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Abstract— Euler diagrams are frequently used for 
visualizing information about collections of objects and 
form an important component of various visual 
languages. Properties possessed by Euler diagrams 
correlate with their usability, such as whether the 
diagram has only simple curves or possesses 
concurrency. Sometimes, every diagram that represents 
some given information possesses some undesirable 
properties, and reducing the number of violations of 
undesirable properties is beneficial. In this paper we 
show how to count the number of violations from the 
reduced Euler graph. We then define various 
transformations on the Euler graph which can reduce 
the number of violations of  a given property, but 
sometimes at the expense of increasing the number of 
violations of another property. These transformations 
can be used to improve the quality of the drawn 
diagram, which is important for effective information 
visualization. 
 

Keywords-Euler diagrams; Venn diagrams; graph 
transformations. 

I. INTRODUCTION 
Euler diagrams have been used in a wide variety of 

applications, including the visualization of statistical data 
[8], representing non-hierarchical computer systems [2] and 
in visual semantic web environments [5]. They have also 
formed the basis of a number of visual languages, including 
spider diagrams [6], Euler/Venn diagrams [14] and Venn-II 
diagrams [11]. They generalize Venn diagrams [10] 
because, although they can contain all possible zones (like 
Venn diagrams), they do not have to. 

Euler diagrams are considered a useful visual tool 
because they can intuitively show the intersection, 
containment and disjointness of sets of items, as shown in 
Figure 1. This figure also serves to motivate the subject 
matter of this paper. It shows three different ways of 
displaying the same information, each with different 
wellformedness properties evident. The diagram in Figure 
1a has two curves running together (concurrency) and two 
tri`ple points (3-points). The diagram in Figure 1b has a 
self-intersecting curve and one 4-point. Finally, the diagram 
in Figure 1c has two curves with the same label, and is said 
to have “duplicated curve labels”. In this paper we provide a 
transformation system for taking a diagram with particular 

wellformedness properties and converting it to a diagram 
with alternative properties. 

The usability of Euler diagrams is dependent on their 
appearance. In particular, there are a number of topological 
features that are considered to have a strong impact on 
usability. These are termed wellformedness properties, and 
include: concurrency, ݊-points, disconnected zones, 
duplicated curve labels and  self-intersecting contours. The 
terms used here are explained in Section II. It is possible to 
count the number of occurrences of these properties in a 
diagram, and one goal of ensuring Euler diagram usability 
would be to reduce the count. 

It is also possible to interchange properties, as shown in 
Figure 1, where the diagrams show the same information, 
but have different wellformedness properties. There may be 
a preferred set of these properties, dependent on the 
application or user preference. Hence, providing users with 
a mechanism for modifying a diagram to adjust for their 
preference would be useful. In addition, generating usable 
Euler diagrams is non-trivial, and a number of methods for 
their generation have been proposed. However, typically it 
not possible to specify the desired wellformedness 
properties, as the particular properties in the generated 
diagram are intrinsic to the particular method used 
[1][9][16]. Hence, after generation, it would be desirable to 
modify the diagram for user preference. 

In this paper, we define a number of transformations and 
explore which Euler diagram properties can be 
interchanged. The transformations are specified on the Euler 
graph which is directly derivable from the Euler diagram. 
After transformations have been performed, the resultant 
Euler graph can be turned into the appropriate Euler 
diagram. The alternative approach of applying the 
transformations directly to the diagram, rather than the Euler 
graph, is infeasible. This is because the Euler diagram’s 
curves are continuous functions and defining 
transformations that have the desired effects on such 
functions is hard. By contrast, graph transformations have 
been widely studied [3]. Moreover, it is easy to identify the 
impact of the graph transformations on the drawn Euler 
diagram. We note one significant difference, in that graph 
transformations are typically performed on the abstract 
graph, with no concrete instantiation of the vertex locations 
or edge routing. Our work relies on performing operations 
on a plane (drawn) graph, where edge additions are made 
across particular faces of the graph. 



Figure 1. Three Euler diagrams, all showing the same relationship between 
territories in the British Isles 

 
Previous work in transforming Euler diagrams includes a 

mechanism to add curves to an Euler diagram using a dual 
graph of the Euler graph [13]. In addition, transformations 
on dual graphs that result in curve removal and zone 
changes have also been developed [4]. The work in both of 
these previous papers provides a transformation system for 
completely wellformed diagrams, which possess none of the 
properties given above. Transformations for the more 
general, non-wellformed case have been applied to the dual 
graph [7]. However, these are restricted as they only involve 
dual graph edge addition or deletions, and are, consequently 
limited to altering a small number of properties. For 
instance, the transformation given in Section IV.B cannot be 
performed in the system of [7] as it would involve changing 
a node in the dual graph. 

In addition, the Euler graph discussed in this paper gives 
more information about the concrete layout of the Euler 
diagram compared to the dual graph used in the previous 
work. For example, dual graphs cannot be used to detect 
instances of self-concurrency. This paper defines 

transformations that can be used alter a wider set of 
wellformedness properties than was previously possible and, 
therefore, can lead to better Euler diagram usability. 
Moreover, we show how to count instances of non-
wellformedness, and show how these counts are altered by 
the transformations, further informing usability of diagrams. 

In Section II we formally define the concepts of Euler 
diagram and Euler graph. In Section III we summarize the 
methods for counting properties of Euler diagrams from the 
Euler graph. In Section IV we define a set of atomic 
transformations, which involve the transformation of certain 
properties. In Section V we show by example how the 
atomic transformations can be combined into compound 
transformations to perform further property swaps. In 
Section VI we give our conclusions and discuss further 
work. 

II. EULER DIAGRAMS AND GRAPHS 
We define an Euler diagram as a pair ݀ = ,݁ݒݎݑܥ) ݈) 

where ݁ݒݎݑܥ is a finite collection of closed curves with 
codomain ℝଶ and ݈:݁ݒݎݑܥ → ℒ is an function that returns 
curve labels, where ℒ is a set containing curve labels. 

A minimal region of an Euler diagram ݀ = ,݁ݒݎݑܥ) ݈), 
is a connected component of ℝଶ −⋃ ݅݉(ܿ)∈௨௩ , where 
݅݉(ܿ) is the image of curve ܿ. 

In a diagram ݀, the set of curves with label ߣ, denoted 
 is  A point . ߣ is called a contour of ݀ with label (ߣ)݊ܥ
inside (ߣ)݊ܥ whenever it is inside a curve with label ߣ, 
unless it is inside multiple curves with the label, in which 
case p is inside (ߣ)݊ܥ if it is in a odd number of curves 
with label ߣ, otherwise it is exterior to (ߣ)݊ܥ. 

A zone is defined to be the set of points interior to a 
subset of the contours in an Euler diagram and exterior to 
the others. We observe that, to identify a zone, we only need 
to know the containing set of contours, since the others can 
be derived. 

We consider a restricted class of Euler diagrams in this 
paper: we assume that there are finitely many minimal 
regions and that the multiplicity of any point in ℝଶ is finite, 
given any curve. Here, we take the multiplicity of a point, , 
given a curve, ܿ, to be the number of times to which  is 
mapped by ܿ; we denote the multiplicity of  given ܿ by 
,)݈ݑ݉ ܿ). From a practical perspective, these two 
restrictions pose no real limitation since we cannot 
accurately draw Euler diagrams with infinitely many 
minimal regions or accurately visualise the infinite 
multiplicity of a point. 

Extending the concept of multiplicity, we define the 
multiplicity of a line segment, ݁, given curve ܿ to be the 
minimum multiplicity of any point on ݁ given ܿ, denoted 
,݁)݈ݑ݉ ܿ); clearly, ݈݉ݑ(݁, ܿ) is finite if the multiplicity of 
each point is finite. 

An abstract description, ܦ, is a finite subset of ℙℒ 
such that ∅ ∈  .are called abstract zones ܦ Elements of .ܦ
We abuse the notation for simplification reasons and so 
write a zone which is interior to contours with labels A, B 
and C as ABC. Similarly, we simplify the notation of an 
abstract description, so that {Ø,A,AB} becomes Ø A AB.  
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Given an Euler diagram ݀ = ,݁ݒݎݑܥ) ݈) we map ݀ to 
abstract description ܦ = ܾܽ(݀), called the abstraction of ݀ 
where ܾܽ(݀) contains exactly one abstract zone for each 
zone in ݀. In particular, given a zone ݖ in ݀, then ܾܽ(݀) 
contains the abstract zone ܾܽ(ݖ) = {݈(ܿ): ܿ ∈  where ,{(ݖ)ܿ
 The abstraction .ݖ is the set of contours that contain (ݖ)ܿ
will be used to show how the meaning changes if a 
transformation alters the zones that are present in a diagram. 

Now we define an Euler graph and describe how to 
convert between Euler graphs and Euler diagrams. Roughly 
speaking an Euler graph is related to an Euler diagram by 
having a vertex at each point where two or more curves 
meet and the edges are the curve segments that connect the 
vertices. As a special case, curves which do not intersect 
with other curves are represented by a vertex together with a 
loop. We are concerned with plane graphs, rather than 
abstract graphs because we need the edges to be embedded 
to be able to define the transformations. 

An unlabelled Euler graph of an Euler diagram 
݀ = ,݁ݒݎݑܥ) ݈) is a plane graph, ܩ =  with vertex set ,(ܧ,ܸ)
ܸ and edge set ܧ such that: 
1. there are vertices at  

a. any starting point 
b. any turning point, and 

2. the embedded edges and vertices have image 
⋃ ݅݉(ܿ)∈௨௩ . 

 
Informally, a starting point of a curve is the point where 

we start to draw the curve. A turning point is any point 
where, when drawing the curve, we turn back on the part of 
the curve just drawn. Note that an unlabelled Euler graph 
may have additional vertices placed arbitrarily with 
condition 1, given above, describing a minimal requirement. 

 

 
Figure 2. An Euler diagram, an Euler graph and a reduced Euler graph 

 

Figure 2b shows an Euler graph (with edge labels) of the 
diagram given in Figure 2a. Vertices must be placed in the 
graph corresponding to locations where curves intersect in 
the diagram to ensure planarity. In addition, extra degree 
two vertices can be present in the graph. However, there are 
no 'extra' degree two vertices in the graph which could, for 
example, have arisen from a turning point. 

An edge labelled graph, is a tuple, ܩ = ,ܧ,ܸ) ݈ா) where 
 The .ܧ is a graph with vertex set ܸ and edge set (ܧ,ܸ)
function ݈ா ܧ: → ℙ(ℕ× ℒ) labels the edges. If (݊, (ߣ ∈
݈ா(݁) we say that lambda occurs ݊ times on ݁. 

An Euler graph ܩܧ = ,ܧ,ܸ) ݈ா),  is a plane edge 
labelled graph where: 
1. for each vertex, any given curve label occurs, in total, a 

even number of times on its incident edges. This means 
that a closed curve can be formed for every label by 
traversing edges; and 

2. the label of each edge contains at least one occurrence 
of a curve label. 
 

Let ݀ = ,݁ݒݎݑܥ) ݈) be an Euler diagram. An Euler 
graph of ܩܧ ,ࢊ(݀) = ,ܧ,ܸ) ݈ா) is an Euler graph, where 
 ,is an unlabelled Euler graph of ݀ such that each edge (ܧ,ܸ)
݁, is labelled by 

݈ா(݁) = ൛൫݈݉ݑ(݁, ܿ), ݈(ܿ)൯: ܿ ∈   ൟݎݑݐ݊ܥ
where ݎݑݐ݊ܥ is the set of contours in ݀. 
An Euler graph ܩܧ = ,ܧ,ܸ) ݈ா)  has faces that are the 

minimal regions of the Euler diagram.  We can map each of 
these faces, ݂, to an abstract zone using the information in 
the Euler graph alone. When we convert an Euler diagram to 
an Euler graph, we can be confident that the abstract 
description derivable from the Euler graph is the same as the 
abstract description of the Euler diagram. 

A vertex, ݒ, of an edge labelled graph is redundant 
provided it is incident with exactly two distinct edges, each 
of which have the same labels. For example, the Euler graph 
in Figure 2b has two redundant vertices: the left-most vertex 
and the right-most vertex. 

A reduced Euler graph ܴܩܧ(݀) of an Euler diagram ݀ 
is an edge labelled graph derived from ܩܧ(݀) by removing 
redundant vertices, whilst ensuring that ܴܩܧ(݀) is 
homeomorphic to ܩܧ(݀), until no redundant vertices 
remain. 

Figure 2c shows a reduced Euler graph of the 
diagram given in Figure 2a. As with an Euler graph, 
vertices must be placed in the graph corresponding to 
locations where curves intersect in the diagram. In 
addition, there are no ‘extra’ two degree vertices in the 
graph. 

III. PROPERTIES OF EULER DIAGRAMS 
Here we discuss how we enumerate the number of 

violations of the wellformedness properties using the Euler 
graph of an Euler diagram. The properties are formally 
defined for an Euler diagram in [12]. 

Concurrency. A concurrent line segment is one that is 
shared by more than one curve. We can count the 
concurrency in an Euler diagram by considering the edge 

a) An Euler diagram, ݀, with abstraction Ø A B C AB BC 
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labels in the reduced Euler graph. Edges with more than one 
label correspond to the presence of concurrency. The edge 
concurrency count of an edge ݁ of a reduced Euler graph, 
 :is ܩܧܴ

 

(ܩܧܴ,݁)ܿܿ݁ = ቌ  ݊
(,ఒ)∈ಶ()

ቍ− 1 

 
Then ܴܩܧ has graph concurrency count: 
 

(ܩܧܴ)ܿܿ݃ =  (ܩܧܴ,݁)ܿܿ݁
∈ா(ாீ)

 

 
Given an Euler diagram ݀ and corresponding reduced 

Euler graph ܴܩܧ(݀) the graph concurrency count for 
 .݀ can be used as a measure of the concurrency in (݀)ܩܧܴ
For example, the graph concurrency count for the graph in 
Figure 2c is 3, hence the concurrency count in the diagram 
in Figure 2a is 3. 

 
 points. An  ݊-point is a point that is passed through at-

least ݊ times by curves in the diagram. We can count ݊-
points by looking at vertices of the reduced Euler graph and 
counting the number of labels on incident edges. Hence, it is 
possible to find the -point value of a vertex, ݒ of a 
reduced Euler graph, ܴܩܧ using: 

 
(ܩܧܴ,ݒ,݊)݊ݒ = 

max൞0,൮  
݉
2

(,ఒ)∈ಶ() ௦ ௗ௧
௪௧ ௩

൲− ݊ൢ 

 
Note we define the summation above to count the value 

for edge ݁ twice whenever it is a loop. Then ܴܩܧ has graph 
 :point count-

 
(ܩܧܴ,݊)ܿ݊݃ =  ,݊)ܿ݊ݒ (ܩܧܴ,ݒ

௩∈(ாீ) 

 

 
Given an Euler diagram ݀ and corresponding reduced 

Euler graph ܴܩܧ(݀) the graph ݊-point count for ܴܩܧ(݀) 
can be used as a measure of the ݊-point count in ݀. For 
example, the 3-point count of the reduced Euler graph in 
Figure 2c is 3, hence the 3-point count in the Euler diagram 
in Figure 2a is 3. 

 

Figure 3. EG(B). 
 
Disconnected zones. A zone is disconnected if it 

comprises more than one minimal region. Since minimal 
regions correspond to faces in the reduced Euler graph, we 

can count the number of violations of the disconnected 
zones property by counting faces. Hence, a reduced Euler 
graph, ܴܩܧ, has disconnected zone count: 

 
(ܩܧܴ)ܿݖ݀ = −(ܩܧܴ)ݏ݂݁ܿܽ |ܼ(݀)| 

 
where ݂ܽܿ݁(ܩܧܴ)ݏ is the number of faces in ܴܩܧ. For 

example, the number of disconnected zones of the Euler 
diagrams in Figure 1a and 1b is 0, whereas the disconnected 
zone count in Figure 2c is 1. 

 
Duplicated curve labels. This is a count of the number 

of times contours consist of more than one curve. This 
measure can be derived from the reduced Euler graph by 
looking at the disconnected subsets of the graph induced by 
the curve labels. For curve label ߣ we define ܴܩܧா(ߣ) to be 
the subgraph induced by deleting all edges that do not 
contain ߣ and any vertices with degree 0. Then a curve label 
 has more than one (ߣ)ாܩܧܴ has a non-zero count if ߣ
disconnected component, and the count of a curve label 
increases as the number of disconnected components 
increases. We can then sum these for the graph. Hence, a 
reduced Euler graph, ܴܩܧ =  has duplicate curve ,(ܧ,ܸ)
label count: 

 
(ܩܧܴ)݈ܿ݀ =  ൫ܿ݉൫ܴܩܧா(ߣ)൯ − 1൯

ఒ∈(ீ)

 

 
where ܿ݉൫ܴܩܧா(ߣ)൯ is the number of disconnected 

components of ܴܩܧா(ߣ). Figure 3 shows ܴܩܧா(ܤ) for the 
reduced Euler graph in Figure 2c. The subgraph derived 
from the label B is has two disconnected components, and 
so will contribute 1 to the duplicate curve label count. For 
example, the duplicate curve label of the reduced Euler 
graph in Figure 2c is 1 (there is only the disconnected 
component for label B). 

 
Self-intersecting contours. Finally, we wish to count 

the number of times a contour self-intersects. If a contour 
label appears on more than two edges incident with any 
given vertex then the contour’s curve passes through that 
vertex more than once and, therefore, we have a self-
intersection point. Hence, it is possible to find the self-
intersection count of a vertex, ݒ of a reduced Euler graph 
ܩܧܴ =  :using (ܧ,ܸ)

 

(ܩܧܴ,ݒ)ܿ݅ݏݒ = ∑ ൭ቆ∑ 
ଶ(,ఒ)∈ಶ()

ௗ  வ
ቇ − 1൱ ௦

ௗ௧
௪௧  ௩

. 

 
Again, we count loops twice in the above summation. 

Extending the definition, ܴܩܧ has graph self-intersection 
count: 

 
(ܩܧܴ)ܿ݅ݏ݃ =  (ܩܧܴ,ݒ)ܿ݅ݏݒ

௩∈(ாீ) 
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Given an Euler diagram ݀ and corresponding reduced 
Euler graph ܴܩܧ(݀) the graph self-intersection count for 
 can be used as a measure of the self-intersecting (݀)ܩܧܴ
count in ݀. For example, the graph self-intersection count in 
Figure 2c is 1, hence the self-intersecting curve count of the 
diagram in Figure 2a is 1. 

IV. ATOMIC TRANSFORMATIONS 
In this section we define the atomic transformations that 

swap between wellformedness properties and which allow 
more sophisticated compound transformations to be 
produced. We note that, unlike many graph transformation 
systems which operate on an abstract graph, the 
transformations we describe are at the embedded level, 
where the edge ordering around each vertex is known and, 
therefore, the faces in the graph can be derived. This ensures 
that, if the transformations are ‘valid’, an Euler diagram can 
be produced from an Euler graph. 

We note some general restrictions that are placed on the 
transformations: 
 Transformations are not valid if they do not result in a 

plane graph. This means that no edge can be added that 
crosses an existing edge. 

 Transformations are not valid if they do not result in an 
Euler graph. The transformations in this paper always 
produce an Euler graph. 

A. Edge contraction and expansion 
It is possible to reduce concurrency by contracting an 

edge, ݁, that includes at least two contour labels. This can, 
however, result in a change to the ݊-point count and the 
self-intersection count. This can be seen in Figure 4, where 
moving from the LHS to the RHS has meant that the 4-point 
count has gone from 0 to 1 (note, however, that the 3-point 
count remains at 2, because a diagram with a single 4-point 
has a 3-point count of 2). In addition, because contour C is 
self-intersecting in the RHS, the self-intersection count has 
increased from 0 to 1. The transformation is symmetric (as 
are all the transformations defined in this section) and so the 
reverse operation can conversely add a (possibly concurrent) 
line segment. Note that in particular cases, for example 
when the same contour label appears multiple times on the 
edge, an edge contraction can reduce the ݊-point count and 
the self-intersecting count. 

 
 
 
 

 
Figure 4. Two embedding of Euler diagram with abstraction Ø A B 

AC BC 
 
 

 
Figure 5. Changing between concurrency and new minimal regions 
 
The transformation that achieves the swap is shown in 

Figure 5. The LHS shows a line segment of an Euler 
diagram, represented by an edge labelled ݁ in the Euler 
graph. This edge can be removed by merging the two 
vertices, 1ݒ and 2ݒ, into a new, single vertex, 3ݒ. Both sets 
of edges emanating from the vertex pair now emanate from 
the new vertex. 

Applying the transformation from LHS to RHS can be 
performed without restriction. However, there is a constraint 
when using this transformation from RHS to LHS. The label 
on ݁ can be anything (as long as it includes at least one 
contour label) provided, that, for each vertex, ݒ, incident to 
݁, and for all contour labels, ߣ, in the diagram, the sum of 
the number of occurrences of ߣ on the edges incident with ݁ 
is even. We note that going from the LHS to the RHS does 
not always mean concurrency is created; it is only created 
when the number of contour labels for ݁ is more than one. In 
addition, when going from the RHS to the LHS, the label of 
the new edge may contain contour labels that were not 
previously present in the diagram, hence this transformation 
provides a way of creating new contours. Concurrency is 
also affected by another technique, as shown in the 
following subsection. 

B. Edge splitting and merging 
Here we show how concurrency can be reduced at the 

expense of adding a new minimal region, or vice versa. 
When reducing the concurrency count, this operation 

may either add a new zone (so changing the abstract 
description), or add a disconnected region to a zone (which 
maintains the original abstract description). In the example 
in Figure 6, the LHS Euler diagram has abstract description 
Ø A B AB AC, but the RHS Euler diagram has abstract 
description Ø A B C AB AC, so in this case we added a 
new zone C. 

 
 

 
Figure 6. A transformation that swaps between a concurrent line segment 

and a new minimal region for abstraction Ø A B AC BC 
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Figure 7. Adding or removing concurrency 

 
We will need to define an operation, +, on edge 

labels, that merges the two sets of labels: ݁1 + ݁2 =
{(݊ + ݉, :(ߣ (݊, (ߣ ∈ ݁1 ܽ݊݀ (݉, (ߣ ∈ ݁2}. 

Here, the edge labels ݁1 and ݁2 must each contain at 
least one contour label, when going from the LHS to the 
RHS. 

Figure 7 shows the transformation definition. If ݅ݖ is the 
abstract zone for the zone represented by face ݂݅, then the 
new abstract zone 3ݖ can be derived from 1ݖ by, removing 
contour labels that occur in 1ݖ and adding contour labels 
that do not occur in 1ݖ. This is because the difference 
between two adjacent zones can be seen as being the 
contours that are crossed when going from one to the other. 
In the special case where the contour label appears an even 
number of times, the label either appears in both contours or 
does not appear in both contours. The new abstract zone 
could equivalently have been calculated from ݁2 and ݂2. 
The abstract zones derivable from the faces labelled ݂1′ and 
݂2′ remain unchanged from the respective faces labelled ݂1 
and ݂2. 

In addition, no faces apart from the faces labelled ݂1, 
݂2, ݂1ᇱ, ݂2ᇱ and ݂3 may be affected by the transformation. 
This prevents newly created edges from being routed in a 
planar way, but through a face outside the intended scope of 
the transformation. 

C. Edge deletion and addition 
We can remove curves that run along themselves, at the 

cost of (possibly) increasing the number of curves used to 
represent the contour. In the example given in Figure 8, as 
with figures 5 and 6, both Euler diagrams have abstract 
description Ø B C AB AC.  

The transformation definition is shown in Figure 9. This 
transformation can only be applied if all contour labels 
occur in edge ݁ an even number of times. The intuition 
behind this is that, in a Euler diagram, if we cross a contour 
that is self-concurrent an even number of times, we do not 
change our relationship (interior or exterior) to that contour. 

 
 

 
Figure 8. A transformation that swaps between a self-concurrent line 

segment and duplicate curve labels for abstraction Ø A B AC BC 
 
 

 
Figure 9. A transformation to add or remove an edge 

 
As with the transformation in Section IV.A, when going 

from the RHS to the LHS, the edge, e, can include contour 
labels that are not currently present in the diagram. 

V. COMBINING TRANSFORMATIONS 
To illustrate the practical application of these 

transformations, we give two common swaps between 
wellformedness properties that can be performed using 
compound transformations. 

A. Interchanging self-intersection, duplicated curve labels 
and concurrency 

The two wellformedness properties of self-intersecting 
contours and the number of curves in a contour are, in 
general, swappable. In addition, it is also possible to swap 
between some instances of concurrency and self-intersecting 
contours with an extra step. Here we show how to reduce 
the concurrency count at the expense of introducing a self-
intersecting contour. We can then reduce the self-
intersecting count at the expense of increasing the multiple 
label count. 

We illustrate this swap in figure 10 using the British 
Isles examples given in Figure 1, but with simplified 
labelling. In this example, going from top to bottom, we first 
apply an edge contraction (Section IV.A), to Euler Graph 
10a to get to Euler Graph 10b, with the corresponding 
diagram shown on the left, resulting in a swap between 
concurrency and self-intersection properties. Transforming 
from Euler Graph 10b to Euler Graph 10c uses three edge 
expansions (Section IV.A). The final step, transforming 
from Euler Graph 10c to Euler Graph 10d uses the three 
edge removals (Section IV.C) to remove the edges labelled 
CC. We note that, as with all the examples in this paper, 
these transformations can be applied in the opposite order, 
in this case, going from bottom to top. 
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Figure 10. Applying sequences of transformations to produce the diagrams 

given in Figure 1 
 
 
 
 
 
 

Comparing the four diagrams given in Figure 10, we 
note that Figure 10a has a concurrent line segment, which 
can make the curves difficult to follow. The concurrent line 
segment is removed in Figure 10b, but whilst the contour C 
is still connected (and so the items potentially contained in it 
can still be easily identified), the 4-point makes the contours 
hard to distinguish when viewed in monochrome, even 
when different line styles are used. This could then lead to 
misinterpretation of the diagram. In Figure 10c, contour C is 
still connected and the 4-point has been removed. However, 
the regions formed contour C are more separated and there 
are more line segments in the diagram. Finally, Figure 10d 
has reduced complexity (no 3-points and a reduced number 
of line segments in the final diagram). However, the contour 
C is disconnected, which may cause potential difficulties in 
understanding which items are contained in C. 

 
Figure 11. A transformation sequence that interchanges n-points and new 

minimal regions 
 

B. Interchanging ݊ -points and minimal regions 
The ݊-points count can be reduced, at the cost increasing 

the concurrency count or number of minimal regions (or 
vice versa). In this section, we show a sequence of 
transformations that achieve this, see Figure 11. The Euler 
diagram in Figure 11a has a 4-point, where all three curves 
meet. This point is represented by a vertex with degree 8 in 
the Euler graph. Removing this triple point requires the 
application of a number of atomic transformations. Firstly, 
the Euler graph of Figure 11b shows the result of an edge 
expansion (Section IV.A) creating a new edge labelled AB. 
The concurrent edge is transformed into a new minimal 
region to form Euler graph of Figure 11c (Section IV.B). 
This minimal region is not contained by any contours, so the 
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abstract description remains the same, but the zone outside 
all contours is split into two minimal regions. The Euler 
graph of Figure 11d shows the result of two edge 
expansions (Section IV.A). 

Comparing the diagrams, the 4-point in Figure 11a leads 
to a symmetric diagram, but might be considered 
undesirable because of the complexity at the 4-point. Figure 
11b reduces the 4-point to two 3-points, at the expense of 
alternative complexity, the concurrent line segment. Figure 
11c, with its split zone and 3-points is unlikely to be 
preferred over the diagram in Figure 11d, which has the split 
zone but no 3-points. This lower diagram may have no 
concurrency or 3-points, but items potentially contained in 
the outside zone may appear in two distinct minimal 
regions, meaning that their implicit grouping is not enforced 
by the visualization. 

VI. CONCLUSION 
We have defined transformations that modify Euler 

diagrams by altering the Euler graph of the diagram. In 
addition we have defined measures that count the number of 
violations of properties of Euler diagrams. A benefit to our 
graph theoretic analysis of Euler diagrams is that we are 
able to use graph transformations to alter the properties 
possessed by Euler diagrams. An important consequence of 
this research is that it lays the foundations for the production 
of algorithms to automatically produce better diagram 
layouts which is key if Euler diagrams are to be useful for 
information visualization and visual languages. Hence, work 
on examining user preference for various properties, to 
inform which transformations should be applied, is an 
important next step in the research in this area. 

Future work also includes investigating the 
completeness of the transformations. Whilst in this paper we 
have concentrated on transforming diagrams for the 
particular application of changing wellformedness 
properties, it would be desirable to ensure that any diagram 
modification can be made, and it is not clear that it is 
possible with the atomic transformations given here. 

Other further effort is likely to involve implementing the 
transformations. It is likely that the operation of the 
transformations can be restricted to only the area of the 
diagram affected, hence we are optimistic that the system 
will scale well when large diagrams are altered. One 
motivation for implementing the transformation system is to 
enable Euler diagram generation from a library of known 
good layouts – if we can identify a ‘close’ existing library 
diagram to a desired abstract description, then we could 
transform from the library example to the desired 
description, and so maintain much of the good layout. In 
addition, we might wish to draw super diagrams of abstract 
 
 
 
 
 
 
 
 

descriptions which have extra zones from those that are 
specified in the abstract description. So, given a non-
wellformed embedding of an abstract description, by using 
transformations we could search for a diagram with 
additional zones that was wellformed. 
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