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Modern Database Applications

 Multimedia Databases

– large data set

– content-based search

– feature-vectors

– high-dimensional data

 Data Warehouses

– large data set

– data mining

– many attributes

– high-dimensional data
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Effects in High-Dimensional Spaces

 Exponential dependency of measures 

on the dimension

 Boundary effects

 No geometric imagination

 Intuition fails

The Curse of Dimensionality
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Assets

 N data items

 d dimensions

 data space [0, 1]d

 q query (range, partial range, NN)

 uniform data

 but not: N exponentially depends on d
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Exponential Growth of Volume
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The Surface is Everything
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Number of Surfaces

 How much k-dimensional surfaces has 

a d-dimensional hypercube [0..1]d ?
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“Each Circle Touching All Boundaries 

Includes the Center Point”

 d-dimensional cube [0, 1]d

 cp = (0.5, 0.5, ..., 0.5) 

 p = (0.3, 0.3, ..., 0.3)

 16-d: circle (p, 0.7), distance (p, cp)=0.8

cp

p

circle(p, 0.7)

TRUE
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Database-Specific Effects

 Selectivity of queries

 Shape of data pages

 Location of data pages
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Selectivity of  Range Queries

 The selectivity depends on the volume 

of the query
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Selectivity of  Range Queries

 In high-dimensional data spaces, there exists 

a region in the data space which is affected 

by ANY range query (assuming uniformity)
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Shape of Data Pages

 uniformly distributed data 

 each data page has the same volume 

 split strategy: split always at the 50%-quantile

 number of split dimensions:

 extension of a “typical” data page: 0.5 in d’

dimensions, 1.0 in (d-d’) dimensions
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Location and Shape of Data Pages

 Data pages have large extensions

 Most data pages touch the surface of 

the data space on most sides
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Models for High-Dimensional 

Query Processing

 Traditional NN-Model [FBF 77]

 Exact NN-Model [BBKK 97]

 Analytical NN-Model [BBKK 98]

 Modeling the NN-Problem [BGRS 98]

 Modeling Range Queries [BBK 98]
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Traditional NN-Model

 Friedman, Finkel, Bentley-Model [FBF 77]

Assumptions:

– number of data points N goes towards infinity

( unrealistic for real data sets)

– no boundary effects 

( large errors for high-dim. data)
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Exact NN-Model [BBKK 97]

 Goal: Determination of the number of data pages 

which have to be accessed on the average

 Three Steps:

1. Distance to the Nearest Neighbor

2. Mapping to the Minkowski Volume

3. Boundary Effects
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Exact NN-Model

1. Distance to the Nearest Neighbor

2. Mapping to the Minkowski Volume

3. Boundary Effects
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Exact NN-Model

1. Distance to the Nearest Neighbor

2. Mapping to the Minkowski Volume

3. Boundary Effects

Minkowski Volume:
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Exact NN-Model

1. Distance to the Nearest Neighbor

2. Mapping to the Minkowski Volume

3. Boundary Effects
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Exact NN-Model

#S
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Comparison
with Traditional Model and Measured Performance
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Approximate NN-Model [BBKK 98]

1. Distance to the Nearest-Neighbor

Idea:

Nearest-neighbor Sphere contains 1/N

of the volume of the data space
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Approximate NN-Model

2. Distance threshold which requires more data 

pages to be considered

 i

1


-------

 d 2 1+ 

N
----------------------------d

0.5---------------------------------------------

 
 
 
 
 

=

2

i
2 d

e ----------
 d

3


4 N
2


--------------d

NN-dist N d  0.5 i=

Query Point

NN-sphere (0.4)

NN-sphere (0.6)

0

1

radius



25

#S d  d'
k 
 

k 0=

2 d

e ----------
 d

3


4 N
2

--------------d


log

2

N

Ceff

--------- 
 

k 
 
 

k 0=

2 d

e ----------
 d

3


4 N
2

--------------d

= =

Approximate NN-Model

3. Number of pages



26

Approximate NN-Model

(depending on the database size and the dimension)
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Comparison 
with Exact NN-Model and Measured Performance

Exact

Analytical

Measured
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The Problem of  Searching the 

Nearest Neighbor [BGRS 98]

 Observations:

– When increasing the dimensionality, the nearest-

neighbor distance grows. 

– When increasing the dimensionality, the farest-

neighbor distance grows.

– The nearest-neighbor distance grows FASTER 

than the farest-neighbor distance.

– For               , the nearest-neighbor distance 

equals to the farest-neighbor distance.

d
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When Is Nearest Neighbor meaningful?

 Statistical Model:

 For the d-dimensional distribution holds:

where D is the distribution of the distance of the query point and 

a data point and we consider a Lp metric.

 This is true for synthetic distributions such as 

normal, uniform, zipfian, etc.

 This is NOT true for clustered data.
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Modeling Range-Queries [BBK 98]

 Idea: Use Minkowski-sum to determine 

the probability that a data page (URC, 

LLC) is loaded

rectang le

query window

cen ter

Minkow sk i sum
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Indexing High-Dimensional Space

 Criterions

 kd-Tree-based Index Structures

 R-Tree-based Index Structures

 Other Techniques

 Optimization and Parallelization
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Criterions

 Structure of the Directory

 Overlapping vs. Non-overlapping Directory

 Type of MBR used

 Static vs. Dynamic

 Exact vs. Approximate
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The kd-Tree  [Ben 75]

 Idea:
Select a dimension, split according to this 

dimension and do the same recursively with 

the two new sub-partitions

 Problem:
The resulting binary tree is not adequate for 

secondary storage

 Many proposals how to make it work on disk 

(e.g., [Rob 81], [Ore 82] [See 91])
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kd-Tree  - Example
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The kd-Tree

 Plus:

– fanout constant for arbitrary dimension

– fast insertion

– no overlap

 Minus:

– depends on the order of insertion 

(e.g., not robust for sorted data)

– dead space covered
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The kdB-Tree   [Rob 81]

 Idea:

– Aggregate kd-Tree nodes into disk pages

– Split data pages in case of overflow 

(B-Tree-like)

 Problem:

– splits are not local

– forced splits
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The LSDh-Tree    [Hen 98]

 Similar to kdB-Tree

(forced splits are avoided)

 Two-level directory: 

first level in main memory

 To avoid dead space:

only actual data regions are coded
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The LSDh-Tree

 Fast insertion

 Search performance (NN) competitive 

to X-Tree

 Still sensitive to pre-sorted data

 Technique of CADR (Coded Actual 

Data Regions) is applicable to many 

index structures
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The VAMSplit Tree  [JW 96]

 Idea:

Split at the point where maximum variance 

occurs (rather than in the middle)

 sort data in main memory

 determine split position and recurse

 Problems:

– data must fit in main memory

– benefit of variance-based split is not clear
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R-Tree:  [Gut 84]

The Concept of Overlapping Regions

directory

data

level 1

directory
level 2

pages

. . . exact representation
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Variants of the R-Tree

Low-dimensional

 R+-Tree [SRF 87]

 R*-Tree [BKSS 90]

 Hilbert R-Tree [KF94]

High-dimensional

 TV-Tree [LJF 94] 

 X-Tree [BKK 96]

 SS-Tree [WJ 96]

 SR-Tree [KS 97]
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The TV-Tree [LJF 94]

(Telescope-Vector Tree)

 Basic Idea: Not all attributes/dimensions are 

of the same importance for the search 

process.

 Divide the dimensions into three classes

– attributes which are shared by a set of data items

– attributes which can be used to distinguish data 

items

– attributes to ignore
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Telescope Vectors
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The TV-Tree

 Split algorithm:

either increase dimensionality of TV 

or split in the given dimensions

 Insert algorithm: similar to R-Tree

 Problems:

– how to choose the right metric

– high overlap in case of most metrics

– complex implementation
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The X-Tree [BKK 96]

(eXtended-Node Tree)
 Motivation:

Performance of the R-Tree degenerates in 

high dimensions

 Reason: overlap in the directory
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The X-Tree
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The X-Tree

Supernodes Normal Directory Nodes Data Nodes

root



48

The X-Tree

D=4:

D=8:

D=32:

Examples for X-Trees with different dimensionality
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The X-Tree
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The X-Tree

Example split history:
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Speed-Up of X-Tree over the R*-Tree

Point Query 10 NN Query
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Comparison with R*-Tree and TV-Tree

R*-Tree

TV-Tree

X-Tree
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Bulk-Load of X-Trees  [BBK 98a]

 Observation:

In order to split a data set, we do not

have to sort it

 Recursive top-down partitioning 

of the data set

 Quicksort-like algorithm

 Improved data space partitioning
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Example
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Unbalanced Split

 Probability that a data page is loaded when 

processing a range query of edge length 0.6

(for three different split strategies)
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Effect of Unbalanced Split
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In Theory:

In Practice:
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The SS-Tree [WJ 96]

(Similarity-Search Tree)

 Idea:
Split data space into 

spherical regions

 small MINDIST

 high fanout

 Problem: overlap
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The SR-Tree [KS 97]

(Similarity-Search R-Tree)

 Similar to SS-Tree, but:

 Partitions are 

intersections of 

spheres and 

hyper-rectangles

 Low overlap
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Other Techniques

 Pyramid-Tree [BBK 98]

 VA-File [WSB 98]

 Voroni-based Indexing [BEK+ 98]
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The Pyramid-Tree [BBK 98]

 Motivation:
Index-structures such as the X-Tree have 

several drawbacks
– the split strategy is sub-optimal

– all page accesses result in random I/O

– high transaction times (insert, delete, update)

 Idea:
Provide a data space partitioning which can be 

seen as a mapping from a d-dim. space to a 

1-dim. space and make use of B+-Trees
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The Pyramid-Mapping

 Divide the space into 2d pyramids

 Divide each pyramid into partitions

 Each partition corresponds to a B+-Tree page
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The Pyramid-Mapping

 A point in a high-dimensional space can be 

addressed by the number of the pyramid and 

the height within the pyramid.
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Query Processing using a Pyramid-Tree

 Problem:

Determine the pyramids intersected by the 

query rectangle and the interval [hhigh, hlow] 

within the pyramids. 
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Experiments (uniform data)
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Experiments 

(data from data warehouse)
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Analysis (intuitive)

 Performance is determined by the 

trade-off between the increasing range  

and the decreasing thickness of a single 

partition. 

 The analysis shows that the access 

probability of a single partition 

decreases when increasing the 

dimensionality.
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The VA-File  [WSB 98]

(Vector Approximation File)

 Idea:

If NN-Search is an inherently linear problem, we 

should aim for speeding up the sequential scan.

 Use a coarse representation of the data 

points as an approximate representation

(only i bits per dimension - i might be 2)

 Thus, the reduced data set has only the 

(i/32)-th part of the original data set
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The VA-File

 Determine (1/2i )-quantiles of each dimension 

as partition boundaries 

 Sequentially scan the coarse representation 

and maintain the actual NN-distance

 If a partition cannot be pruned according to its 

coarse representation, a look-up is made in 

the original data set
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The VA-file

 Very fast on uniform data 

(no curse of dimensionality)

 Fails, if the data is correlated or builds 

complex clusters

Explanation:
The NN-distance plus the diameter of a single cell 

grows slower than the diameter of the data space when 

increasing the dimensionality.
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Analysis (intuitive)

 Assume the query point q is on a (d/2)-

dimensional surface

 Expected distance between the NN-sphere 

and a VA-cell on the opposite side of space 
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Voronoi-based Indexing  [BEK+ 98]

 Idea:

Precalculation and indexing of the result space

 Point query instead of NN-query

Voroni-Cells Approximated Voroni-Cells
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Voronoi-based Indexing

 Precalculation of Result Space (Voronoi Cells) by 

Linear Optimization Algorithm

 Approximation of Voronoi Cells by Bounding 

Volumes

 Decomposition of Bounding Volumes 

(in most oblique dimension)
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Voronoi-based Indexing

 Comparison to R*-Tree and X-Tree
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Optimization and Parallelization

 Tree Striping [BBK+ 98]

 Parallel Declustering [BBB+ 97]

 Approximate Nearest Neighbor 

Search [GIM 98]
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Tree Striping [BBK+ 98]

 Motivation:

The two solutions to multidimensional indexing

- inverted lists and multidimensional indexes - are 

both inefficient.

 Explanation:

High dimensionality deteriorates the performance of 

indexes and increases the sort costs of inverted lists.

 Idea:

There must be an optimum in between high-

dimensional indexing and inverted lists.
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Tree Striping - Example
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Tree Striping - Cost Model 

 Assume uniformity of data and queries

 Estimate index costs for k indexes 

(based on high-dimensional Minkowsky-sum)

 Estimate sort costs for k indexes

 Sum both costs up

 Determine the optimal value for k
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Tree Striping - Additional Tricks

 Materialization of results

 Smart distribution of attributes by 

estimating selectivity

 Redundant storage of information
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Experiments

 Real data, range queries, 

d-dimensional indexes
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Parallel Declustering [BBB+ 97]

 Idea:

If NN-Search is an inherently linear problem, 

it is perfectly suited for parallelization.

 Problem:

How to decluster high-dimensional data?
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Parallel Declustering
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Near-Optimal Declustering

 Each partition is connected with one corner of the data space

Identify the partitions by their canonical corner numbers

= bitstrings saying left = 0 and right = 1 for each dimension

 Different degrees of neighborhood relationships:

– Partitions are direct neighbors if they differ in exactly 1

dimension

– Partitions are indirect neighbors if they differ in exactly 2

dimension
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Parallel Declustering

Mapping of the Problem to a Graph:
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Parallel Declustering

 Given: vertex number = corner number in binary 

representation 

c = (cd-1, ..., c0)

 Compute: vertex color col(c) as
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Experiments

 Real data, comparison with Hilbert-

declustering, # of disks vs. speed-up



86

Approximate NN-Search 

(Locality-Sensitive Hashing) [GIM 98]

 Idea:

If it is sufficient to only select an approximate 

nearest-neighbor, we can do this much 

faster.

 Approximate Nearest-Neighbor: A point in 

distance                     from the query point.
distNN )1( 



87

Locality-Sensitive Hashing

 Algorithm:
– Map each data point into a higher-dimensional binary space

– Randomly determine k projections of the binary space

– For each of the k projections determine the points having the 

same binary representations as the query point

– Determine the nearest-neighbors of all these points

 Problems:

– How to optimize k?

– What is the expected ? (average and worst case)

– What is an approximate nearest-neighbor “worth”?



88

Open Research Topics

 The ultimate cost model

 Partitioning strategies

 Parallel query processing

 Data reduction

 Approximate query processing

 High-dim. data mining & visualization
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Partitioning Strategies

 What is the optimal data space partitioning 

schema for nearest-neighbor search in high-

dimensional spaces?

 Balanced or unbalanced? 

 Pyramid-like or bounding boxes?

 How does the optimum changes when the 

data set grows in size or dimensionality?
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Parallel Query Processing

 Is it possible to develop parallel versions of 

the proposed sequential techniques? 

If yes, how can this be done?

 Which declustering strategies should 

be used?

 How can the parallel query processing 

be optimized?
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Data Reduction

 How can we reduce a large data warehouse 

in size such that we get approximate 

answers from the reduced data base?

 Tape-based data warehouses 

 disk based

 Disk-based data warehouses 

 main memory

 Tradeoff: accuracy vs. reduction factor
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Approximate Query Processing

 Observation:

Most similarity search applications do not 

require 100% correctness.

 Problem:

– What is a good definition for approximate 

nearest- neighbor search? 

– How to exploit that fuzziness for efficiency?
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High-dimensional Data Mining 

& Data Visualization

 How can the proposed techniques be used 

for data mining?

 How can high-dimensional data sets and 

effects in high-dimensional spaces be 

visualized?
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Summary

 Major research progress in

– understanding the nature of high-dim. spaces

– modeling the cost of queries in 

high-dim. spaces 

– index structures supporting nearest-

neighbor search and range queries
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Conclusions

 Work to be done

– leave the clean environment

• uniformity

• uniform query mix

• number of data items is exponential in d

– address other relevant problems

• partial range queries

• approximate nearest neighbor queries
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