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Abstract 
Euler diagrams are collections of labelled closed 

curves. They are often used to represent information about 
the relationship between sets and, as such, they have 
numerous applications including: visualizing biological 
data, diagrammatic logics, and visual database querying. 
Various methods to automatically generate Euler diagrams 
have been proposed recently. Typically, the generation 
process starts with an abstract description of an Euler 
diagram, which is then converted to a planar dual graph. 
Finally, the process attempts to embed the Euler diagram 
from the dual graph. This paper describes a method for 
embedding wellformed Euler diagrams from dual graphs. 
There are several mechanisms to generate dual graphs but, 
prior to the novel work described here, no general method 
for embedding a wellformed Euler diagram from a dual 
graph had been demonstrated. The method in this paper 
achieves an embedding of any wellformed Euler diagram. 
The method first triangulates the dual graph. Then, using 
the faces of the triangulated graph, an edge labelling 
technique identifies the vertices of polygons which form the 
closed curves of the Euler diagram. The method is 
demonstrated by a Java implementation. In addition, this 
paper discusses a number of layout improvements that can 
be explored for this embedding method. 
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1. Introduction 

Euler diagrams are a popular and intuitive notation for 
representing information about sets and their relationships. 
To illustrate, the Euler diagram in Figure 1 shows the 
relationship between parts of the British Isles. Euler 
diagrams allow the representation of concepts such as one 
set being a subset of another or that two sets are disjoint. 
The term Venn diagram is often applied to such examples, 
however Venn diagrams are a specific type of Euler 
diagram which represents all set intersections [12], and, as 
the number of sets increases, they quickly becomes visually 
cluttered. 

Euler diagrams consist of a finite collection of labelled 
closed curves, called contours. The minimal (non-empty) 

regions are called zones. For example, Figure 1 has a 
contour with label “Ireland”, and a contour with label 
“United Kingdom”. The zone which is inside both these 
contours contains the item “Northern Ireland”. The zone 
that is in the contour “Ireland” but not in the contour 
“United Kingdom” contains the item “Republic of Ireland”. 

The demonstrable popularity of Euler diagrams lies in 
their wide-ranging applications, including the visualization 
of statistical data [1], displaying the results of database 
queries [17] and representing non-hierarchical computer 
file systems [2]. They have been used in a visual semantic 
web editing environment [16] and for viewing clusters 
which contain concepts from multiple ontologies [8]. 
Another major application area is that of logical reasoning 
[15] and such logics are used for formal object oriented 
specification [10]. 

 
Figure 1. British Isles Euler diagram by Sam 

Hughes. 
 
Currently, in all but some restricted cases, Euler 

diagrams must be laid out by hand. In all of the above 
application areas, the automated layout of Euler diagrams 
will bring substantial benefits, allowing complex diagrams 



can be developed and permitting Euler diagrams to be used 
with visualization systems. 

When defining generation and layout techniques, one 
should place a high importance on the usability of the 
diagram produced. Usability can be correlated with a range 
of desirable properties, sometimes called wellformedness 
conditions. Perhaps the most commonly required properties 
are the absence of concurrency between curves, the absence 
of triple points (or worse) of intersection, the absence of 
disconnected zones, and the use of simple curves only. 
Each of the diagrams in Figure 2 breaks one or more of the 
wellformedness conditions. 

In this paper we use single letters to label contours. 
Each zone can be described by the contour labels in which 
the zone is contained. An abstract description of an Euler 
diagram, describing precisely which zones are required to 
be present, is a collection of zone descriptions. For 
example, the abstract description for the Euler diagram in 
Figure 3c is ∅ a b ab bc abc, where ∅ indicates the zone 
which is contained by no contours, called the outside zone. 
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Figure 2a. 

A triple point. 
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Figure 2b. 

Concurrent curves. 
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Figure 2c. 

Disconnected zones. 
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Figure 2d. 
A non-simple curve.

 
Previous work on generation produces Euler diagrams 

satisfying certain wellformedness conditions [1],[4], 
[11],[17]. However, abstract descriptions that cannot be 
drawn under certain wellformedness conditions exist, such 
as ∅ a b c ab ac bc (shown embedded in Figure 2a) and ∅ 
ab bc (shown embedded in Figure 2b). In addition there are 
nine set abstract descriptions that cannot be drawn with 
simple curves [17]. 

To generate an Euler diagram, the standard approach is 
to take an abstract description and, first, derive a planar 
dual graph. Each node in the dual graph represents a zone 

and is labelled by that zone’s abstract description. In simple 
cases, edges between nodes arise when there is exactly one 
contour label difference between node labels; this single 
label is used to label the edge. The dual graph is then 
embedded in the plane (see Figure 3a); see [4] for further 
details. Finally one attempts to embed the Euler diagram by 
routing each contour with label l through the edges labelled 
l (see Figure 3b). In these diagrams, the dual graph is 
shown with dotted lines to more easily distinguish it from 
the Euler diagram. 

 
Figure 3a. A dual graph for ∅ a b ab bc abc. 

 

 
Figure 3b. An embedding of the Euler diagram 

from the dual. 
 
Even if an embedding can found, there is no guarantee 

that the layout of the Euler diagram will be usable. Apart 
from the properties illustrated in Figure 2, other features 
such as smooth, well spaced contours are desirable. The 
layout of the dual graph will have an impact on the 
presence of features, as will the mechanism used for 
determining the routing of the contours through the dual. 
An Euler diagram after layout improvement, is shown in 
Figure 3c. 



 
Figure 3c. The final diagram ∅ a b ab bc abc. 

 
This paper addresses the Euler diagram embedding 

problem. We define a technique for routing contours 
through the dual in such a way that we create a wellformed 
diagram (a diagram that has contours which meet 
transversely whenever they intersect and has none of the 
properties shown in Figure 2: no triple points, concurrent 
curves, disconnected zones or non-simple curves) 
whenever this is theoretically possible. We take a dual 
generated by the method described in [4] that is guaranteed 
to admit a wellformed Euler diagram and triangulate it. We 
then label the triangulation edges with the difference 
between incident node labels; these labels identify the 
contours that will pass through the edge. The labels are 
then placed in an order on the edge which indicates how the 
contours will pass through each triangle, that is, which (if 
any) contours will intersect in the triangle. 

This paper also presents methods for improving the 
layout of the diagrams which take advantage of this 
triangulation approach. First, we modify the plane 
embedding of the dual through a force directed layout 
method, which adds a node-edge repulsive force in addition 
to the normal node-node repulsive force. Secondly, we 
optimize the positioning of the edge labels (each of which 
is placed where the relevant contours will cut the edge) in 
order to obtain contours with a more regular shape. 

The method we use to route the contours through 
triangulated duals is described in Section 2. Section 3 
discusses improvements to the layout of Euler diagrams. 
Section 4 shows some examples of the method in operation. 
Finally, Section 5 gives our conclusions and further work. 

2. Forming diagrams from dual graphs 

This section describes the process of taking a plane 
embedding of a graph dual in order to produce an 
embedding an Euler diagram with the required zone set.  

2.1. Generating a wellformed dual graph 

To generate a dual graph we follow the methodology 
of [4]. This generates connected duals that admit diagrams 
that have contours which, whenever they intersect, do so 
transversely. There are at most two contours intersecting at 
any point, with no concurrent contours, all contours are 
simple curves, and each zone is a connected component of 
the plane. Starting with an abstract description, the method 
first creates the nodes of a dual graph called the superdual; 
the zone descriptions are the node set and edges connect 
two nodes whenever they have exactly one contour label 
difference; and this difference forms the edge label. The 
superdual is then transformed (possibly including edge 
removal) into a connected plane graph, called the plane 
dual, that satisfies the connectivity conditions and face 
conditions (defined below). Currently implementation 
imports the open source library JGraphEd to test for 
planarity and to find a plane layout of the dual, although we 
are experimenting with other planar layout tools. 

The connectivity conditions are a simplification of 
those used in [5] and state that the dual is connected and for 
each contour label used in the abstract description, if the 
nodes without that contour label present are removed 
(recall, a node is a collection of contour labels) then the 
graph remains connected and, similarly, if the nodes 
without that contour label present are removed then the 
graph must also remain connected. 

In order to define the face conditions, we first define 
crossing index: the crossing index of a face is the number 
of pairs of labels which occur on the edges which bound 
the face in a non-nested manner. For example, given the 
face edge label cycle uavbwbxay the letters a and b are 
nested whereas they are not nested in uavbwaxby. The 
non-nestedness of a pair of labels corresponds to the need 
for their associated contours to cross within the face. The 
face conditions state that for each face of the plane dual 
graph the crossing index must be one less than the number 
of distinct labels on the edges bounding the face.  

The embedding method presented in this paper takes a 
dual that meets these conditions, and draws the contours 
around the nodes respecting the enclosure information 
provided. So, each contour will enclose precisely the nodes 
which include that contour’s label. The contours are drawn 
with polygons and we identify which faces that each 
contour must pass through by considering the edge 
labelling: if a label appears on an edge bounding a face 
then the contour with that label must pass through the face. 
Moreover, the contour cuts through precisely the edges 
with that contour label. 

2.2. Difficulties when routing contours 

In general, straight lines cannot simply be drawn 
between edges of the dual to show where contours pass 
through faces, because a face may not be convex. Hence 



the line could cut other edges which do not include the 
contour label, possibly introducing incorrect contour 
intersections and so failing to form the required zone set. If 
an arbitrary polyline routing through the face is taken, 
incorrect intersections can again occur, also possibly failing 
to form the required zone set. See Figure 4, where the zone 
c appears but does not exist in the abstract description, and 
the zone a is a disconnected region, appearing both at the 
bottom and top right of Figure 4. The difficulty of routing 
contours motivates the use of a triangulation. The convex 
nature of the triangles means that the above problems can 
be avoided, but we must establish how to route contours 
through the triangles. 

 
Figure 4. An incorrect embedding for 

∅ a b ab ac abc. 

2.3. Embedding a Euler diagram 

First, we triangulate the faces of the plane dual graph. 
Instead of triangulating the infinite face we form a border 
of nodes with empty labels around the graph and 
triangulate the polygon that is formed. As with the dual 
graph, each triangulation edge is labelled with the 
difference between the labels present in its incident nodes, 
see Figure 5a, the triangulated edges are shown in blue and 
with a wider dash than the dual edges. Again, as with the 
dual, the labels on the triangulation edges indicate which 
contours will cut them when we produce an embedding. 
However, unlike the dual, there may be multiple contours 
passing through any triangulation edge. 

Figure 5a also shows the label ordering along the 
triangulation edges identifying where each contour will 
pass through the edge. The ordering is produced in such as 
was as to ensure that all required contour crossings occur 
exactly once in a dual face (the method is described below). 
Figure 5b shows the contours passing through the 
subsequent contour cutting points. For the purposes of this 
method we treat dual graph edges as triangulation edges. 

 

 
Figure 5a. A triangulated graph. The 16 border 

nodes around the bounding rectangle are hidden. 

 
Figure 5b. Embedding contours through the 

triangulated dual. 
The contours that cross in a dual face can be found by 

the method described in Section 2.1, i.e. through 
establishing nestededness in the face-cycle around the face. 
In the large dual face in Figure 6a with face-cycle abcacb 
the contours a and b must cross, as must a and c. It is then 
possible to assign these crossings so that they occur in a 
particular face of the triangulated dual, provided those 
contours pass through the triangle. 

The triangulation edge label ordering process 
progresses through the face, assigning the order of the 
labels on a triangulation edge in a triangle where two 



triangulation edges already have their contour order 
assigned. At the start of the process there are at least two 
triangles with two edges assigned labels; these are triangles 
with two edges that appear in the original face - because 
they are labelled with a single contour they have a trivial 
contour order. Any ordering of the labels is permitted 
provided the resulting ordering around the triangle results 
in the enclosed face satisfying the face conditions. Figure 
6a shows triangulation edges for the inner faces which have 
not yet got ordered labels. The two triangles connecting 
nodes ∅, b, bc and a, ab, abc have two edges with contour 
order assigned. If the triangle made from nodes ∅, b, bc 
has a label order given to its third edge as shown in Figure 
6b, then a further triangle (made from nodes ∅, b, bc) will 
have two edges with a label order. The process then 
continues until all triangulation edges are fully assigned, as 
in Figure 5a. 

 
Figure 6a. Unassigned triangulation edges 

 
Figure 6b. Ordering edge labels  

Contours cross triangles with straight lines, so the 
order of labels on triangulation edges defines which 
contours will cross in the triangle. Figure 6b shows a single 
triangulation edge ordering of the edge that does not create 
a crossing. For the next step, as there is a triangle 
connecting nodes ∅, bc, abc with two edges ordered, then 
the edge labelled abc can have an order assigned. We can 

read around the two edges with label order already 
assigned, starting from the ∅ node to get a word bca. If we 
order the unassigned edge similarly from the ∅ node, we 
would get no crossings. Swapping any pair of labels in this 
edge order would give one contour crossing, for example 
ordering the contours b, a, c along the edge from ∅ to abc 
would mean contours a and c cross in this triangle. 
However, in Figure 5a, it can be seen that the order has 
been defined as a, b, c so that a crosses with both b and c. 

We take a greedy approach to assigning label ordering 
to triangulation edges. That is, the first time we encounter a 
triangle where it is possible to order edge labels in such a 
way that it will result in contours crossing where that 
crossing is deemed necessary from the associated dual face, 
we choose such an ordering. If contour crossings that may 
introduce extra zones are possible in the triangle (for 
instance, because two separate pairs of contours may cross 
in the triangle), then we find the contour label that makes 
the maximum number of crossings in that triangle. We then 
ensure that our label ordering means that all crossings in 
that triangle involve that contour. 

It is relatively easy to increase the number of triangles 
if the granularity of the layout is desired to be finer, 
although there are other similar mechanisms to improve 
layout by adding points to polygons independent of 
triangulation [7]. Figures 7a and 7b illustrate how new 
triangles might be added, although this is not currently 
implemented in our system. The edge labelling on the new 
triangle edges is given by the intersection of labels on the 
two original triangle edges that the new triangle edge splits. 

 

 
Figure 7a. A triangle face with assigned edges. 

 

 
Figure 7b. Routing with extra triangles. 
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2.4. Non-atomic diagrams 

Up to this point this paper has only included examples 
of atomic diagrams, that is, diagrams where no set of 
contours are completely disconnected from another set in 
the diagram. Non-atomic, or nested, diagrams [6] have 
disconnected components. The above method can be used 
to draw both atomic and non-atomic diagrams. However, 
for reasons of algorithmic efficiency, as well as improved 
layout, it is desirable to lay these diagrams out as separate 
components, which are joined at a later date. Figure 8 
shows a nested diagram: ∅ a b ab ac ad ae acd. 

Nested components can be identified from the dual 
graph by articulation points in the graph and placed in a 
maximal rectangle that can found in the appropriate zone, 
as shown in Figure 8. Where multiple nested components 
are present in a single zone, the rectangle can simply be 
split into the required number of sub rectangles. Any nested 
component may have further nesting present, in which case 
the process is simply repeated. 

 
Figure 8. A nested diagram, showing the rectangle 

(in which the nested components can appear. 

3. Layout improvements 

The layout of Euler diagrams with the method 
described in Section 2 leads to diagrams that can have 
undesirable features, such as line segments that are too 
close together, or that have jagged edges. We attempt to 
improve the layout of the diagrams with optimization 
mechanisms on the triangulated dual. First, the layout of 
the triangulated graph is improved, and secondly, the 
positions of the edge labels, where the contours pass 
through, are modified, whilst maintaining the label ordering 
assigned to the triangulation edges. We also remove the 
empty node from the dual to enable the contours to be more 
evenly distributed around the diagram. 

Planar layout mechanisms often lead to poorly laid out 
graphs, with long, narrow faces. A triangulation obtained 
from such layouts often has narrow triangles, see Figure 9a. 
To improve the layout of the triangulated graph we apply a 

force directed graph drawing algorithm. The result of 
applying this layout is shown in Figure 9b. This is a spring 
embedder with an additional force, a node-edge repulsion. 
The goal is to maintain planarity and to keep the current 
faces in the graph, whilst improving the regularity of the 
triangles. This force also evens out the bordering nodes 
(hidden in Figure 9b) so that they are at a more even 
distance from the dual graph. 

The points where a contour cuts a triangulated edge in 
both figures 9a and 9b are the places where the labels are 
positioned; initially, the labels are evenly distributed. 
However we can attempt to improve the layout of the 
diagram by moving the edge labels, as long as we do not 
change their order (which may cause incorrect contour 
crossings to occur) or bring them too close to each other or 
the nodes at either end of the edge (possibly making a zone 
too small to be easily seen). We use a simple heuristic, that 
of attempting to make each angle on the contour equal, 
which will tend to make the polygons more regular. This is 
not an exact heuristic, as different length lines between 
edge labels can adversely affect the regularity of the 
polygon. In addition, label positions that indicate a convex 
contour are heavily penalized, as concave contours tend to 
make diagrams less understandable. More advanced 
heuristics for contour layout are given in [7]. 

The heuristic is applied to each contour point of each 
contour in turn. Each contour point is moved up and down 
the triangulation edge to see if an improvement can be 
found. For each contour, the algorithm traverses the 
contour in one direction, then reverses the direction in an 
attempt to avoid large bias. A number of iterations occur 
and on each iteration an attempt is made to improve the 
layout of all of the contours in the diagram. On each 
iteration the distance the contour points are moved is 
reduced in a cooling schedule. See Figure 9c for an 
example showing the result of this optimization. 

The outer node (node with no label) is essential for 
checking the connectivity and face conditions and when 
finding a plane layout, as it must appear in the outer face of 
the planar graph. However, this node is not required at the 
contour layout stage, since no contours will enclose it. 
Once the planar layout is completed, the outer node can be 
removed and the force directed and edge label 
redistribution can be applied. If the outer node is present, 
nodes connect to it with a straight line, so producing an 
undesired orientation to the diagram. Removing the outside 
node allows the remaining nodes to be evenly distributed 
around the graph by the force directed layout method. An 
example of output when the outer node is removed and the 
subsequent layout improvements are applied is shown in 
Figure 9d. 

 



 
Figure 9a. Triangulated graph after planar layout. 

 
Figure 9b. Triangulated graph after force directed 

layout. 

 
For any contour with label l, we can define the allowed 

region in which it can be routed. This is formed from the 
two polygons defined as follows. An inner-polygon (resp. 
outer-polygon) is formed by joining the edge labels inside 
(resp. outside) the contour which are on the edges through 
which the contour passes and immediate neighbours of l. 
The allowed region where contour a can be placed is shown 
in Figure 10. This region should allow us to form more 
sophisticated optimizations for the layout in future work. 
 

 
Figure 9c. Triangulated graph after contour point 

optimization. 

 
Figure 9d. Removal of outer zone node. 

4. Results 

In this section we give some examples of output from 
our software. Figure 12 shows how large diagrams can 
draw nicely, especially when there are relatively few curve 
intersections. This diagram, like all in this section, has been 
drawn with the empty set present. 

Figure 13 shows an atomic Euler diagram with six 
contours. The layout is quite effective despite the relatively 
complex nature of the diagram. The removal of the empty 
set has allowed the contours adjacent to the outside zone to 
be evenly distributed around the diagram. 

 



 
Figure 10. Allowed region for contour a. 

 
Figure 11. Final diagram for ∅ a b c ab ac bc abc. 

 
Figure 12. A Euler diagram with ten contours and 

a number of nested components  

 
Figure 13. An Euler diagram with six contours. 

 

 
Figure 14. An Euler diagram with ten contours in 

need of further improvement. 
 

Figure 14 shows a complex Euler diagram. The large 
number of contours and zones in this diagram means that a 
simple heuristic to optimise contours in turn begins to 
prove ineffective. Whilst many of the contours have a 
reasonable layout, contours c, d and f, which all cross a 
number of other contours are badly laid out. A compromise 
layout that makes a great improvement for one contour in 
exchange for a slightly worse layout for another contour 
might well improve the overall layout. In addition, there is 
a contour j, in the intersection of contours g, h and i. As the 
zone it appears in is small, there is no room for i to be 
drawn effectively This illustrates the limitations of not 
considering the size of zones in which nested diagrams will 
appear when drawing the parent diagram. 



5. Conclusions and future work 

We have presented a method for embedding an Euler 
diagram from a wellformed dual. As far as we know this is 
the first Euler diagram embedding technique implemented 
for all such diagrams. We also have presented novel layout 
improvement techniques that integrates with our 
embedding method. Current efforts to improve this work 
include generalizing to diagrams that are not wellformed, 
as well as further layout improvements. 

We consider that this method will be readily applicable 
to diagrams that are not wellformed. This is not only an 
embedding problem, but also requires an extension of the 
generation method to abstract descriptions that might not 
have dual graphs that pass the conditions described in 
Section 2.1. Multiple contour crossing points such as triple 
points can be dealt with by choosing triangles in which to 
place the multiple points. However, some method needs to 
be implemented that distinguishes between various multiple 
points as the number of intersections between contours at a 
point goes beyond three. 

Concurrent contours, where segments of curves run in 
parallel, can also be present in Euler diagram. A dual that 
results in a Euler diagram with concurrent contours has 
edges labelled with more than one contour. Routing two 
curve segments along the same line is not likely to be 
problematic. If we wish to generate Euler diagrams where 
the zones may consist of more than one component of the 
plane then an approach is to allow dual graphs to have a 
node for each required zone component. 

The choice of triangle in which crossings are placed 
can be investigated from a usability perspective -- perhaps 
choosing triangles that make routing the crossing contours 
most regular would be beneficial; at the moment the choice 
does not take into account any layout considerations. 

We also intend to continue to improve the layout of 
diagrams from a usability perspective. A simple approach 
would be to smooth out the current polygons using Bezier 
curves or similar approximations. In addition, we can 
already find allowed regions for contours to be drawn 
within, so that we can attempt to fit shapes such as circles 
and ovals into the region, rather than polygons. The current 
layout methods could be improved by the application of 
previous contour layout work [7] which contains more 
sophisticated heuristics. Moreover, applying heuristics to 
movements of groups of edge labels, rather than 
concentrate on one edge label at a time is likely to bring 
significant benefits. 
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