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Modern Database Applications

� Multimedia Databases
– large data set
– content-based search
– feature-vectors
– high-dimensional data

� Data Warehouses
– large data set
– data mining
– many attributes
– high-dimensional data



3

Overview

1. Modern Database Applications

2. Effects in High-Dimensional Space

3. Models for High-Dimensional Query Processing

4. Indexing High-Dimensional Space

4.1 kd-Tree-based Techniques

4.2 R-Tree-based Techniques

4.3 Other Techniques

4.4 Optimization and Parallelization

5. Open Research Topics

6. Summary and Conclusions

4

Effects in High-Dimensional Spaces

� Exponential dependency of measures
on the dimension

� Boundary effects

� No geometric imagination
 � Intuition fails

The Curse of Dimensionality
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Notations and Assumptions

� N data items

� d dimensions

� data space normalized to [0, 1]d

� query types: range, partial range, NN

� for analysis: uniform data

� but not: N exponentially depends on d
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The Surface is Everything
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� Probability that a point is closer than 0.1
to a (d-1)-dimensional surface
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Number of Surfaces

� How much k-dimensional surfaces has
a d-dimensional hypercube [0..1]d ?
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“Each Circle Touching All Boundaries
Includes the Center Point”

� d-dimensional cube [0, 1]d

� cp = (0.5, 0.5, ..., 0.5)
� p = (0.3, 0.3, ..., 0.3)
� 16-d: circle (p, 0.7), distance (p, cp)=0.8

cp

p

circle(p, 0.7)

TRUE
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Database-Specific Effects

� Selectivity of queries

� Shape of data pages

� Location of data pages
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Selectivity of  Range Queries

� The selectivity depends on the volume
of the query

selectivity = 0.1 %

e
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Selectivity of  Range Queries

� In high-dimensional data spaces, there exists
a region in the data space which is affected
by ANY range query (assuming uniformity)
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Shape of Data Pages

� uniformly distributed data
 � each data page has the same volume

� split strategy: split always at the 50%-quantile

� number of split dimensions:

� extension of a “typical” data page: 0.5 in d’
dimensions, 1.0 in (d-d’) dimensions
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Location and Shape of Data Pages

� Data pages have large extensions
� Most data pages touch the surface of

the data space on most sides
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Models for High-Dimensional
Query Processing

� Traditional NN-Model [FBF 77]

� Exact NN-Model [BBKK 97]

� Analytical NN-Model [BBKK 00]

� Modeling the NN-Problem [BGRS 99]

� Modeling Range Queries [BBK 98]
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Nearest-Neighbor Algorithms

� Algorithm by Hjaltason et Samet [HS 95]

– loads only pages intersecting the NN-sphere

– optimal algorithm

q

NN-sphere
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Traditional NN-Model

� Friedman, Finkel, Bentley-Model [FBF 77]

Assumptions:

– number of data points N goes towards infinity

(� unrealistic for real data sets)

– no boundary effects

(� large errors for high-dim. data)
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Exact NN-Model [BBKK 97]

� Goal: Determination of the number of data pages
which have to be accessed on the average

� Three Steps:

1. Distance to the Nearest Neighbor

2. Mapping to the Minkowski Volume

3. Boundary Effects
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Exact NN-Model
1. Distance to the Nearest Neighbor

2. Mapping to the Minkowski Volume

3. Boundary Effects
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Exact NN-Model
1. Distance to the Nearest Neighbor

2. Mapping to the Minkowski Volume

3. Boundary Effects

Minkowski Volume:
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Exact NN-Model
1. Distance to the Nearest Neighbor

2. Mapping to the Minkowski Volume

3. Boundary Effects
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Exact NN-Model

#S
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Approximate NN-Model [BBKK 00]

1. Distance to the Nearest-Neighbor

Idea:

Nearest-neighbor Sphere contains 1/N
of the volume of the data space
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Approximate NN-Model

2. Distance threshold which requires more data
pages to be considered
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Modeling Range-Queries [BBK 98]

� Idea: Use Minkowski-sum to determine
the probability that a data page (URC,
LLC) is loaded

rectang le

query window

cen ter

Minkow sk i sum
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The Problem of  Searching the
Nearest Neighbor  [BGRS 99]

� Observations:
– When increasing the dimensionality, the nearest-

neighbor distance grows.
– When increasing the dimensionality, the farest-

neighbor distance grows.
– The nearest-neighbor distance grows FASTER

than the farest-neighbor distance.
– For               , the nearest-neighbor distance

equals to the farest-neighbor distance.
∞→d



32

When Is Nearest Neighbor meaningful?

� Statistical Model:
� For the d-dimensional distribution holds:

where D is the distribution of the distance of the query point and
a data point and we consider a Lp metric.

� This is true for synthetic distributions such as
normal, uniform, zipfian, etc.

� This is NOT true for clustered data.

0))(/)(var( 2lim =
∞→

p
d

p
d

d

DED

33

Overview

1. Modern Database Applications

2. Effects in High-Dimensional Space

3. Models for High-Dimensional Query Processing

4. Indexing High-Dimensional Space
4.1 kd-Tree-based Techniques

4.2 R-Tree-based Techniques

4.3 Other Techniques

4.4 Optimization and Parallelization

5. Open Research Topics

6. Summary and Conclusions



34

Indexing High-Dimensional Space

� Criterions

� kd-Tree-based Index Structures

� R-Tree-based Index Structures

� Other Techniques

� Optimization and Parallelization
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Criteria [GG 98]

� Structure of the Directory

� Overlapping vs. Non-overlapping Directory

� Type of MBR used

� Static vs. Dynamic

� Exact vs. Approximate
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The kd-Tree  [Ben 75]

� Idea:
Select a dimension, split according to this
dimension and do the same recursively with
the two new sub-partitions
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The kd-Tree
� Plus:

– fanout constant for arbitrary dimension
– fast insertion
– no overlap

� Minus:
– depends on the order of insertion

(e.g., not robust for sorted data)
– dead space covered
– not appropriate for secondary storage
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The kdB-Tree   [Rob 81]

� Idea:
– Aggregate kd-Tree nodes into disk pages
– Split data pages in case of overflow

(B-Tree-like)

� Problem:
– splits are not local
– forced splits
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The LSDh-Tree    [Hen 98]

� Two-level directory:
first level in main memory

� To avoid dead space:
only actual data regions are coded

s1

s2

p2

p3

p1

s1

s2p1

p2 p3
data pages

externa l
dir ectory

internal
directory
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The LSDh-Tree

� Fast insertion

� Search performance (NN) competitive
to X-Tree

� Still sensitive to pre-sorted data

� Technique of CADR (Coded Actual
Data Regions) is applicable to many
index structures
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The VAMSplit Tree  [JW 96]

� Idea:
Split at the point where maximum variance
occurs (rather than in the middle)

� sort data in main memory
� determine split position and recurse

� Problems:
– data must fit in main memory
– benefit of variance-based split is not clear
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R-Tree:  [Gut 84]

The Concept of Overlapping Regions

directory

data

level 1

directory
level 2

pages

. . . exact representation
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Variants of the R-Tree
Low-dimensional
� R+-Tree [SRF 87]

� R*-Tree [BKSS 90]

� Hilbert R-Tree [KF94]

High-dimensional

� TV-Tree [LJF 94]

� X-Tree [BKK 96]

� SS-Tree [WJ 96]

� SR-Tree [KS 97]
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The TV-Tree [LJF 94]

(Telescope-Vector Tree)

� Basic Idea: Not all attributes/dimensions are
of the same importance for the search
process.

� Divide the dimensions into three classes
– attributes which are shared by a set of data items
– attributes which can be used to distinguish data

items
– attributes to ignore
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Telescope Vectors
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The TV-Tree

� Split algorithm:
either increase dimensionality of TV
or split in the given dimensions

� Insert algorithm: similar to R-Tree
� Problems:

– how to choose the right metric
– high overlap in case of most metrics
– complex implementation
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The X-Tree [BKK 96]

(eXtended-Node Tree)
� Motivation:

Performance of the R-Tree degenerates in
high dimensions

� Reason: overlap in the directory
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The X-Tree

Supernodes Normal Directory Nodes Data Nodes

root
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The X-Tree

D=4:

D=8:

D=32:

Examples for X-Trees with different dimensionality
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The X-Tree
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The X-Tree

Example split history:
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Speed-Up of X-Tree over the R*-Tree

Point Query 10 NN Query
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Bulk-Load of X-Trees  [BBK 98a]

� Observation:
In order to split a data set, we do not
have to sort it

� Recursive top-down partitioning
of the data set

� Quicksort-like algorithm

� Improved data space partitioning
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Example
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Unbalanced Split

� Probability that a data page is loaded when
processing a range query of edge length 0.6
(for three different split strategies)
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Effect of Unbalanced Split
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In Theory:

In Practice:
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The SS-Tree [WJ 96]

(Similarity-Search Tree)

� Idea:
Split data space into
spherical regions

� small MINDIST

� high fanout

� Problem: overlap
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The SR-Tree [KS 97]

(Similarity-Search R-Tree)

� Similar to SS-Tree, but:

� Partitions are
intersections of
spheres and
hyper-rectangles

� Low overlap
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Other Techniques

� Pyramid-Tree [BBK 98]

� VA-File [WSB 98]

� Voroni-based Indexing [BEK+ 98]
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The Pyramid-Tree [BBK 98]

� Motivation:
Index-structures such as the X-Tree have
several drawbacks
– the split strategy is sub-optimal
– all page accesses result in random I/O
– high transaction times (insert, delete, update)

� Idea:
Provide a data space partitioning which can be
seen as a mapping from a d-dim. space to a
1-dim. space and make use of B+-Trees
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The Pyramid-Mapping

� Divide the space into 2d pyramids
� Divide each pyramid into partitions
� Each partition corresponds to a B+-Tree page
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The Pyramid-Mapping

� A point in a high-dimensional space can be
addressed by the number of the pyramid and
the height within the pyramid.

67

Query Processing using a Pyramid-Tree

� Problem:
Determine the pyramids intersected by the
query rectangle and the interval [hhigh, hlow]
within the pyramids.
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Experiments (uniform data)

69

Experiments
(data from data warehouse)
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The VA-File  [WSB 98]

(Vector Approximation File)

� Idea:
If NN-Search is an inherently linear problem, we
should aim for speeding up the sequential scan.

� Use a coarse representation of the data
points as an approximate representation
(only i bits per dimension - i might be 2)

� Thus, the reduced data set has only the
(i/32)-th part of the original data set
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The VA-File

� Determine (1/2i )-quantiles of each dimension
as partition boundaries

� Sequentially scan the coarse representation
and maintain the actual NN-distance

� If a partition cannot be pruned according to its
coarse representation, a look-up is made in
the original data set
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The IQ-Tree [BBJ+ 00]

(Independent Quantization)

� Idea:
If the VA-file does a good job for uniform data
and partitioning techniques do so for correlated
data, let’s find the optimum in between.

� Hybrid index / file structure
� 2-level directory: first level is a hierarchical

directory, second level is an adaptive VA-file
� adapts the level of partitioning to the actual data
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The IQ-Tree - Structure
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New NN-Algorithm

� Idea:
Overread pages if the (probabilistic) cost for
overreading are smaller than the seek cost.
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Voronoi-based Indexing  [BEK+ 98]

� Idea:
Precalculation and indexing of the result space
� Point query instead of NN-query

Voroni-Cells Approximated Voroni-Cells
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Optimization and Parallelization

� Tree Striping [BBK+ 00]

� Parallel Declustering [BBB+ 97]

� Approximate Nearest Neighbor

Search [GIM 99]
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Tree Striping [BBK+ 00]

� Motivation:
The two solutions to multidimensional indexing
- inverted lists and multidimensional indexes -  are
both inefficient.

� Explanation:
High dimensionality deteriorates the performance of
indexes and increases the sort costs of inverted lists.

� Idea:
There must be an optimum in between high-
dimensional indexing and inverted lists.
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Tree Striping - Example
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Experiments

� Real data, range queries,
d-dimensional indexes
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Parallel Declustering [BBB+ 97]

� Idea:
If NN-Search is an inherently linear problem,
it is perfectly suited for parallelization.

� Problem:
How to decluster high-dimensional data?
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Parallel Declustering

90

Near-Optimal Declustering
� Each partition is connected with one corner of the data space

Identify the partitions by their canonical corner numbers
= bitstrings saying left = 0 and right = 1 for each dimension

� Different degrees of neighborhood relationships:
– Partitions are direct neighbors if they differ in exactly 1

dimension
– Partitions are indirect neighbors if they differ in exactly 2

dimension
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Parallel Declustering

Mapping of the Problem to a Graph:
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Parallel Declustering

� Given: vertex number = corner number in binary 
representation

                    c = (cd-1, ..., c0)

� Compute: vertex color col(c) as
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Experiments

� Real data, comparison with Hilbert-
declustering, # of disks vs. speed-up
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Approximate NN-Search
(Locality-Sensitive Hashing) [GIM 99]

� Idea:
If it is sufficient to only select an approximate
nearest-neighbor, we can do this much
faster.

� Approximate Nearest-Neighbor: A point in
distance                     from the query point.distNN⋅+ )1( ε
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Locality-Sensitive Hashing

� Algorithm:
– Map each data point into a higher-dimensional binary space

– Randomly determine k projections of the binary space

– For each of the k projections determine the points having the
same binary representations as the query point

– Determine the nearest-neighbors of all these points

� Problems:
– How to optimize k?

– What is the expected ε? (average and worst case)

– What is an approximate nearest-neighbor “worth”?
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Open Research Topics

� Partitioning strategies

� Parallel query processing

� Data reduction

� Approximate query processing

� High-dim. data mining & visualization

� The ultimate cost model
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Partitioning Strategies

� What is the optimal data space partitioning
schema for nearest-neighbor search in high-
dimensional spaces?

� Balanced or unbalanced?

� Pyramid-like or bounding boxes?

� How does the optimum changes when the
data set grows in size or dimensionality?
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Parallel Query Processing

� Is it possible to develop parallel versions of
the proposed sequential techniques?
If yes, how can this be done?

� Which declustering strategies should
be used?

� How can the parallel query processing
be optimized?
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Data Reduction

� How can we reduce a large data warehouse
in size such that we get approximate
answers from the reduced data base?

� Tape-based data warehouses
 � disk based

� Disk-based data warehouses
 � main memory

� Tradeoff:  accuracy vs. reduction factor
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Approximate Query Processing

� Observation:
Most similarity search applications do not
require 100% correctness.

� Problem:
– What is a good definition for approximate

nearest- neighbor search?

– How to exploit that fuzziness for efficiency?
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High-dimensional Data Mining
& Data Visualization

� How can the proposed techniques be used
for data mining?

� How can high-dimensional data sets and
effects in high-dimensional spaces be
visualized?
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Summary

� Major research progress in

– understanding the nature of high-dim. spaces

– modeling the cost of queries in
high-dim. spaces

– index structures supporting nearest-

neighbor search and range queries
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Conclusions

� Work to be done
– leave the clean environment

• uniformity

• uniform query mix

• number of data items is exponential in d

– address other relevant problems
• partial range queries

• approximate nearest neighbor queries
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