
JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 1

Inductively Generating Euler Diagrams
Gem Stapleton, Peter Rodgers, John Howse and Leishi Zhang

Abstract—Euler diagrams have a wide variety of uses, from information visualization to logical reasoning. In all of their application
areas, the ability to automatically layout Euler diagrams brings considerable benefits. In this paper, we present a novel approach to
Euler diagram generation. We develop certain graphs associated with Euler diagrams in order to allow curves to be added by finding
cycles in these graphs. This permits us to build Euler diagrams inductively, adding one curve at a time. Our technique is adaptable,
allowing the easy specification, and enforcement, of sets of wellformednesss conditions; we present a series of results that identify
properties of cycles that correspond to the wellformedness conditions. This improves upon other contributions towards the automated
generation of Euler diagrams which implicitly assume some fixed set of wellformedness conditions must hold. In addition, unlike most
of these other generation methods, our technique allows any abstract description to be drawn as an Euler diagram. To establish the
utility of the approach, a prototype implementation has been developed.

Index Terms—Information visualization, diagram layout, diagram generation, Euler diagrams, Venn diagrams.

F

1 INTRODUCTION

AUTOMATED diagram layout has the potential to
bring huge benefits and it is unsurprising that,

with the computing power now available, considerable
research effort is focused on this topic. A range of dia-
grams are based on finite collections of (usually simple)
closed curves; such a collection of curves is called an
Euler diagram [1]. To illustrate, the Euler diagram in
Fig. 1 contains three closed curves, P , Q and R, which
represent collections of objects (sets); it asserts that P
and Q are disjoint, and that R may intersect with either
P or Q. Venn diagrams are Euler diagrams in which
all intersections between the curves are present. The
diagram in Fig. 1 is not a Venn diagram; for instance,
the intersection between all three curves is not present.

P Q
R

d1

Fig. 1. An Euler diagram.

Euler diagrams and their extensions have wide-
ranging uses in the area of information visualization,
such as [2], [3], [4], [5], [6], [7]. Various methods for
automatically generating Euler diagrams have been de-
veloped, each concentrating on a particular class of
Euler diagrams; for example, see [6], [8], [9], [10], [11],
[12], [13]. The generation algorithms developed so far
produce Euler diagrams that have certain sets of proper-

• Gem Stapleton and John Howse are with Visual Modelling Group, Uni-
versity of Brighton, Brighton, UK.
E-mail: {g.e.stapleton,john.howse}@brighton.ac.uk

• Peter Rodgers and Leishi Zhang are with University of Kent, Kent, UK.
E-mail: {p.j.rodgers,l.zhang}@kent.ac.uk

Manuscript received September 10, 2008; revised September 8, 2009.

ties, sometimes called wellformedness conditions; these
conditions will be detailed below.

Each generation method starts with an abstract de-
scription of the required diagram. Typically, an abstract
description specifies which intersections occur between
curves. For example, the abstract description for the
diagram in Fig. 1 includes the information that labels
P , Q and R are used, together with one set of labels for
each set intersection: {{P}, {P, R}, {R}, {R, Q}, {Q}, ∅};
the presence of ∅ reflects the fact that there is a region
of the diagram outside all of the curves. We may abuse
notation and write P for {P}, PR for {P,R} and so forth.

P Q
R

S

P

PR
Q

QS
S

embed

Fig. 2. Generation using a dual graph.

Some existing generation approaches, such as [14],
[15], construct a so-called dual graph from the abstract
description, which is embedded in the plane, and ‘wrap’
closed curves around the dual graph, as illustrated in
Fig. 2 (explained below). Each set of curve labels in the
abstract description gives rise to a node in the graph,
labelled by that set. Initially, two nodes are joined by an
edge when their labels have exactly one curve label in
their symmetric difference. Subgraphs of the dual graph
are then sought which are planar and have a plane
embedding which satisfies certain conditions [14]; for
space reasons we omit the details. Once an appropriate
embedding of some subgraph of the dual has been
found, a layout for each curve in the diagram is deter-
mined. Finding an appropriate embedding can involve
considering many subgraphs, and many different em-
beddings for each subgraph. To illustrate the embedding

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

method, for the abstract description {∅, P,Q, S, PR, QS},
we draw one node for each required set intersection and
join the nodes as described; note that the node with no
label in Fig. 2 corresponds to ∅. To embed the Euler
diagram, this method finds a closed curve for each of P ,
Q, R and S that encloses precisely the nodes of the graph
that include that curve in their label. So, P must enclose
the nodes labelled P and PQ. In this simple example,
the actual dual graph had an appropriate embedding.

In this paper, we present a novel approach to gener-
ation. We generate Euler diagrams inductively, adding
one curve at a time. This is a more intuitive generation
method, since it matches how people typically draw Eu-
ler diagrams (at least, based on our experience). A clear
difference is that the layout of each curve is identified
as a separate task, rather than attempting to solve the
difficult problem of finding an appropriate dual graph
that determines the layout of all of the curves. Our
approach to Euler diagram generation can be seen as
extending the construction Venn provided in his original
paper, where he described how to add curves to Venn
diagrams [16]. Edwards also developed an inductive
construction for Venn diagrams [17] but prior to our
work, no one has developed techniques that allow the
inductive construction of Euler diagrams.

In order to add a curve, c, to an existing layout,
we create a graph that is used to determine how c is
placed in the diagram. The manner in which we use
this graph determines the wellformedness conditions
that the generated Euler diagram satisfies. Hence, users
can select the wellformedness conditions they wish to
impose on the layout of the required diagram. This
level of flexibility in imposing chosen wellformedness
conditions is not incorporated into previously developed
generation algorithms. In addition to contributing to the
general Euler diagram generation problem, our approach
is particularly advantageous in any situation where we
wish to modify a diagram by adding a curve and main-
tain the existing layout; this type of situation occurs in
reasoning contexts such as [18], [19], for example.

Section 2 overviews the syntax of Euler diagrams
and other necessary background material. Abstractions
of Euler diagrams are detailed in section 3. Section 4
presents the theory required in order to take an abstract
description and decompose it into a sequence of ab-
stract descriptions that reflects our inductive generation
approach. In section 5, we define some graphs that
allow us to add curves by finding appropriate cycles
in them. Section 6 describes how we use a cycle to
add a curve. In section 7, we present a series of results
that show how to produce layouts that satisfy certain
wellformedness conditions. Section 8 extends the tech-
niques of the previous sections so that we can ensure any
abstract description can be embedded. Finally, section 9
discusses a prototype implementation of the generation
method and presents some output from the software.
This paper significantly extends work presented in [20],
which focuses on adding curves to diagrams that possess

all five of the wellformedness conditions detailed below.
In addition, we refer the reader to an appendix that ac-
companies this paper [21]; the appendix includes many
examples to illustrate concepts developed throughout
the paper along with proofs of most of the results.

2 EULER DIAGRAMS

We now overview a formalization of Euler diagrams.
Moreover, we also describe various concepts that will
be required throughout the paper, in particular various
wellformedness conditions, some associated graphs, and
atomic diagrams. As stated above, an Euler diagram is
a set of closed curves drawn in the plane1. We assume
that each curve has a label chosen from some fixed set
of labels, L.

Definition 2.1: An Euler diagram is a pair, d =
(Curve, l), where

1) Curve is a finite collection of closed curves each
with codomain R2, and

2) l : Curve → L is an injective function2 is that
returns the label of each curve.

For example, d1 in Fig. 1 contains three curves labelled
P , Q and R. To be more precise, d1 depicts the images of
three simple (i.e. non self-intersecting) closed curves. The
closed curves essentially provide a partition of the plane
into minimal regions; in this example, there are 6 minimal
regions, such as that inside both P and R but outside Q.
Every diagram has a minimal region that is outside all of
its curves. In order to define minimal regions, we need
access to the images of the functions that give rise to the
curves. Given a function, c : A → B, we write image(c)
to denote the image (sometime called the range) of c:

image(c) = {b ∈ B : ∃a ∈ Ac(a) = b}.
Definition 2.2: A minimal region of an Euler diagram

d = (Curve, l) is a connected component of

R2 −
⋃

c∈Curve

image(c).

It is important to be able to identify the interior of
closed curves. A point, p ∈ R2 − image(c), is interior to
a closed curve, c, if and only if the winding number of
c around p is odd; see [22] for more details. Another
important concept is that of zones.

Definition 2.3: A zone in an Euler diagram d =
(Curve, l) is a non-empty set of minimal regions that can
be described as being interior to certain curves (possibly
no curves) and exterior to the remaining curves.

In Fig. 3, d2 has 8 zones (and ten minimal regions) and
d3 has 6 zones (each of which is a minimal region). For
example, in d2, the zone interior to the curve labelled Q
only consists of two minimal regions. Minimal regions
are purely a topological notion, and reflect a property of

1. Recall, a closed curve in the plane is a continuous function,
c : [a, b] → R2, where c(a) = c(b).

2. An injective function, l, has the property that if l(x) = l(y) then
x = y.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 3

P
Q

d2

R

S

P Q

d3

R

S

Fig. 3. Illustrating diagrams’ zones.

the drawn diagram. A zone, however, is a set of minimal
regions that is taken to represent the intersection of sets
represented by the curves that contain that zone, less
the union of the sets represented by the curves that do
not contain that zone. Zones are important since Euler
diagrams represent these set intersections. Thus, a zone
matches a semantic concept, unlike minimal regions.

Euler diagrams may possess certain properties, fre-
quently called wellformedness conditions.

Definition 2.4: Given an Euler diagram d = (Curve, l),
the following are properties that d may posses.

1) If all of the curves in Curve are simple then d
possesses the simplicity property.

2) If no pair of curves in Curve run concurrently then
d possesses the no concurrency property.

3) If there are no triple points of intersection between
the curves in Curve then d possesses the no triple
points property.

4) If whenever two curves in Curve intersect, they
cross then d possesses the crossings property.

5) If each zone in d is connected (i.e consists of
exactly one minimal region) then d possesses the
connected zones property.

Formalizations of these properties can be found in [22].
To illustrate, in Fig. 3, d2 possesses the simplicity and no
concurrency properties but has a triple point (where P , Q
and R intersect), two curves that do not cross where they
intersect (where R and S intersect) and disconnected
zones (such as that inside just R). The diagram d3 possess
all five properties. Note that any diagram that possess
the crossings property also possess the no concurrency
property. Existing generation algorithms produce dia-
grams that possess specific subsets of these properties,
in part for reasons of interpretability. The generation
algorithm in [14], for example, draws only diagrams that
satisfy all of these wellformedness conditions.

The concept of nesting in diagrams is of particular
importance in automated layout. The (images of the)
curves in an Euler diagram form connected components
of R2. The diagram d3 in Fig. 3, for example, consists
of three components (the two curves labelled P and
Q, the curve labelled R, and the curve labelled S) and
is said to be nested. Intuitively, when generating Euler
diagrams, we can break the problem down into one
where each component of a nested diagram is generated
independently, with the layouts subsequently merged in
order to produce the required diagram.

Definition 2.5: Let d = (Curve, l) be an Euler diagram.

If
⋃

c∈Curve

image(c) consists of more than one connected

subset of R2 then d is nested, otherwise d is atomic [23].
It is possible to identify when a diagram descriptions

can be embedded in a nested manner and also to identify
its atomic components prior to generation [23]; more
details are given below.

Euler diagrams are associated with various graphs,
some of which play an instrumental role in their auto-
mated layout; see [8], [14] for more details. In this paper,
we are interested in two of these associated graphs. First,
we can take an Euler diagram and construct its Euler
graph which, roughly speaking, has a vertex at each point
where two curves meet and the edges are the curve
segments that connect the vertices; the Euler graph of
d1 in Fig. 1 is EG(d1) in Fig. 4.

P Q

EG(d1)

R
P Q

ED(d1)

R

Fig. 4. The Euler graph and its dual shown in red.

As a special case, any atomic component containing
a single, simple curve has exactly one vertex placed on
that curve. The Euler graph was defined in [8], but the
definition relies on certain wellformedness conditions
holding. We extend the definition to the general case.

Definition 2.6: An Euler graph of Euler diagram d =
(Curve, l) is a plane graph, denoted EG(d), whose em-
bedded edges and vertices have image

⋃
c∈Curve

image(c)

and EG(d) has a minimal number of vertices out of all
the graphs to which it is homeomorphic (i.e. EG(d) has
no unnecessary vertices of degree two).

Each face of the Euler graph is a minimal region
of the Euler diagram. From the Euler graph, we can
construct an Euler graph dual which is simply a dual
graph of the Euler graph which we denote by ED(d).
An Euler graph dual of d1 in Fig. 1 is shown in Fig. 4.
We note that Euler graphs and Euler graph duals are
embedded in R2 and are plane. Given a vertex, v, in
the Euler graph dual, we write z(v) to mean the zone
of d in which v is embedded. We will talk about the
images of the edges and vertices of these embedded
graphs as simply the edges and vertices respectively.
Later, we will define further graphs, which are also
embedded in R2, associated with Euler diagrams and
again blur the distinction between the edges (vertices)
and the embedding of those edges (vertices).

3 DIAGRAM DESCRIPTIONS

In order to generate an Euler diagram, d, we start with
an abstract description of d. To illustrate, d1 in Fig. 1
can be described as having three curves, P , Q and R.
These curves divide the plane in such a manner that

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 4

there are six zones present. Each zone can be described
as being inside certain curves and outside the remaining
curves. For instance, there is one zone inside P only and
another zone inside precisely P and R. Thus, each zone
can be described by the labels of the curves that the zone
is inside. Note that there is always a zone outside all
of the curves, which includes the unbounded minimal
region (the unbounded face3 of the Euler graph), that is
described by the empty set of labels, ∅; this is reflected
in abstract descriptions.

Definition 3.1: An abstract description, D, is a pair,
(L,Z) where L is a subset of L (i.e. all of the labels
in D are chosen from the set L) and Z ⊆ PL such
that ∅ ∈ Z. Elements of Z are called abstract zones (or,
simply, zones). Given D = (L,Z), we define L(D) = L
and Z(D) = Z.
In Fig. 1, d1 has abstract description L = {P, Q,R} and
Z = {∅, {P}, {P, R}, {R}, {Q,R}, {Q}}.

Definition 3.2: Given an Euler diagram d = (Curve, l),
we map d to the abstract description abstract(d) =
(image(l), Z), called the abstraction of d, where Z con-
tains exactly one abstract zone for each zone in d; in
particular, given a zone, z, in d, the set Z contains the
abstract zone

abstract(z) = {l(c) : c ∈ C(z)}
where C(z) is the set of curves in d that contain z.

The notions of being nested and atomic can be defined
on abstract descriptions.

Definition 3.3: An abstract description D = (L, Z) is
nested if there exist abstract descriptions, D1 = (L1, Z1)
and D2 = (L2, Z2), and a zone z ∈ Z such that

1) L1 and L2 are both non-empty and form a partition
of L, and

2) Z1 ∩ {z ∪ z2 : z2 ∈ Z2} = {z} and Z = Z1 ∪ {z ∪ z2 :
z2 ∈ Z2}.

If D is not nested then D is atomic [23].
Importantly, every atomic (nested) abstract descrip-

tion is the abstraction of some atomic (nested) Euler
diagram [23]. However, atomic Euler diagrams may not
have atomic abstractions, such as d2 in Fig. 3. Any atomic
diagram that has a nested abstraction can be redrawn in
a nested manner. Finally, any abstraction can be drawn
as an atomic Euler diagram.

4 ABSTRACT DESCRIPTION DECOMPOSITION

The generation problem can be summarized as ‘given
an abstract description, D, find an Euler diagram, d,
such that abstract(d) = D and d satisfies some speci-
fied wellformedness conditions’. Our inductive approach
will add curves successively until the generated Euler
diagram has the specified abstract description. The man-
ner in which we add the curves at each stage will be
determined by the wellformedness conditions that have
been selected.

3. Recall, the unbounded face, f , of a graph is that for which there
is no disc of finite radius that encloses f .

D=Dn Dn-1 D1 D0
...

decompose D

generate D0

add curves

...

ensure correct

abstractions

generated Dn

Fig. 5. The generation problem.

To use an inductive generation approach, we need
to know how to decompose an abstract description, D,
into a sequences of abstract descriptions, 〈D0, D1, ..., Dn〉
where D0 contains no labels, Di−1 is obtained from Di by
removing a label, and Dn = D; the process is illustrated
in Fig 5. It may be counterintuitive that we have writ-
ten this sequence as 〈D0, D1, ..., Dn〉 rather than 〈D =
Dn, Dn−1, ..., D0〉; we choose to write 〈D0, D1, ..., Dn〉
since our generation problem will start by finding an
embedding of D0 (which contains no curves), then D1

(which contains 1 curve) and so forth, ending up with
an embedding of Dn = D.

Definition 4.1: Given an abstract description, D =
(L,Z), and λ ∈ L, we define D − λ to be D − λ =
(L− {λ}, {z − {λ} : z ∈ Z}).

Definition 4.2: Given an abstract description, D =
(L,Z), a decomposition of D is a sequence, dec(D) =
〈D0, D1, ..., Dn〉 where each Di−1 (0 < i ≤ n) is obtained
from Di by the removal of some label, λi, from Di (so,
Di−1 = Di − λi) and Dn = D. If D0 contains no labels
then dec(D) is a total decomposition.

The notion of a decomposition is similar to an abstrac-
tion of Euler diagrams developed in [24]. The technique
we develop to add a curve to an Euler diagram, d,
assumes that d is atomic. Important for our generation
approach, therefore, is that every abstract description has
an atomic drawing.

To illustrate the generation process, we provide an
example in Fig. 6, which produces an embedding of D =
(L,Z) where L = {P, Q} and Z = {∅, {P}, {Q}, {P,Q}}
given the total decomposition

〈D0 = (∅, {∅}), D1 = ({P}, {∅, {P}}), D2 = D〉.

embed(D0)

P

embed(D1)

P Q

embed(D2)

Fig. 6. An inductive construction.

When adding a curve to a diagram, d, we are es-
sentially seeking a closed path through d that gives a
diagram with the required abstraction. Any zone in d
can be either completely contained by the new curve,
completely outside the new curve, or partially inside and

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 5

partially outside new curve (in this case, we say that
the curve splits the zone). Thus, to obtain the required
abstraction, we must know which zones are inside,
which are outside and those that are to be split. In Fig. 6,
the diagram embed(D1) has a curve P that splits the zone
in embed(D0); the definition below captures the abstract
level concept that corresponds to adding a curve, with
the addition of P to D0 specified by in = {∅} and
out = {∅}; since ∅ is split it can be considered as being
both inside and outside the new curve.

Definition 4.3: Let D = (L,Z) be an abstract descrip-
tion. Let λ be a label in L−L and let in and out be two
subsets of Z such that in ∪ out = Z and ∅ ∈ out. Then
D + (λ, in, out) is defined to be

D + (λ, in, out) = (L ∪ {λ}, Zin ∪ Zout)

where Zin = {z ∪ {λ} : z ∈ in} and Zout = out.
Lemma 4.1: Let D = (L,Z) be an abstract description

and let λ ∈ L. Then D = (D − λ) + (λ, in, out) where

in = {z ∈ Z(D − λ) : z ∪ {λ} ∈ Z}
and

out = {z ∈ Z(D − λ) : z ∈ Z}.
The above lemma provides a framework for us to be able
to describe how to add curves to Euler diagrams so that
we construct embeddings of the abstract descriptions in
any given total decomposition.

5 GRAPHS FOR CURVE ADDITION

Our inductive generation method uses graph theoretic
techniques and in this section we define various graphs.
We modify the Euler graph dual and use this modified
Euler dual along with the Euler graph to create a hybrid
graph. It is the hybrid graph that we use for generation.

5.1 The Modified Euler Dual

A key insight to our approach of adding a curve is the
observation that we can use cycles in an Euler graph
dual to provide an embedding of a new curve. Recall, a
cycle, C, in a graph G = (V, E) is a non-empty sequence
of edges, C = (e0, ..., en) in E, where no edge in E occurs
more than once in C together with a sequence of vertices,
(v0, ..., vn, vn+1) such that v0 = vn+1 and each edge, ei,
in C is incident with vi and vi+1; such a sequence of
vertices is associated with C. The set of edges in C is
denoted E(C) the set of vertices in the vertex sequence
associated with C is denoted V (C).

As a simple example of our generation approach, to
d4 in Fig. 7 we may wish to add a curve that splits each
zone. This can be done by finding a Hamiltonian cycle
in an Euler graph dual, as illustrated in d5.

If we wish to add a curve, S, to d1 in Fig. 1 given in =
{∅, {Q}, {Q,R}, {R}} and out = {∅, {P}, {P, R}, {R}}
then no cycle in the Euler graph dual shown in Fig. 4
allows us to do so; see d7 in Fig. 8 for how S may be

P Q

d6

R
P Q

d5

R

P Q

d4

Fig. 7. Adding curves using cycles.

P Q

d8

R

S

P Q

d7

R

Fig. 8. Modifying the Euler graph dual.

added. In order to allow a curve such as S to be added
we modify the Euler graph dual, as shown in d8.

Intuitively, an Euler graph dual needs to be modified
since an added curve may need to enclose various min-
imal regions in the Euler diagram that are not enclosed
by any cycle in an Euler graph dual. A given Euler graph
dual does not necessarily reflect all isotopically different
paths in R2 − V (EG(d)) that edges may take. However,
in an atomic diagram, such different paths only exist
between the vertex, v, in ED(d) placed in the unbounded
face, f , of EG(d) and those vertices adjacent to v; this
is because all other faces are topologically like a disc.
Hence, the only modifications to ED(d) occur in f .

Definition 5.1: Let d = (Curve, l) be an atomic Euler
diagram. A modified Euler dual of d, denoted MED(d),
is a plane graph obtained from the Euler graph dual of
d by carrying out the following sequence of transforma-
tions:

1) for each edge, e, incident with the vertex, v, placed
in the unbounded face, f , of EG(d) insert a new
vertex of degree two onto e placed in f ; the new
vertex splits e into two edges in the obvious man-
ner,

2) delete v along with all its incident edges; if this
leaves any isolated vertices then delete those also,

3) add edges, embedded in f , connecting the newly
inserted vertices (which have degree 1 after delet-
ing v) so that the newly inserted vertices together
with these new edges form a simple plane cycle4

that properly encloses the Euler graph.

5.2 The Hybrid Graph
As a further example of adding a curve to d4 in Fig. 7,
we may want to split all of the zones except that outside
both curves. To do this, we cannot simply find a cycle
in the modified Euler dual. The diagram d6 shows
MED(d4) and how we might add R. Essentially, R is a

4. A simple cycle is one which does not pass through any vertex
more than once (except the start and end vertex). A simple, plane
cycle, therefore, is a cycle that is simple and in which no edges cross.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 6

cycle in a graph that is formed by taking the Euler graph
and the modified Euler dual and joining certain vertices
with edges, as specified below. Intuitively, new curves
can traverse edges of the modified Euler dual, edges in
the Euler graph or the joining edges. The diagram d9

in Fig. 9 shows how we can connect the modified Euler
dual in d6 to the Euler graph using additional edges (and
two new vertices).

Given a plane graph, we can talk about faces and
triangulations5, for example; d9 is not plane. Our final
transformation adds vertices wherever two edges cross,
as shown in d10. An example of using this graph to add
a curve labelled R to d4 which splits two zones, that
inside just P and that inside just Q, with the remaining
zones outside R, can be seen in d11.

R

P Q

d11

P Q

d9

P Q

d10

Fig. 9. Adding edges and inserting vertices to create the
hybrid graph.

We call the graph obtained by inserting these vertices
and adding these edges the hybrid graph. It is this graph
that we use to determine how to route new curves
through a diagram. Each cycle in the hybrid graph is
a path that can be followed by a new curve.

Definition 5.2: Let d = (Curve, l) be an atomic Euler
diagram. A hybrid graph for d, denoted HG(d) = (V,E),
is a plane graph obtained from EG(d) and MED(d) by
carrying out the following sequence of transformations:

1) take the embeddings of EG(d) and MED(d) as one
embedded graph, G1, (i.e. union the vertex sets and
union the edge sets),

2) for each edge, e, in G1 that is in MED(d) and
completely embedded in the unbounded face, f , of
EG(d) insert a new vertex onto e; the new vertex
splits e into two edges in the obvious manner and
we call the created graph G2,

3) for each pair of edges, e1 and e2, in G2, if e1 and e2

cross then insert a new vertex at the point where
they cross; the new vertex splits each of e1 and e2

into two edges in the obvious manner, and we call
the resulting graph G3,

4) add edges to G3 which are incident with a vertex in
MED(d) and a vertex in EG(d) to create a graph,
G4, so that

a) all the new edges in G4 are in the subgraph,
SG4, of G4 generated by deleting the vertices
of G4 that are embedded in the unbounded
face of EG(d), and

5. Recall that a triangulation of a graph adds edges until all faces
are bound by exactly three edges.

b) SG4 is triangulated except for its unbounded
face,

5) add edges, e, to G4, so that
a) e is incident with a vertex in EG(d),
b) e is incident with a vertex in G2 that is not in

MED(d) or in EG(d), and
c) every vertex in G2 that is not in MED(d) or in

EG(d) is incident with exactly one new edge.
The resulting graph is HG(d).

This process can be seen in Fig. 10, where the hybrid
graph for d1 in Fig. 1 is constructed. Note that, instead
of adding vertices to create G3, we could have just
triangulated the whole graph (apart from the unbounded
face) as in G4. However, this would have meant that
checking for crossings (see section 7) would have been
more complex.

G2 G3

G4 HG(d1)

Fig. 10. Constructing the hybrid graph.

Given a hybrid graph for d, we partition the set
of edges (vertices) as follows. Any edge (vertex) in
the hybrid graph that arose from the Euler graph
(i.e. those in black) is in the set EulerEdges(HG(d))
(EulerV ertices(HG(d))). Any edge (vertex) in the hy-
brid graph that arose from the modified Euler dual
(i.e. those in red) is in the set DualEdges(HG(d))
(DualV ertices(HG(d))). The remaining edges (vertices)
in the hybrid graph (i.e. those in green) are in the
set NewEdges(HG(d)) (NewV ertices(HG(d))). We call
edges in the set EulerEdges(HG(d)) Euler edges and
use similar terminology for elements of the other sets
defined here.

6 ADDING CURVES

Any cycle in a hybrid graph can be used to add a curve
to an Euler diagram (although the result need not be
atomic). The manner in which this is done is captured
by the following definition.

Definition 6.1: Let d = (Curve, l) be an atomic Euler
diagram with hybrid graph HG(d). Let C be a cycle in
HG(d) and let λ be a label. Then d extended by C and
λ is defined to be an Euler diagram, denoted d + (C, λ),

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 7

where d + (C, λ) = (Curve ∪ {c}, l ∪ {(c, λ)}) such that c
is a closed curve, not in Curve, that traverses the cycle
C and has label λ.

A little more technically, the closed curve c to which
the cycle C gives rise is formed by taking the union of
the (injective) functions that gave rise to the embedded
edges of which C consists (assuming any two consecu-
tive embedded edges, ei and ei+1, in C have domains of
the form [x, y] and [y, z] where ei(y) = ei+1(y), but it is a
trivial matter to change the domains if this fails to be so).
We observe that any curve added in this manner has a
finite number (possibly zero) of self-intersection points,
since no cycle contains an edge more than once. Curves,
c, with a finite number of self-intersections have nice
properties with regard to winding numbers: intuitively,
the winding number changes by ±1 each time we cross c
at a point of non self-intersection and, as a consequence,
we change from being inside c to outside c or vice versa.

In our generation process, we want to ensure that
we find a cycle that gives rise to a diagram with some
specified abstraction. We need to be able to identify
whether dual vertices are inside the cycle or outside
the cycle in order to know whether the zones in which
they are placed will be inside or outside the new curve.
Vertices in the modified Euler dual that are incident with
some edge in the cycle, are embedded in zones that are
split by the new curve. The concept of being inside a
cycle will be defined by appealing to face-colouring.

Lemma 6.1: Let G = (V, E) be an Eulerian, plane
graph. Then there is a face-colouring of G that uses at
most two colours.

Given a cycle in a graph, G, this cycle is essentially an
Eulerian subgraph of G. Therefore, we can use lemma 6.1
to define the inside and outside of a cycle, since we know
we can two face-colour the cycle:

Definition 6.2: Let G = (V, E) be a plane graph. Let C
be a cycle in G and denote the embedded subgraph of
G containing precisely the edges in C and their incident
vertices by SG(C). Further, suppose we have a face
colouring of SG(C) that uses at most two colours. A
vertex, v ∈ V − V (C), is outside C if it is embedded in
a face of C that is coloured the same as the unbounded
face of C. Otherwise, v ∈ V − V (C) is inside C.

In a hybrid graph, HG(d), the set of dual
vertices that are outside (inside) some cycle
C is denoted outside(C) (inside(C)). Further,
we define inZones(C) = {abstract(z(v)) :
v ∈ inside(C) ∪ (V (C) ∩ DualV ertics(HG(d)))}
and outZones(C) = {abstract(z(v)) : v ∈
outside(C) ∪ (V (C) ∩ DualV ertics(HG(d)))}. We
are now in a position to state a theorem that ties up
the notion of adding a curve to an Euler diagram with
its affect on the abstract description; the result follows
immediately from the arguments above.

Theorem 6.1: Let d = (Curve, l) be an Euler diagram
with hybrid graph HG(d). Let C be a cycle in HG(d)
and let λ be a label that is not in d, λ 6∈ image(l). Then
abstract(d + (C, λ)) = abstract(d) + (in, out, λ) where

1) in = inZones(C), and
2) out = outZones(C).
Theorem 6.2: Let d = (Curve, l) be an Euler diagram

with hybrid graph HG(d). Let C be a cycle in HG(d)
that passes through at least one Euler vertex and let λ
be a label that is not in d, λ 6∈ image(l). Then d + (C, λ)
is atomic.

So, when using our inductive generation approach, we
seek cycles that pass through an Euler vertex.

7 ADDING CURVES UNDER WELLFORMED-
NESS CONDITIONS

Embedding diagrams that possess certain wellformed-
ness conditions has the potential to enhance readability.
Unfortunately, it is known that not all abstract descrip-
tions can be drawn when all five wellformedness condi-
tions are imposed, for example, [25]. This means that, in
order to find embeddings of some abstract descriptions,
we sometimes need to allow certain wellformedness
conditions to be broken. Moreover, users are likely to
have different preferences about which wellformedness
conditions they want to impose. Here, we consider (ini-
tially) each wellformedness condition and identify an
equivalent condition on the cycle in the hybrid graph
that will ensure the added curve does not break that
wellformedness condition. The results are then general-
ized: for every subset of the wellformedness conditions,
we identify an equivalent condition on the cycle in the
hybrid graph that will ensure the added curve does
not break any of the conditions in that set. Of course,
such a cycle may not exist but the results allow us
to seek appropriate cycles when adding curves under
specified wellformedness conditions and identify when
no such cycle exists (trivially, by an exhaustive search,
for instance).

7.1 Simplicity
The simplicity condition is very easy to enforce when
adding a curve using a cycle: the cycle must not pass
through any vertex more than once. Fig. 11 shows two
cycles, highlighted in blue, in the hybrid graph for d1,
Fig. 1. The cycle in d12 gives rise to a non-simple curve,
since it passes through a vertex more than once. The
cycle in d13 gives rise to a simple curve since it does not
pass through any vertex more than once. The diagrams
obtained from d1 by adding a curve using these cycles
have the same abstraction.

Definition 7.1: Let d = (Curve, l) be an atomic Euler
diagram with hybrid graph HG(d). Let C be a cycle
in HG(d). Then C possesses the simplicity property
whenever C is simple.

Theorem 7.1: Let d = (Curve, l) be an atomic Euler
diagram with hybrid graph HG(d). Let C be a cycle in
HG(d) and let λ be a label that is not in d, λ 6∈ image(l).
Then the curve added to d to give d + (C, λ) is simple if
and only if C possesses the simplicity property.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 8

d12 d13

P QRP QR

Fig. 11. The simplicity property.

7.2 No Concurrency

The no concurrency condition requires the added curve
not to run concurrently with any other curve and, more-
over, not to run concurrently with itself. Since we are
adding a curve to a diagram, d, using a cycle in HG(d),
by construction the curve does not run concurrently with
itself: no cycle traverses an edge more than once. The
existing curves in d give rise to the Euler edges in HG(d).
Thus, our cycle must not include any Euler edges. To
illustrate, d14 and d15, Fig. 12, both contain highlighted
(blue) cycles that give rise to a diagram with the same
abstraction when we use these cycles to add curves to
d1 in Fig. 1. However, the blue cycle in d14 contains an
Euler edge, so the added curve would run concurrently
with, in this case, the curve labelled R. The blue cycle in
d15 does not contain an Euler edge and, therefore, does
not give rise to any concurrency when a curve is added.

d14

P QR

d15

P QR

Fig. 12. The concurrency property.

Definition 7.2: Let d = (Curve, l) be an atomic Euler
diagram with hybrid graph HG(d). Let C be a cy-
cle in HG(d). Then C possesses the no concurrency
property whenever C does not contain any edges in
EulerEdges(HG(d)).

Theorem 7.2: Let d = (Curve, l) be an atomic Euler
diagram with hybrid graph HG(d). Let C be a cycle in
HG(d) and let λ be a label that is not in d, λ 6∈ image(l).
Then the curve added to d to give d + (C, λ) does not
run concurrently with any curve in d or itself if and only
if C possess the no concurrency property.

7.3 No Triple Points

In order to enforce the no triple points condition, we
must ensure that the added curve does not increase the
multiplicity of any points of intersection; the multiplicity
of a point, p, in a diagram, d, is the number of times
which p is mapped to by the curves in d and if p has mul-
tiplicity 3 or greater then p is a triple point. For example,

the cycle we use to add the curve must not pass through
an Euler vertex that has degree 4 in the Euler graph; the
multiplicity of the corresponding point of intersection is
already (at least) 2. We need access to the multiplicity of
any points of intersection in order to identify whether
our cycle creates a triple point; for each vertex, v, in
EulerV ertices(HG(d))∪NewV ertices(HG(d)), we label
that vertex by the multiplicity of that point in d, denoted
mul(v, d). We note that for any diagram, d, constructed
using our inductive method which possesses the no con-
currency property, any Euler vertex, v, has mul(v, d) =
deg(v)

2 and for any new vertex, v, mul(v, d) = 1. For dual
vertices, we set mul(v, d) = 0, since no curves in d pass
through them.

To illustrate, the diagrams d16 and d17 in Fig. 13
both highlight a blue cycle in the hybrid graph of d1,
Fig. 1. These cycles give rise to diagrams with the same
abstraction after curve addition. The cycle in d16 passes
through a vertex of the Euler graph placed where P and
R intersect; thus this cycle gives rise to a triple point.
In d17, however, the only vertices that the (simple) blue
cycle passes through are associated with points that have
multiplicity less than 2 and, therefore, no triple points
are created.

d16

P QR

d17

P QR

Fig. 13. The no triple points property.

In addition to labelling vertices with their multiplicity,
we also label the edges. Given an edge, e, in HG(d),
we write mul(e, d) to mean the largest multiplicity of
any point on e in d. Note that using our inductive
generation method, for any edge, e, mul(e, d) is at most
mul(v, d) for any incident vertex, v, so this edge labelling
is redundant. However, in a general Euler diagram, the
multiplicity of a point on an Euler edge can be greater
than that of any incident vertex; this occurs, for example,
when a curve runs part way along an edge but does not
meet a vertex.

Definition 7.3: Let d = (Curve, l) be an atomic Euler
diagram with hybrid graph HG(d). Let C be a cycle in
HG(d). Then C possesses the no triple points property
whenever,

1) for any vertex, v, in V (C), if mul(v, d) ≤ 2 then it
is the case that mul(v, d) plus half the number of
edges in C that are incident with v is at most two,
and

2) for any edge, e, in E(C), mul(e, d) 6= 2.
Theorem 7.3: Let d = (Curve, l) be an atomic Euler

diagram with hybrid graph HG(d). Let C be a cycle in
HG(d) and let λ be a label that is not in d, λ 6∈ image(l).

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 9

Then the curve added to d to give d + (C, λ) does not
introduce any triple points if and only if C has the no
triple points property.

It may be the case that we are happy to allow triple
points of intersection, but not quadruple points, for
instance. An obvious generalization of the result above
allows us to enforce an n-points wellformedness condi-
tion.

7.4 Crossings

There are various properties that our cycle must posses
if it is to yield a curve that ensures the crossings property
holds in the embedded diagram. First, we observe that
any diagram that contains concurrency does not possess
the crossings property. Thus, we cannot use Euler edges
in our cycle when requiring only crossings. Second, sup-
pose that the cycle contains an edge, e, that is incident
with an Euler vertex, v, (e must be a new edge, since
it cannot be an Euler edge). Then the next edge in the
cycle (which must also be a new edge) must ensure that
the cycle crosses all of the curves that give rise to Euler
edges incident with v. In Fig. 14, d18 highlights a cycle
(in blue) that creates a non-crossing point of intersection
with P whereas that in d19 crosses the curves P and Q
at each point it intersects them.

d19d18

PP Q
RR

Q

Fig. 14. The crossings property.

half of the Euler

edges this side

one Euler edge

this side

three Euler edges

this side

e1 e1
e2

e2

v
v

Fig. 15. Identifying crossings.

The notion of a crossing can be captured relatively
straightforwardly: the cycle, when passing through an
Euler vertex, v, must have exactly half of the Euler edges
incident with v on one side of it, as illustrated in Fig. 15
where the blue line segments indicate part of a cycle
passing through an Euler vertex. A pair of consecutive
edges, e1 and e2, in a cycle, therefore, gives rise to a two
way partition of the edges, excluding e1 and e2, incident
with the vertex v that joins e1 and e2. We denote the
two sets in this partition by E1(e1, e2, v) and E2(e1, e2, v);

thus, for crossings we require

|E1(e1, e2, v) ∩ EulerEdges(HG(d))| =
|E2(e1, e2, v) ∩ EulerEdges(HG(d))|

for every pair of consecutive edges e1 and e2 in C that are
incident with an Euler vertex v. In Fig. 15, the lefthand
illustration gives, denoting the set of Euler edges by EE,
|E1(e1, e2, v) ∩ EE| = |E2(e1, e2, v) ∩ EE| = 2 whereas
in the righthand illustration |E1(e1, e2, v) ∩EE| = 1 and
|E2(e1, e2, v)∩EE| = 3. We must also ensure that the new
curve does not create a non-crossing point of intersection
with itself.

Definition 7.4: Let d = (Curve, l) be an atomic Euler
diagram with hybrid graph HG(d). Let C = (e0, ..., en)
be a cycle in HG(d) with associated vertex sequence
(v0, ..., vn, v0). Then C possess the crossings property
whenever

1) C does not contain any edges that are in
EulerEdges(HG(d)),

2) for any pair of consecutive edges, ei and ei+1 in C

|E1(ei, ei+1, vi+1) ∩ EulerEdges(HG(d))| =
|E2(ei, ei+1, vi+1) ∩ EulerEdges(HG(d))|

and

|E1(ei, ei+1, vi+1)∩E(C)| = |E2(ei, ei+1, vi+1)∩E(C)|
where we take en+1 = e0.

Theorem 7.4: Let d = (Curve, l) be an atomic Euler
diagram that possesses the crossings property with hy-
brid graph HG(d). Let λ be a label that is not in d,
λ 6∈ image(l). Then d + (C, λ) possesses the crossings
property if and only if C possesses the crossings prop-
erty.

7.5 Connected Zones
Our final wellformedness condition is that of connected
zones and it is linked to when we split a zone. Theo-
rem 6.2 tells us that a zone, z, is split by the new curve
if there is a vertex incident with some edge in the cycle
C, embedded in some minimal region of z. For example,
this can be seen in Fig. 12 and Fig. 13. If a curve that
splits a zone passes through that zone more than once
then the zone will become disconnected. Fig. 12 and
Fig. 13 each contain one diagram with a blue cycle that
creates disconnected zones. The following lemma states
the conditions under which a zone is split by a new
curve given the assumption that all zones are connected
in the original diagram.

Lemma 7.1: Let d = (Curve, l) be an atomic Euler
diagram that possesses the connected zones property
with abstraction abstract(d) = (image(l), Z). Let in ⊆ Z
and out ⊆ Z such that in ∪ out = Z and ∅ ∈ out. Let
HG(d) be a hybrid graph of d and C be a cycle in HG(d).
If abstract(d + (C, λ)) = abstract(d) + (in, out, λ) then

in ∩ out =
{abstract(z(v)) : v ∈ V (C)∩DualV ertices(HG(d))}.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 10

Thus, to split a zone, the cycle must pass through that
zone. If the curve passes through that zone more than
once, then the zone becomes disconnected. In a slightly
more general sense, we can think of a minimal region
becoming disconnected if the cycle passes through that
minimal region more than once.

Definition 7.5: Let d = (Curve, l) be an atomic Eu-
ler diagram with hybrid graph HG(d). Let C =
(e0, ..., en) be a cycle in HG(d) with associated ver-
tex sequence (v0, v1, ..., vn, vn+1). Then C possesses the
connected minimal regions property if and only
if for every proper subsequence (vi, vi+1, ..., vi+j) of
(v0, v1, ..., vn, vn+1) where vi and vi+j are embedded in
the same minimal region, m, of d, all of the vertices in
the subsequences are also embedded in m.

Intuitively, the definition says that a cycle which pos-
sesses the connected minimal regions property passes
through each minimal region at most once and, hence,
does not split that minimal region into more than two
pieces. If all of the zones in a diagram are connected then
the connected minimal regions property ensures that the
added curve does not create any disconnected zones.

Theorem 7.5: Let d = (Curve, l) be an atomic Euler
diagram that possess the connected zones property and
has hybrid graph HG(d). Let C = (e0, ..., en) be a cycle
in HG(d). Let λ be a label that is not in d, λ 6∈ image(l).
Then d + (C, λ) possesses the connected zones property
if and only if C possesses the connected minimal regions
property.

d20

P

Q

d21

P

Q

d22

P

Q

d23

P

Q
R

Fig. 16. The connected zones property.

We can generalize theorem 7.5 to the case when not
all zones are connected in the original diagram. As an
illustration, d20 in Fig. 16 does not possess the connected
zones property. It is possible to add a curve to d20 that
results in a diagram with connected zones, using the
hybrid graph, d21. The blue cycle can be used to give
rise to a new curve, R, in d23 where all of the zones
are connected. Notice that in d20, the disconnected zone
inside P consists of two minimal regions. One of these
minimal regions, m1, is inside the blue cycle whereas the
other, m2, is outside the blue cycle. This means that m1

is inside both P and R in d23 whereas m2 is inside P
only. Hence m1 and m2 are different zones in d23 and
no longer form a disconnected zone.

Theorem 7.6: Let d = (Curve, l) be an atomic Euler
diagram with hybrid graph HG(d). Let C = (e0, ..., en)
be a cycle in HG(d). Let λ be a label that is not in d,
λ 6∈ image(l). Then d + (C, λ) possesses the connected
zones property if and only if

1) C possesses the connected minimal regions prop-
erty,

2) each zone in d consists of at most two minimal
regions,

3) for any zone in d that consists of two minimal
regions, m1 and m2, the dual vertex embedded in
one of m1 and m2 is inside C and the dual vertex
embedded in the other is outside C.

The above theorem can be used, and generalized,
to allow embedded diagrams to contain disconnected
zones enroute to producing an embedding that does not
have disconnected zones. Given a total decomposition,
dec(D) = 〈D0, ..., Dn〉, the embedding of Di can have
zones consisting of at most 2n−i minimal regions if we
wish to ensure that the embedding of Dn has connected
zones. The fact that the connected zones condition can be
broken enroute to producing an embedding that has con-
nected zones distinguishes it from the other conditions: if
we break any other wellformedness condition then that
wellformedness condition is broken in any diagram that
contains additional curves.

7.6 Collections of Wellformedness Conditions
The above results extend very straightforwardly to arbi-
trary collections of the wellformedness conditions. We
denote the set of five wellformedness conditions by
WFC. For each wellformedness condition, w, we denote
its corresponding property on a cycle, C, in HG(d)
by w(C). For example, the simplicity wellformedness
condition corresponds to the simplicity property on C,
Simplicity(C) and the connected zones wellformedness
condition corresponds to the connected minimal regions
condition on cycles. For a set of wellformedness condi-
tions, W ⊆ WFC, we define W (C) = {w(C) : w ∈ W}.

Theorem 7.7: Let d = (Curve, l) be an atomic Euler di-
agram that possesses a set of wellformedness conditions
W . Let C be a cycle in a hybrid graph, HG(d), for d
and let λ ∈ L − image(l). Then d + (C, λ) possesses all
of the wellformedness conditions in W if any only if C
possesses all of the properties in W (C).

The problem of adding a curve when all wellformed-
ness conditions are imposed reduces to seeking a cycle
in the modified Euler dual. We say that a diagram
is completely wellformed if it possesses all five well-
formedness conditions. As an example, in Fig. 17, the
blue cycle in the hybrid graph in d24 reduces to a cycle
in the modified Euler dual, as shown in d25. Intuitively,
in the completely wellformed case, our cycle cannot
use Euler edges since this would create concurrency.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 11

d24

P Q

d25

RP Q
R

Fig. 17. Using the modified Euler dual to add a curve.

Moreover, the cycle cannot use any new edges since this
would create a triple point.

8 ENSURING DRAWABILITY

To ensure that all abstract descriptions can be drawn,
we generalize our method for adding a curve; some
diagrams cannot be drawn without curves that have self-
concurrency but a cycle never gives rise to such a curve.
For example, to d1 in Fig. 1, we may want to add a
curve that completely encloses the zones inside P , P
and R, Q, and Q and R, and in addition the remaining
zones are all completely outside the curve; in this case,
in = {{P}, {Q}, {Q,R}} and out = {∅, {P, R}, {R}}.
However, no cycle in the hybrid graph (see Fig. 10)
allows us to add a curve in the required manner.

Suppose we have an atomic diagram, d, with abstrac-
tion abstract(d) = (l, Z). Let in and out be subsets of Z
such that in∪out = Z and ∅ ∈ out. To add a curve to d to
give a diagram with abstraction abstract(d)+(in, out, L),
where L is some label not in d, find a set of cycles, C, in
HG(d) such that

1) ‘inside’ zones are inside some cycle:

in =
⋃

C∈C
inZones(C),

2) ‘outside’ zones are outside all cycles:

out =
⋂

C∈C
outZones(C),

3) for any two cycles, C1 and C2 in C, there is no
common vertex inside them, that is

inside(C1) ∩ inside(C2) = ∅.
We note that given any set of cycles that meets the
conditions above ensures that any given edge in HG(d)
is in at most two cycles (this follows from the ‘disjoint
interiors’ constraint).

To add an appropriate curve to the Euler diagram, first
we partition the set, C into maximal subsets, Ci such that
the subgraph, SG(Ci), containing exactly the cycles in Ci

is connected; see Fig. 18, where three blue cycles in the
hybrid graph are shown. For each of these subgraphs,
we will produce one curve, ci, and then join these curves
together. Consider such a maximal subset, Ci. For each
edge, e, in SG(Ci) that is in more than one cycle in Ci, we
duplicate that edge; the resulting graph, G(Ci), is clearly
Eulerian, since each of the two cycles that include e

are Eulerian graphs. Given an Eulerian cycle, (e0, ..., en),
in G(Ci), the curve we introduce traverses that cycle,
starting at the vertex v0 incident with e0, but each time
we encounter a duplicate edge, the curve traverses the
original edge, e. Since any self-concurrency this curve
possesses involves only double points of intersection,
any point on one side of a concurrent line segment has
a winding number the same parity as any point on the
other side. Thus, points ‘inside’ either of the original
cycles are precisely those inside the curve ci. To convert
the curves produced at this stage into a single curve,
we simply connect them with a minimal number of line
segments. To ensure an atomic layout, at least one of the
cycles must pass through an Euler vertex.

e1 e2

e0

e3

e4

e5
e6

e7

C1 C2
duplicate

edges

find

Eulerian

cycle

find

Eulerian

cycle

convert

to

curve

P QR

join curves

convert

to

curve

the arrows indicate

how we traverse

the curves

e1

e0

e2

e3

Fig. 18. Converting cycles in to a curve.

It is easy to justify the existence of a set of cycles that
meet the criteria outlined above, as follows. For each
abstract zone in in−out, take the set of cycles around the
faces of the minimal regions of the corresponding zone
in d. For each abstract zone in in ∩ out choose a cycle
that passes through a dual vertex, v, embedded in the
corresponding zone of d and some Euler edges around
the face of the minimal region in which v is embedded.
These cycles between them provide an appropriate C.
However, better diagram layouts may be achieved by
using a minimal number of cycles or by minimizing the
number of edges that are used in more than one cycle.

The results in section 7 that relate cycles to well-
formedness conditions extend to this more general case
in that each curve in C must possess the appropriate
properties if a specified set of conditions are to hold.
In addition, we must take into account how the cycles
relate to each other. We note that the simplicity and

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 12

no concurrency properties cannot hold since the added
curve violates these. Moreover, the crossings property
cannot hold since the added curve intersects itself in a
non-crossing manner at any point where a joining edge
meets one of the cycles in C. For the no triple points
condition, we take into account how many times the
cycles and the connecting edges pass through vertices. A
zone, z, becomes disconnected when at least two cycles,
C1 and C2, in C contain edges, e1 and e2 respectively,
that are embedded in z and are distinct. Moreover z
becomes disconnected whenever a joining edge passes
through it. Assuming all cycles in C have the connected
zones property then it is sufficient to check that these
other ways of disconnecting zones do not occur. Given
the inevitability that the added curve will break at least
three of the wellformedness conditions, we can choose
to partially enforce them by ensuring that the cycles in
C possess the required properties, for example.

9 IMPLEMENTATION

In this section, we describe a Java implementation of a
system that takes an abstract description and outputs a
diagram embedding. As noted in Section 2, the nested
components of a diagram can be derived from the
abstract description. Hence our system draws atomic
diagrams which can then be joined together by placing
nested components in the correct zone of the parent
diagram. Given a Euler graph, we can derive the hybrid
graph, and form a closed cycle that exactly meets the
specification of zones that are inside and outside the
new curve. Our software finds simple cycles, so only
simple curves can be formed. The program can be found
at www.eulerdiagrams.com/inductive/inductive.html.

Generating some restricted classes of diagrams can
be performed in polynomial time [26]. However, cur-
rent methods for generating diagrams from any abstract
description take exponential time in the worst case [8].
Similarly our generation method has exponential time
worst case performance relative to the number of vertices
in the hybrid graph. This is because the problem of
finding such cycles is, in general, NP-Complete [27], [28].
However optimizations can be derived: given a diagram,
d = (Curve, l), with abstract(d) = (image(l), Z) and sets
in and out such that in ∪ out = Z and ∅ ∈ out, a cycle,
C, that adds an appropriate curve has the following
properties

1) any connected zone, z, in d that is to be partly
inside and partly outside the new curve (i.e. to
be split, so abstract(z) ∈ in ∩ out) must have the
corresponding Euler vertex in the vertex sequence
associated with C,

2) for any zone, z, in d that is not to be split (i.e,
abstract(z) ∈ (in − out) ∪ (out − in)), it is the case
that every Euler vertex embedded in z is not in the
vertex sequence associated with C,

3) any new vertex that is adjacent to two Euler ver-
tices that are both embedded in zones, z1 and z2,

that are either to be properly inside or properly out-
side the new curve (i.e. abstract(z1), abstract(z2) ∈
in − out or abstract(z1), abstract(z2) ∈ ∪out − in)
cannot be in C.

These optimizations typically cut down the search
space considerably, particularly because no edge in C
can be incident with a vertex that cannot be in the vertex
sequences associated with C. In practice, diagrams with
curves up to four curves can be embedded in reasonable
time. Diagrams with more curves can be embedded if the
number of split zones is not large. Further optimizations
are possible in terms of the order in which curves
are added in the total decomposition that we use for
generation.

Fig. 19. An automatically generated Euler diagram with
its hybrid graph.

As an example of the output from the implementation,
Fig. 19 shows an automatically generated hybrid graph
of Venn-2 (the Venn diagram containing two curves,
shown here in black). In addition to the restrictions on
cycles to maximize wellformedness conditions (section
7), it is also possible to improve the layout using other
criteria. In particular, to avoid meandering curve routes,
we can choose an appropriate cycle that has minimal
length. Fig. 20 shows a diagram obtained from Venn-2
(Fig. 19) by finding a minimal length cycle in the hybrid
graph that results in adding a curve that splits each zone
(thus creating Venn-3).

Fig. 20. Adding a curve with minimal cycle length.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 13

Fig. 21 shows an embedding of Venn-3 where we
minimized the number of triple points, but kept the cycle
length short as a second priority; the cycle used to add
the curve here includes 10 hybrid graph edges, whereas
that in Fig. 20 has only 9 edges. In both of these cases, it
can be seen how the intricacy of cycles increases as each
new curve added to the diagram. In our example, the
curve labelled a is added first, followed by b, and finally
c. Of course, the hybrid graphs of these diagrams can be
generated, and further diagrams produced, but have not
been shown due to space restrictions.

Fig. 21. Adding a curve and minimizing triple points.

10 CONCLUSION

In this paper we have presented a novel, inductive
approach to Euler diagram generation that uses graph
theoretic techniques to add curves. A key advantage of
our approach over previously developed techniques is
the flexibility to generate diagrams under any collection
of the typically enforced wellformedness conditions; this
represents a significant advance for automated Euler
diagram generation. The Java implementation of the
theoretical results serves to illustrate the practical utility
of the techniques.

The layout of the hybrid graph can have a profound
impact on the effectiveness of the produced Euler dia-
grams. Force directed methods can be used to ensure a
good layout of the hybrid graph, given various measures
of ‘good’. We have yet to investigate what constitutes a
good layout for hybrid graphs, but some work has been
done in the case of the Euler diagrams themselves [29].
Using these empirical results, we can also use graph
drawing techniques to improve the layout of the em-
bedded Euler diagrams. In previous research we have
taken a multi-criteria hill-climbing approach to improv-
ing the layout of Euler diagrams [30]. We have not yet
applied these layout improvements to the diagrams in
the paper, allowing us to focus the discussion on the
new techniques, aiding explanation: if we had improved
the layout of each diagram after each curve addition, it
would be difficult to spot where the curve additions had
occurred.

d27

P QR

d26

P QR
S

Fig. 22. Transforming the hybrid graph after curve addi-
tion.

We also plan to identify further optimizations for our
embedding algorithms. We suspect that further heuris-
tics can be developed that narrow down the space
through which we search when seeking an appropriate
cycle, for example. Moreover, we will investigate graph
transformation techniques that allow us to produce more
efficiently a hybrid graph for d + (C, L) given a hybrid
graph for d. Currently, our implementation produces
HG(d + (C,L)) from scratch, even though we have
the hybrid graph for d; some subgraph of HG(d) is a
subgraph of HG(d + (C, L)), for example. Given that
we know the cycle (or, more generally, set of cycles and
joining edges) in HG(d) that gave rise to d + (C, L) we
suspect that some efficient transformations are entirely
feasible. Fig. 22 shows the strong similarity between the
hybrid graphs before and after a curve addition, with the
cycle highlighted in blue in d26 giving rise to the new
curve in d27.

It is known that nested components can be drawn
separately. A further extension includes allowing nested
diagrams to have curves added to them: such tech-
niques may yield more efficient generation algorithms.
We briefly investigated such an extension in [20] for the
completely wellformed case. The basic idea is to add one
curve to each of the nested parts with which the new
curve is required to intersect and then join up the new
curves to create one curve, c, in the resulting diagram.
Curves whose removal from a diagram increases the
number of nested components are called disconnect-
ing curves, the theory of which is developed in [31].
Alternatively, we note that every nested diagram can
be transformed into an atomic diagram by moving the
atomic components until they touch [8]. This means that
each time we have a nested diagram to which we want
to add a curve, we convert it in to an atomic diagram and
then use the curve addition methods described above.

Whilst the focus of this paper is on curve addition,
there are also cases where we wish to remove curves,
or modify the zone set, after layout. When a curve is
removed, this may result in the diagram breaking the
connected zones condition whereas the original diagram
may not have. One can sometimes perform transforma-
tions that restore this wellformedness condition; see [21]
for an example. Indeed, given a diagram, d, the removal
of any curve is guaranteed to result in a diagram that
breaks a (not necessarily proper) subset of the well-

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 14

formedness conditions broken by d, excluding the con-
nected zones condition.

ACKNOWLEDGMENTS

This work is supported by the UK EPSRC grants
EP/E011160/1 and EP/E010393/1 for the Visualization
with Euler Diagrams project. Thanks to Jean Flower, John
Taylor, Andrew Fish and the anonymous reviewers their
helpful comments.

REFERENCES

[1] L. Euler., “Lettres a une princesse d’allemagne sur divers sujets
de physique et de philosophie,” Letters, vol. 2, pp. 102–108, 1775.

[2] R. DeChiara, U. Erra, and V. Scarano, “VennFS: A Venn diagram
file manager,” in 7th International Conference on Information Visual-
isation. IEEE, 2003, pp. 120–126.

[3] S.-K. Kim and D. Carrington, “Visualization of formal specifica-
tions,” in 6th Asia Pacific Software Engineering Conference. IEEE,
1999, pp. 102–109.

[4] L. Niebrój, “Defining health/illness: Societal and/or clinical
medicine?” Journal of Physiology and Pharmacology, vol. 57, no. 4,
pp. 251–262, 2006.

[5] P. Hayes, T. Eskridge, R. Saavedra, T. Reichherzer, M. Mehrotra,
and D. Bobrovnikoff, “Collaborative knowledge capture in on-
tologies,” in International Conference on Knowledge Capture, 2005,
pp. 99–106.

[6] H. Kestler, A. Muller, T. Gress, and M. Buchholz, “Generalized
Venn diagrams: A new method for visualizing complex genetic
set relations,” Bioinformatics, vol. 21, no. 8, pp. 1592–1595, 2005.

[7] J. Thièvre, M. Viaud, and A. Verroust-Blondet, “Using Euler
diagrams in traditional library environments,” in Euler Diagrams
2004, ser. ENTCS, vol. 134, 2005, pp. 189–202.

[8] S. Chow, “Generating and drawing area-proportional Euler and
Venn diagrams,” Ph.D. dissertation, University of Victoria, 2007.

[9] S. Chow and F. Ruskey, “Towards a general solution to drawing
area-proportional Euler diagrams,” in Euler Diagrams 2004, ser.
ENTCS, vol. 134, 2005, pp. 3–18.

[10] ——, “Drawing area-proportional Venn and Euler diagrams,” in
Graph Drawing. Springer, 2003, pp. 466–477.

[11] H. Kestler, A. Muller, J. Kraus, M. Buchholz, T. Gress, H. L.
abd D. Kane, B. Zeeberg, and J. Weinstein, “Vennmaster: Area-
proportional Euler diagrams for functional go analysis of microar-
rays,” BMC Bioinformatics, vol. 9, no. 67, 2008.

[12] P. Simonetto and D. Auber, “Visualise undrawable Euler dia-
grams,” in 12th International Conference on Information Visualization.
IEEE, 2008, pp. 594–599.

[13] A. Verroust and M.-L. Viaud, “Ensuring the drawability of Euler
diagrams for up to eight sets,” in 3rd International Conference on the
Theory and Application of Diagrams. Springer, 2004, pp. 128–141.

[14] J. Flower and J. Howse, “Generating Euler diagrams,” in 2nd
International Conference on the Theory and Application of Diagrams.
Springer, 2002, pp. 61–75.

[15] P. Rodgers, L. Zhang, and A. Fish, “General Euler diagram gener-
ation,” in 5th International Conference on the Theory and Application
of Diagrams. Springer, 2008, pp. 13–27.

[16] J. Venn, “On the diagrammatic and mechanical representation of
propositions and reasonings,” The London, Edinburgh and Dublin
Philosohpical Magazine and Journal of Science, vol. 9, pp. 1–18, 1880.

[17] A. W. Edwards, “Venn diagrams for many sets.” New Scientist,
vol. 7, pp. 51–56, 1989.

[18] G. Stapleton, J. Masthoff, J. Flower, A. Fish, and J. Southern,
“Automated theorem proving in Euler diagrams systems,” Journal
of Automated Reasoning, vol. 39, pp. 431–470, 2007.

[19] N. Swoboda and G. Allwein, “Using DAG transformations to
verify Euler/Venn homogeneous and Euler/Venn FOL hetero-
geneous rules of inference,” Software and System Modeling, vol. 3,
no. 2, pp. 136–149, 2004.

[20] G. Stapleton, J. Howse, P. Rodgers, and L. Zhang, “Generating
Euler diagrams from existing layouts,” in Layout of (Software)
Engineering Diagrams. ECEASST, 2008.

[21] G. Stapleton, P. Rodgers, J. Howse, and L. Zhang, “Inductively
generating Euler diagrams: Appendices,” University of Brighton,
Tech. Rep., 2009.

[22] G. Stapleton, P. Rodgers, J. Howse, and J. Taylor, “Properties
of Euler diagrams,” in Layout of Software Engineering Diagrams.
EASST, 2007, pp. 2–16.

[23] J. Flower, J. Howse, and J. Taylor, “Nesting in Euler diagrams:
syntax, semantics and construction,” Software and Systems Model-
ing, vol. 3, pp. 55–67, 2004.

[24] A. Fish and J. Flower, “Abstractions of Euler diagrams,” in Euler
Diagrams 2004, ser. ENTCS, vol. 134, 2005, pp. 77–101.

[25] O. Lemon and I. Pratt, “Spatial logic and the complexity of
diagrammatic reasoning,” Machine GRAPHICS and VISION, vol. 6,
no. 1, pp. 89–108, 1997.

[26] H. Kestler, J. Messner, A. Müller, and R. Schuler,
“On the complexity of intersecting multiple circles for
graphical display,” University of Ulm, http://www.uni-
ulm.de/fileadmin/website uni ulm/iui/Ulmer Informatik

Berichte/2008/UIB-2008-01.pdf, Tech. Rep., 2008.
[27] C. Iwamoto and G. Toussaint, “Finding Hamiltonian circuits in

arrangements of Jordan curves is NP-complete,” in Information
Processing Letters 52, 1994, pp. 183–189.

[28] M. Garey, D. Johnson, and R. Tarjan, “The planar Hamiltonian
circuit problem is NP-complete,” SIAM J. Computing, vol. 5, pp.
704–714, 1976.

[29] F. Benoy and P. Rodgers, “Evaluating the comprehension of
Euler diagrams,” in 11th International Conference on Information
Visualization. IEEE, 2007, pp. 771–778.

[30] J. Flower, P. Rodgers, and P. Mutton, “Layout metrics for Euler di-
agrams,” in 7th International Conference on Information Visualisation.
IEEE, 2003, pp. 272–280.

[31] A. Fish and J. Flower, “Euler diagram decomposition,” in 5th
International Conference on the Theory and Application of Diagrams.
Springer, 2008, pp. 28–44.

Gem Stapleton is a Senior Research Fellow, with interests including the
theory of diagrammatic logics and developing automated diagram layout
techniques. She received the Best Paper Award at Diagrams 2004, was
Runner-Up for the British Computer Society Distinguished Dissertation
Award 2005, and was the only UK Finalist for the Cor Baayen Award
2006, presented by ERCIM to the most promising young researcher in
Computer Science and Applied Mathematics. She was General Chair of
Diagrams 2008.

Peter Rodgers is a Senior Lecturer and is head of the Computa-
tional Intelligence Research Group. His main research interests are in
diagrammatic visualization, including graph and Euler diagram layout
techniques. He has led several research projects supported by national
and international funding bodies. He sits on the program committee of
various international conferences.

John Howse is Professor of Mathematics and Computation and he
is leader of the Visual Modelling Research Group. His main research
interests are diagrammatic reasoning and the development of visual
modelling languages. He is on the program committee for several
international conferences, was General Chair of Visual Languages and
Human-Centric Computing 2006, is on the steering committee for the
Diagrams conference series and was Program Chair for Diagrams 2008.
He received the Best Paper Award at Diagrams 2002.

Leishi Zhang is a Research Associate with a PhD in bioinformatics
visualization from the University of Brunel (funded by the EPSRC)
and an MSc in computer science from University of Dundee. Her
main research interests include information visualization, graph theory,
artificial intelligence and data analysis. She has published her research
in a number of international journals and conferences relating to the area
of data analysis and visualization.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 1

Inductively Generating Euler Diagrams:
Appendices

Gem Stapleton, Peter Rodgers, John Howse and Leishi Zhang

F

1 INTRODUCTION

THIS document is an appendix to the paper enti-
tled Inductively Generating Euler Diagrams, providing

proofs of some results and many examples to illustrate
further the concepts developed. Each section of the ap-
pendix contains additional details relating to the results
presented under the same section heading in the paper.

2 EULER DIAGRAMS

This section, in the paper, introduces the concept of Euler
diagrams and terminology with which we can discuss
their properties. In order to define these properties, we
often need to refer to the interior points of closed curves.
Given a simple curve (one that does not self-intersect), it
is easy to identify the interior since the curve partitions
R2 into two pieces; the interior consists of the points in
the bounded piece. However, in the general case it is not
so straightforward to identify the interior. Thus, to define
the interior of a curve we appeal to winding numbers:
if the winding number of a curve, c, around a point, p,
is odd then p is inside c, otherwise p is outside c.

p1

p2

p3

c1

q1

q2

q3

c2

Fig. 1. Winding numbers are used to identify interior
points.

Example 2.1: Fig. 1 shows two curves, c1 and c2, where
the arrows indicate how we traverse the curve. The curve
c1 winds zero times around p1, once around p2 and twice
around p3. Thus, p1 and p2 are outside c1 whereas p2

is inside c1. The curve c2 contains q1 and q3, winding
once and three times around these points respectively.

• Gem Stapleton and John Howse are with Visual Modelling Group, Uni-
versity of Brighton, Brighton, UK.
E-mail: {g.e.stapleton,john.howse}@brighton.ac.uk

• Peter Rodgers and Leishi Zhang are with University of Kent, Kent, UK.
E-mail: {p.j.rodgers,l.zhang}@kent.ac.uk

Manuscript received September 10, 2008; revised September 8, 2009

The point q2 is outside c2 since the winding number
of c2 around q2 is two (and, therefore, not odd). Note
that if we cross either c1 or c2 at a point where the
respective curve does not self-intersect, the parity of
the winding number changes. This observation allows
us to identify interior points without knowing how we
traverse the curve (or, more precisely, the function that
gave rise to the drawing of the curve). To illustrate,
in Fig. 2, we can draw a line from p3 to a point, q,
in the unbounded region of R2 − image(c1). Counting
the number of times this line crosses c1 is equivalent
to computing the winding number of c1 around p3,
provided this line does not pass through a point where
c1 self-intersects. In Fig. 2, we can see that the drawn
line crosses c1 twice, telling us that p3 is outside c1. This
technique (of counting the number of times a line crosses
a curve) to identify whether points are interior to a curve
can be applied to any curve that intersects at a discrete
set of points (i.e does not have any self-concurrency).

p3

c1

q

Fig. 2. Identifying interior and exterior points from the
curve image.

Fundamental to the work in the paper are five prop-
erties that Euler diagrams may possess: simplicity, no
concurrency, no triple points, crossings, and connected
zones.

d1 d2

A

B

A B

Fig. 3. Non-simplicity and concurrency.

Example 2.2: The diagram d1 in Fig. 3 possesses the no
concurrency, no triple points and crossings properties.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

However, d1 does not possess the simplicity property:
the curve labelled B is not simple (it is a figure of 8).
Also, d1 does not possess the connected zones property:
the zone inside just the curve B consists of two minimal
regions. The diagram d2 possesses all properties except
the concurrency property: the two curves share a con-
current line segment.

Also key to the work in the paper are the notions of the
Euler graph and its dual, both of which are embedded
in R2 and are plane. These graphs are illustrated in
the paper, but we include further examples here to
demonstrate various issues that are not reflected in the
paper’s examples.

d3 d4

A

B

A B

d5 d6

A

B

A B

Fig. 4. Euler graphs.

Example 2.3: The Euler graphs of d1 and d2 in Fig. 3
are shown in Fig. 4 as d3 and d4 respectively. The graph
d5 is not an Euler graph of d1 since it has too many
vertices: it is homeomorphic to d3 but has more vertices
than d3. The graph d6 is not an Euler graph of d2 since it
does not have a vertex at the point where A and B meet
near the bottom of the figure, thus making this graph
non-plane (i.e the edges intersect at some points where
there are not vertices).

d7

A

B

d8

A

B

Fig. 5. Euler graph duals.

Example 2.4: Two different duals of the Euler graph
d3, Fig. 4, are shown in Fig. 5. The dual d7 does not
completely enclose A whereas d8 does.

3 DIAGRAM DESCRIPTIONS

Our generation approach focuses on embedding atomic
abstract descriptions.

Example 3.1: The diagram d9 in Fig. 6 has abstrac-
tion D = abstract(d9) where L(D) = {A, B,C} and

d9

A

CB

d10

A

CB

Fig. 6. Describing diagrams.

Z(D) = {∅, {A}, {A,B}, {A,C}, {A,B, C}}. This abstract
description is nested, established by taking D1 with
L(D1) = {A} and Z(D1) = {∅, {A}} and D2 with
L(D2) = {B,C} and Z(D2) = {∅, {B}, {C}, {B, C}}.
Clearly, L(D1) and L(D2) are both non-empty and form
a partition of L(D). Taking z = {A}, we see that

Z(D1) ∩ {z ∪ z2 : z2 ∈ Z(D2)} =
Z(D1) ∩ {{A}, {A,B}, {A,C}, {A,B,C}}

= {{A}} = {z}

and

Z(D1) ∪ {z ∪ z2 : z2 ∈ Z(D2)} =
Z(D1) ∪ {{A}, {A,B}, {A,C}, {A,B,C}}

= Z(D)

thus establishing that D is indeed nested. However,
D1 and D2 are both atomic.

As stated in the paper, every atomic (nested) abstract
description is the abstraction of some atomic (nested)
Euler diagram [1]. However, atomic Euler diagrams may
not have atomic abstractions. Any atomic diagram that
has a nested abstraction can be redrawn in a nested
manner.

Example 3.2: The diagram d10 in Fig. 6 is atomic but
has a nested abstract description (its abstract description
is the same as that for d9).

4 ABSTRACT DESCRIPTION DECOMPOSITION

When we are presented with an abstract description
that we wish to embed, we first decompose it into a
sequence of abstract descriptions. To produce such a
decomposition, we remove labels one at a time until
there are none left.

Example 4.1: The diagram d11 in Fig. 7 has abstrac-
tion abstract(d11) = D11 where L(D11) = {A,B, C}
and Z(D11) = {∅, {A}, {A,B}, {B}, {B,C}, {C}}. Re-
moving the label C from D11 gives the abstrac-
tion of d12, with L(D12) = {A,B} and Z(D12) =
{∅, {A}, {A,B}, {B}}; so, D11 − C = D12. Remov-
ing B from D12 gives the abstraction of d13. The
decomposition 〈abstract(d16), abstract(d13), D12, D11〉 is
a total, atomic decomposition of D11. The decompo-
sition 〈abstract(d16), abstract(d15), abstract(d14), D11〉 is
total but not atomic; abstract(d14) is nested.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 3

d11

A CB

d12

A
B

d13

A

d14

A C

d15

C

d16

Fig. 7. Decomposing diagrams.

To create a total decomposition, we successively re-
move labels. For our generation approach, we need to
know how to add those labels back.

Example 4.2: Taking d15 in Fig. 7, we can specify how
to add A to abstract(d15) in order to obtain abstract(d14).
We want A to split the zone outside C (i.e. the zone ∅)
and to have the zone inside C (i.e. the zone {C}) entirely
outside of A. So, we take in = {∅} and out = {∅, {C}}.
Then abstract(D15) + (C, in, out) = abstract(d14). To
illustrate further, we can specify how to add B to
abstract(D14) in order to obtain abstract(d11) by taking
in = out = {∅, {A}, {C}} (B splits all of the zones).

Lemma 4.1: Let D = (L,Z) be an abstract description
and let λ ∈ L. Then D = (D − λ) + (λ, in, out) where

in = {z ∈ Z(D − λ) : z ∪ {λ} ∈ Z}
and

out = {z ∈ Z(D − λ) : z ∈ Z}.

Proof: We must show that L(D) = L((D − λ) +
(λ, in, out)) and Z(D) = Z((D − λ) + (λ, in, out)). Triv-
ially, the label sets are the same, since we remove λ
from D to give D − λ and then reintroduce λ to give
(D − λ) + (λ, in, out). Thus, we only need to consider
the zones sets. Let z ∈ Z(D). Then z − {λ} ∈ Z(D − λ),
by definition. If λ ∈ z then z ∈ in implying that (z −
{λ}) ∪ {λ} = z ∈ Zin. Alternatively, λ 6∈ z, in which case
z ∈ out. Thus, in either case, z ∈ Z((D−λ)+ (λ, in, out))
since Zin ∪ Zout = Z((D − λ) + (λ, in, out)). So, we have

shown that

Z(D) ⊆ Z((D − λ) + (λ, in, out)).

Now let z ∈ Z((D−λ)+(λ, in, out)). Then either z ∈ Zin

or z ∈ Zout. In the latter case, since Zout = out and
out ⊆ Z(D − λ), z ∈ Z(D − λ). Then, since

out = {z ∈ Z(D − λ) : z ∈ Z}
we deduce that z ∈ Z(D). In the former case, λ ∈ z, since
z arose from Zin. This implies that z−λ ∈ in and it then
follows that (z − λ) ∪ λ = z ∈ Z(D), by the definition of
the set in (stated in the lemma). Hence, in either case,
z ∈ Z(D) and we have

Z(D) ⊇ Z((D − λ) + (λ, in, out)).

Hence
Z(D) = Z((D − λ) + (λ, in, out))

as required. Therefore, D = (D − λ) + (λ, in, out).

5 GRAPHS FOR CURVE ADDITION

Our inductive generation method finds cycles in the so-
called hybrid graph that we define in the paper. Here,
we provide further examples of the hybrid graph and
its construction, together with justification that we can
always construct such a graph. First, we consider the
modified Euler dual from which the hybrid graph is
built.

5.1 The Modified Euler Dual
We need to modify the Euler dual since it does not
reflect all isotopically different paths that edges may
take, relative to their end points (i.e. keeping the end
points fixed where the vertices are embedded). Here, we
are interested in paths through the plane, R2, minus the
points where the vertices of the Euler graph lie.

d17

A

B

d18

A

B

d20

A

B

d19

A

B

Fig. 8. Isotopically different paths.

Example 5.1: Fig. 8 shows subgraphs of dual graphs of
the Euler diagram d5, Fig. 4. In each of d17 to d20, the red
dual vertices are embedded in faces of the Euler graph;
this is a first step towards constructing a dual graph.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 4

Each red edge is an edge of a dual graph, connecting
the same vertices in each diagram. However, the two
red edges in d17 and d18 respectively take different paths
through R2. It is possible to continuously transform the
red edge in d17 until it passes through the precisely same
points as the red edge in d18; such a transformation
shows that the two lines are isotopic in R2 but, relative to
their end points, necessarily passes through at least one
black (Euler) vertex. However, if we restrict our notion of
isotopy so that we cannot, during a transformation, pass
though the points in R2 where the black Euler vertices
are embedded then these two lines are not isotopically
equivalent relative to their end points. The red edge in
d19 and the red edge in d17 are isotopically equivalent
in R2 minus the points where the black vertices are
embedded. Similarly for the red edges in d18 and d20.

d21

A

B

v

d22

A

B

d23

A

B

Fig. 9. Constructing the modified Euler dual.

Example 5.2: The modified Euler dual is obtained from
an Euler dual by carrying out a sequence of transfor-
mations. To illustrate, to the Euler dual shown in d7,
Fig. 5, we first insert vertices on to the edges incident
with the vertex in the unbounded face of the Euler
graph; this results in d21, Fig. 9. The second stage in the
construction process deletes the vertex, v, embedded in
the unbounded face of the Euler graph, along with its
incident edges, resulting in d22. The final stage joins the
vertices in d22 that are not in d20 (i.e. the newly inserted
vertices) to give d23.

Theorem 5.1: Every atomic Euler diagram has a modi-
fied Euler dual.

Proof: First, we note that it is obvious that every
atomic Euler diagram has an Euler graph and, therefore,
has an Euler graph dual. Clearly, given any graph, we
can insert vertices of degree two onto any edge, and
split those edges into two new edges. Therefore, we
can perform step 1 in the sequence of transformations
that convert any Euler dual into a modified Euler dual.
The fact that we can always perform step 2 (deleting
vertices and incident edges) is equally obvious. For step
3, enclose both the graph that results after step 2 and the
Euler graph by a simple closed curve that

1) passes through the points where the vertices in the
unbounded face of the Euler graph are embedded,

and
2) does not intersect any of the edges of either graph.

Subdivide this curve in the obvious manner to give
edges that connect these (newly inserted, at step 1)
vertices, resulting in a simple plane cycle that properly
enclosed the Euler graph, thus constructing MED(d).

5.2 The Hybrid Graph
Example 5.3: A hybrid graph of d2, Fig. 3, is con-

structed in Fig. 10. First, the modified Euler dual and
the Euler graph are taken as one graph, G1. Second, we
add vertices to G1 that split the dual edges embedded
in the unbounded face of G1, to give G2. The third step
makes this graph plane, by inserting vertices wherever
two edges cross, giving G3. Next, we add triangulation
edges to create G4, but not in the unbounded face of
EG(d). Finally, we add edges in this face, to give HG(d2)
as illustrated.

G1

A B

G2

A B

G3

A B

G4

A B

HG(d2)

A B

Fig. 10. Constructing the hybrid graph.

Theorem 5.2: Every atomic Euler diagram has a hybrid
graph.

Proof: Clearly, every atomic Euler diagram, d, has an
Euler graph EG(d) and we have shown that MED(d)
also exists (theorem 5.1). Thus, we can obviously create
G1, G2 and G3 as described in the definition of the
hybrid graph. We now show that we can construct G4

from G3. First, consider the graph obtained from G3 by
deleting all of the dual (red) vertices; call the resulting
graph G′3. The graph G′3 has faces that are (essentially)
the same as the faces of the Euler graph. Now, since d is
atomic, the faces of EG(d) and, therefore, of G′3 are all
simply connected (except the unbounded face). Let f be
such a face. Then f is bounded by edges of the graph.
As we traverse the bounding edges of f , we see that
the vertices around f alternate between Euler (black)

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 5

vertices and new (green) vertices; they alternate since
there is exactly one green vertex on every Euler edge,
because every Euler edge is crossed by a dual edge.
Now, in G3, there is exactly one dual (red) vertex, v,
embedded in f . Connecting v to all of the Euler vertices
around f with new edges (as in the construction of G4)
therefore triangulates the face, since the new (green)
vertices around f are already incident with v in G3.
Hence, we can construct G4. Finally, we must show that
we can turn G4 into the hybrid graph.

Clearly, we can add edges that satisfy 5(a) and 5(b)
of the construction process. Thus, we must just establish
that we can achieve 5(c). Let v be a (green) vertex in
G2 that is not in G1. We want to ensure that we can
add an edge incident with v and incident with a (black)
vertex in EG(d). Now, since v is inserted on an edge
of MED(d) that is embedded in the unbounded face
of EG(d), we know that v is incident with vertices v1

and v2 of MED(d). Moreover, we know that v is next
to two faces of G4: its unbounded face and a bounded
face, f . The vertices v1 and v2 are also next to f . Assume,
first, that v1 and v2 are distinct. Studying the vertices
as we traverse the edges around f , we see that at least
one of them must be an Euler vertex, v3 (since the
vertices v1 and v2 arise from the Euler graph dual, whose
edges each cross an Euler graph edge). Therefore, we can
connect v to v3 in order to create HG(d). Alternatively,
v1 and v2 are not distinct. In this case, v1 is incident with
an edge that is a loop and properly encloses the Euler
graph of d. Since the Euler graph has at least one vertex
next to its unbounded face, we can connect v to that
vertex as required. Therefore, in either case, we can add
an edge to connect v to an Euler vertex. Since v was an
arbitrary vertex in G2 but not in EG(d) or MED(d), we
can construct HG(d).

6 ADDING CURVES

Any cycle in a hybrid graph can be used to add a curve
to an Euler diagram.

HG(d2)

A B

d2+(C,D)

A B

D

Fig. 11. Adding a curve using the hybrid graph.

Example 6.1: The hybrid graph of d2, Fig. 3, can be
used to add curves to d2. For instance, in Fig. 11 the
blue cycle, C, in HG(d2) can be used to add a curve
labelled D, shown in d2 + (C, D).

In our generation approach, we use these cycles to add
curves in a specific manner. In particular, to a diagram, d,
we want to add a curve given some sets in and out that
specify how to add the curve (as previously illustrated).

Thus, it is helpful to be able to identify whether a cycle
will give rise to an appropriate curve without having
to embed the curve itself. This motivates the definition
of the interior and exterior of a cycle, defined in such
a manner that it agrees with the interior and exterior
of any curve that the cycle generates (as defined in the
paper). The concept of being inside a cycle is defined by
appealing to face-colouring.

HG(d2)

A B

d2+(C,D)

A B

D

G

A B

Fig. 12. Identifying the interior of cycles.

Example 6.2: In Fig. 12, the cycle C whose inside is
shaded is used to add D to d2, Fig. 3. The inside of
the curve D is also shaded. The graph G shows an
alternative cycle in HG(d2). The bottom right diagram
illustrates a two face-colouring of this cycle, with the
regions coloured yellow being outside the cycle and
those coloured white being inside the cycle.

7 ADDING CURVES UNDER WELLFORMED-
NESS CONDITIONS

Here, we present proofs for many of the results stated
in this section of the paper.

7.1 Simplicity
Theorem 7.1: Let d = (Curve, l) be an atomic Euler

diagram with hybrid graph HG(d). Let C be a cycle in
HG(d) and let λ be a label that is not in d, λ 6∈ image(l).
Then the curve added to d to give d + (C, λ) is simple if
and only if C possesses the simplicity property.

Proof: Suppose, first, that the curve, c, added to d to
give d + (C, λ) is simple. Then the cycle C cannot have
passed through any vertex more than once, for if it did
then c would self-intersect by construction. Therefore, C
is simple and, hence, possesses the simplicity property.
Conversely, suppose that C possesses the simplicity
property. Then C is simple, meaning that the curve, c,
constructed from C is also simple.

7.2 No Concurrency
Theorem 7.2: Let d = (Curve, l) be an atomic Euler

diagram with hybrid graph HG(d). Let C be a cycle in

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 6

HG(d) and let λ be a label that is not in d, λ 6∈ image(l).
Then the curve added to d to give d + (C, λ) does not
run concurrently with any curve in d or itself if and only
if C possess the no concurrency property.

Proof: Suppose, first, that the curve c added to d to
give d+(C, λ) does not run concurrently with any curve
in d or itself. This means that any edge in C (i.e. precisely
the edges that gave rise to the curve c) did not arise from
an Euler edge (the black edges), for the presence of such
an edge would mean that c ran concurrently with the
curve(s) from which that Euler edge arose. Therefore, C
possesses the no concurrency property.

Conversely, suppose that C possesses the no concur-
rency property. Then C does not contain any Euler edges,
by definition. Therefore, c does not run concurrently
with any other curve in d. Moreover, c does not run
self-concurrently, since this would imply that an edge
occurred twice in C but then C would not be a cycle.
Hence, c does not run concurrently with any curve in d
or itself.

7.3 No Triple Points

In order to detect triple points when adding curves, we
need to know the multiplicity of any existing points of
intersection.

Theorem 7.3: Let d = (Curve, l) be an atomic Euler
diagram with hybrid graph HG(d). Let C be a cycle in
HG(d) and let λ be a label that is not in d, λ 6∈ image(l).
Then the curve added to d to give d + (C, λ) does not
introduce any triple points if and only if C has the no
triple points property.

Proof: Suppose, first, that the curve, c, added to d
to give d + (C, λ) does not introduce any triple points.
Let v be a vertex in V (C). Suppose that mul(v, d) ≤ 2.
Since c does not introduce any triple points, we know
that mul(v, d + (C, λ)) ≤ 2. By the construction of c, this
implies that the number of times C passes through v
is at most 2 −mul(v, d). In other words, mul(v, d) plus
half the number of edges in C is at most two. Let e
be an edge in E(C). Then c traverses that edge exactly
once, by construction. Therefore, the multiplicity of that
edge increases by 1. Since c does not introduce any triple
points, we know that mul(e, d) 6= 2 in d. Therefore, C
possesses the no triple points property.

Conversely, suppose that C possesses the no triple
points property. We must show that c does not introduce
any triple points. We proceed by contradiction. Let p
be a point in image(c) such that p is a triple point in
d+(C, λ) but not a triple point in d (i.e. we assume that
c introduced a triple point). There are three cases.

1) First, p is a 0-point of intersection in d (is not in
the image of any curve in d). In this case, c passes
through p at least three times. Suppose first that p
is a point where a vertex, v, of C is embedded. We
know, therefore, that mul(v, d) = 0. Moreover, we
deduce that C contains at least six edges incident
with v, since p becomes a triple point when c is

added. Therefore, mul(v, d) plus half the number
of edges in C incident with v is at least 3, implying
that C does not possess the triple points property,
which is a contradiction. Now suppose that p is
a point on some edge, e, in C but not where a
vertex is embedded. Since p is a 0-point in d, we
know that mul(e, d) = 0. Therefore, c must pass
along e at least three times. This implies, by the
construction of c, that C must contain e at least
three times, but cycles contain edges at most once
giving a contradiction. Hence, p is not a 0-point of
intersection.

2) Second, suppose that p is a 1-point in d. This is
similar to case 1.

3) Finally, suppose that p is a 2-point in d. The case
when p is a point on which a vertex lies is similar
to case 1. When p lies on an edge, we immediately
see that e has multiplicity 2 (mul(e, d) = 2) but this
cannot be so since C possesses the no triple points
property.

Hence if C possesses the no triple points property then
c does not introduce any triple points.

7.4 Crossings
Theorem 7.4: Let d = (Curve, l) be an atomic Euler

diagram that possesses the crossings property with hy-
brid graph HG(d). Let λ be a label that is not in d,
λ 6∈ image(l). Then d + (C, λ) possesses the crossings
property if and only if C possesses the crossings prop-
erty.

Proof: Suppose, first, that d + (C, λ) possesses the
crossings property. Let e be an edge in C. We show that
e is not an Euler edge. The curve, c, added to d crosses all
curves in d whenever it intersects them and, moreover,
crosses itself at any point of self-intersection. This means
that c does not run concurrently with any curve in d and,
therefore, does not traverse any Euler edge, implying e
is not an Euler edge.

Let ei and ei+1 be consecutive edges in C. Suppose
that vi+1 is incident with an Euler edge. In d, all of the
curves that pass through v cross at v (since d possesses
the crossings property). This implies that every curve
that passes through v gives rise to two edges in the Euler
graph (i.e. the number of Euler edges that pass through v
is twice the number of curves that pass through v). Now,
the curve c traverses ei, passes through vi+1 and then
traverses ei+1. Let c′ be a curve in d that passes through
vi+1. Then one of the two Euler edges incident with vi+1

arising from this curve is in the set E1(ei, ei+1, vi+1) and
the other is in E2(ei, ei+1, vi+1), or c would not cross
c′. From this, it follows that there are the same number
of Euler edges in E1(ei, ei+1, vi+1) and E2(ei, ei+1, vi+1),
as required for the crossings property to hold for C. A
similar argument shows that

|E1(ei, ei+1, vi+1) ∩ E(C)| = |E2(ei, ei+1, vi+1) ∩ E(C)|.
Hence C possesses the crossings property.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 7

Conversely, suppose that C possesses the crossings
property. We must show that each time c intersects a
curve in d it crosses that curve. Let p be a point where
c intersects some curve, c′, in d. Then clearly p is not
a point on an Euler edge, since C does not contain
any Euler edges. Therefore, p is a point where an Euler
vertex, v, is embedded. Let ei and ei+1 be consecutive
edges in C where vi+1 = v; these two edges form part of
c that passes through p. Suppose, for a contradiction, that
c′ does not cross c at p. Then c′ gives rise to two Euler
edges, e1 and e2, that are both in either E1(ei, ei+1, vi+1)
or E2(ei, ei+1, vi+1) where c traverses first e1 and then,
immediately, traverses e2. But then c′ does not cross all
curves in d at p contradicting the fact that d possesses
the crossings property. Thus, c must cross all curves in
d whenever it intersects them. The argument to show
that each time c self-intersects, it crosses itself is similar.
Hence d + (C, λ) possesses the crossings property.

7.5 Connected Zones
Lemma 7.1: Let d = (Curve, l) be an atomic Euler

diagram that possesses the connected zones property
with abstraction abstract(d) = (image(l), Z). Let in ⊆ Z
and out ⊆ Z such that in ∪ out = Z and ∅ ∈ out. Let
HG(d) be a hybrid graph of d and C be a cycle in HG(d).
If abstract(d + (C, λ)) = abstract(d) + (in, out, λ) then

in ∩ out =
{abstract(z(v)) : v ∈ V (C)∩DualV ertices(HG(d))}.
Proof: Assume abstract(d + (C, λ)) = abstract(d) +

(in, out, λ). Let az ∈ in ∩ out. We know that the added
curve, c, splits the zone, z with abstraction az. Therefore,
the cycle C must properly pass through z since z is
connected in d. Thus, the vertices in C must include
a dual vertex, v, embedded in z. We get, therefore,
abstract(z(v)) = az. Hence

in ∩ out ⊆
{abstract(z(v)) : v ∈ V (C)∩DualV ertices(HG(d))}.

Now, let v ∈ V (C) ∩ DualV ertices(HG(d)). Then C
properly passes through the zone, z(v), in which v is
embedded. Each time C passes through v, z(v) is divided
into pieces, exactly half of which are inside C and half
of which are outside C. Therefore, z(v) is split by c, the
curve arising from C and, hence, abstract(z(v)) ∈ in ∩
out. Therefore

in ∩ out =
{abstract(z(v)) : v ∈ V (C)∩DualV ertices(HG(d))}.

as required.
Theorem 7.5: Let d = (Curve, l) be an atomic Euler

diagram that possess the connected zones property and
has hybrid graph HG(d). Let C = (e0, ..., en) be a cycle
in HG(d). Let λ be a label that is not in d, λ 6∈ image(l).

Then d + (C, λ) possesses the connected zones property
if and only if C possesses the connected minimal regions
property.

Proof: Suppose, first, that d+(C, λ) possesses the con-
nected zones property. Let (vi, vi+1, ..., vi+j) be a proper
subsequence of (v0, v1, ..., vn+1). Let c be the curve added
to d to give d + (C, λ). If c ‘enters and leaves’ a zone
twice (or more) as one traverses c then c would create
disconnected zones. Since d+(C, λ) has connected zones,
we deduce that c enters and leaves each zone at most
once. Thus, if vi is embedded in a minimal region, m,
and so is vi+j , all of the intermediate vertices must also
be embedded in m. Thus, C possesses the connected
minimal regions property. The converse is similar.

Theorem 7.6: Let d = (Curve, l) be an atomic Euler
diagram with hybrid graph HG(d). Let C = (e0, ..., en)
be a cycle in HG(d). Let λ be a label that is not in d,
λ 6∈ image(l). Then d + (C, λ) possesses the connected
zones property if and only if

1) C possesses the connected minimal regions prop-
erty,

2) each zone in d consists of at most two minimal
regions,

3) for any zone in d that consists of two minimal
regions, m1 and m2, the dual vertex embedded in
one of m1 and m2 is inside C and the dual vertex
embedded in the other is outside C.

The above theorem can be used, and generalized,
to allow embedded diagrams to contain disconnected
zones enroute to producing an embedding that does not
have disconnected zones.

7.6 Collections of Wellformedness Conditions
Theorem 7.7: Let d = (Curve, l) be an atomic Euler di-

agram that possesses a set of wellformedness conditions
W . Let C be a cycle in a hybrid graph, HG(d), for d
and let λ ∈ L − image(l). Then d + (C, λ) possesses all
of the wellformedness conditions in W if any only if C
possesses all of the properties in W (C).

Proof: This follows immediately from the previous
theorems on wellformedness conditions.

The problem of adding a curve when all wellformed-
ness conditions are imposed reduces to seeking a cycle
in the modified Euler dual.

Theorem 7.8: Let d = (Curve, l) be an atomic, com-
pletely wellformed Euler diagram with hybrid graph
HG(d). Let abstract(d) = (l, Z) be an abstraction of
d and let in, out ⊆ Z such that in ∪ out = Z and
∅ ∈ out. Then there exists a cycle, C1, in HG(d) such that
d+(L,C1) is completely wellformed and has abstraction
abstract(d) + (λ, in, out) if and only if there exists a
simple cycle, C2 in MED(d) such that d + (L,C2) has
abstraction abstract(d) + (λ, in, out).

Thus, if we want to enforce all wellformedness con-
ditions, the generation task can be reduced to finding
appropriate simple cycles in the modified Euler dual. In
fact, we have a stronger result than the one given above.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 8

Theorem 7.9: Let d = (Curve, l) be an atomic, com-
pletely wellformed Euler diagram with hybrid graph
HG(d). Let abstract(d) = (l, Z) be an abstraction of d
and let in, out ⊆ Z such that in ∪ out = Z and ∅ ∈ out.
Then there exists a curve, c, that is not in Curve such
that d + (c, λ) is atomic, completely wellformed and has
abstraction abstract(d) + (λ, in, out) if and only if either

1) there exists a plane, simple cycle, C, in MED(d)
such that

a) C possesses the connected minimal regions
property,

b) the vertices in MED(d) that are embedded in
zones whose abstractions are elements of the
set in ∩ out are exactly those in V (C),

c) the vertices in MED(d) that are embedded in
zones whose abstractions are elements of the
set in− out are located inside C, and

d) the vertices in MED(d) that are embedded in
zones whose abstractions are elements of the
set out− in are located outside C,

or
2) |in| = |in∩ out| = 2 and the two zones correspond-

ing to the abstract zones that are elements of the
set in ∩ out are topologically adjacent.

Thus, to find a completely wellformed embedding,
when using the modified Euler dual we know almost
exactly the set of vertices through which our cycle, C,
must pass: C must pass through all vertices embedded in
the zones that are to be split, except the zone, z, outside
all curves. In the case of z, the cycle must pass through
at least one vertex embedded in z. In the special case
of Venn diagrams, it was observed in [2] that adding
curves corresponded to finding Hamiltonian cycles in
some appropriate dual graph.

8 ENSURING DRAWABILITY

To ensure that we can draw any abstract description,
we sometimes need to find a set of cycles with certain
properties.

Example 8.1: Fig. 13 shows a diagram, d24, together
with its hybrid graph, d25. There is no cycle in the hybrid
graph that allows us to add a curve, labelled F , that
splits the zones

in = {∅, {A}, {A, B,E}, {B, E}},
(and we take out = Z(abstract(d24)). In this case, to add
a curve in the required manner, we can find two cycles,
C1 and C2, where C1 splits ∅ and {A} and C2 splits
{A,B, E} and {B, E}; these cycles are shown in d26 and
d27, respectively. These two cycles can then be joined by
an edge (which we traverse twice) to give F , shown in
d28. For C1, we have

inZones(C1) = {∅, {A}}, (i.e. no zones are properly
inside C1 and the two stated zones are split by C1,
and
outZones(C1) = Z(abstract(d24)) (i.e. all zones in
d24 give rise to an abstract zone in outZones(C1)

since each such zone is either properly outside C1

or split by C1).
For C2, we have

inZones(C2) = {{A,B, E}, {B, E}}, and
outZones(C2) = Z(abstract(d24)).

We see that the zones that are in in are given by

in = inZones(C1) ∪ inZones(C2).

Moreover, the zones that in out are given by

out = outZones(C1) ∩Outzones(C2).

Example 8.2: Suppose we want to add a curve, G, to
d24, Fig. 13, where

in = abstract(d24), and
out = {∅}.

The two cycles, C3 and C4 shown in d29 and d30,
respectively, Fig. 14, between them have

1) inZones(C3) ∪ inZones(C4) = in, and
2) outZones(C3) ∩ outZones(C4) = out.

However, in this case, we also have inside(C3) ∩
outside(C4) 6= ∅, since there is a new (green) vertex
inside both C3 and C4. Taking these two cycles and
connecting them to make a curve, G, as shown in d31,
does not yield a diagram with abstraction abstract(d14)+
(G, in, out). This example illustrates the necessity of the
constraint that any pair of cycles used to add a curve
cannot have a common vertex inside them.

10 CONCLUSION

In the conclusion of the paper, we mentioned that curves
can be removed whilst preserving all wellformedness
conditions except, possibly, the connected zones prop-
erty. Sometimes, when a zone becomes disconnected
after curve removal, it is possible to ‘resolve’ this well-
formedness condition by applying a transformation to
the resulting diagram such that no other wellformed-
ness conditions are broken and the zone is no longer
disconnected.

Example 10.1: The diagram d32, Fig. 15, can be built
using our inductive generation approach, starting with
curve A, then adding B and finally C. With regard to
wellformedness conditions, d32 possesses the simplicity
property, no concurrency property, and connected zones
property. It does not, however, possess the no triple
points property or the crossings property; the point
where A, B and C all intersect is both a triple point
and a non-crossing point. Removing B gives d33 which,
in addition to possessing the simplicity property and no
concurrency property, also possesses the no triple points
property. That is, removing B resolved the triple point.
However, removing B also created a disconnected zone,
that inside C only.

We can resolve the disconnected zone by pulling (at
least one of) the (non-crossing) points where A and
C intersect apart, as shown in d34. These points of
intersection that are non-crossing points can be detected

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 9

d32

A BC

d33

AC

d34

AC

d35

AC
{}

c

{}

a a c

v

d36

AC
{}

c

{}

a a c

v

Fig. 15. Removing curves and maintaining wellformed-
ness.

by reading words around faces in the modified Euler
dual (shown in d35). Taking the Euler vertex, v, the word
around the face in which v is embedded is c, a, a, c, ∅. We
can see from this word that a and c intersect at v, but
do not cross. Moreover, we can see that an edge can be
added to the modified Euler dual connecting the two
vertices embedded in c which passes through the vertex
v without crossing any edges. This indicates that we can
pull A and C apart at v, resolving the disconnected zone
and a non-crossing point; note that d34 resolves both
non-crossing points but, as demonstrated, this is not nec-
essary in order to resolve the disconnected zone. Further,
we observe that the manner in which we identified, and
resolved, the non-crossing point could also be applied to
d32.

Currently, the authors are investigating diagram trans-
formations that resolve broken wellformedness condi-
tions.

ACKNOWLEDGMENTS

This work is supported by the UK EPSRC grants
EP/E011160/1 and EP/E010393/1 for the Visualization
with Euler Diagrams project.

REFERENCES
[1] J. Flower, J. Howse, and J. Taylor, “Nesting in Euler diagrams:

syntax, semantics and construction,” Software and Systems Modeling,
vol. 3, pp. 55–67, 2004.

[2] K. Chilakamarri, P. Hamburger, and R. Pippert, “Hamilton cycles in
planar graphs and Venn diagrams,” Journal of Combinatorial Theory
(Series B), vol. 67, pp. 296–303, 1996.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 10

d25

A

B
E

d24

A

B
E

d26

A

B
E

d27

A

B
E

d28

A

B
E

F

Fig. 13. Ensuring drawability using many cycles.

d29

A

B
E

d30

A

B
E

d31

A

B
E

G

Fig. 14. Cycles with a common vertex inside give the wrong abstraction.

	tvcg09-1
	tvcg09-appendices-1

