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Introduction

m Application Example: Marketing

— Given:

« Large data base of customer data containing
their properties and past buying records
— Goal:

 Find groups of customers with similar behavior
* FInd customers with unusual behavior




Introduction

m Application Example:
Class Finding in CAD-Databases
— Given:

« Large data base of CAD data containing abstract
feature vectors (Fourier, Wavelet, ...)

— Goal:
* Find homogeneous groups of similar CAD parts
« Determine standard parts for each group

« Use standard parts instead of special parts
(— reduction of the number of parts to be produced)




Introduction

Problem Description

m Gilven:
A data set with N d-dimensional data items.

m Task:

Determine a natural partitioning of the
data set into a number of clusters (k) and
noise.

N




Introduction

From the Past ...

m Clustering is a well-known problem in
statistics [Sch 64, Wis 69]

m more recent research In

— machine learning [Roj 96],
— databases [CHY 96], and
— visualization [Kei 96] ...

N




Introduction

... to the Future

m Effective and efficient clustering algorithms for
large high-dimensional data sets with high
noise level

m Requires Scalability with respect to

— the number of data points (N)
— the number of dimensions (d)
— the noise level




Overview

1. Introduction

2. Basic Methods From the Past ...
2.1 k-Means
2.2 Linkage-based Methods
2.3 Kernel-Density Estimation Methods
3. Methods Improving the
Effectiveness and Efficiency
2.1 Model- and Optimization-based Approaches

... to the Future

2.2 Density-based Approaches

2.3 Hybrid Approaches
l 4. Summary and Conclusions



K-Means [ruk 90y

m Determine k prototypes (p) of a given data set

m Assign data points to nearest prototype
= Minimize distance criterion:

>3 d(p, 6}

m [terative Algorithm

— Shift the prototypes towards the mean of their
point set

— Re-assign the data points to the nearest prototype




! K-Means: Example
o



m Genera
(= proba

Expectation Maximization [Lau 95]

ization of k-Means
pilistic assignment of points to clusters)

m Baisc Ic

param

ea.

— Estimate parameters of k Gaussians
— Optimize the probability, that the mixture of

eterized Gaussians fits the data

— Iterative algorithm similar to k-Means



Linkage -based Methods

(from Statistics) [Boc 74]

n Slngle Linkage (Connected components for distance d)
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Data Set Influence Function Density Function

Influence Function: Influence of a data point in its

Y neighborhood

Density Function:  Sum of the influences of all data
points




Kernel Density Estimation

Influence Function

The influence of a data point y at a point x in the data
space Is modeled by a function fo F¢ SR,

d(x,y)?

2 =
e'g" Gauss(x) € 2o . _A\;\_

Yy X

Density Function
The density at a point x in the data space is defined as
the sum of influences of all data points x;, I.e.

l fBD (X) = Z fBXi (X)







m Average Linkage / Centroid Method

(see also BIRCH) 1
Diversive: top-down 2 :l

- Find the most inhomogenius
cluster and split

Agglomerative: bottom-up

- Find the nearest pair of
clusters and merge

o f O L) N
L= =L

Hierarchical Methods
m Single Linkage
m Complete Linkage

N

Distance



Single Linkage

m Distance between clusters (nodes):
Dist(C,,C,) = min {dist(p,q)}

peC,,qeC,
m Merge Step: union the two subset of
data points

m A single linkage hierarchy can be
constructed using the minimal spanning
tree







Complete Linkage

m Distance between clusters (nodes):
Dist(C,,C,) = max_{dist(p,q)}

peC,,qeC,
m Merge Step: union the two subset of
data points

m Each cluster in a complete linkage
hierarchy corresponds a complete
subgraph







Average Linkage /
Centroid Method

m Distance between clusters (nodes):

Dist,,, (C,,C,) = #C. )#(c ) 2. 2 dist(p,0)

Dist_.. (C,,C,) =distfmean(C,), mean(C,)]
m Merge Step:

— union the two subset of data points
— construct the mean point of the two clusters




Scalability Problems

m Effectiveness degenerates

— with dimensionality (d)

— with noise level

m Efficiency degenerates

— (at least) linearly with no of data points (N) and

— exponentially with dimensionality (d)

N



Scaling Up Cluster Algorithms

m Sampling Technigues [EKX 95]

m Bounded Optimization Technigues [NH 94]

m Indexing Techniques [BK 98]

m Condensation Technigues [ZRL 96]

m Grid-based Techniques [SCZ 98, HK 98]




— DBSCAN: R*-Tree [Gut 84]
X-Tree [BKK 96]

— STING: Grid / Quadtree [(wywm 97]
— WaveCluster: Grid / Array [scz 98]
— DENCLUE: B*-Tree, Grid / Array [HK 98]

Indexing [BK 98]
m Cluster algorithms and their index
structures
— BIRCH: CF-Tree [zRL 96]
N



Methods for Improving the
Effectiveness and Efficiency

m Model- and Optimization-Based
Approaches

m Density-Based Approaches

m Hybrid Approaches




Model- and Optimization-
based Methods

m K-Means [Fuk 90]

m Expectation Maximization [Lau 95]

m CLARANS [NH 94]

m Foccused CLARANS [EKX 95]

m Self-Organizing Maps [KMS+ 91, Roj 96]

m Growing Networks [Fri 95]
m PROCLUS [APW+ 99]




CLARANS [nH o]

m Medoid Method:

— Medolds are special
data points

— All data points are
assigned to the

)
t medoid %

m Optimization Criterion:

average_distance(c) = Z Z dist(o, m;)

meM oecluster(m;)




m Impact of the Parameters:

— num_local — Number of iterations

— max_neighbors — Number of tested
neighbors per iteration

Bounded Optimization nH e
m CLARANS uses two bounds to restrict
the optimization: num_local, max_neighbor
R



neighboring node in the search graph

m Complexity Considerations:

— The search graph has {’:] nodes and each node
has N*k edges

— The search is bound by a fixed number of jumps (num_local)
In the search graph

— Each jump is optimized by randomized search and costs
max_neighbor scans over the data (to evaluate the cost
function)

CLARANS
m Graph Interpretation:
— Search process can be symbolized by a graph
— Each node corresponds to a specific set of medoids
— The change of one medoid corresponds to a jump to a
i



Sampling [ekx 95]

m R*-Tree Sampling

m Comparison of Effectiveness versus
Efficiency (example CLARANS)
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Al Methods

m Growing Networks [Fri 95]
— |terative insertion of nodes

— Adaptive map ;: %

topology




Density-based Methods

Linkage -based
Methods [Boc 74]

Kernel-Density
Estimation [Sil 86]

BIRCH [ZRL 96]
DBSCAN [EKS+ 96]
DBCLASD [XEK+ 98]

m STING [WYM 97]

m Hierarchical Grid
Clustering [Sch 96]

m WaveCluster [SCZ 98]
= DENCLUE [HK 98]
m OPTICS [ABKS 99]



BIRCH [zrL 96

Data J{ e |

[ Phasel: Load into memory by building a CF tree ]

Initial CF tree J, /\
| —— |

C I USterI ng Phase 2 (optional): Condense into desirable range
P by buildi ller CF t .
. y building a smaller ree
In BIRCH
smaller CF tree ¢ A
I
I Phase 3: Global Clustering ]
Good Clusters ¢ =

l Phase 4: (optional and off line) : Cluster Refining ]

Better Clusters ¢ ===




BIRCH

Basic Idea of the CF-Tree

m Condensation of the data{)a;} using
CF-Vect(CF = (N, LS, SS)

m CF-tree uses sum of CF-vectors to
build higher levels of the CF-tree




otherwise split b

(3) Modify the path for b

(4) If tree Is to large, condense the tree
by merging the closest leaves

BIRCH
Insertion algorithm for a point Xx:
(1) Find the closest leaf b
(2) If x fits In b, Insert X in b;
T



BIRCH
\L

[ Start CF tree t1 of Initial T J

[ Continue scanning data and insert to t1 ]

Out of memory Finish scanning data

Result?

CF-Tree
Construction T e 12 of v T fom CF e 1.

if a leaf entry of t1 is potential outlier and disk space available,
write to disk; otherwise use it to rebuild t2.
(3) t1<-t2

otherwise Out of disk space

—

[ Re-absorb potential outliers into t1

4

[ Re-absorb potential outliers into t1 ]

V




— Phase 3-4 applies a separate cluster
algorithm to the leafs of the CF-tree

m Condensing data is crucial for efficiency
T I~

— D

— .

Data CF-Tree condensed CF-Tree Cluster

Condensing Data
m BIRCH [zRL 96]:
— Phase 1-2 produces a condensed
representation of the data (CF-tree)
i



Problems of BIRCH

m Centroid Method with fixed
order of the points




DBSCAN (eks+ 9]

m Clusters are defined as
DenS|ty -Connected Sets wrt. Minpts, €)

P {h) p directly density—
. " . Q + reachablefromg

n: horder point = . . 9 o = . * .
8 ]
q: core point . * * . ’
| = L L ] ' '
. - . . [ hot directly density-

. .- reachable fromp

p density— -

reachable from g o P and q density-
connected to

q not density— each otherby o

reachable fromp  »




DBSCAN

m For each point, DBSCAN determines the
g-environment and checks, whether it contains
more than MinPts data points

m DBSCAN uses index structures for determining
the g-environment

m Arbitrary shape clusters found by DBSCAN

-
- t.




DBCLASD [xex+ 9]

m Distribution-based method

m Assumes arbitrary-shape
clusters of uniform distribution

m Requires no parameters

m Provides grid-based
approximation of clusters

Before the & Afterthe

insertion A4 insertion

- i . I +—t o
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DBCLASD

m Definition of a cluster C based on the
distribution of the NN-distance (NNDistSet):

(1) 2.0 a
= 1.53 \ ‘\ f: frequency
= § ==  cxpected distance _
(2) % 1.0] - o} d1s%:;)r1b ution O1ng
~ 7 ‘ 0 se d distance )
S 0.5 1str ution
] f th
(3) 0 II I A O B B |NNdISt t ©
0 0.5 1.0 1.5 3ct1ng

The expected and the observed distance
distributions for cluster 1




DBCLASD

m Step (1) uses the concept of the y*-test

- < 15 h f: frequency
¢ cluster 1 o ] \ | == expected distance
£ 10 distribution
~ ] / L‘ : (élase ed.distance
B 0.5 1stribution
0 MLl 1 NNdist

. ) . 0\ T 1T OI\SI T 1‘\0\ T 1.5
o . cluster 2 The expected and the observed distance
- distributions for cluster 1

m Incremental augmentation of clusters by
neighboring points (order-depended)

— unsuccessful candidates are tried again later

— points already assigned to some cluster may
switch to another cluster




DBSCAN / DBCLASD

m DBSCAN and DBCLASD use index

structures to speed-up the e-environment
or nearest-neighbor search

m the index structures used are mainly the
R-tree and variants




level 2

data

pages |;

i g s p.d i
% K :

exact representation

R-Tree: [Gut84] R
The Concept of Overlapping Regions
directory
level 1
' directory '
o



Variants of the R-Tree

Low-dimensional

m R™-Tree [SRF 87]

m R*-Tree [BKSS 90]

m Hilbert R-Tree [KF94]

High-dimensional

m TV-Tree [LIF 94]
m X-Tree [BKK 96]
m SS-Tree [WJ 96]
m SR-Tree [KS 97]




Effects of High Dimensionality

|_ocation and Shape of Data Pages

of the data space on most sides

2D

g

square
middle of space

16D

square
border

32D

m Data pages have large extensions
m Most data pages touch the surface

rectangle
border




The X-Tree [BKK 96]

(eXtended-Node Tree)

m Motivation:
Performance of the R-Tree degenerates In
nigh dimensions

Reason: overlap in the directory




The X-Tree

d  X-tree avoids overlap in the directory by using
* an overlap-free split
* the concept of supernodes

root ' T R

Normal Directory Nodes () Data Nodes




Speed-Up of X-Tree over
the R*-Tree
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Effects of High Dimensionality

Selectivity of Range Queries

1

m The selectivity depends on the volume of the query

0.9

0.8 _—

€ .- —_—

_ s /
e = éi/Volcube 0 /

0.3 /
0.2

0.1
o 14

selectivity = 0.1 %
= no fixed g-environment (as in DBSCAN)

60



Effects of High Dimensionality

Selectivity of Range Queries

= In high-dimensional data spaces, there exists a
region in the data space which is affected by ANY
range guery (assuming uniformly distributed data)

= difficult to build an efficient index structure
= no efficient support of range queries (as in DBSCAN)



STING pwymoer

m Uses a quadtree-like structure for
condensing the data into grid cells

The nodes of the quadtree /
contain statistical |

information about the data | " - =
in the corresponding cells  L=— -~ — L~ ’
STING determines clusters § :
as the density-connected : : §
components of the grid —— §
STING approximates the /

clusters found by DBSCAN -




Hierarchical Grid Clustering [Sc

N 96]

51T"1 T )

Organize the data space as a

grid-file

Sort the blocks by their density

Ps
DB = - — <B1|, le, sas Bbv>

Vi

Scan the blocks iteratively and
merge blocks, which are adjacent
over a (d-1)-dim. hyperplane.

The order of the merges forms
a hierarchy




WaveCluster scz 9s;

m Clustering from a signal processing perspective
using wavelets

Input: Multidimensional data objects’ feature vectors
Output: clustered objects

L.

o

Quantize feature space, then assign objects to
the units.

. Apply wavelet transform on the feature space.
. Find the connected components (clusters) in the

subbands of transformed feature space,
at different levels.

. Assign label to the units.
. Make the lookup table.
. Map the objects to the clusters.



WaveCluster

m Grid Approach

— Partition the data space by a grid — reduce the
number of data objects by making a small error

— Apply the wavelet-transformation to the reduced
feature space

— Find the connected components as clusters

m Compression of the grid is crucial for the
efficiency

m Does not work in high dimensional space!




WaveCluster

m Signal transformation using wavelets




Hierarchical Variant of
WaveCluster scz ss;

m WaveCluster can be used to perform
multiresolution clustering

m Using coarser grids, cluster start to merge

.‘I:'. i'. ’ll".
’1:'::.; .i i'.}




DENCLUE
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Danaity

M
/\

Data Set Influence Function Density Function

Influence Function: Influence of a data point in its
neighborhood

Density Function: Sum of the influences of all data
points




DENCLUE

Definitions of Clusters

Densit_y

Density Attractor/Density-Attracted Points (%

- local maximum of the density function

- density-attracted points are determined by a
gradient-based hill-climbing method




Density

JYe e

IS density-attracted by x*.

Multi-Center-Defined
Cluster

A multi-center-defined cluster
consists of a set of center-defined
clusters which are linked by a path
with significance &.

~ Density

DENCLUE
Center-Defined Cluster
A center-defined cluster with -
density-attractor x* ( f.> (x*) > &) is
the subset of the database which £7 |
N



DENCLUE
Impact of different Significance Levels (£)
__




attractors Is constant for a long interval of c!

#clusters

DENCLUE
Choice of the Smoothness Level (G)
Choose o such that number of density

]

l O min cSopt (o) O max



Buildi
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DENCLUE

Noise Invariance

Assumption: Noise is uniformly distributed in the data space

Lemma:

The density-attractors do not change when
Increasing the noise level.

|dea of the Proof:
- partition density function into signal and noise

FO(x) = % (x)+ f ¥ (x)

- density function of noise approximates a constant (f " (x) = const.)
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DENCLUE

Noise Invariance



DENCLUE Algorithm rk os;

Basic Idea

m Use Local Density Function which

approximates the Global Density Function

m Use CubeMap Data Structure for efficiently
locating the relevant points




DENCLUE

Local Density Function
Definition
The local density fBD (x) Is defined as

f(x)= Y fi(x).

X; enear(Xx)

_emma (Error Bound)
f near(x) ={x. eD|d(x,x)<koh the error iIs bound

Dy _d(x,%)? Kk
Error= Y e 2 <|{xeD|d(x,x)>ko}|e 2

X;eD, d(X;,X)>ko




CubeMap

- Data Structure based on regular cubes for storing the data

land efficiently determining the density function




DENCLUE (D, s, £)

(a) MBR < DetermineMBR(D)
(b) C, < DetPopCubes(D, MBR, o)

C,, < DetHighlyPopCubes(C , &)
. () map,C, «— ConnectMap(C,,C,;,0)

l(d) clusters <— DetDensAttractors(map,C,, o, &)
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Effects of High Dimensionality

Number of Surfaces and Grid Cells
m Number of k-dimensional surfaces in a

d-dimensional hypercube?

**1

11*

d).z(dk) **k*
k 010
= Number of grid cells
resulting from a binary 00
partitioning?
2d 000

=> grid cells can not be stored explicitly

100

= most grid cells do not contain any data points

111



1
0.9

05+

0.1 | | | | | |
0o 5 10 15 20 25 30

0 0.1 091 d

=> no of directions (from center) increases exponentially

Effects of High Dimensionality
The Surface is Everything
= Probability that a point is closer than 0.1
to a (d-1)-dimensional surface
T



=> cluster can not be identified using the grid

Effects of High Dimensionality
Number of Neighboring cells
= Probability that Cutting Planes partition clusters
Increases
B



Hybrid Methods

u CLIQUE [AGG+ 98]

m OptiGrid [HK 99]




CLIQUE (acc+ 8

m Subspace Clustering
= Monotonicity Lemma:

If a collection of points S'is a
cluster in a k-dimensional space,
then S is also part of a cluster in
any (k-1)-dimensional projection
of this space.

m Bottom-up Algorithm
for determining the
projections
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OptiGrid [HK 99]

m Optimal Grid Partitioning:

Generalized Grid

120
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Recursive Partitioning



Summary and Conclusions

m A number of effective and efficient Clustering
Algorithms is available for small to medium
size data sets and small dimensionality

m Efficiency suffers severely for large
dimensionality (d)

m Effectiveness suffers severely for large
dimensionality (d), especially in combination
with a high noise level




Open Research Issues

m Efficient Data Structures for large N
and large d

m Clustering Algorithms which work effectively
for large N, large d and large Noise Levels

m Integrated Tools for an Effective Clustering
of High-Dimensional Data
(combination of automatic, visual and

interactive clustering techniques)
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