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Introduction

 Application Example: Marketing

– Given:

• Large data base of customer data containing 

their properties and past buying records

– Goal:

• Find groups of customers with similar behavior

• Find customers with unusual behavior



Introduction

 Application Example: 

Class Finding in CAD-Databases

– Given:

• Large data base of CAD data containing abstract 

feature vectors (Fourier, Wavelet, ...)

– Goal:

• Find homogeneous groups of similar CAD parts

• Determine standard parts for each group 

• Use standard parts instead of special parts 
( reduction of the number of parts to be produced)



Introduction

Problem Description

 Given: 

A data set with N d-dimensional data items.

 Task: 

Determine a (good/natural) partitioning of 

the data set into a number of clusters (k) 

and noise.



Introduction

From the Past ...

 Clustering is a well-known problem in 

statistics [Sch 64, Wis 69]

 more recent research in 

– machine learning [Roj 96],

– databases [CHY 96], and 

– visualization [Kei 96] ...



Introduction

... to the Future 

 Effective and efficient clustering algorithms for 

large high-dimensional data sets with high 

noise level

 Requires Scalability with respect to 

– the number of data points (N)

– the number of dimensions (d)

– the noise level
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and Efficiency
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Clustering Methods

 Model- and Optimization-Based 

Approaches

 Density-Based Approaches

 Hybrid Approaches



 Determine k prototypes of a given data

 Optimize a distance criteria:

 Iterative Algorithm:

K-Means [Fuk 90]
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•Assign the data points to the nearest prototype

•Shift the prototypes towards the mean of their point set



Expectation Maximization [Lau 95]

 Estimate parameters of k Gaussians

 Optimize the probability, that the mixture 

of parameterized Gaussians fits the data

 Iterative algorithm similar to k-Means



 Self-Organizing Maps [Roj 96, KMS 91]

– Fixed map topology 

(grid, line)

 Growing Networks [Fri 95]

– Iterative insertion of 

nodes

– Adaptive map topology

AI Methods [Fri 95, KMS+91]



CLARANS [NH 94]

 Medoid Method:

– Medoids are special 

data points

– All data points are 

assigned to the 

nearest medoid

 Optimization Criterion:



 Graph Interpretation:
– Search process can be  symbolized by a graph

– Each node corresponds to a specific set of medoids

– The change of one medoid corresponds to a jump to a 

neighboring node in the search graph 

 Complexity Considerations:
– The search graph has      nodes and each node 

has N*k edges

– The search is bound by a fixed number of jumps (num_local)

in the search graph

– Each jump is optimized by randomized search and costs 

max_neighbor scans over the data (to evaluate the cost 

function)

CLARANS
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Density-based Methods

 Linkage -based 

Methods [Boc 74]

 DBSCAN [EKS+ 96]

 DBCLASD [XEK+ 98]

 STING [WYM 97]

 Hierarchical Grid 

Clustering [Sch 96]

 WaveCluster [SCZ 98]

 DENCLUE [HK 98]



Linkage -based Methods
(from Statistics) [Boc 74]

 Single Linkage (Connected components for distance d)

 Method of Wishart [Wis 69] (Min. no. of points: c=4)

Reduce data set Apply Single Linkage



 Clusters are defined as 

Density-Connected Sets (wrt. MinPts, e)

DBSCAN [EKS+ 96]



DBSCAN

 For each point, DBSCAN determines the 

e-environment and checks, whether it contains 

more than MinPts data points

 DBSCAN uses index structures for determining 

the e-environment

 Arbitrary shape clusters found by DBSCAN



 Distribution-based method

 Assumes arbitrary-shape 

clusters of uniform distribution

 Requires no parameters

 Provides grid-based 

approximation  of clusters

DBCLASD [XEK+ 98]

Before the 

insertion 

of point p

After the 

insertion 

of point p



DBCLASD

 Definition of a cluster C based on the 

distribution of the NN-distance (NNDistSet):



DBCLASD

 Step (1) uses the concept of the c2-test

 Incremental augmentation of clusters by 

neighboring points (order-depended)

– unsuccessful candidates are tried again later

– points already assigned to some cluster may  

switch to another cluster



STING [WYM 97]

 Uses a quadtree-like structure for 

condensing the data into grid cells

 The nodes of the quadtree  

contain statistical 

information about the data 

in the corresponding cells

 STING determines clusters 

as the density-connected 

components of the grid

 STING approximates the 

clusters found by DBSCAN



Hierarchical Grid Clustering
[Sch 96]

 Organize the data space as a 

grid-file

 Sort the blocks by their density

 Scan the blocks iteratively and 

merge blocks, which are adjacent 

over a (d-1)-dim. hyperplane.

 The order of the merges forms 

a hierarchy



WaveCluster [SCZ 98]

 Clustering from a signal processing perspective 

using wavelets



WaveCluster

 Signal transformation using wavelets

 Arbitrary shape clusters found by WaveCluster at 

different resolutions



DENCLUE [HK 98]

Data Set 

Fig 1b

Fig 1c

Density Function

Density Function: Sum of the influences of all data 

points

Influence Function

Influence Function: Influence of a data point in its 

neighborhood



Density Function 

The density at a point x in the data space is defined as 

the sum of influences of all data points xi, i.e.

Influence Function

The influence of a data point y at a point x in the data 

space is modeled by a function ,   
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DENCLUE



Density Attractor/Density-Attracted Points

- local maximum of the density function

- density-attracted points are determined by a 

gradient-based hill-climbing method

DENCLUE

Definitions of Clusters

(    )



DENCLUE

Center-Defined Cluster
A center-defined cluster with

density-attractor x* ( ) is

the subset of the database which

is density-attracted by x*.

Multi-Center-Defined

Cluster
A multi-center-defined cluster

consists of a set of center-defined

clusters which are linked by a path

with significance x.
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DENCLUE

Impact of different Significance Levels (x)



Choose   such that number of density 

attractors is constant for a long interval of !

#clusters

min maxopt

DENCLUE

Choice of the Smoothness Level ()



DENCLUE

Variation of the Smoothness Level ()



DENCLUE

DENCLUE generalizes other clustering methods:

 density-based clustering
(e.g., DBSCAN: Square Wave influence function, 

multi-center-defined clusters,  = EPS, x MinPts)

 partition-based clustering
(e.g., k-means Clustering: Gaussian influence 

function, center-defined clusters, x  0,

determine  such that k clusters)

 hierarchical clustering
(center-defined clusters for different values of  form 

hierarchy)



)()()( xfxfxf NDD C 

- density function of noise approximates a constant .))(( constxf N 

Idea of the Proof:

- partition density function into signal and noise

Assumption: Noise is uniformly distributed in the data space

Lemma:

The density-attractors do not change when 

increasing the noise level.

DENCLUE

Noise Invariance



DENCLUE

Noise Invariance



DENCLUE

Noise Invariance



Hybrid Methods

 BIRCH [ZRL 96]

 CLIQUE [AGG+ 98]



BIRCH [ZRL 96]

Clustering

in BIRCH



Basic Idea of the CF-Tree 

 Condensation of the data         using  

CF-Vectors 

 CF-tree uses sum of CF-vectors to 

build higher levels of the CF-tree

BIRCH



BIRCH

Insertion algorithm for a point x:

(1) Find the closest leaf b

(2) If x fits in b, insert x in b; 

otherwise split b

(3) Modify the path for b

(4) If tree is to large, condense the tree 

by merging the closest leaves



BIRCH

CF-Tree

Construction



CLIQUE [AGG+ 98]

 Subspace Clustering

 Monotonicity Lemma: 
If a collection of points S is a 

cluster in a k-dimensional space, 

then S is also part of a cluster in 

any (k-1)-dimensional projection 

of this space.

 Bottom-up Algorithm 

for determining the 

projections



CLIQUE

 Cluster description  in disjunctive 

normal Form



Techniques for Improving the 

Efficiency and Effectiveness

 Hierarchical Variants of Cluster Algorithms 
(for Improving the Effectiveness)

 Scaling Up of Cluster Algorithms 
(for Improving the Efficiency)

– Sampling Techniques

– Bounded Optimization Techniques

– Indexing Techniques

– Condensation Techniques

– Grid-based Techniques



Scalability Problems

 Effectiveness degenerates 

– with dimensionality (d)

– with noise level

 Efficiency degenerates 

– linearly with no of data points (N) and 

– exponentially with dimensionality (d)



Hierarchical Variant of  

WaveCluster [SCZ 98]

 WaveCluster can be used to perform 

multiresolution clustering

 Using coarser grids, cluster start to 

merge



Hierarchical Variant of 

DENCLUE [HK 98]

 DENCLUE is able to determine a hierarchy of 

cluster using smoother kernels (                      )maxmin  

#clusters

min maxopt



Building Hierarchies ()



Scaling Up of Cluster Algorithms

 Sampling Techniques [EKX 95]

 Bounded Optimization Techniques [NH 94]

 Indexing Techniques [BK 98]

 Condensation Techniques [ZRL 96]

 Grid-based Techniques [SCZ 98, HK 98]



Sampling [EKX 95]

 R*-Tree Sampling

 Comparison of Effectiveness versus 

Efficiency (example CLARANS)



Bounded Optimization [NH 94]

 CLARANS uses two bounds to restricts 

the optimization: num_local, max_neighbor

 Impact of the Parameter:

– num_local Number of iterations

– max_neighbors Number of tested 

neighbors per iteration



Indexing [BK 98]

 Cluster algorithms and their index 

structures

– BIRCH:   CF-Tree [ZRL 96]

– DBSCAN: R*-Tree [Gut 84]

X-Tree [BKK 96] (range queries)

– WaveCluster:   Grid / Array [SCZ 98]

– DENCLUE:   B+-Tree, Grid / Array [HK 98]



Condensing Data

 BIRCH [ZRL 96]:

– Phase 1-2 makes a condensed 

representation of the data (CF-tree)

– Phase 3-4 applies a separate cluster 

algorithm to the leafs of the CF-tree

 Condensing data is crucial for efficiency

Data CF-Tree condensed CF-Tree Cluster



R-Tree:  [Gut 84]

The Concept of Overlapping Regions

directory

data

level 1

directory
level 2

pages

. . . exact representation



Variants of the R-Tree

Low-dimensional

 R+-Tree [SRF 87]

 R*-Tree [BKSS 90]

 Hilbert R-Tree [KF94]

High-dimensional

 TV-Tree [LJF 94] 

 X-Tree [BKK 96]

 SS-Tree [WJ 96]

 SR-Tree [KS 97]



Effects of High Dimensionality 

 Data pages have large extensions

 Most data pages touch the surface 

of the data space on most sides

Location and Shape of Data Pages



The X-Tree [BKK 96]

(eXtended-Node Tree)
 Motivation:

Performance of the R-Tree degenerates in 

high dimensions

 Reason: overlap in the directory



The X-Tree

Supernodes Normal Directory Nodes Data Nodes

root



Speed-Up of X-Tree over the R*-

Tree

Point Query 10 NN Query



Grid Approaches WaveCluster

 WaveCluster [SCZ 98]

– Partition the data space by a grid  reduce the 

number of data objects by making a small error

– Apply the wavelet-transformation to the reduced 

feature space 

– Find the connected components as clusters

 Compression of the grid is crucial for the 

efficiency

 Does not work in high dimensional space!



Effects of High Dimensionality 

 The selectivity depends on the volume of the query

selectivity = 0.1 %

e

Selectivity of  Range Queries

 no fixed e-environment  (as in DBSCAN)



 In high-dimensional data spaces, there exists a 

region in the data space which is affected by ANY 

range query (assuming uniformly distributed data)

Effects of High Dimensionality 

Selectivity of  Range Queries

 difficult to build an efficient index structure 

 no efficient support of range queries (as in DBCLASD)



1
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 Probability that a point is closer than 0.1 

to a (d-1)-dimensional surface

 no of directions (from center) increases exponentially

The Surface is Everything

Effects of High Dimensionality 



 Number  of  grid  cells 

resulting from a binary 

partitioning?
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 grid cells can not be stored explicitly

 most grid cells do not contain any data points

Effects of High Dimensionality 

Number of Surfaces and Grid Cells 
 Number of k-dimensional surfaces in a 

d-dimensional hypercube?

d2



DENCLUE Algorithm [HK 98]

Basic Idea

 Use Local Density Function which 

approximates the Global Density Function

 Use CubeMap Data Structure for efficiently 

locating the relevant points 



Definition

The local density              is defined as
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If                                               , the error is bound 

by:
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DENCLUE

Local Density Function



CubeMap

Data Structure based on regular cubes for storing the data 

and efficiently determining the density function



DENCLUE Algorithm

DENCLUE (D, , x)

)( (a) DBRDetermineMMBR 

),,,( (d) xrCmapractorsDetDensAttclusters 

),,( (b) MBRDsDetPopCubeCp 

),(     cpsp CopCubesDetHighlyPC x

),,(, (c) sppr CCConnectMapCmap 



Summary and Conclusions

 A number of effective and efficient Clustering 

Algorithms is available for small to medium 

size data sets and small dimensionality

 Efficiency suffers severely for large 

dimensionality (d)

 Effectiveness suffers severely for large 

dimensionality (d), especially in combination 

with a high noise level



Open Research Issues

 Efficient Data Structures for large N

and large d

 Clustering Algorithms which work effectively

for large N, large d and large Noise Levels

 Integrated Tools for an Effective Clustering 

of High-Dimensional Data 

(combination of automatic, visual and 

interactive clustering techniques)
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