
Cluster Discovery Methods 

for Large Data Bases

From the Past to the Future

Alexander Hinneburg, Daniel A. Keim

University of Halle



Introduction

 Application Example: Marketing

– Given:

• Large data base of customer data containing 

their properties and past buying records

– Goal:

• Find groups of customers with similar behavior

• Find customers with unusual behavior



Introduction

 Application Example: 

Class Finding in CAD-Databases

– Given:

• Large data base of CAD data containing abstract 

feature vectors (Fourier, Wavelet, ...)

– Goal:

• Find homogeneous groups of similar CAD parts

• Determine standard parts for each group 

• Use standard parts instead of special parts 
( reduction of the number of parts to be produced)



Introduction

Problem Description

 Given: 

A data set with N d-dimensional data items.

 Task: 

Determine a (good/natural) partitioning of 

the data set into a number of clusters (k) 

and noise.



Introduction

From the Past ...

 Clustering is a well-known problem in 

statistics [Sch 64, Wis 69]

 more recent research in 

– machine learning [Roj 96],

– databases [CHY 96], and 

– visualization [Kei 96] ...



Introduction

... to the Future 

 Effective and efficient clustering algorithms for 

large high-dimensional data sets with high 

noise level

 Requires Scalability with respect to 

– the number of data points (N)

– the number of dimensions (d)

– the noise level
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2.2 Density-based Approaches

2.3 Hybrid Approaches

3. Techniques for Improving the Effectiveness 

and Efficiency
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Clustering Methods

 Model- and Optimization-Based 

Approaches

 Density-Based Approaches

 Hybrid Approaches



 Determine k prototypes of a given data

 Optimize a distance criteria:

 Iterative Algorithm:

K-Means [Fuk 90]
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•Assign the data points to the nearest prototype

•Shift the prototypes towards the mean of their point set



Expectation Maximization [Lau 95]

 Estimate parameters of k Gaussians

 Optimize the probability, that the mixture 

of parameterized Gaussians fits the data

 Iterative algorithm similar to k-Means



 Self-Organizing Maps [Roj 96, KMS 91]

– Fixed map topology 

(grid, line)

 Growing Networks [Fri 95]

– Iterative insertion of 

nodes

– Adaptive map topology

AI Methods [Fri 95, KMS+91]



CLARANS [NH 94]

 Medoid Method:

– Medoids are special 

data points

– All data points are 

assigned to the 

nearest medoid

 Optimization Criterion:



 Graph Interpretation:
– Search process can be  symbolized by a graph

– Each node corresponds to a specific set of medoids

– The change of one medoid corresponds to a jump to a 

neighboring node in the search graph 

 Complexity Considerations:
– The search graph has      nodes and each node 

has N*k edges

– The search is bound by a fixed number of jumps (num_local)

in the search graph

– Each jump is optimized by randomized search and costs 

max_neighbor scans over the data (to evaluate the cost 

function)

CLARANS
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Density-based Methods

 Linkage -based 

Methods [Boc 74]

 DBSCAN [EKS+ 96]

 DBCLASD [XEK+ 98]

 STING [WYM 97]

 Hierarchical Grid 

Clustering [Sch 96]

 WaveCluster [SCZ 98]

 DENCLUE [HK 98]



Linkage -based Methods
(from Statistics) [Boc 74]

 Single Linkage (Connected components for distance d)

 Method of Wishart [Wis 69] (Min. no. of points: c=4)

Reduce data set Apply Single Linkage



 Clusters are defined as 

Density-Connected Sets (wrt. MinPts, e)

DBSCAN [EKS+ 96]



DBSCAN

 For each point, DBSCAN determines the 

e-environment and checks, whether it contains 

more than MinPts data points

 DBSCAN uses index structures for determining 

the e-environment

 Arbitrary shape clusters found by DBSCAN



 Distribution-based method

 Assumes arbitrary-shape 

clusters of uniform distribution

 Requires no parameters

 Provides grid-based 

approximation  of clusters

DBCLASD [XEK+ 98]

Before the 

insertion 

of point p

After the 

insertion 

of point p



DBCLASD

 Definition of a cluster C based on the 

distribution of the NN-distance (NNDistSet):



DBCLASD

 Step (1) uses the concept of the c2-test

 Incremental augmentation of clusters by 

neighboring points (order-depended)

– unsuccessful candidates are tried again later

– points already assigned to some cluster may  

switch to another cluster



STING [WYM 97]

 Uses a quadtree-like structure for 

condensing the data into grid cells

 The nodes of the quadtree  

contain statistical 

information about the data 

in the corresponding cells

 STING determines clusters 

as the density-connected 

components of the grid

 STING approximates the 

clusters found by DBSCAN



Hierarchical Grid Clustering
[Sch 96]

 Organize the data space as a 

grid-file

 Sort the blocks by their density

 Scan the blocks iteratively and 

merge blocks, which are adjacent 

over a (d-1)-dim. hyperplane.

 The order of the merges forms 

a hierarchy



WaveCluster [SCZ 98]

 Clustering from a signal processing perspective 

using wavelets



WaveCluster

 Signal transformation using wavelets

 Arbitrary shape clusters found by WaveCluster at 

different resolutions



DENCLUE [HK 98]

Data Set 

Fig 1b

Fig 1c

Density Function

Density Function: Sum of the influences of all data 

points

Influence Function

Influence Function: Influence of a data point in its 

neighborhood



Density Function 

The density at a point x in the data space is defined as 

the sum of influences of all data points xi, i.e.

Influence Function

The influence of a data point y at a point x in the data 

space is modeled by a function ,   

y

dy

B Ff :
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Density Attractor/Density-Attracted Points

- local maximum of the density function

- density-attracted points are determined by a 

gradient-based hill-climbing method

DENCLUE

Definitions of Clusters

(    )



DENCLUE

Center-Defined Cluster
A center-defined cluster with

density-attractor x* ( ) is

the subset of the database which

is density-attracted by x*.

Multi-Center-Defined

Cluster
A multi-center-defined cluster

consists of a set of center-defined

clusters which are linked by a path

with significance x.
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DENCLUE

Impact of different Significance Levels (x)



Choose   such that number of density 

attractors is constant for a long interval of !

#clusters

min maxopt

DENCLUE

Choice of the Smoothness Level ()



DENCLUE

Variation of the Smoothness Level ()



DENCLUE

DENCLUE generalizes other clustering methods:

 density-based clustering
(e.g., DBSCAN: Square Wave influence function, 

multi-center-defined clusters,  = EPS, x MinPts)

 partition-based clustering
(e.g., k-means Clustering: Gaussian influence 

function, center-defined clusters, x  0,

determine  such that k clusters)

 hierarchical clustering
(center-defined clusters for different values of  form 

hierarchy)



)()()( xfxfxf NDD C 

- density function of noise approximates a constant .))(( constxf N 

Idea of the Proof:

- partition density function into signal and noise

Assumption: Noise is uniformly distributed in the data space

Lemma:

The density-attractors do not change when 

increasing the noise level.

DENCLUE

Noise Invariance



DENCLUE

Noise Invariance



DENCLUE

Noise Invariance



Hybrid Methods

 BIRCH [ZRL 96]

 CLIQUE [AGG+ 98]



BIRCH [ZRL 96]

Clustering

in BIRCH



Basic Idea of the CF-Tree 

 Condensation of the data         using  

CF-Vectors 

 CF-tree uses sum of CF-vectors to 

build higher levels of the CF-tree

BIRCH



BIRCH

Insertion algorithm for a point x:

(1) Find the closest leaf b

(2) If x fits in b, insert x in b; 

otherwise split b

(3) Modify the path for b

(4) If tree is to large, condense the tree 

by merging the closest leaves



BIRCH

CF-Tree

Construction



CLIQUE [AGG+ 98]

 Subspace Clustering

 Monotonicity Lemma: 
If a collection of points S is a 

cluster in a k-dimensional space, 

then S is also part of a cluster in 

any (k-1)-dimensional projection 

of this space.

 Bottom-up Algorithm 

for determining the 

projections



CLIQUE

 Cluster description  in disjunctive 

normal Form



Techniques for Improving the 

Efficiency and Effectiveness

 Hierarchical Variants of Cluster Algorithms 
(for Improving the Effectiveness)

 Scaling Up of Cluster Algorithms 
(for Improving the Efficiency)

– Sampling Techniques

– Bounded Optimization Techniques

– Indexing Techniques

– Condensation Techniques

– Grid-based Techniques



Scalability Problems

 Effectiveness degenerates 

– with dimensionality (d)

– with noise level

 Efficiency degenerates 

– linearly with no of data points (N) and 

– exponentially with dimensionality (d)



Hierarchical Variant of  

WaveCluster [SCZ 98]

 WaveCluster can be used to perform 

multiresolution clustering

 Using coarser grids, cluster start to 

merge



Hierarchical Variant of 

DENCLUE [HK 98]

 DENCLUE is able to determine a hierarchy of 

cluster using smoother kernels (                      )maxmin  

#clusters

min maxopt



Building Hierarchies ()



Scaling Up of Cluster Algorithms

 Sampling Techniques [EKX 95]

 Bounded Optimization Techniques [NH 94]

 Indexing Techniques [BK 98]

 Condensation Techniques [ZRL 96]

 Grid-based Techniques [SCZ 98, HK 98]



Sampling [EKX 95]

 R*-Tree Sampling

 Comparison of Effectiveness versus 

Efficiency (example CLARANS)



Bounded Optimization [NH 94]

 CLARANS uses two bounds to restricts 

the optimization: num_local, max_neighbor

 Impact of the Parameter:

– num_local Number of iterations

– max_neighbors Number of tested 

neighbors per iteration



Indexing [BK 98]

 Cluster algorithms and their index 

structures

– BIRCH:   CF-Tree [ZRL 96]

– DBSCAN: R*-Tree [Gut 84]

X-Tree [BKK 96] (range queries)

– WaveCluster:   Grid / Array [SCZ 98]

– DENCLUE:   B+-Tree, Grid / Array [HK 98]



Condensing Data

 BIRCH [ZRL 96]:

– Phase 1-2 makes a condensed 

representation of the data (CF-tree)

– Phase 3-4 applies a separate cluster 

algorithm to the leafs of the CF-tree

 Condensing data is crucial for efficiency

Data CF-Tree condensed CF-Tree Cluster



R-Tree:  [Gut 84]

The Concept of Overlapping Regions

directory

data

level 1

directory
level 2

pages

. . . exact representation



Variants of the R-Tree

Low-dimensional

 R+-Tree [SRF 87]

 R*-Tree [BKSS 90]

 Hilbert R-Tree [KF94]

High-dimensional

 TV-Tree [LJF 94] 

 X-Tree [BKK 96]

 SS-Tree [WJ 96]

 SR-Tree [KS 97]



Effects of High Dimensionality 

 Data pages have large extensions

 Most data pages touch the surface 

of the data space on most sides

Location and Shape of Data Pages



The X-Tree [BKK 96]

(eXtended-Node Tree)
 Motivation:

Performance of the R-Tree degenerates in 

high dimensions

 Reason: overlap in the directory



The X-Tree

Supernodes Normal Directory Nodes Data Nodes

root



Speed-Up of X-Tree over the R*-

Tree

Point Query 10 NN Query



Grid Approaches WaveCluster

 WaveCluster [SCZ 98]

– Partition the data space by a grid  reduce the 

number of data objects by making a small error

– Apply the wavelet-transformation to the reduced 

feature space 

– Find the connected components as clusters

 Compression of the grid is crucial for the 

efficiency

 Does not work in high dimensional space!



Effects of High Dimensionality 

 The selectivity depends on the volume of the query

selectivity = 0.1 %

e

Selectivity of  Range Queries

 no fixed e-environment  (as in DBSCAN)



 In high-dimensional data spaces, there exists a 

region in the data space which is affected by ANY 

range query (assuming uniformly distributed data)

Effects of High Dimensionality 

Selectivity of  Range Queries

 difficult to build an efficient index structure 

 no efficient support of range queries (as in DBCLASD)
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 Probability that a point is closer than 0.1 

to a (d-1)-dimensional surface

 no of directions (from center) increases exponentially

The Surface is Everything

Effects of High Dimensionality 



 Number  of  grid  cells 
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 grid cells can not be stored explicitly

 most grid cells do not contain any data points

Effects of High Dimensionality 

Number of Surfaces and Grid Cells 
 Number of k-dimensional surfaces in a 

d-dimensional hypercube?

d2



DENCLUE Algorithm [HK 98]

Basic Idea

 Use Local Density Function which 

approximates the Global Density Function

 Use CubeMap Data Structure for efficiently 

locating the relevant points 



Definition

The local density              is defined as
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Lemma (Error Bound)

If                                               , the error is bound 

by:

}),(|{)( kxxdDxxnear ii 

DENCLUE

Local Density Function



CubeMap

Data Structure based on regular cubes for storing the data 

and efficiently determining the density function



DENCLUE Algorithm

DENCLUE (D, , x)

)( (a) DBRDetermineMMBR 

),,,( (d) xrCmapractorsDetDensAttclusters 

),,( (b) MBRDsDetPopCubeCp 

),(     cpsp CopCubesDetHighlyPC x

),,(, (c) sppr CCConnectMapCmap 



Summary and Conclusions

 A number of effective and efficient Clustering 

Algorithms is available for small to medium 

size data sets and small dimensionality

 Efficiency suffers severely for large 

dimensionality (d)

 Effectiveness suffers severely for large 

dimensionality (d), especially in combination 

with a high noise level



Open Research Issues

 Efficient Data Structures for large N

and large d

 Clustering Algorithms which work effectively

for large N, large d and large Noise Levels

 Integrated Tools for an Effective Clustering 

of High-Dimensional Data 

(combination of automatic, visual and 

interactive clustering techniques)
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