
High-Dimensional Index Structures:

Database Support for Next Decade´s

Applications

Stefan Berchtold stb software technologie
 beratung gmbh

 Stefan.Berchtold@stb-gmbh.de

Daniel A. Keim University of Halle-Wittenberg
 keim@informatik.uni-halle.de

2

Modern Database Applications

� Multimedia Databases
– large data set
– content-based search
– feature-vectors
– high-dimensional data

� Data Warehouses
– large data set
– data mining
– many attributes
– high-dimensional data

3

Overview

1. Modern Database Applications

2. Effects in High-Dimensional Space

3. Models for High-Dimensional Query Processing

4. Indexing High-Dimensional Space

4.1 kd-Tree-based Techniques

4.2 R-Tree-based Techniques

4.3 Other Techniques

4.4 Optimization and Parallelization

5. Open Research Topics

6. Summary and Conclusions

4

Effects in High-Dimensional Spaces

� Exponential dependency of measures
on the dimension

� Boundary effects

� No geometric imagination
 � Intuition fails

The Curse of Dimensionality

5

Notations and Assumptions

� N data items

� d dimensions

� data space normalized to [0, 1]d

� query types: range, partial range, NN

� for analysis: uniform data

� but not: N exponentially depends on d

6

Exponential Growth of Volume

)12/(
),(

+Γ
⋅=

d
radiusdradiusVolume

d
d

sphere

π

dedgededgeDiagonalcube ⋅=),(

� Hyper-cube

� Hyper-sphere

d
cube edgededgeVolume =),(

7

The Surface is Everything

1
0.9

0.1

0 0.1 0.9 1

� Probability that a point is closer than 0.1
to a (d-1)-dimensional surface

8

Number of Surfaces

� How much k-dimensional surfaces has
a d-dimensional hypercube [0..1]d ?

000 100

010

001

111

11*
**1

)(2 kd

k

d −⋅

9

“Each Circle Touching All Boundaries
Includes the Center Point”

� d-dimensional cube [0, 1]d

� cp = (0.5, 0.5, ..., 0.5)
� p = (0.3, 0.3, ..., 0.3)
� 16-d: circle (p, 0.7), distance (p, cp)=0.8

cp

p

circle(p, 0.7)

TRUE

10

Database-Specific Effects

� Selectivity of queries

� Shape of data pages

� Location of data pages

11

Selectivity of Range Queries

� The selectivity depends on the volume
of the query

selectivity = 0.1 %

e

12

Selectivity of Range Queries

� In high-dimensional data spaces, there exists
a region in the data space which is affected
by ANY range query (assuming uniformity)

13

Shape of Data Pages

� uniformly distributed data
 � each data page has the same volume

� split strategy: split always at the 50%-quantile

� number of split dimensions:

� extension of a “typical” data page: 0.5 in d’
dimensions, 1.0 in (d-d’) dimensions

14

Location and Shape of Data Pages

� Data pages have large extensions
� Most data pages touch the surface of

the data space on most sides

15

Overview

1. Modern Database Applications

2. Effects in High-Dimensional Space

3. Models for High-Dimensional Query Processing

4. Indexing High-Dimensional Space

4.1 kd-Tree-based Techniques

4.2 R-Tree-based Techniques

4.3 Other Techniques

4.4 Optimization and Parallelization

5. Open Research Topics

6. Summary and Conclusions

16

Models for High-Dimensional
Query Processing

� Traditional NN-Model [FBF 77]

� Exact NN-Model [BBKK 97]

� Analytical NN-Model [BBKK 00]

� Modeling the NN-Problem [BGRS 99]

� Modeling Range Queries [BBK 98]

17

Nearest-Neighbor Algorithms

� Algorithm by Hjaltason et Samet [HS 95]

– loads only pages intersecting the NN-sphere

– optimal algorithm

q

NN-sphere

18

Traditional NN-Model

� Friedman, Finkel, Bentley-Model [FBF 77]

Assumptions:

– number of data points N goes towards infinity

(� unrealistic for real data sets)

– no boundary effects

(� large errors for high-dim. data)

19

Exact NN-Model [BBKK 97]

� Goal: Determination of the number of data pages
which have to be accessed on the average

� Three Steps:

1. Distance to the Nearest Neighbor

2. Mapping to the Minkowski Volume

3. Boundary Effects

20

Exact NN-Model
1. Distance to the Nearest Neighbor

2. Mapping to the Minkowski Volume

3. Boundary Effects

1 1 Volavg
d

r()–()
N

–()=

() ()sphere-NN intersects pointsNtheofNonePrdistNNP −==− 1

() () ()() 1
1

−
−⋅⋅==−

Nd
avg

d
avg rVolNrVol

dr

d
rdistNNP

dr

d

Distribution function

Density function

•S
•NN

data space

data pages

21

Exact NN-Model
1. Distance to the Nearest Neighbor

2. Mapping to the Minkowski Volume

3. Boundary Effects

Minkowski Volume:

S

Vol
Mink
d r()

d

i

ad i– Vol
Sp
i r()⋅ ⋅

i 0=

d

∑=

a2 1
2
--- a Vol

Sp
1 r()⋅ ⋅

1
4
--- Vol

Sp
2 r()⋅

a

r

22

Exact NN-Model
1. Distance to the Nearest Neighbor

2. Mapping to the Minkowski Volume

3. Boundary Effects

S

d’ log
2

N
C

eff

 =

Generalized Minkowski Volume with boundary effects:

where

23

Exact NN-Model

#S

25

Approximate NN-Model [BBKK 00]

1. Distance to the Nearest-Neighbor

Idea:

Nearest-neighbor Sphere contains 1/N
of the volume of the data space

VolSp
d

NN-dist() 1
N
---- = NN-dist N d,() 1

π
------- Γ d 2⁄ 1+()

N
----------------------------d⋅=⇒

26

Approximate NN-Model

2. Distance threshold which requires more data
pages to be considered

 i

1

π
------- Γ d 2⁄ 1+()

N
----------------------------d⋅

0.5

=

2

i
2 d⋅
e π⋅----------

π d
3⋅

4 N 2⋅
--------------d⋅≈⇒⇔

NN-dist N d,() 0.5 i⋅=

Query Point

NN-sphere (0.4)

NN-sphere (0.6)

0

1

radius

27

#S d() d’
k

k 0=

2 d⋅
e π⋅

π d3⋅
4 N2⋅
--------------d⋅

∑
log2

N
Ceff

k

k 0=

2 d⋅
e π⋅

π d3⋅
4 N2⋅
--------------d⋅

∑= =

Approximate NN-Model

3. Number of pages

30

Modeling Range-Queries [BBK 98]

� Idea: Use Minkowski-sum to determine
the probability that a data page (URC,
LLC) is loaded

rectang le

query window

cen ter

Minkow sk i sum

31

The Problem of Searching the
Nearest Neighbor [BGRS 99]

� Observations:
– When increasing the dimensionality, the nearest-

neighbor distance grows.
– When increasing the dimensionality, the farest-

neighbor distance grows.
– The nearest-neighbor distance grows FASTER

than the farest-neighbor distance.
– For , the nearest-neighbor distance

equals to the farest-neighbor distance.
∞→d

32

When Is Nearest Neighbor meaningful?

� Statistical Model:
� For the d-dimensional distribution holds:

where D is the distribution of the distance of the query point and
a data point and we consider a Lp metric.

� This is true for synthetic distributions such as
normal, uniform, zipfian, etc.

� This is NOT true for clustered data.

0))(/)(var(2lim =
∞→

p
d

p
d

d

DED

33

Overview

1. Modern Database Applications

2. Effects in High-Dimensional Space

3. Models for High-Dimensional Query Processing

4. Indexing High-Dimensional Space
4.1 kd-Tree-based Techniques

4.2 R-Tree-based Techniques

4.3 Other Techniques

4.4 Optimization and Parallelization

5. Open Research Topics

6. Summary and Conclusions

34

Indexing High-Dimensional Space

� Criterions

� kd-Tree-based Index Structures

� R-Tree-based Index Structures

� Other Techniques

� Optimization and Parallelization

35

Criteria [GG 98]

� Structure of the Directory

� Overlapping vs. Non-overlapping Directory

� Type of MBR used

� Static vs. Dynamic

� Exact vs. Approximate

36

The kd-Tree [Ben 75]

� Idea:
Select a dimension, split according to this
dimension and do the same recursively with
the two new sub-partitions

37

The kd-Tree
� Plus:

– fanout constant for arbitrary dimension
– fast insertion
– no overlap

� Minus:
– depends on the order of insertion

(e.g., not robust for sorted data)
– dead space covered
– not appropriate for secondary storage

38

The kdB-Tree [Rob 81]

� Idea:
– Aggregate kd-Tree nodes into disk pages
– Split data pages in case of overflow

(B-Tree-like)

� Problem:
– splits are not local
– forced splits

39

The LSDh-Tree [Hen 98]

� Two-level directory:
first level in main memory

� To avoid dead space:
only actual data regions are coded

s1

s2

p2

p3

p1

s1

s2p1

p2 p3
data pages

externa l
dir ectory

internal
directory

40

The LSDh-Tree

� Fast insertion

� Search performance (NN) competitive
to X-Tree

� Still sensitive to pre-sorted data

� Technique of CADR (Coded Actual
Data Regions) is applicable to many
index structures

41

The VAMSplit Tree [JW 96]

� Idea:
Split at the point where maximum variance
occurs (rather than in the middle)

� sort data in main memory
� determine split position and recurse

� Problems:
– data must fit in main memory
– benefit of variance-based split is not clear

42

Overview

1. Modern Database Applications

2. Effects in High-Dimensional Space

3. Models for High-Dimensional Query Processing

4. Indexing High-Dimensional Space

4.1 kd-Tree-based Techniques

4.2 R-Tree-based Techniques

4.3 Other Techniques

4.4 Optimization and Parallelization

5. Open Research Topics

6. Summary and Conclusions

43

R-Tree: [Gut 84]

The Concept of Overlapping Regions

directory

data

level 1

directory
level 2

pages

. . . exact representation

44

Variants of the R-Tree
Low-dimensional
� R+-Tree [SRF 87]

� R*-Tree [BKSS 90]

� Hilbert R-Tree [KF94]

High-dimensional

� TV-Tree [LJF 94]

� X-Tree [BKK 96]

� SS-Tree [WJ 96]

� SR-Tree [KS 97]

45

The TV-Tree [LJF 94]

(Telescope-Vector Tree)

� Basic Idea: Not all attributes/dimensions are
of the same importance for the search
process.

� Divide the dimensions into three classes
– attributes which are shared by a set of data items
– attributes which can be used to distinguish data

items
– attributes to ignore

46

Telescope Vectors

47

The TV-Tree

� Split algorithm:
either increase dimensionality of TV
or split in the given dimensions

� Insert algorithm: similar to R-Tree
� Problems:

– how to choose the right metric
– high overlap in case of most metrics
– complex implementation

48

The X-Tree [BKK 96]

(eXtended-Node Tree)
� Motivation:

Performance of the R-Tree degenerates in
high dimensions

� Reason: overlap in the directory

49

The X-Tree

Supernodes Normal Directory Nodes Data Nodes

root

51

The X-Tree

D=4:

D=8:

D=32:

Examples for X-Trees with different dimensionality

52

The X-Tree

53

The X-Tree

Example split history:

54

Speed-Up of X-Tree over the R*-Tree

Point Query 10 NN Query

56

Bulk-Load of X-Trees [BBK 98a]

� Observation:
In order to split a data set, we do not
have to sort it

� Recursive top-down partitioning
of the data set

� Quicksort-like algorithm

� Improved data space partitioning

57

Example

58

Unbalanced Split

� Probability that a data page is loaded when
processing a range query of edge length 0.6
(for three different split strategies)

59

Effect of Unbalanced Split

��
��

��
��
��
��
�

�	�
����������

In Theory:

In Practice:

60

The SS-Tree [WJ 96]

(Similarity-Search Tree)

� Idea:
Split data space into
spherical regions

� small MINDIST

� high fanout

� Problem: overlap

61

The SR-Tree [KS 97]

(Similarity-Search R-Tree)

� Similar to SS-Tree, but:

� Partitions are
intersections of
spheres and
hyper-rectangles

� Low overlap

62

Overview

1. Modern Database Applications

2. Effects in High-Dimensional Space

3. Models for High-Dimensional Query Processing

4. Indexing High-Dimensional Space

4.1 kd-Tree-based Techniques

4.2 R-Tree-based Techniques

4.3 Other Techniques

4.4 Optimization and Parallelization

5. Open Research Topics

6. Summary and Conclusions

63

Other Techniques

� Pyramid-Tree [BBK 98]

� VA-File [WSB 98]

� Voroni-based Indexing [BEK+ 98]

64

The Pyramid-Tree [BBK 98]

� Motivation:
Index-structures such as the X-Tree have
several drawbacks
– the split strategy is sub-optimal
– all page accesses result in random I/O
– high transaction times (insert, delete, update)

� Idea:
Provide a data space partitioning which can be
seen as a mapping from a d-dim. space to a
1-dim. space and make use of B+-Trees

65

The Pyramid-Mapping

� Divide the space into 2d pyramids
� Divide each pyramid into partitions
� Each partition corresponds to a B+-Tree page

66

The Pyramid-Mapping

� A point in a high-dimensional space can be
addressed by the number of the pyramid and
the height within the pyramid.

67

Query Processing using a Pyramid-Tree

� Problem:
Determine the pyramids intersected by the
query rectangle and the interval [hhigh, hlow]
within the pyramids.

68

Experiments (uniform data)

69

Experiments
(data from data warehouse)

71

The VA-File [WSB 98]

(Vector Approximation File)

� Idea:
If NN-Search is an inherently linear problem, we
should aim for speeding up the sequential scan.

� Use a coarse representation of the data
points as an approximate representation
(only i bits per dimension - i might be 2)

� Thus, the reduced data set has only the
(i/32)-th part of the original data set

72

The VA-File

� Determine (1/2i)-quantiles of each dimension
as partition boundaries

� Sequentially scan the coarse representation
and maintain the actual NN-distance

� If a partition cannot be pruned according to its
coarse representation, a look-up is made in
the original data set

75

The IQ-Tree [BBJ+ 00]

(Independent Quantization)

� Idea:
If the VA-file does a good job for uniform data
and partitioning techniques do so for correlated
data, let’s find the optimum in between.

� Hybrid index / file structure
� 2-level directory: first level is a hierarchical

directory, second level is an adaptive VA-file
� adapts the level of partitioning to the actual data

76

The IQ-Tree - Structure

77

New NN-Algorithm

� Idea:
Overread pages if the (probabilistic) cost for
overreading are smaller than the seek cost.

78

Voronoi-based Indexing [BEK+ 98]

� Idea:
Precalculation and indexing of the result space
� Point query instead of NN-query

Voroni-Cells Approximated Voroni-Cells

81

Overview

1. Modern Database Applications

2. Effects in High-Dimensional Space

3. Models for High-Dimensional Query Processing

4. Indexing High-Dimensional Space

4.1 kd-Tree-based Techniques

4.2 R-Tree-based Techniques

4.3 Other Techniques

4.4 Optimization and Parallelization

5. Open Research Topics

6. Summary and Conclusions

82

Optimization and Parallelization

� Tree Striping [BBK+ 00]

� Parallel Declustering [BBB+ 97]

� Approximate Nearest Neighbor

Search [GIM 99]

83

Tree Striping [BBK+ 00]

� Motivation:
The two solutions to multidimensional indexing
- inverted lists and multidimensional indexes - are
both inefficient.

� Explanation:
High dimensionality deteriorates the performance of
indexes and increases the sort costs of inverted lists.

� Idea:
There must be an optimum in between high-
dimensional indexing and inverted lists.

84

Tree Striping - Example

87

Experiments

� Real data, range queries,
d-dimensional indexes

88

Parallel Declustering [BBB+ 97]

� Idea:
If NN-Search is an inherently linear problem,
it is perfectly suited for parallelization.

� Problem:
How to decluster high-dimensional data?

89

Parallel Declustering

90

Near-Optimal Declustering
� Each partition is connected with one corner of the data space

Identify the partitions by their canonical corner numbers
= bitstrings saying left = 0 and right = 1 for each dimension

� Different degrees of neighborhood relationships:
– Partitions are direct neighbors if they differ in exactly 1

dimension
– Partitions are indirect neighbors if they differ in exactly 2

dimension

91

Parallel Declustering

Mapping of the Problem to a Graph:

92

Parallel Declustering

� Given: vertex number = corner number in binary
representation

 c = (cd-1, ..., c0)

� Compute: vertex color col(c) as

93

Experiments

� Real data, comparison with Hilbert-
declustering, # of disks vs. speed-up

94

Approximate NN-Search
(Locality-Sensitive Hashing) [GIM 99]

� Idea:
If it is sufficient to only select an approximate
nearest-neighbor, we can do this much
faster.

� Approximate Nearest-Neighbor: A point in
distance from the query point.distNN⋅+)1(ε

95

Locality-Sensitive Hashing

� Algorithm:
– Map each data point into a higher-dimensional binary space

– Randomly determine k projections of the binary space

– For each of the k projections determine the points having the
same binary representations as the query point

– Determine the nearest-neighbors of all these points

� Problems:
– How to optimize k?

– What is the expected ε? (average and worst case)

– What is an approximate nearest-neighbor “worth”?

96

Overview

1. Modern Database Applications

2. Effects in High-Dimensional Space

3. Models for High-Dimensional Query Processing

4. Indexing High-Dimensional Space

4.1 kd-Tree-based Techniques

4.2 R-Tree-based Techniques

4.3 Other Techniques

4.4 Optimization and Parallelization

5. Open Research Topics

6. Summary and Conclusions

97

Open Research Topics

� Partitioning strategies

� Parallel query processing

� Data reduction

� Approximate query processing

� High-dim. data mining & visualization

� The ultimate cost model

98

Partitioning Strategies

� What is the optimal data space partitioning
schema for nearest-neighbor search in high-
dimensional spaces?

� Balanced or unbalanced?

� Pyramid-like or bounding boxes?

� How does the optimum changes when the
data set grows in size or dimensionality?

99

Parallel Query Processing

� Is it possible to develop parallel versions of
the proposed sequential techniques?
If yes, how can this be done?

� Which declustering strategies should
be used?

� How can the parallel query processing
be optimized?

100

Data Reduction

� How can we reduce a large data warehouse
in size such that we get approximate
answers from the reduced data base?

� Tape-based data warehouses
 � disk based

� Disk-based data warehouses
 � main memory

� Tradeoff: accuracy vs. reduction factor

101

Approximate Query Processing

� Observation:
Most similarity search applications do not
require 100% correctness.

� Problem:
– What is a good definition for approximate

nearest- neighbor search?

– How to exploit that fuzziness for efficiency?

102

High-dimensional Data Mining
& Data Visualization

� How can the proposed techniques be used
for data mining?

� How can high-dimensional data sets and
effects in high-dimensional spaces be
visualized?

103

Summary

� Major research progress in

– understanding the nature of high-dim. spaces

– modeling the cost of queries in
high-dim. spaces

– index structures supporting nearest-

neighbor search and range queries

104

Conclusions

� Work to be done
– leave the clean environment

• uniformity

• uniform query mix

• number of data items is exponential in d

– address other relevant problems
• partial range queries

• approximate nearest neighbor queries

105

Literature
[AMN 95] Arya S., Mount D. M., Narayan O.: ‘Accounting for Boundary Effects

in Nearest Neighbor Searching’, Proc. 11th Annual Symp. on Computational
Geometry, Vancouver, Canada, pp. 336-344, 1995.

[Ary 95] Arya S.: ‘Nearest Neighbor Searching and Applications’, Ph.D. Thesis,
University of Maryland, College Park, MD, 1995.

[BBB+ 97]Berchtold S., Böhm C., Braunmueller B., Keim D. A., Kriegel H.-P.:
‘Fast Similarity Search in Multimedia Databases’, Proc. ACM SIGMOD Int.
Conf. on Management of Data, Tucson, Arizona, 1997.

[BBK 98] Berchtold S., Böhm C., Kriegel H.-P.: ‘The Pyramid-Tree: Indexing
Beyond the Curse of Dimensionality’, Proc. ACM SIGMOD Int. Conf. on
Management of Data, Seattle, 1998.

[BBK 98a]Berchtold S., Böhm C., Kriegel H.-P.: ‘Improving the Query
Performance of High-Dimensional Index Structures by Bulk Load
Operations’, 6th Int. Conf. On Extending Database Technology, in LNCS
1377, Valenica, Spain, pp. 216-230, 1998.

[BBK+ 00] Berchtold S., Böhm C., Keim D., Kriegel H.-P., Xu X.:’Optimal
Multidimensional Query Processing Using Tree Striping’, submitted for
publication.

106

Literature
[BBKK 97] Berchtold S., Böhm C., Keim D., Kriegel H.-P.: ‘A Cost Model For Nearest

Neighbor Search in High-Dimensional Data Space’, ACM PODS Symposium on
Principles of Database Systems, Tucson, Arizona, 1997.

[BBKK 00] Berchtold S., Böhm C., Keim D., Kriegel H.-P.: ‘Optimized Processing of
Nearest Neighbor Queries in High-Dimensional Spaces’, submitted for publication.

[BEK+ 98] Berchtold S., Ertl B., Keim D., Kriegel H.-P., Seidl T.: ‘Fast Nearest
Neighbor Search in High-Dimensional Spaces’, Proc. 14th Int. Conf. on Data
Engineering, Orlando, 1998.

[BBJ+ 00] Berchtold S., Böhm C., Jagadish H.V., Kriegel H.-P., Sander J.:
‘Independent Quantization: An Index Compression Technique for High-Dimensional
Data Spaces: ’, Int. Conf. on Data Engineering, San Diego, 2000.

[BBKK 97] Berchtold S., Böhm C., Keim D., Kriegel H.-P.: ‘A Cost Model For Nearest
Neighbor Search in High-Dimensional Data Space’, ACM PODS Symposium on
Principles of Database Systems, Tucson, Arizona, 1997.

[Ben 75] Bentley J. L.: ‘Multidimensional Search Trees Used for Associative
Searching’, Comm. of the ACM, Vol. 18, No. 9, pp. 509-517, 1975.

[BGRS 99] Beyer K., Goldstein J., Ramakrishnan R., Shaft U..: ‘When Is “Nearest
Neighbor” Meaningful?’, Proc. Int. Conf. on Database Theory (ICDT), 1999, pp.
217-235.

107

Literature
[BK 97] Berchtold S., Kriegel H.-P.: ‘S3: Similarity Search in CAD Database

Systems’, Proc. ACM SIGMOD Int. Conf. on Management of Data, Tucson,
Arizona, 1997.

[BKK 96] Berchtold S., Keim D., Kriegel H.-P.: ‘The X-tree: An Index Structure
for High-Dimensional Data’, 22nd Conf. on Very Large Databases, Bombay,
India, pp. 28-39, 1996.

[BKK 97] Berchtold S., Keim D., Kriegel H.-P.: ‘Using Extended Feature
Objects for Partial Similarity Retrieval’, VLDB Journal, Vol.4, 1997.

[BKSS 90] Beckmann N., Kriegel H.-P., Schneider R., Seeger B.: ‘The R*-tree:
An Efficient and Robust Access Method for Points and Rectangles’, Proc.
ACM SIGMOD Int. Conf. on Management of Data, Atlantic City, NJ, pp. 322-
331, 1990.

[CD 97] Chaudhuri S., Dayal U.: ‘Data Warehousing and OLAP for Decision
Support’, Tutorial, Proc. ACM SIGMOD Int. Conf. on Management of Data,
Tucson, Arizona, 1997.

[Cle 79] Cleary J. G.: ‘Analysis of an Algorithm for Finding Nearest Neighbors
in Euclidean Space’, ACM Trans. on Mathematical Software, Vol. 5, No. 2,
pp.183-192, 1979.

108

Literature
[FBF 77] Friedman J. H., Bentley J. L., Finkel R. A.: ‘An Algorithm for Finding

Best Matches in Logarithmic Expected Time’, ACM Transactions on
Mathematical Software, Vol. 3, No. 3, pp. 209-226, 1977.

[GG 98] Gaede V., Günther O.: ‘Multidimensional Access Methods’, ACM
Computing Surveys, Vol. 30, No. 2, 1998, pp. 170-231.

[GIM 99] Gionis A., Indyk P., Motwani R.: ‘ Similarity Search in High
Dimensions via Hashing’, Proc. 25th Int. Conf. on Very Large Data Bases,
Edinburgh, GB, pp. 518-529, 1999.

[Gut 84] Guttman A.: ‘R-trees: A Dynamic Index Structure for Spatial
Searching’, Proc. ACM SIGMOD Int. Conf. on Management of Data, Boston,
MA, pp. 47-57, 1984.

[Hen 94] Henrich, A.: ‘A distance-scan algorithm for spatial access structures’,
Proceedings of the 2nd ACM Workshop on Advances in Geographic
Information Systems, ACM Press, Gaithersburg, Maryland, pp. 136-143,
1994.

[Hen 98] Henrich, A.: ‘The LSDh-tree: An Access Structure for Feature Vectors’,
Proc. 14th Int. Conf. on Data Engineering, Orlando, 1998.

109

Literature
[HS 95] Hjaltason G. R., Samet H.: ‘Ranking in Spatial Databases’, Proc. 4th Int.

Symp. on Large Spatial Databases, Portland, ME, pp. 83-95, 1995.

[HSW 89] Henrich A., Six H.-W., Widmayer P.: ‘The LSD-Tree: Spatial Access
to Multidimensional Point and Non-Point Objects’, Proc. 15th Conf. on Very
Large Data Bases, Amsterdam, The Netherlands, pp. 45-53, 1989.

[Jag 91] Jagadish H. V.: ‘A Retrieval Technique for Similar Shapes’, Proc. ACM
SIGMOD Int. Conf. on Management of Data, pp. 208-217, 1991.

[JW 96] Jain R, White D.A.: ‘Similarity Indexing: Algorithms and Performance’,
Proc. SPIE Storage and Retrieval for Image and Video Databases IV, Vol.
2670, San Jose, CA, pp. 62-75, 1996.

[KF 94] Kamel I., Faloutsos C.: ‘Hilbert R-tree: An Improved R-tree using
Fractals’. Proc. 20th Int. Conf. on Very Large Databases, 1994, pp. 500-509.

[KS 97] Katayama N., Satoh S.: ‘The SR-tree: An Index Structure for High-
Dimensional Nearest Neighbor Queries’, Proc. ACM SIGMOD Int. Conf. on
Management of Data, pp. 369-380, 1997.

[KSF+ 96] Korn F., Sidiropoulos N., Faloutsos C., Siegel E., Protopapas Z.:
‘Fast Nearest Neighbor Search in Medical Image Databases’, Proc. 22nd Int.
Conf. on Very Large Data Bases, Mumbai, India, pp. 215-226, 1996.

110

Literature
[LJF 94] Lin K., Jagadish H. V., Faloutsos C.: ‘The TV-tree: An Index Structure

for High-Dimensional Data’, VLDB Journal, Vol. 3, pp. 517-542, 1995.

[MG 93] Mehrotra R., Gary J.: ‘Feature-Based Retrieval of Similar Shapes’,
Proc. 9th Int. Conf. on Data Engineering, 1993.

[Ore 82] Orenstein J. A.: ‘Multidimensional tries used for associative searching’,
Inf. Proc. Letters, Vol. 14, No. 4, pp. 150-157, 1982.

[PM 97] Papadopoulos A., Manolopoulos Y.: ‘Performance of Nearest Neighbor
Queries in R-Trees’, Proc. 6th Int. Conf. on Database Theory, Delphi, Greece,
in: Lecture Notes in Computer Science, Vol. 1186, Springer, pp. 394-408, 1997.

[RKV 95] Roussopoulos N., Kelley S., Vincent F.: ‘Nearest Neighbor Queries’,
Proc. ACM SIGMOD Int. Conf. on Management of Data, San Jose, CA,
pp. 71-79, 1995.

[Rob 81] Robinson J. T.: ‘The K-D-B-tree: A Search Structure for Large
Multidimensional Dynamic Indexes’, Proc. ACM SIGMOD Int. Conf. on
Management of Data, pp. 10-18, 1981.

[RP 92] Ramasubramanian V., Paliwal K. K.: ‘Fast k-Dimensional Tree
Algorithms for Nearest Neighbor Search with Application to Vector
Quantization Encoding’, IEEE Transactions on Signal Processing, Vol. 40,
No. 3, pp. 518-531, 1992.

111

Literature
[See 91] Seeger B.: ‘Multidimensional Access Methods and their Applications’,

Tutorial, 1991.

[SK 97] Seidl T., Kriegel H.-P.: ‘Efficient User-Adaptable Similarity Search in Large
Multimedia Databases’, Proc. 23rd Int. Conf. on Very Large Databases
(VLDB’97), Athens, Greece, 1997.

[Spr 91] Sproull R.F.: ‘Refinements to Nearest Neighbor Searching in k-Dimensional
Trees’, Algorithmica, pp. 579-589, 1991.

[SRF 87] Sellis T., Roussopoulos N., Faloutsos C.: ‘The R+-Tree: A Dynamic Index
for Multi-Dimensional Objects’, Proc. 13th Int. Conf. on Very Large Databases,
Brighton, England, pp 507-518, 1987.

[WSB 98] Weber R., Schek H.-J., Blott S.: ‘A Quantitative Analysis and Performance
Study for Similarity-Search Methods in High-Dimensional Spaces’, Proc. Int.
Conf. on Very Large Databases, New York, 1998.

[WJ 96] White D.A., Jain R.: ‘Similarity indexing with the SS-tree’, Proc. 12th Int.
Conf on Data Engineering, New Orleans, LA, 1996.

[YY 85] Yao A. C., Yao F. F.: ‘ A General Approach to D-Dimensional Geometric
Queries’, Proc. ACM Symp. on Theory of Computing, 1985.

112

Acknowledgements

We thank Stephen Blott and Hans-J. Scheck for the very interesting
and helpful discussions about the VA-file.

We thank Raghu Ramakrishnan and Jonathan Goldstein for the very
interesting and helpful comments on their work on “When Is Nearest-
Neighbor Meaningful”.

Furthermore, we thank Andreas Henrich for introducing us into the
secrets of LSD and KDB trees.

Finally, we thank Marco Poetke for providing the nice figure explaining
telescope vectors.

Last but not least, we thank H.V. Jagadish for encouraging us to put this
tutorial together.

