
Background

Motivation
Large point sets—such as those widely used to 
analyze geo-related demographic data—are 
nearly impossible for people to visualize. This 
is because it is rather difficult to general visual 
representations which are adequate for the 
data and the task. The visualization of interest-
ing patterns hidden in large datasets requires 
a much higher screen resolution. As a result, 
datasets are much larger than available visual 
encodings and screen spaces can handle. The 
screen space, defined by the amount of pixels 
in modern output devices, does not increase in 
the same manner as the data stored in databases. 
Therefore, it is important to optimally use the 
limited space. 
  Visualization plays an essential role in survey-
ing and exploring data stored in large databases. 
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Scientific and general information visualization 
have been studied for many decades; it is the 
scale of the data which presents new challenges. 
Displaying large point sets on conventional 
maps is problematic. Conventional data-plotting 
obscures data points in densely populated areas, 
while sparsely populated areas waste space and 
hide the details of information. Small clusters 
are equally difficult to find; they are not notice-
able, and can sometimes be occluded by large 
clusters. 
  Our research aims to address this problem. It 
shows that density equalizing distortions make 
previously hidden information visible. In this 
study, we demonstrate our techniques that con-
tinuously distort large geographic point sets 
while preserving the topological order of points. 
Our techniques use multiple local features of the 
data distribution as a basis for the distortion.

Visualizing large geospatial datasets using 
pixel-based techniques involves mapping the 
two geospatial dimensions of a data point onto 
screen coordinates, and appropriately encoding 
the associated statistical value using color. The 
points of the input set are assumed to have one or 
more associated statistical attributes. Informally, 
our goal is to show relationships and patterns in 
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the data, which are created by 
both their location and their 
statistical value. Geospatial 
datasets together with a 
statistical attribute can be 
interpreted as points in 3D. 
However, real-world datasets 
often have a highly non-uni-
form distribution.

Related Work
Traditional maps show 
regions using direct map-
ping of geographic-to-
screen coordinates. A way 
to obtain more space for 
regions with a high-point 
density are cartograms which distort regions 
such that their size corresponds to a statistical 
attribute. For example, the number of elec-
toral votes is mapped to the size of the state. 
Cartograms are produced by transforming the 
map so that the geographical variable will best 
match the statistical one. In the example of the 
U.S. elections, the actual size of a state will be 
re-scaled in accordance with the number of 
its electoral votes. Figure 1 shows an example 
of a cartogram using the described example. 
Cartograms usually preserve the topology of 
the data and the relationships between map 
regions and data points (House and Kocmoud 
1998; Keim et al. 2004). They can be created 
by several algorithms, of which a detailed over-
view can be found in Tobler (2004). We distin-
guish between two major Cartogram types: First, 
simple non-contiguous area Cartograms (Olson 
1976), where regions preserve their shapes but 
may lose adjacency relationships. Second, more 
complex solutions that use nonlinear transfor-
mation algorithms from computational geome-
try in order to distort the map without breaking 
its topology. Several computer algorithms have 
already been developed to construct such contin-
uous area Cartograms (Dorling 1996; Dougenik 
et al. 1985; Edelsbrunner and Waupotitsch 
1997; Gusein-Zade and Tikunov 1993; Keim et 
al. 2004; Tobler 1973; Tobler 1986). Numerous 
application examples are presented in (Dorling 
et al. 2006; Sips et al. 2006).

Tobler’s (1986) pseudo-cartogram algorithm 
creates an equal density approximation by com-
pressing or expanding the latitude and longitude 
until a least root mean square error solution is 
obtained. This method provides an effective way 

to preprocess a map prior to cartogram construc-
tion, but the cartograms produced can have large 
area errors. In Dorling’s (2006) cellular automaton 
method a map has a grid superimposed on it, and 
individual grid cells are traded until each geo-
graphic region obtains its desired number of cells. 
While this method is very effective in achieving 
area approximation, regions tend to loose their 
unique contours and acquire a shape reflecting the 
grid. The rubber sheet method by Dougenik et al. 
(1985) exerts radial forces from each region upon 
all map vertices at a magnitude proportional to the 
region’s area error and inversely proportional to 
distance. Gusein-Zade and Tikunov’s (1993) line 
integral method applies radial transformations 
such that the density of a selected cell is made 
uniform, leaving all other cells unchanged. While 
the radial methods produce reasonable results in 
terms of area error, they produce a ballooning 
effect that may render regions unrecognizable 
and may also cause a pinching of originally rect-
angular region corners.

Recent research introduced rectangular carto-
grams where every region is mapped to a rectangle, 
trying to preserve both the adjacency relations 
between regions and the aspect ratio of regions, 
but this aim cannot be fulfilled for all map regions. 
Vankreveld and Speckmann (2007) introduced the 
first automated algorithms for such cartograms 
and Heilmann et al. (2004) proposed RecMap, an 
efficient algorithm to approximate familiar land 
covering map regions with shapes of rectangles 
which works also for very large datasets.

Cartogram techniques are based on statistical 
values describing the regions and, therefore, they 
are seldom used for point-based data. They are, 
however, used on polygons representing, for example, 
administrative areas. Algorithms for cartograms 

Figure 1. A cartogram showing the results of the U.S. presidential election in 2008 
(red color refers to republican and blue to democratic majority in the state). The area 
of a state is mapped to its number of electoral votes.
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thus do not consider such problems as over-plot-
ting or pixel coherence that arise when dealing with 
point-based data. But density-equalizing distortions are 
mostly (but not exclusively) based on the distribution 
of point. We use cartograms for density-equalization 
by creating a pseudo-attribute for the regions that 
reflect its point-density. As a result, the regions will 
be re-scaled according to the number of points in the 
region, causing an indirect density-equalization.

Another visualization approach suggests applying 
local placement functions that transform the input 
data into a solution set and make patterns of interest 
more easily visible (Keim et al. 2006). One example 
for visualizing large spatial datasets using local place-
ment functions is the PixelMap technique (Keim et 
al. 2003b, 2004a, 2004b). The PixelMap approach 
assigns each input data point to a unique 2D screen 
pixel, trading absolute and relative position against 
clustering to achieve pixel coherence. In general, 
PixelMap re-scales subregions of the map to better 
fit dense, non-uniformly distributed points to unique 
output positions. The goal is to represent dense areas 
in a way that preserves some of the key structure of 
the original geographical space and allocates all data 
points to unique display pixels. A detailed description 

of the PixelMap algorithm is provided 
in Keim et al. (2003b).

The PixelMap technique shows as 
many data points as possible by find-
ing a good trade-off between distor-
tion and the degree of overlap. In 
the absence of distortion, it is often 
impossible to place all data points 
without compromising neighborhood 
preservation. But, when the degree 
of distortion is too high, the result-
ing map may be hard to read. The 
PixelMap techniques can reveal fine 
structures in the data, but it may be 
difficult to relate these structures to 
geographic features such as locations 
of cities or regional boundaries. The 
main problem with PixelMap is that it 
creates arbitrary distortions, without 
continuity and neighborhood preserva-
tion. These constrains are indispens-
able when the analysis task involves 
clustering or classification of areas.

Another related example of den-
sity-equalizing distortion of 2D point-
sets is HistoScale (Keim 2003a). This 
algorithm is efficient for computing 
pseudo-cartograms with continuous 
scaling and neighborhood preserva-
tion. The main goal of HistoScale is 

to distort the map regions along the two Euclidian 
dimensions. The degree of distortion depends on the 
number of data items located in a certain map area 
and the relative area covered by this region. The scal-
ing operations are performed using a given number 
of equally placed bins, defined by the two Euclidian 
dimensions. Each of the bins covers a rectangular 
area whose size is relative to the number of covered 
data points. The rectangular areas are continuously 
re-scaled, which results in a neighborhood-preserv-
ing map distortion. However, HistoScale is unable 
to cope with highly dense and highly sparse regions 
laying side-by-side along the Euclidean dimensions. 
For example, the dense region of Los Angeles causes 
the very sparse regions north of it to be enlarged as 
well, as shown in Figure 2.

Techniques
In this article, we demonstrate two novel tech-
niques for distorting large geographic point 
sets continuously without destroying neighbor-
hoods in order to meet some of the challenges 
presented by large-scale geo-visualization data. 

Figure 2. Example of HistoScale using the U.S. Year 1999 Median Household 
Income (U.S. Department of Commerce, 2009) dataset. The problem is the 
bad distortion, especially for sparse areas which are in the same bin as such 
highly dense areas north of Los Angeles.
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Our new approaches aim at 
applying scaling on multiple 
centers and use local features in 
the distribution of the data. The 
fundamental idea behind the 
two techniques is the distortion, 
in a polar coordinate system, of 
the radial distance (RadialScale 
technique) or the angular loca-
tion (AngularScale technique) 
of the data points from a center. 
The degree of distortion is deter-
mined by the density of points 
in consecutive radial and angu-
lar segments. The dataset used 
throughout this section com-
prises 1999 U.S. census data on 
median household income. The dataset consists 
of about 333.000 data points and their geographic 
locations. There are many ways to compute the cen-
ters around which the distortion occurs, as docu-
mented in literature. Weber et al. (2007) and Wood 
(2004) proposed that landscapes and peaks and 
summits were used as centers of distortion for more 
complex datasets. We use local minima and maxima, 
to describe locations of sparse (minima) and dense 
(maxima) regions in the data distribution. They are 
computed by using a two-dimensional normal dis-
tribution as a weighting function which is overlaid 
on the data distribution computed as the number 
of data points in a high-resolution grid. As a result, 
each grid-cell has a weighted number of data points 
which is used to determine high and low concentra-
tions of data points.

RadialScale Technique
The RadialScale technique defines the degree 
of distortion based on the density of data points 
in the circular field around a center whose seg-
ments (bins) have an equal area covered. The 
area of each bin is then re-sized in accordance 
with the number of data points within the bin. 
Consequently, the inner and outer perimeters of 
the bin will obtain a new radius. Keeping their 
relative position within the bin constant, the 
data points within the bin will also obtain a new 
distance from the center.

Figure 3 shows a schematic description of the 
re-sizing of bins. In this example, the area of the 
inner bin is decreased and the area of the outer 
bins is increased, such that the area of the bins 
correlates with the number of data points in the 
bin. The data points (marked in red) will keep 
their relative position in the bin constant.

Next we determine the best center for the distor-
tion. The first obvious possibility is to place it in 
the geographic middle of the map (screen center). 
However, this approach has several weaknesses. First, 
the distances of high- and low-density areas have a 
random distance from this center. Second, areas with 
high and low density are distorted in accordance with 
their relative position, rather then in accordance with 
their size. Third, some constellations, such as sparse 
and dense areas in the same bin, are not affected in 
this case.

In order to overcome these weaknesses, we define a 
technique that is applicable for different data constel-
lations and is independent of the relative location of 
high- and low-density regions in the data distribution. 
The technique takes multiple centers into account for 
the distortion. The number and location of the centers 
are determined by local maxima in the distribution of 
the data. We compute the local maxima by applying 
a high-density grid to compute the density of data 
points for every grid cell. As a result, a number of 
centers is obtained which represent the high-density 
locations in the data. The number of centers can 
be determined by applying different resolutions of 
density grids in the calculation. The optimal number 
of centers depends on the properties of the data and 
the users’ preferences. In the evaluation section, a 
computational method for determining the optimal 
number of centers is proposed.

For multiple centers, the final distorted location 
of a data point is calculated as follows: The input 
for the RadialScale are all data points P = {p1, p2, p3, 
...}, the centers C = {c1, c2, c3, ...} , and the number 
of circular bins (w). With di,j as the distances between 
point pi  and the center cj, the area of one bin for 
center cj is: 

( )2
,/ max

i
j i jp P

a w dπ
∈

= ⋅   (1)

Figure 3. RadialScale technique defines the degree of distortion based on the 
relative density of data points in circular bins around a center. Data points will be 
distorted together with their surrounding bins by keeping their relative position 
within the bin.
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and the radius of bin k  as:

The radius of bin k  after the scaling is:

bij denotes the bin of point pi  for the center cj and 
is calculated as:

The scaled location ,i jp′  of point ip  for center 
jc  is constructed by changing the distance of 
,i jp′  to ,i jd ′  while keeping the angle fixed. If the 

original bin width is

and the new bin width is

, 

the distance ,i jd ′  between the point ,i jp′  and the 
center jc  is:

where ,1 / i jde  is an exponentially decreasing 
weight depending on the original distance 
between the point from the center. In other 
words, centers have a larger effect on the 
distortion of the data points that are relatively 
closer and a smaller effect on data points that 
are relatively far. The final location of point ip  
is ip′  and it is calculated as the average of ,i jp′  
for all centers in C :

This distortion does not preserve the original 
coordinate range. If the preservation of the coor-
dinate range is crucial, the coordinates of the dis-
torted data points have to be adjusted.

AngularScale Technique
The angular technique defines the degree of dis-
tortion based on the density of data points in the 
angular segments around a center. For this pur-
pose we define angular segments (bins) around 
a center as having the same angle and therefore 
the same area-size. Each bin is resized according 
to the relative number of data points in the bin, 
by changing the angle of the segment. The rela-
tive position of the data points in the bins is kept 
constant, as with the previous technique.

Figure 4 shows the schematic process of resizing 
angular bins. The first two bins (clockwise) were 
decreased and the last two segments were increased. 
As a result, the area of the bins corresponds to 
the relative number of data points in the bins. For 
example, if a bin contains 25 percent of the data 
points, then 25 percent of the screen area will be 
assigned to it. The locations of the data points 
change according to changes of the bin areas, but 
the relative location data points within the bins 
remains unchanged. 

The AngularScale technique creates the highest 
degree of distortion when the data points are far away 
from the centers. Using local maxima for defining 
centers—as was done with the RadialScale technique—
would result in an undesired effect. Namely, high 
density areas will be scaled slightly and low density 
areas will be scaled intensively. To avoid such an effect, 
we use the local minima as centers of the distortion. 
The calculation of the local minima employs a high 
density grid to determine the grid cells with lowest 
point density. This helps identify a set of centers rep-
resenting the low-density locations in the data. The 
number of centers can be determined by applying 
different resolutions of density 

The AngularScale distortion is calculated as 
follows: The input is the point set P, the cen-
ters C, and the number of bins w. [ ), 0, 2i jϕ π∈  
denotes the angle of point pi for center ci. 

)(' k
jα  

is the scaled angle of bin k, and ,i jb  is the bin 
number of point pi for center cj. 

)(' k
jα  is calculated 

analogously to ( )k
jr′  in the RadialScale technique. 

The computation of ,i jb  is: 

The angular scaled point ,i jp′  of point ip  for 
center cj is constructed by changing only the 
angle of pi to ,i jϕ′  and keeping the old distance 
between pi and cj.. With the new angular bin-width 
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k
j ααα , the new angle ,i jϕ′  of point 

pi for center cj is:

  In contrast to RadialScale, the ,i jϕ′  values are 
not weighted with the distance to the centre 

jc . The final angular distorted location ip′  
of point ip  is calculated by adding the point’s 
changes calculated for each center in C  to the 
original point ip :

This distortion does not preserve the bounding 
box of the data points. In order to get the result in 
the same coordinate range, the coordinate system 
must be scaled after the distortion.

Results
We now provide an overview of the distortion 
results created by the proposed algorithms. An 
additional grid-layer is rendered on top of the 
images, in order to show the level and distrac-
tion of the distortions. The distorted grid is 
generated by applying the same distortion to 
the grid points that was applied to the data 
points. The grid helps the viewer to understand 
the degree and direction of the distortion. The 
original image for the discussed distortion is 
generated from U.S. census data (see Figure 5, 
left upper image).

We examine the results for RadialScale and 
AngularScale, as well as different combinations 
of RadialScale and AngularScale. The combina-
tions are generated by applying one algorithm to 

the output of the other. The resulting distortion 
depends on both the distances and the angles 
between the data points and is thus expected to 
create a better distortion than one technique on 
its own. A short movie showing the transmission 
from the original map into a combined distortion 
is available at: http://www.informatik.uni-konstanz.
de/fileadmin/dataMining/Europe2.wmv.

RadialScale Technique
The RadialScale technique creates a distortion 
based on multiple centers (local maxima) and 
distributes the data points according to the den-
sity in circular segments. The question of what 
constitutes an optimal number of centers is an 
interesting question, and it is discussed in the 
evaluation section. Here we present the results 
for 5 and 50 centers. 

Our first example uses five different centers for 
calculating the distortion. The resulting image is 
in the first-row, second-column image of Figure 
5. As a result of the distortion, the high point 
density areas are enlarged, while those with lower 
point density have shrunk. Especially, the eastern 
part of the USA, which has a very high number 
of data points, is stretched horizontally to about 
three quarters of the image. The first-row, third-
column image of Figure 5 applies the same tech-
nique to the original data set but uses 50 centers. 
The high-density areas in the east are, just like 
in the previous image, enlarged on the vertical 
axis and the overlaid grid is more homogeneously 
distorted than before.

These results confirm that the distortion is heavily 
dependent on the number of centers used, and 
so it becomes imperative that we determine the 
optimal number of centers for the RadialScale 
technique, based on the distribution of the data 
points. A shortcoming of the technique is that 
special constellations of input data are not dis-
torted at all. For instance, a radial segment that 
contains high point density area on the one side 

Figure 4. AngularScale tech-
nique defines the degree of dis-
tortion based on the density of 
data points in the angular bins. 
Data points will be distorted 
together with their bins by 
keeping their relative position 
within the bin unchanged.
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and a low-density area on the other would not be 
changed by this technique.

AngularScale Technique
The AngularScale technique creates a density-
based distortion of data points based on angu-
lar segments around local minima of the point 
distribution. Segments with a high point density 
will be enlarged, at the expense of segments with 
a lower point density. As with the RadialScale 
techniques, multiple centers can be used for 
the distortion. In the following, we present the 
results for 4 and 14 centers. 
   The second-row, first-column image of Figure 
5 shows the result for four centers. The distor-
tion enlarges the high point density areas and 
shrinks the low-density areas, especially in the 
south west. The third-row, first-column image of 
Figure 5 also shows an AngularScaling distortion, 
but in this case, 14 centers are used. Here, the 
eastern part of the USA gets much more space 
than before, and the parts in the north west and 

the south west are heavily shrunk. The technique 
is able to enlarge the high-density spot in the 
west around Los Angeles, and the created image 
shows much more details than with the previous 
settings.

These results show that the AngularScale tech-
nique is also sensitive to the number of used cen-
ters. The optimal number of centers is dependent 
on the point distribution of the data set. As for 
the RadialScale technique, the AngularScale tech-
nique has problems with special constellations of 
data points. For instance, segments with the same 
number of data points will get the same space, 
regardless of the distance of these data points to 
the center.

Combination of the Radial- and 
AngularScale Techniques
When combining the Radial- with AngularScale 
technique, the order and the parameters for the 
algorithm affect the resulting distortion. Due to 
the large number of configuration possibilities, 

Figure 5. Results of the techniques presented schematically using the U.S.A dataset where the median household income 
is represented by color. The original map (top left corner) is distorted by RadialScaling (top row), by AngularScaling (left 
column) and by their combination (right bottom quadrant). An artificial grid is distorted together with the dataset, in 
order to show the location, direction and degree of the distortion.
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only four different combinations 
of the previously presented results 
for Radial- and AngularScale are 
presented.

We started with the RadialScaling 
technique and applied AngularScaling 
afterwards. The results of combining 
Radial- and AngularScale are shown 
in Figure 5’s lower quadrant. The 
images on the left use RadialScale 
with five centers, and the images on 
the right use RadialScale with fifty 
centers. The images on the top row 
use AngularScale with four centers 
and the images in the bottom row use 
14 centers. The combination of the 
two techniques has clear advantages, 
especially when multiple centers are 
used. For instance, the area around 
Los Angeles is larger in the bottom 
row than in the top row.

Application
A major application concern is the question 
what information can be extracted from the 
distorted maps and not from the original maps. 
Three large datasets are used to demonstrate 
the advantages. The England dataset was pro-
vided by the U.K. Office of National Statistics, 
2009) and contains census region statistics for 
wards and urban regions in 2001. The dataset 
includes 175.000 data points for England and 
Wales only. There is no statistical value mapped 
to the data points’ color in this representation, 
but any kind of census information could be 
applied for this purpose. A combined distortion 
based on RadialScale and AngularScale is shown 
in Figure 6. The distortion resulted in a larger 
area for regions where the population was dense 
and smaller for regions with sparse popula-
tion. For instance, the greater region of London 
occupies, as expected, a large region after the 
distortion. The sparse area in the Birmingham, 
Leeds, and Manchester triangle is enlarged, due 
to the fact that these large cities build a close 
surrounding—which shows some weakness in 
the techniques used.

The Europe dataset was extracted from the 
World of Wikipedia (WikiProject, 2009) and 
represents “Wiki points” of five languages with 
a total of 285.000 data points. The languages 
shown are French, English, German, Portuguese 
and Spanish (from left to right on the five-level 

qualitative color map from ColorBrewer [Brewer, 
2002]). A Wiki point may be linked to certain topics 
(such as cities, villages, sites and other points of 
interests) that are geo-tagged on the Wiki site. 
Thus, a point linked, for example, to the Eiffel 
Tower, will appear as a visible pixel in Paris at 
the approximate location of the Eiffel Tower. In 
order to avoid plotting different languages at the 
same geographic location—which would result in 
a high degree of overplotting—we added random 
noise to the geographic coordinates. As a result, 
all languages that appear at certain Wiki-points 
are visible. 

The result of a combined distortion based on 
Radial- and AngularScale is shown in Figure 7. 
The original map shows a clear dominance of 
languages in most countries. The distorted map 
is able to reveal a diversification of languages in 
several regions. Whereas the regions of the Czech 
Republic and Switzerland are seemingly German 
dominated, the distorted map shows that French 
and English are equally present in these regions. 
France, expected to be French dominated, is shown 
in the distortion as a heterogeneous region where 
Spanish, English, and also German have their 
regions of dominance.

The USA census dataset provides data on average 
household income in 1999 and has about 333.500 
data points (U.S. Department of Commerce, 2009). 
The income is mapped to color using an 11 class 
diverging color scale from ColorBrewer (Brewer, 

Figure 6. Distortion results for the England dataset showing the census 
regions. The distortion resulted in a larger space for high density regions 
and in smaller space for sparse regions. The border lines are natural territory 
borders.
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2002): the mapped values range from red (low 
income) to blue (high income). Manhattan in New 
York City is enlarged (lower right corner) to show 
a better view on its population diversity of high 
to low income, and to overcome limitations of 
the paper printout. 

The result of a combined distortion based on 
Radial and AngularScale is shown in Figure 8. 
The distortion shows constellations of cities and 
rural regions in a comparable size and highlights 
the cities’ heterogeneous nature. The distortion 
enables the viewer to observe the homogeneity of 
rural regions as opposed to heterogeneous urban 
regions, which were over-plotted in the original 
data representation. Within the urban regions 
there is a clear tendency of higher incomes in the 
peripheries and lower incomes in the city centers. 
New York City is partly exceptional in this respect. 
The east coast of the country with its the high 
population density is occupying a relatively large 
region in comparison to the rest of the country. 
The central west regions have been shrunk to 

reflect their sparse population. Still, the west coast 
remains relatively large, because of its large cities 
(San Francisco and Los Angeles).

These results show that the proposed distor-
tions are able to reveal more information than 
the original maps. Highly dense regions with 
heterogeneous data become visually perceivable 
and attention is drawn to regions of interest. This 
effect is created by the data rather than through 
unwanted properties of the geographic regions. 
An evaluation to test the efficiency of the created 
distortions to use the available screen space is 
conducted in the next chapter.

Evaluation
Many metrics are conceivable to assess the qual-
ity of distortions by quantitative measures, such 
as topology, inter-point distance and direction 
of distortions. Our techniques are fully neigh-
borhood preserving and therefore it is not nec-

Figure 7. Distortion results for Europe dataset representing Wiki-Points of five selected languages. The languages shown 
are French, English, German, Portuguese and Spanish (from left to right on the qualitative color map from ColorBrewer 
[Brewer, 2002]). The dominance of one (or more) of these languages and diversification at certain areas is illustrated by 
providing sufficiently large space for highly dense areas.
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essary to assess this property, as it might have 
been necessary for placement-based techniques. 
Consequently, we focused on evaluating the 
effectiveness with which the proposed tech-
niques utilize a given screen space.

The datasets used for evaluation were introduced 
in the Application section. The cartogram distor-
tions for the comparisons were implemented as 
described in Gastner and Newman (2004) using 
state boundaries for the Europe and USA datas-
ets, and natural territory borders for the England 
dataset. The homogeneity measure was computed 
as follows: 
•	 The screen space for displaying the maps 

was fixed to 14,400 pixels on the x-axis and 
7200 pixels for the y-axis; 

•	 The number of data points at every screen 
coordinate was counted resulting in a 
distribution of frequencies of data points. 
This computation was conducted for each 
of the axis separately;

•	 The variance of the resulting distributions 
was computed; and 

•	 The homogeneity measure was calculated 
as the product of the two variances (x and 
y-variance):

where N is the number of x screen-coordinates 
(14400p) and M is the number of y screen-coor-
dinates (7200p). 
   The homogeneity measure was designed in 
such a way as to provide lower values for more 
effective distortions and higher values for less 
effective distortions. First, a comparison of 
the RadialScale and AngularScale techniques 
with consecutive numbers of centers was con-
ducted. Similarly, the best performing com-
bination of techniques was selected by using 
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Figure 8. Distortion results for the USA dataset showing the average household income for 1999. This statistical value is 
mapped to color using a color map from ColorBrewer (Brewer 2002) ranging from red (low income) to blue (high income). 
The distortion shows constellations of cities and rural areas in a comparable size and highlights the cities’ heterogeneous 
nature. New York / Manhattan city is enlarged (lower right corner) to show its distortions better. 
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consecutive numbers of centers for Radial- and 
AngularScaling in changing the order of com-
bining them. The best results of these com-
parisons were then compared with the original 
dataset, with cartogram distortion, and with the 
HistoScale technique.

Figure 9 shows the homogeneity measure for the 
AngularScale technique using eight different levels 
of numbers of centers (from few centers (level 1) 
to many centers (level 8)). The overall trend shows 
that more centers are beneficial for the effectiveness 

of distortions. The USA dataset is 
most affected by the technique and 
shows a clear local optimum (level 
5). This is due to the two major 
centers in the data (East and West 
coast), and where AngularScaling 
is beneficial by making them larger. 
The homogeneity of the England 
dataset is only marginally affected 
by our distortion technique. This 
was expected since the dataset has 
only one major center (London). 
The Europe dataset demonstrates 
the benefit of using a high number 
of center-points. However, because 
Europe has many small centers, 
AngularScale creates an impact 
only after a large number of center-
points is used.

Figure 10 shows the homogeneity 
measure applied to the RadialScale 
technique utilizing eight different 
levels of numbers of centers (from 
few centers (level 1) to many cen-
ters (level 8)). A higher number 
of centers is beneficial for the 
homogeneity of the distortion 
until a certain level is reached 
at  which the homogeneity stays 
more or less constant. The results 
show the largest impact for the 
USA dataset where, again, this 
impact is due to the two major 
centers of the dataset (East and 
West coast). The Europe dataset 
also benefits from the technique, in 
that the homogeneity of the data 
is improved at the medium level 
and remains constant for a larger 
number of centers. The England 
dataset shows no effect for the dif-
ferent numbers of centers. This 
might be due to one major center 
in the data (e.g. London) which 
is distorted at the very beginning 

and does not benefit from more centers.
The final evaluation compares all the techniques 

for all the datasets, as shown in Figure 11. The 
bars on the chart show the average homogeneity 
measure, and the error bars show the standard 
deviation for the three datasets. The original data-
set has the worst homogeneity measure resulting 
from very high variances in the distribution of data 
points. This original constellation is improved by 
all distortion techniques. The best performer is 

Figure 9. AngularScale technique with a different number of centers ranging 
from few (level 1) to many (level 8). Varying the number of centers has the 
largest impact on the USA dataset, an intermediate effect on the Europe 
dataset, and a marginal effect on the England dataset. This is due to the 
differences in the location and number of centers.

Figure 10. RadialScale technique with eight different numbers of centers 
ranging from few (1) to many (8). Varying the number of centers has the largest 
impact on the USA dataset, an intermediate effect on the Europe dataset, and 
a marginal effect on the England dataset. This is due to the differences in the 
location and number of local centers.
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the combination of the 
Radial- and AngularScale 
techniques, which has the 
lowest homogeneity mea-
sure and outperforms 
the single variants of 
the techniques. These 
results indicate that the 
combination of different 
techniques is beneficial 
and allows users to create 
effective screen filling dis-
tortions. Currently, these 
results are only statistical 
and do not include the 
users’ individual pref-
erences and abilities to 
create effective distor-
tions of a given dataset. 
In addition, the creation 
of such distortions also 
benefits from familiarity 
and shape preservation, 
which is beyond the scope of the current research. 
Conclusions and suggestions for further research, 
including additional metrics and user involvement 
are given in the following section.

Conclusions and 
   Future Work

In this paper, we introduce two novel approaches 
for density-equalizing, pixel-based geographic 
maps. The two approaches are based on defin-
ing different types of segments (Radial and 
Angular) for the distortion. The segments are re-
scaled according to the relative density of data 
points within the segments. The major, innova-
tive contribution of the proposed techniques is 
the definition of multiple center-points around 
which the distortions are carried out. These mul-
tiple center-points consider the local geographic 
properties of the dataset, such as local minima or 
maxima, and apply the techniques in a step-wise 
manner, so that an optimal number of center 
points can be found. As a result, optimal dis-
tortions of the original dataset can be achieved 
as supported by the statistical evaluation of the 
results and their comparison with related tech-
niques. Overall, the new methods—especially 
the combination of the two techniques—create 
a more homogeneous distribution of data 
points through a more effective use of screen 
space. Applications show advantages and disad-

vantages of the introduced methods using real-
world datasets and tasks.

The quality of the results mainly depends on 
properties of the data and the task for which the 
distortion is created. Properties of the data are 
expressed by their distribution in space, the size 
of the dataset (as number of data points), and also 
type of data used for distortion, such as polygons 
or points. The task for which the distortion is 
made also plays a crucial role in the design of new 
distortion techniques and evaluation of existing 
distortion techniques. Such tasks can involve high-
lighting, comparison, and analysis of distributions 
and regions, and also navigation and orientation 
aids. Finally, the types of evaluation methods have 
an impact on the fitness of a distortion technique 
to a certain task.

The current approach uses statistical methods 
to measure the use of screen space, but further 
evaluation approaches should also be considered. 
Measures such as topology and inter-point distance 
would also be of great interest and should be apply 
for specific tasks and datasets. The involvement 
of users in the evaluation and assessment of the 
proposed techniques is also more likely to provide 
insights. Long-term familiarity with the created 
distortions and ease of creating appropriate distor-
tions by combining different techniques should be 
considered in further research. Empirical evalu-
ation may be necessary so that these aspects can 
be assessed, and the user can be provided with 
adequate tools and feedback when distorting car-
tographic maps.

Figure 11. Comparison of techniques for three large datasets (USA, Europe, and England). 
Homogeneity is computed as the average of the three datasets (error bars show standard 
deviation). Radial- and AngularScaling performs better than the HistoScale and Cartogram 
techniques, but all techniques were outperformed by the combination of Radial- and 
AngulaScaling. The results indicate that the combination of the techniques is beneficial,  
allowING users to create density-equalizing distortions that use screen space effectively.
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Further research is suggested to consider two major 
improvements of the proposed approaches. First, 
a hierarchical selection of the optimal number of 
centers should be implemented. For this purpose, 
an interactive tool that allows the selection and 
de-selection of center points should be added to 
the current approach. This method would enhance 
the current way of creating distortions. Second, 
the combination of the described techniques may 
yield even better results, if these techniques are 
not only combined one after the other but in an 
interleaving manner. Since the techniques compute 
the final location of data points by a vector-sum 
of interim distortions of each of the centers, the 
interleaving technique could compute the final 
location by combining the interim results of several 
techniques one-by-one. The current approach has 
looked at combinations of Radial- and AngularScaling, 
but other techniques could also be included in the 
combinations. Appropriate system design to support 
users to create meaningful combinations of techniques 
that would yield in understandable and communi-
cable results still remains a challenge. In addition, 
working with distorted maps needs training. Gaining 
familiarity with the maps requires time, and intuition 
for distances and directions is put to a test.

ACKNOWLEDGEMENTS
This work has been funded by the German 
Research Society (DFG) under grant GK-1042, 

“Explorative Analysis and Visualization of Large 
Information Spaces” and by Priority Programme 
(SPP) 1335 “Visual Spatiotemporal Pattern Analysis 
of Movement and Event Data.” The authors wish to 
thank Halldór Janetzko for implementing the soft-
ware framework for the proposed techniques and 
Miklos Bak for inspiring ideas and discussions.

References
Brewer, C.A. 2002. Colorbrewer. [http://www.

colorbrewer.org], access date: 1.1.2009.
Dorling, D. 1996. Area cartograms: Their use and 

creation. In: Concepts and Techniques in Modern 
Geography, vol. 59. University of East Anglia: 
Environmental Publications, Norwich.

Dorling, D., A. Barford, and M. Newman. 2006. 
Worldmapper: The world as you’ve never seen 
it before. IEEE Transactions on Visualization and 
Computer Graphics 12(5): 757-64.

Dougenik, J.A., N.R. Chrisman, and D.R. Niemeyer. 
1985. An algorithm to construct continuous area 
cartograms*. The Professional Geographer 37(1): 75-81.

Edelsbrunner, H., and R. Waupotitsch. 1997. A 
combinatorial approach to cartograms. Computational 
Geometry: Theory and Applications. 7(5-6): 343-60.



250                                                                                                       Cartography and Geographic Information Science

Vankreveld, M., and B. Speckmann. 2007. On 
rectangular cartograms. Computational Geometry 
37(3): 175-87.

Weber, G., P.-T. Bremer, and V. Pascucci. 2007. 
Topological landscapes: A terrain metaphor for 
scientific data. IEEE Transactions on Visualization and 
Computer Graphics 13(6): 1416-23.

WikiProject. 2009. Wikipedia-world. [http://de.wikipedia.
org/wiki/] access date: 10.07.2009.

Wood, J. 2004. A new method for the identification of 
peaks and summits in surface models. In: Proceedings 
of the 3rd International Conference on GIScience. pp. 
1416-23.


