams show the same information,
but have different wellformedness properties. There may be
a preferred set of these properties, dependent on the
application or user preference. Hence, providing users with
a mechanism for modifying a diagram to adjust for their
preference would be useful. In addition, generating usable
Euler diagrams is non-trivial, and a number of methods for
their generation have been proposed. However, typically it
not possible to specify the desired wellformedness
properties, as the particular properties in the generated
diagram are intrinsic to the particular method used
[1][9][16]. Hence, after generation, it would be desirable to
modify the diagram for user preference.

In this paper, we define a number of transformations and
explore which Euler diagram properties can be
interchanged. The transformations are specified on the Euler
graph which is directly derivable from the Euler diagram.
After transformations have been performed, the resultant
Euler graph can be turned into the appropriate Euler
diagram. The alternative approach of applying the
transformations directly to the diagram, rather than the Euler
graph, is infeasible. This is because the Euler diagram’s
curves are continuous functions and defining
transformations that have the desired effects on such
functions is hard. By contrast, graph transformations have
been widely studied [3]. Moreover, it is easy to identify the
impact of the graph transformations on the drawn Euler
diagram. We note one significant difference, in that graph
transformations are typically performed on the abstract
graph, with no concrete instantiation of the vertex locations
or edge routing. Our work relies on performing operations
on a plane (drawn) graph, where edge additions are made
across particular faces of the graph.

Figure 1. Three Euler diagrams, all showing the same relationship between
territories in the British Isles

Previous work in transforming Euler diagrams includes a

mechanism to add curves to an Euler diagram using a dual
graph of the Euler graph [13]. In addition, transformations
on dual graphs that result in curve removal and zone
changes have also been developed [4]. The work in both of
these previous papers provides a transformation system for
completely wellformed diagrams, which possess none of the
properties given above. Transformations for the more
general, non-wellformed case have been applied to the dual
graph [7]. However, these are restricted as they only involve
dual graph edge addition or deletions, and are, consequently
limited to altering a small number of properties. For
instance, the transformation given in Section IV.B cannot be
performed in the system of [7] as it would involve changing
a node in the dual graph.

In addition, the Euler graph discussed in this paper gives
more information about the concrete layout of the Euler
diagram compared to the dual graph used in the previous
work. For example, dual graphs cannot be used to detect
instances of self-concurrency. This paper defines

transformations that can be used alter a wider set of
wellformedness properties than was previously possible and,
therefore, can lead to better Euler diagram usability.
Moreover, we show how to count instances of non-
wellformedness, and show how these counts are altered by
the transformations, further informing usability of diagrams.

In Section II we formally define the concepts of Euler
diagram and Euler graph. In Section III we summarize the
methods for counting properties of Euler diagrams from the
Euler graph. In Section IV we define a set of atomic
transformations, which involve the transformation of certain
properties. In Section V we show by example how the
atomic transformations can be combined into compound
transformations to perform further property swaps. In
Section VI we give our conclusions and discuss further
work.

II. EULER DIAGRAMS AND GRAPHS
We define an Euler diagram as a pair ݀ = ,݁ݒݎݑܥ) ݈)

where ݁ݒݎݑܥ is a finite collection of closed curves with
codomain ℝଶ and ݈:݁ݒݎݑܥ → ℒ is an function that returns
curve labels, where ℒ is a set containing curve labels.

A minimal region of an Euler diagram ݀ = ,݁ݒݎݑܥ) ݈),
is a connected component of ℝଶ −⋃ ݅݉(ܿ)∈௨௩ , where
݅݉(ܿ) is the image of curve ܿ.

In a diagram ݀, the set of curves with label ߣ, denoted
 is A point . ߣ is called a contour of ݀ with label (ߣ)݊ܥ
inside (ߣ)݊ܥ whenever it is inside a curve with label ߣ,
unless it is inside multiple curves with the label, in which
case p is inside (ߣ)݊ܥ if it is in a odd number of curves
with label ߣ, otherwise it is exterior to (ߣ)݊ܥ.

A zone is defined to be the set of points interior to a
subset of the contours in an Euler diagram and exterior to
the others. We observe that, to identify a zone, we only need
to know the containing set of contours, since the others can
be derived.

We consider a restricted class of Euler diagrams in this
paper: we assume that there are finitely many minimal
regions and that the multiplicity of any point in ℝଶ is finite,
given any curve. Here, we take the multiplicity of a point, ,
given a curve, ܿ, to be the number of times to which is
mapped by ܿ; we denote the multiplicity of given ܿ by
,)݈ݑ݉ ܿ). From a practical perspective, these two
restrictions pose no real limitation since we cannot
accurately draw Euler diagrams with infinitely many
minimal regions or accurately visualise the infinite
multiplicity of a point.

Extending the concept of multiplicity, we define the
multiplicity of a line segment, ݁, given curve ܿ to be the
minimum multiplicity of any point on ݁ given ܿ, denoted
,݁)݈ݑ݉ ܿ); clearly, ݈݉ݑ(݁, ܿ) is finite if the multiplicity of
each point is finite.

An abstract description, ܦ, is a finite subset of ℙℒ
such that ∅ ∈ .are called abstract zones ܦ Elements of .ܦ
We abuse the notation for simplification reasons and so
write a zone which is interior to contours with labels A, B
and C as ABC. Similarly, we simplify the notation of an
abstract description, so that {Ø,A,AB} becomes Ø A AB.

British Isles

UK British
Islands

England Ireland

a) Drawn with concurrency and a pair of 3-points

Scotland

Wales

Republic
of Ireland

Northern
Ireland

Jersey

Guernsey

British Isles

UK British
Islands

England Ireland

b) Drawn with a self-intersecting curve and a 4-point

Scotland

Wales

Republic
of Ireland

Northern
Ireland

Jersey

Guernsey

British Isles

UK British
Islands

England Ireland

c) Drawn with a duplicated curve label

Scotland
Wales

Republic
of Ireland Northern

Ireland

Jersey

Guernsey

Ireland

Given an Euler diagram ݀ = ,݁ݒݎݑܥ) ݈) we map ݀ to
abstract description ܦ = ܾܽ(݀), called the abstraction of ݀
where ܾܽ(݀) contains exactly one abstract zone for each
zone in ݀. In particular, given a zone ݖ in ݀, then ܾܽ(݀)
contains the abstract zone ܾܽ(ݖ) = {݈(ܿ): ܿ ∈ where ,{(ݖ)ܿ
 The abstraction .ݖ is the set of contours that contain (ݖ)ܿ
will be used to show how the meaning changes if a
transformation alters the zones that are present in a diagram.

Now we define an Euler graph and describe how to
convert between Euler graphs and Euler diagrams. Roughly
speaking an Euler graph is related to an Euler diagram by
having a vertex at each point where two or more curves
meet and the edges are the curve segments that connect the
vertices. As a special case, curves which do not intersect
with other curves are represented by a vertex together with a
loop. We are concerned with plane graphs, rather than
abstract graphs because we need the edges to be embedded
to be able to define the transformations.

An unlabelled Euler graph of an Euler diagram
݀ = ,݁ݒݎݑܥ) ݈) is a plane graph, ܩ = with vertex set ,(ܧ,ܸ)
ܸ and edge set ܧ such that:
1. there are vertices at

a. any starting point
b. any turning point, and

2. the embedded edges and vertices have image
⋃ ݅݉(ܿ)∈௨௩ .

Informally, a starting point of a curve is the point where

we start to draw the curve. A turning point is any point
where, when drawing the curve, we turn back on the part of
the curve just drawn. Note that an unlabelled Euler graph
may have additional vertices placed arbitrarily with
condition 1, given above, describing a minimal requirement.

Figure 2. An Euler diagram, an Euler graph and a reduced Euler graph

Figure 2b shows an Euler graph (with edge labels) of the
diagram given in Figure 2a. Vertices must be placed in the
graph corresponding to locations where curves intersect in
the diagram to ensure planarity. In addition, extra degree
two vertices can be present in the graph. However, there are
no 'extra' degree two vertices in the graph which could, for
example, have arisen from a turning point.

An edge labelled graph, is a tuple, ܩ = ,ܧ,ܸ) ݈ா) where
 The .ܧ is a graph with vertex set ܸ and edge set (ܧ,ܸ)
function ݈ா ܧ: → ℙ(ℕ× ℒ) labels the edges. If (݊, (ߣ ∈
݈ா(݁) we say that lambda occurs ݊ times on ݁.

An Euler graph ܩܧ = ,ܧ,ܸ) ݈ா), is a plane edge
labelled graph where:
1. for each vertex, any given curve label occurs, in total, a

even number of times on its incident edges. This means
that a closed curve can be formed for every label by
traversing edges; and

2. the label of each edge contains at least one occurrence
of a curve label.

Let ݀ = ,݁ݒݎݑܥ) ݈) be an Euler diagram. An Euler
graph of ܩܧ ,ࢊ(݀) = ,ܧ,ܸ) ݈ா) is an Euler graph, where
 ,is an unlabelled Euler graph of ݀ such that each edge (ܧ,ܸ)
݁, is labelled by

݈ா(݁) = ൛൫݈݉ݑ(݁, ܿ), ݈(ܿ)൯: ܿ ∈ ൟݎݑݐ݊ܥ
where ݎݑݐ݊ܥ is the set of contours in ݀.
An Euler graph ܩܧ = ,ܧ,ܸ) ݈ா) has faces that are the

minimal regions of the Euler diagram. We can map each of
these faces, ݂, to an abstract zone using the information in
the Euler graph alone. When we convert an Euler diagram to
an Euler graph, we can be confident that the abstract
description derivable from the Euler graph is the same as the
abstract description of the Euler diagram.

A vertex, ݒ, of an edge labelled graph is redundant
provided it is incident with exactly two distinct edges, each
of which have the same labels. For example, the Euler graph
in Figure 2b has two redundant vertices: the left-most vertex
and the right-most vertex.

A reduced Euler graph ܴܩܧ(݀) of an Euler diagram ݀
is an edge labelled graph derived from ܩܧ(݀) by removing
redundant vertices, whilst ensuring that ܴܩܧ(݀) is
homeomorphic to ܩܧ(݀), until no redundant vertices
remain.

Figure 2c shows a reduced Euler graph of the
diagram given in Figure 2a. As with an Euler graph,
vertices must be placed in the graph corresponding to
locations where curves intersect in the diagram. In
addition, there are no ‘extra’ two degree vertices in the
graph.

III. PROPERTIES OF EULER DIAGRAMS
Here we discuss how we enumerate the number of

violations of the wellformedness properties using the Euler
graph of an Euler diagram. The properties are formally
defined for an Euler diagram in [12].

Concurrency. A concurrent line segment is one that is
shared by more than one curve. We can count the
concurrency in an Euler diagram by considering the edge

a) An Euler diagram, ݀, with abstraction Ø A B C AB BC

B
A

b) An Euler graph of ݀, ܩܧ(݀)

c) A reduced Euler graph of ݀, ܴܩܧ(݀)

B
C

B
A

B

C
B

B
AC

B

C

B
A

B

C
B

B
AC

A

AC

AC

AC

AC A

labels in the reduced Euler graph. Edges with more than one
label correspond to the presence of concurrency. The edge
concurrency count of an edge ݁ of a reduced Euler graph,
 :is ܩܧܴ

(ܩܧܴ,݁)ܿܿ݁ = ቌ ݊
(,ఒ)∈ಶ()

ቍ− 1

Then ܴܩܧ has graph concurrency count:

(ܩܧܴ)ܿܿ݃ = (ܩܧܴ,݁)ܿܿ݁
∈ா(ாீ)

Given an Euler diagram ݀ and corresponding reduced

Euler graph ܴܩܧ(݀) the graph concurrency count for
 .݀ can be used as a measure of the concurrency in (݀)ܩܧܴ
For example, the graph concurrency count for the graph in
Figure 2c is 3, hence the concurrency count in the diagram
in Figure 2a is 3.

 points. An ݊-point is a point that is passed through at-

least ݊ times by curves in the diagram. We can count ݊-
points by looking at vertices of the reduced Euler graph and
counting the number of labels on incident edges. Hence, it is
possible to find the -point value of a vertex, ݒ of a
reduced Euler graph, ܴܩܧ using:

(ܩܧܴ,ݒ,݊)݊ݒ =

max൞0,൮
݉
2

(,ఒ)∈ಶ() ௦ ௗ௧
௪௧ ௩

൲− ݊ൢ

Note we define the summation above to count the value

for edge ݁ twice whenever it is a loop. Then ܴܩܧ has graph
 :point count-

(ܩܧܴ,݊)ܿ݊݃ = ,݊)ܿ݊ݒ (ܩܧܴ,ݒ

௩∈(ாீ)

Given an Euler diagram ݀ and corresponding reduced

Euler graph ܴܩܧ(݀) the graph ݊-point count for ܴܩܧ(݀)
can be used as a measure of the ݊-point count in ݀. For
example, the 3-point count of the reduced Euler graph in
Figure 2c is 3, hence the 3-point count in the Euler diagram
in Figure 2a is 3.

Figure 3. EG(B).

Disconnected zones. A zone is disconnected if it

comprises more than one minimal region. Since minimal
regions correspond to faces in the reduced Euler graph, we

can count the number of violations of the disconnected
zones property by counting faces. Hence, a reduced Euler
graph, ܴܩܧ, has disconnected zone count:

(ܩܧܴ)ܿݖ݀ = −(ܩܧܴ)ݏ݂݁ܿܽ |ܼ(݀)|

where ݂ܽܿ݁(ܩܧܴ)ݏ is the number of faces in ܴܩܧ. For

example, the number of disconnected zones of the Euler
diagrams in Figure 1a and 1b is 0, whereas the disconnected
zone count in Figure 2c is 1.

Duplicated curve labels. This is a count of the number

of times contours consist of more than one curve. This
measure can be derived from the reduced Euler graph by
looking at the disconnected subsets of the graph induced by
the curve labels. For curve label ߣ we define ܴܩܧா(ߣ) to be
the subgraph induced by deleting all edges that do not
contain ߣ and any vertices with degree 0. Then a curve label
 has more than one (ߣ)ாܩܧܴ has a non-zero count if ߣ
disconnected component, and the count of a curve label
increases as the number of disconnected components
increases. We can then sum these for the graph. Hence, a
reduced Euler graph, ܴܩܧ = has duplicate curve ,(ܧ,ܸ)
label count:

(ܩܧܴ)݈ܿ݀ = ൫ܿ݉൫ܴܩܧா(ߣ)൯ − 1൯

ఒ∈(ீ)

where ܿ݉൫ܴܩܧா(ߣ)൯ is the number of disconnected

components of ܴܩܧா(ߣ). Figure 3 shows ܴܩܧா(ܤ) for the
reduced Euler graph in Figure 2c. The subgraph derived
from the label B is has two disconnected components, and
so will contribute 1 to the duplicate curve label count. For
example, the duplicate curve label of the reduced Euler
graph in Figure 2c is 1 (there is only the disconnected
component for label B).

Self-intersecting contours. Finally, we wish to count

the number of times a contour self-intersects. If a contour
label appears on more than two edges incident with any
given vertex then the contour’s curve passes through that
vertex more than once and, therefore, we have a self-
intersection point. Hence, it is possible to find the self-
intersection count of a vertex, ݒ of a reduced Euler graph
ܩܧܴ = :using (ܧ,ܸ)

(ܩܧܴ,ݒ)ܿ݅ݏݒ = ∑ ൭ቆ∑
ଶ(,ఒ)∈ಶ()

ௗ வ
ቇ − 1൱ ௦

ௗ௧
௪௧ ௩

.

Again, we count loops twice in the above summation.

Extending the definition, ܴܩܧ has graph self-intersection
count:

(ܩܧܴ)ܿ݅ݏ݃ = (ܩܧܴ,ݒ)ܿ݅ݏݒ

௩∈(ாீ)

B

B

B

B

Given an Euler diagram ݀ and corresponding reduced
Euler graph ܴܩܧ(݀) the graph self-intersection count for
 can be used as a measure of the self-intersecting (݀)ܩܧܴ
count in ݀. For example, the graph self-intersection count in
Figure 2c is 1, hence the self-intersecting curve count of the
diagram in Figure 2a is 1.

IV. ATOMIC TRANSFORMATIONS
In this section we define the atomic transformations that

swap between wellformedness properties and which allow
more sophisticated compound transformations to be
produced. We note that, unlike many graph transformation
systems which operate on an abstract graph, the
transformations we describe are at the embedded level,
where the edge ordering around each vertex is known and,
therefore, the faces in the graph can be derived. This ensures
that, if the transformations are ‘valid’, an Euler diagram can
be produced from an Euler graph.

We note some general restrictions that are placed on the
transformations:
 Transformations are not valid if they do not result in a

plane graph. This means that no edge can be added that
crosses an existing edge.

 Transformations are not valid if they do not result in an
Euler graph. The transformations in this paper always
produce an Euler graph.

A. Edge contraction and expansion
It is possible to reduce concurrency by contracting an

edge, ݁, that includes at least two contour labels. This can,
however, result in a change to the ݊-point count and the
self-intersection count. This can be seen in Figure 4, where
moving from the LHS to the RHS has meant that the 4-point
count has gone from 0 to 1 (note, however, that the 3-point
count remains at 2, because a diagram with a single 4-point
has a 3-point count of 2). In addition, because contour C is
self-intersecting in the RHS, the self-intersection count has
increased from 0 to 1. The transformation is symmetric (as
are all the transformations defined in this section) and so the
reverse operation can conversely add a (possibly concurrent)
line segment. Note that in particular cases, for example
when the same contour label appears multiple times on the
edge, an edge contraction can reduce the ݊-point count and
the self-intersecting count.

Figure 4. Two embedding of Euler diagram with abstraction Ø A B

AC BC

Figure 5. Changing between concurrency and new minimal regions

The transformation that achieves the swap is shown in

Figure 5. The LHS shows a line segment of an Euler
diagram, represented by an edge labelled ݁ in the Euler
graph. This edge can be removed by merging the two
vertices, 1ݒ and 2ݒ, into a new, single vertex, 3ݒ. Both sets
of edges emanating from the vertex pair now emanate from
the new vertex.

Applying the transformation from LHS to RHS can be
performed without restriction. However, there is a constraint
when using this transformation from RHS to LHS. The label
on ݁ can be anything (as long as it includes at least one
contour label) provided, that, for each vertex, ݒ, incident to
݁, and for all contour labels, ߣ, in the diagram, the sum of
the number of occurrences of ߣ on the edges incident with ݁
is even. We note that going from the LHS to the RHS does
not always mean concurrency is created; it is only created
when the number of contour labels for ݁ is more than one. In
addition, when going from the RHS to the LHS, the label of
the new edge may contain contour labels that were not
previously present in the diagram, hence this transformation
provides a way of creating new contours. Concurrency is
also affected by another technique, as shown in the
following subsection.

B. Edge splitting and merging
Here we show how concurrency can be reduced at the

expense of adding a new minimal region, or vice versa.
When reducing the concurrency count, this operation

may either add a new zone (so changing the abstract
description), or add a disconnected region to a zone (which
maintains the original abstract description). In the example
in Figure 6, the LHS Euler diagram has abstract description
Ø A B AB AC, but the RHS Euler diagram has abstract
description Ø A B C AB AC, so in this case we added a
new zone C.

Figure 6. A transformation that swaps between a concurrent line segment

and a new minimal region for abstraction Ø A B AC BC

C

A B
C

A B

݁1௩ଶ

... ݆݁௩ଶ

 3ݒ

v1
݁

݁1௩ଵ ...

 2ݒ

݁݅௩ଵ

݁1௩ଵ ... ݁݅௩ଵ

݁ ௩݆ଶ ݁1௩ଶ ...

C
A B

C
A B

Figure 7. Adding or removing concurrency

We will need to define an operation, +, on edge

labels, that merges the two sets of labels: ݁1 + ݁2 =
{(݊ + ݉, :(ߣ (݊, (ߣ ∈ ݁1 ܽ݊݀ (݉, (ߣ ∈ ݁2}.

Here, the edge labels ݁1 and ݁2 must each contain at
least one contour label, when going from the LHS to the
RHS.

Figure 7 shows the transformation definition. If ݅ݖ is the
abstract zone for the zone represented by face ݂݅, then the
new abstract zone 3ݖ can be derived from 1ݖ by, removing
contour labels that occur in 1ݖ and adding contour labels
that do not occur in 1ݖ. This is because the difference
between two adjacent zones can be seen as being the
contours that are crossed when going from one to the other.
In the special case where the contour label appears an even
number of times, the label either appears in both contours or
does not appear in both contours. The new abstract zone
could equivalently have been calculated from ݁2 and ݂2.
The abstract zones derivable from the faces labelled ݂1′ and
݂2′ remain unchanged from the respective faces labelled ݂1
and ݂2.

In addition, no faces apart from the faces labelled ݂1,
݂2, ݂1ᇱ, ݂2ᇱ and ݂3 may be affected by the transformation.
This prevents newly created edges from being routed in a
planar way, but through a face outside the intended scope of
the transformation.

C. Edge deletion and addition
We can remove curves that run along themselves, at the

cost of (possibly) increasing the number of curves used to
represent the contour. In the example given in Figure 8, as
with figures 5 and 6, both Euler diagrams have abstract
description Ø B C AB AC.

The transformation definition is shown in Figure 9. This
transformation can only be applied if all contour labels
occur in edge ݁ an even number of times. The intuition
behind this is that, in a Euler diagram, if we cross a contour
that is self-concurrent an even number of times, we do not
change our relationship (interior or exterior) to that contour.

Figure 8. A transformation that swaps between a self-concurrent line

segment and duplicate curve labels for abstraction Ø A B AC BC

Figure 9. A transformation to add or remove an edge

As with the transformation in Section IV.A, when going

from the RHS to the LHS, the edge, e, can include contour
labels that are not currently present in the diagram.

V. COMBINING TRANSFORMATIONS
To illustrate the practical application of these

transformations, we give two common swaps between
wellformedness properties that can be performed using
compound transformations.

A. Interchanging self-intersection, duplicated curve labels
and concurrency

The two wellformedness properties of self-intersecting
contours and the number of curves in a contour are, in
general, swappable. In addition, it is also possible to swap
between some instances of concurrency and self-intersecting
contours with an extra step. Here we show how to reduce
the concurrency count at the expense of introducing a self-
intersecting contour. We can then reduce the self-
intersecting count at the expense of increasing the multiple
label count.

We illustrate this swap in figure 10 using the British
Isles examples given in Figure 1, but with simplified
labelling. In this example, going from top to bottom, we first
apply an edge contraction (Section IV.A), to Euler Graph
10a to get to Euler Graph 10b, with the corresponding
diagram shown on the left, resulting in a swap between
concurrency and self-intersection properties. Transforming
from Euler Graph 10b to Euler Graph 10c uses three edge
expansions (Section IV.A). The final step, transforming
from Euler Graph 10c to Euler Graph 10d uses the three
edge removals (Section IV.C) to remove the edges labelled
CC. We note that, as with all the examples in this paper,
these transformations can be applied in the opposite order,
in this case, going from bottom to top.

1ݒ

... ݁1

2ݒ

݁2 ݁2

݁1

...

݁
1ݒ

... ݁1

2ݒ

݁2 ݁2

݁1

...

C
B

C
A B

C

݂1 ݂2 ݂1′ ݂2′ ݂3

 1ݒ

 2ݒ

 1ݒ

 2ݒ

݁1 ݁2 ݁1 + ݁2

A

Figure 10. Applying sequences of transformations to produce the diagrams

given in Figure 1

Comparing the four diagrams given in Figure 10, we
note that Figure 10a has a concurrent line segment, which
can make the curves difficult to follow. The concurrent line
segment is removed in Figure 10b, but whilst the contour C
is still connected (and so the items potentially contained in it
can still be easily identified), the 4-point makes the contours
hard to distinguish when viewed in monochrome, even
when different line styles are used. This could then lead to
misinterpretation of the diagram. In Figure 10c, contour C is
still connected and the 4-point has been removed. However,
the regions formed contour C are more separated and there
are more line segments in the diagram. Finally, Figure 10d
has reduced complexity (no 3-points and a reduced number
of line segments in the final diagram). However, the contour
C is disconnected, which may cause potential difficulties in
understanding which items are contained in C.

Figure 11. A transformation sequence that interchanges n-points and new

minimal regions

B. Interchanging ݊ -points and minimal regions
The ݊-points count can be reduced, at the cost increasing

the concurrency count or number of minimal regions (or
vice versa). In this section, we show a sequence of
transformations that achieve this, see Figure 11. The Euler
diagram in Figure 11a has a 4-point, where all three curves
meet. This point is represented by a vertex with degree 8 in
the Euler graph. Removing this triple point requires the
application of a number of atomic transformations. Firstly,
the Euler graph of Figure 11b shows the result of an edge
expansion (Section IV.A) creating a new edge labelled AB.
The concurrent edge is transformed into a new minimal
region to form Euler graph of Figure 11c (Section IV.B).
This minimal region is not contained by any contours, so the

C

A B

D

D

C

B A

D

C

B A

D

C

B A

C

A

B

D

A

A

C C
B

B

D D

D

C

B A C C

AB

A

A

B

B

D D

C

D

B
A C C

C

A

A

B

B

D D

A

C

D

B A
C C C

A

A

B

B
D D

A B

D

Figure 11b

Figure 11a

Figure 11c

Figure 11d

D
A

C

B

D
A

C
B

D
A

C
B

D
A

C
B

C

D
A

B C C
ABC

D
A

B C C

D
A

B
C C CC CC

CC

D
A

C
B

C

Figure 10b

Figure 10c

Figure 10d

Figure 10a

abstract description remains the same, but the zone outside
all contours is split into two minimal regions. The Euler
graph of Figure 11d shows the result of two edge
expansions (Section IV.A).

Comparing the diagrams, the 4-point in Figure 11a leads
to a symmetric diagram, but might be considered
undesirable because of the complexity at the 4-point. Figure
11b reduces the 4-point to two 3-points, at the expense of
alternative complexity, the concurrent line segment. Figure
11c, with its split zone and 3-points is unlikely to be
preferred over the diagram in Figure 11d, which has the split
zone but no 3-points. This lower diagram may have no
concurrency or 3-points, but items potentially contained in
the outside zone may appear in two distinct minimal
regions, meaning that their implicit grouping is not enforced
by the visualization.

VI. CONCLUSION
We have defined transformations that modify Euler

diagrams by altering the Euler graph of the diagram. In
addition we have defined measures that count the number of
violations of properties of Euler diagrams. A benefit to our
graph theoretic analysis of Euler diagrams is that we are
able to use graph transformations to alter the properties
possessed by Euler diagrams. An important consequence of
this research is that it lays the foundations for the production
of algorithms to automatically produce better diagram
layouts which is key if Euler diagrams are to be useful for
information visualization and visual languages. Hence, work
on examining user preference for various properties, to
inform which transformations should be applied, is an
important next step in the research in this area.

Future work also includes investigating the
completeness of the transformations. Whilst in this paper we
have concentrated on transforming diagrams for the
particular application of changing wellformedness
properties, it would be desirable to ensure that any diagram
modification can be made, and it is not clear that it is
possible with the atomic transformations given here.

Other further effort is likely to involve implementing the
transformations. It is likely that the operation of the
transformations can be restricted to only the area of the
diagram affected, hence we are optimistic that the system
will scale well when large diagrams are altered. One
motivation for implementing the transformation system is to
enable Euler diagram generation from a library of known
good layouts – if we can identify a ‘close’ existing library
diagram to a desired abstract description, then we could
transform from the library example to the desired
description, and so maintain much of the good layout. In
addition, we might wish to draw super diagrams of abstract

descriptions which have extra zones from those that are
specified in the abstract description. So, given a non-
wellformed embedding of an abstract description, by using
transformations we could search for a diagram with
additional zones that was wellformed.

ACKNOWLEDGMENT
This work has been supported by the EPSRC under grants
EP/E010393/1, EP/E011160/1, EP/H012311/1 and
EP/H048480/1.

REFERENCES
[1] S. Chow. Generating and drawing area-proportional Venn and Euler

diagrams. Ph.D. thesis, University of Victoria, Canada 2007.
[2] R. DeChiara, U. Erra, V. Scarano. VennFS: A Venn diagram file

manager. Proc. IV2003, 120-126. IEEE.
[3] H. Ehrig, G. Engels, H.-J. Kreowski, G. Rozenberg (Editors).

Handbook of Graph Grammars and Computing by Graph
Transformation: Applications, Languages and Tools. World
Scientific. 1999.

[4] A. Fish. Euler Diagram Transformations. In Proc. 8th GTVMG. 85-
96. ECEASST 2009.

[5] P. Hayes, T. Eskridge, R. Saavedra, T. Reichherzer, M. Mehrotra, D.
Bobrovnikoff. Collaborative knowledge capture in ontologies. In 3rd
Int. Conf. on Knowledge Capture. 99-106. 2005.

[6] J. Howse, F. Molina, J. Taylor, S. Kent, J. Gil. Spider diagrams: A
Diagrammatic Reasoning System. J. Visual Languages and
Computing, 12(3):299–324, 2001.

[7] J. Howse, P. Rodgers G. Stapleton. Changing Euler Diagram
Properties by Edge Transformation of Euler Dual Graphs. VL/HCC
2009, vol. 25, pp. 177-184.

[8] H. Kestler, A. Muller, T. Gress. M. Buchholz. Generalized Venn
Diagrams: A New Method for Visualizing Complex Genetic Set
Relations. Journal of Bioinformatics, 21(8):1592-1595, 2005.

[9] P. Rodgers, L. Zhang, A. Fish. General Euler Diagram Generation. In
Diagrams 2008. 13-27. Springer.

[10] Ruskey, F. A Survey of Venn Diagrams. Electronic Journal of
Combinatorics, www.combinatorics.org/ Surveys/ds5/VennEJC.html.
1997.

[11] S.-J. Shin. The Logical Status of Diagrams. Cambridge University
Press, 1994.

[12] G. Stapleton, P. Rodgers, J. Howse, J. Taylor. Properties of Euler
Diagrams. In LED 2007. EASST vol. 7.

[13] G. Stapleton, P. Rodgers, J. Howse, L. Zhang. Inductively Generating
Euler Diagrams. IEEE Trans. Visualization and Computer Graphics.
In press. doi.ieeecomputersociety.org/10.1109/TVCG.2010.28

[14] N. Swoboda, G. Allwein. Heterogeneous reasoning with Euler/Venn
diagrams containing named constants and FOL. Euler Diagrams
2004, ENTCS 134.

[15] P. Tavel. Modeling and Simulation Design. AK Peters Ltd. 2007.
[16] A. Verroust, M.-L. Viaud. Ensuring the drawability of Euler diagrams

for up to eight sets. In Diagrams 2004. LNAI 2980, 128-141.
Springer.

