
Indexing High-Dimensional Space:

Database Support for Next Decade´s

Applications

Stefan Berchtold AT&T Research
berchtol@research.att.com

Daniel A. Keim University of Halle-Wittenberg
keim@informatik.uni-halle.de

2

Modern Database Applications

 Multimedia Databases

– large data set

– content-based search

– feature-vectors

– high-dimensional data

 Data Warehouses

– large data set

– data mining

– many attributes

– high-dimensional data

3

Overview

1. Modern Database Applications

2. Effects in High-Dimensional Space

3. Models for High-Dimensional Query Processing

4. Indexing High-Dimensional Space

4.1 kd-Tree-based Techniques

4.2 R-Tree-based Techniques

4.3 Other Techniques

4.4 Optimization and Parallelization

5. Open Research Topics

6. Summary and Conclusions

4

Effects in High-Dimensional Spaces

 Exponential dependency of measures

on the dimension

 Boundary effects

 No geometric imagination

 Intuition fails

The Curse of Dimensionality

5

Assets

 N data items

 d dimensions

 data space [0, 1]d

 q query (range, partial range, NN)

 uniform data

 but not: N exponentially depends on d

6

Exponential Growth of Volume

)12/(
),(




d
radiusdradiusVolume

d
d

sphere



dedgededgeDiagonalcube ),(

 Hyper-cube

 Hyper-sphere

d

cube edgededgeVolume ),(

7

The Surface is Everything

1
0.9

0.1

0 0.1 0.9 1

 Probability that a point is closer than 0.1

to a (d-1)-dimensional surface

8

Number of Surfaces

 How much k-dimensional surfaces has

a d-dimensional hypercube [0..1]d ?

000 100

010

001

111

11*
**1

)(2 kd

k

d










9

“Each Circle Touching All Boundaries

Includes the Center Point”

 d-dimensional cube [0, 1]d

 cp = (0.5, 0.5, ..., 0.5)

 p = (0.3, 0.3, ..., 0.3)

 16-d: circle (p, 0.7), distance (p, cp)=0.8

cp

p

circle(p, 0.7)

TRUE

10

Database-Specific Effects

 Selectivity of queries

 Shape of data pages

 Location of data pages

11

Selectivity of Range Queries

 The selectivity depends on the volume

of the query

12

Selectivity of Range Queries

 In high-dimensional data spaces, there exists

a region in the data space which is affected

by ANY range query (assuming uniformity)

13

Shape of Data Pages

 uniformly distributed data

 each data page has the same volume

 split strategy: split always at the 50%-quantile

 number of split dimensions:

 extension of a “typical” data page: 0.5 in d’

dimensions, 1.0 in (d-d’) dimensions

14

Location and Shape of Data Pages

 Data pages have large extensions

 Most data pages touch the surface of

the data space on most sides

15

Models for High-Dimensional

Query Processing

 Traditional NN-Model [FBF 77]

 Exact NN-Model [BBKK 97]

 Analytical NN-Model [BBKK 98]

 Modeling the NN-Problem [BGRS 98]

 Modeling Range Queries [BBK 98]

16

Traditional NN-Model

 Friedman, Finkel, Bentley-Model [FBF 77]

Assumptions:

– number of data points N goes towards infinity

( unrealistic for real data sets)

– no boundary effects

( large errors for high-dim. data)

17

Exact NN-Model [BBKK 97]

 Goal: Determination of the number of data pages

which have to be accessed on the average

 Three Steps:

1. Distance to the Nearest Neighbor

2. Mapping to the Minkowski Volume

3. Boundary Effects

18

Exact NN-Model

1. Distance to the Nearest Neighbor

2. Mapping to the Minkowski Volume

3. Boundary Effects

1 1 Volavg

d

r – 
N

– =

   sphere-NN intersects pointsNtheofNonePrdistNNP  1

       1
1




Nd

avg

d

avg rVolNrVol
dr

d
rdistNNP

dr

d

Distribution function

Density function

•
S

•NN

data space

data pages

19

Exact NN-Model

1. Distance to the Nearest Neighbor

2. Mapping to the Minkowski Volume

3. Boundary Effects

Minkowski Volume:

S

VolMink

d
r 

d

i 
 
 

a
d i–

VolSp

i
r  

i 0=

d

=

a
2 1

2
--- a VolSp

1
r  

1

4
--- VolSp

2
r 

a

    

r

 

20

Exact NN-Model

1. Distance to the Nearest Neighbor

2. Mapping to the Minkowski Volume

3. Boundary Effects

S

d' log2

N

Ceff

 
 

=

Generalized Minkowski Volume with boundary effects:

where

21

Exact NN-Model

#S

22

Comparison
with Traditional Model and Measured Performance

23

Approximate NN-Model [BBKK 98]

1. Distance to the Nearest-Neighbor

Idea:

Nearest-neighbor Sphere contains 1/N

of the volume of the data space

Vol
Sp

d
NN-dist 

1

N
---- = NN-dist N d 

1



 d 2 1+ 

N
----------------------------d=

24

Approximate NN-Model

2. Distance threshold which requires more data

pages to be considered

 i

1



 d 2 1+ 

N
----------------------------d

0.5---

 
 
 
 
 

=

2

i
2 d

e ----------
 d

3


4 N
2


--------------d

NN-dist N d  0.5 i=

Query Point

NN-sphere (0.4)

NN-sphere (0.6)

0

1

radius

25

#S d  d'
k 
 

k 0=

2 d

e ----------
 d

3


4 N
2

--------------d


log

2

N

Ceff

--------- 
 

k 
 
 

k 0=

2 d

e ----------
 d

3


4 N
2

--------------d

= =

Approximate NN-Model

3. Number of pages

26

Approximate NN-Model

(depending on the database size and the dimension)

27

Comparison
with Exact NN-Model and Measured Performance

Exact

Analytical

Measured

28

The Problem of Searching the

Nearest Neighbor [BGRS 98]

 Observations:

– When increasing the dimensionality, the nearest-

neighbor distance grows.

– When increasing the dimensionality, the farest-

neighbor distance grows.

– The nearest-neighbor distance grows FASTER

than the farest-neighbor distance.

– For , the nearest-neighbor distance

equals to the farest-neighbor distance.

d

29

When Is Nearest Neighbor meaningful?

 Statistical Model:

 For the d-dimensional distribution holds:

where D is the distribution of the distance of the query point and

a data point and we consider a Lp metric.

 This is true for synthetic distributions such as

normal, uniform, zipfian, etc.

 This is NOT true for clustered data.

0))(/)(var(2

lim 


p

d

p

d
d

DED

30

Modeling Range-Queries [BBK 98]

 Idea: Use Minkowski-sum to determine

the probability that a data page (URC,

LLC) is loaded

rectang le

query window

cen ter

Minkow sk i sum

31

Indexing High-Dimensional Space

 Criterions

 kd-Tree-based Index Structures

 R-Tree-based Index Structures

 Other Techniques

 Optimization and Parallelization

32

Criterions

 Structure of the Directory

 Overlapping vs. Non-overlapping Directory

 Type of MBR used

 Static vs. Dynamic

 Exact vs. Approximate

33

The kd-Tree [Ben 75]

 Idea:
Select a dimension, split according to this

dimension and do the same recursively with

the two new sub-partitions

 Problem:
The resulting binary tree is not adequate for

secondary storage

 Many proposals how to make it work on disk

(e.g., [Rob 81], [Ore 82] [See 91])

34

kd-Tree - Example

35

The kd-Tree

 Plus:

– fanout constant for arbitrary dimension

– fast insertion

– no overlap

 Minus:

– depends on the order of insertion

(e.g., not robust for sorted data)

– dead space covered

36

The kdB-Tree [Rob 81]

 Idea:

– Aggregate kd-Tree nodes into disk pages

– Split data pages in case of overflow

(B-Tree-like)

 Problem:

– splits are not local

– forced splits

37

The LSDh-Tree [Hen 98]

 Similar to kdB-Tree

(forced splits are avoided)

 Two-level directory:

first level in main memory

 To avoid dead space:

only actual data regions are coded

38

The LSDh-Tree

 Fast insertion

 Search performance (NN) competitive

to X-Tree

 Still sensitive to pre-sorted data

 Technique of CADR (Coded Actual

Data Regions) is applicable to many

index structures

39

The VAMSplit Tree [JW 96]

 Idea:

Split at the point where maximum variance

occurs (rather than in the middle)

 sort data in main memory

 determine split position and recurse

 Problems:

– data must fit in main memory

– benefit of variance-based split is not clear

40

R-Tree: [Gut 84]

The Concept of Overlapping Regions

directory

data

level 1

directory
level 2

pages

. . . exact representation

41

Variants of the R-Tree

Low-dimensional

 R+-Tree [SRF 87]

 R*-Tree [BKSS 90]

 Hilbert R-Tree [KF94]

High-dimensional

 TV-Tree [LJF 94]

 X-Tree [BKK 96]

 SS-Tree [WJ 96]

 SR-Tree [KS 97]

42

The TV-Tree [LJF 94]

(Telescope-Vector Tree)

 Basic Idea: Not all attributes/dimensions are

of the same importance for the search

process.

 Divide the dimensions into three classes

– attributes which are shared by a set of data items

– attributes which can be used to distinguish data

items

– attributes to ignore

43

Telescope Vectors

44

The TV-Tree

 Split algorithm:

either increase dimensionality of TV

or split in the given dimensions

 Insert algorithm: similar to R-Tree

 Problems:

– how to choose the right metric

– high overlap in case of most metrics

– complex implementation

45

The X-Tree [BKK 96]

(eXtended-Node Tree)
 Motivation:

Performance of the R-Tree degenerates in

high dimensions

 Reason: overlap in the directory

46

The X-Tree

47

The X-Tree

Supernodes Normal Directory Nodes Data Nodes

root

48

The X-Tree

D=4:

D=8:

D=32:

Examples for X-Trees with different dimensionality

49

The X-Tree

50

The X-Tree

Example split history:

51

Speed-Up of X-Tree over the R*-Tree

Point Query 10 NN Query

52

Comparison with R*-Tree and TV-Tree

R*-Tree

TV-Tree

X-Tree

53

Bulk-Load of X-Trees [BBK 98a]

 Observation:

In order to split a data set, we do not

have to sort it

 Recursive top-down partitioning

of the data set

 Quicksort-like algorithm

 Improved data space partitioning

54

Example

55

Unbalanced Split

 Probability that a data page is loaded when

processing a range query of edge length 0.6

(for three different split strategies)

56

Effect of Unbalanced Split

P
a
g
e
 a

cc
e
ss

e
s

query extension

In Theory:

In Practice:

57

The SS-Tree [WJ 96]

(Similarity-Search Tree)

 Idea:
Split data space into

spherical regions

 small MINDIST

 high fanout

 Problem: overlap

58

The SR-Tree [KS 97]

(Similarity-Search R-Tree)

 Similar to SS-Tree, but:

 Partitions are

intersections of

spheres and

hyper-rectangles

 Low overlap

59

Other Techniques

 Pyramid-Tree [BBK 98]

 VA-File [WSB 98]

 Voroni-based Indexing [BEK+ 98]

60

The Pyramid-Tree [BBK 98]

 Motivation:
Index-structures such as the X-Tree have

several drawbacks
– the split strategy is sub-optimal

– all page accesses result in random I/O

– high transaction times (insert, delete, update)

 Idea:
Provide a data space partitioning which can be

seen as a mapping from a d-dim. space to a

1-dim. space and make use of B+-Trees

61

The Pyramid-Mapping

 Divide the space into 2d pyramids

 Divide each pyramid into partitions

 Each partition corresponds to a B+-Tree page

62

The Pyramid-Mapping

 A point in a high-dimensional space can be

addressed by the number of the pyramid and

the height within the pyramid.

63

Query Processing using a Pyramid-Tree

 Problem:

Determine the pyramids intersected by the

query rectangle and the interval [hhigh, hlow]

within the pyramids.

64

Experiments (uniform data)

65

Experiments

(data from data warehouse)

66

Analysis (intuitive)

 Performance is determined by the

trade-off between the increasing range

and the decreasing thickness of a single

partition.

 The analysis shows that the access

probability of a single partition

decreases when increasing the

dimensionality.

67

The VA-File [WSB 98]

(Vector Approximation File)

 Idea:

If NN-Search is an inherently linear problem, we

should aim for speeding up the sequential scan.

 Use a coarse representation of the data

points as an approximate representation

(only i bits per dimension - i might be 2)

 Thus, the reduced data set has only the

(i/32)-th part of the original data set

68

The VA-File

 Determine (1/2i)-quantiles of each dimension

as partition boundaries

 Sequentially scan the coarse representation

and maintain the actual NN-distance

 If a partition cannot be pruned according to its

coarse representation, a look-up is made in

the original data set

69

The VA-file

 Very fast on uniform data

(no curse of dimensionality)

 Fails, if the data is correlated or builds

complex clusters

Explanation:
The NN-distance plus the diameter of a single cell

grows slower than the diameter of the data space when

increasing the dimensionality.

70

Analysis (intuitive)

 Assume the query point q is on a (d/2)-

dimensional surface

 Expected distance between the NN-sphere

and a VA-cell on the opposite side of space

71

Voronoi-based Indexing [BEK+ 98]

 Idea:

Precalculation and indexing of the result space

 Point query instead of NN-query

Voroni-Cells Approximated Voroni-Cells

72

Voronoi-based Indexing

 Precalculation of Result Space (Voronoi Cells) by

Linear Optimization Algorithm

 Approximation of Voronoi Cells by Bounding

Volumes

 Decomposition of Bounding Volumes

(in most oblique dimension)

73

Voronoi-based Indexing

 Comparison to R*-Tree and X-Tree

74

Optimization and Parallelization

 Tree Striping [BBK+ 98]

 Parallel Declustering [BBB+ 97]

 Approximate Nearest Neighbor

Search [GIM 98]

75

Tree Striping [BBK+ 98]

 Motivation:

The two solutions to multidimensional indexing

- inverted lists and multidimensional indexes - are

both inefficient.

 Explanation:

High dimensionality deteriorates the performance of

indexes and increases the sort costs of inverted lists.

 Idea:

There must be an optimum in between high-

dimensional indexing and inverted lists.

76

Tree Striping - Example

77

Tree Striping - Cost Model

 Assume uniformity of data and queries

 Estimate index costs for k indexes

(based on high-dimensional Minkowsky-sum)

 Estimate sort costs for k indexes

 Sum both costs up

 Determine the optimal value for k

78

Tree Striping - Additional Tricks

 Materialization of results

 Smart distribution of attributes by

estimating selectivity

 Redundant storage of information

79

Experiments

 Real data, range queries,

d-dimensional indexes

80

Parallel Declustering [BBB+ 97]

 Idea:

If NN-Search is an inherently linear problem,

it is perfectly suited for parallelization.

 Problem:

How to decluster high-dimensional data?

81

Parallel Declustering

82

Near-Optimal Declustering

 Each partition is connected with one corner of the data space

Identify the partitions by their canonical corner numbers

= bitstrings saying left = 0 and right = 1 for each dimension

 Different degrees of neighborhood relationships:

– Partitions are direct neighbors if they differ in exactly 1

dimension

– Partitions are indirect neighbors if they differ in exactly 2

dimension

83

Parallel Declustering

Mapping of the Problem to a Graph:

84

Parallel Declustering

 Given: vertex number = corner number in binary

representation

c = (cd-1, ..., c0)

 Compute: vertex color col(c) as

85

Experiments

 Real data, comparison with Hilbert-

declustering, # of disks vs. speed-up

86

Approximate NN-Search

(Locality-Sensitive Hashing) [GIM 98]

 Idea:

If it is sufficient to only select an approximate

nearest-neighbor, we can do this much

faster.

 Approximate Nearest-Neighbor: A point in

distance from the query point.
distNN)1(

87

Locality-Sensitive Hashing

 Algorithm:
– Map each data point into a higher-dimensional binary space

– Randomly determine k projections of the binary space

– For each of the k projections determine the points having the

same binary representations as the query point

– Determine the nearest-neighbors of all these points

 Problems:

– How to optimize k?

– What is the expected ? (average and worst case)

– What is an approximate nearest-neighbor “worth”?

88

Open Research Topics

 The ultimate cost model

 Partitioning strategies

 Parallel query processing

 Data reduction

 Approximate query processing

 High-dim. data mining & visualization

89

Partitioning Strategies

 What is the optimal data space partitioning

schema for nearest-neighbor search in high-

dimensional spaces?

 Balanced or unbalanced?

 Pyramid-like or bounding boxes?

 How does the optimum changes when the

data set grows in size or dimensionality?

90

Parallel Query Processing

 Is it possible to develop parallel versions of

the proposed sequential techniques?

If yes, how can this be done?

 Which declustering strategies should

be used?

 How can the parallel query processing

be optimized?

91

Data Reduction

 How can we reduce a large data warehouse

in size such that we get approximate

answers from the reduced data base?

 Tape-based data warehouses

 disk based

 Disk-based data warehouses

 main memory

 Tradeoff: accuracy vs. reduction factor

92

Approximate Query Processing

 Observation:

Most similarity search applications do not

require 100% correctness.

 Problem:

– What is a good definition for approximate

nearest- neighbor search?

– How to exploit that fuzziness for efficiency?

93

High-dimensional Data Mining

& Data Visualization

 How can the proposed techniques be used

for data mining?

 How can high-dimensional data sets and

effects in high-dimensional spaces be

visualized?

94

Summary

 Major research progress in

– understanding the nature of high-dim. spaces

– modeling the cost of queries in

high-dim. spaces

– index structures supporting nearest-

neighbor search and range queries

95

Conclusions

 Work to be done

– leave the clean environment

• uniformity

• uniform query mix

• number of data items is exponential in d

– address other relevant problems

• partial range queries

• approximate nearest neighbor queries

96

Literature

[AMN 95] Arya S., Mount D. M., Narayan O.: ‘Accounting for Boundary Effects

in Nearest Neighbor Searching’, Proc. 11th Annual Symp. on Computational

Geometry, Vancouver, Canada, pp. 336-344, 1995.

[Ary 95] Arya S.: ‘Nearest Neighbor Searching and Applications’, Ph.D. Thesis,

University of Maryland, College Park, MD, 1995.

[BBB+ 97]Berchtold S., Böhm C., Braunmueller B., Keim D. A., Kriegel H.-P.:

„Fast Similarity Search in Multimedia Databases‟, Proc. ACM SIGMOD Int.

Conf. on Management of Data, Tucson, Arizona, 1997.

[BBK 98] Berchtold S., Böhm C., Kriegel H.-P.: „The Pyramid-Tree: Indexing

Beyond the Curse of Dimensionality‟, Proc. ACM SIGMOD Int. Conf. on

Management of Data, Seattle, 1998.

[BBK 98a]Berchtold S., Böhm C., Kriegel H.-P.: „Improving the Query

Performance of High-Dimensional Index Structures by Bulk Load

Operations‟, 6th Int. Conf. On Extending Database Technology, in LNCS

1377, Valenica, Spain, pp. 216-230, 1998.

97

Literature
[BBKK 97] Berchtold S., Böhm C., Keim D., Kriegel H.-P.: „A Cost Model For

Nearest Neighbor Search in High-Dimensional Data Space‟, ACM PODS

Symposium on Principles of Database Systems, Tucson, Arizona, 1997.

[BBKK 98] Berchtold S., Böhm C., Keim D., Kriegel H.-P.: „Optimized

Processing of Nearest Neighbor Queries in High-Dimensional Spaces‟,

submitted for publication.

[BEK+ 98] Berchtold S., Ertl B., Keim D., Kriegel H.-P., Seidl T.: „Fast Nearest

Neighbor Search in High-Dimensional Spaces‟, Proc. 14th Int. Conf. on Data

Engineering, Orlando, 1998.

[BBK+ 98] Berchtold S., Böhm C., Keim D., Kriegel H.-P., Xu X.: „Optimal

Multidimensional Query Processing Using Tree-Striping‟, submitted for

publication.

[Ben 75] Bentley J. L.: ‘Multidimensional Search Trees Used for Associative

Searching’, Comm. of the ACM, Vol. 18, No. 9, pp. 509-517, 1975.

[BGRS 98] Beyer K., Goldstein J., Ramakrishnan R., Shaft U.: „When is

“Nearest Neighbor” Meaningful?‟, submitted for publication.

98

Literature
[BK 97] Berchtold S., Kriegel H.-P.: „S3: Similarity Search in CAD Database

Systems‟, Proc. ACM SIGMOD Int. Conf. on Management of Data, Tucson,

Arizona, 1997.

[BKK 96] Berchtold S., Keim D., Kriegel H.-P.: „The X-tree: An Index Structure

for High-Dimensional Data‟, 22nd Conf. on Very Large Databases, Bombay,

India, pp. 28-39, 1996.

[BKK 97] Berchtold S., Keim D., Kriegel H.-P.: „Using Extended Feature

Objects for Partial Similarity Retrieval‟, VLDB Journal, Vol.4, 1997.

[BKSS 90] Beckmann N., Kriegel H.-P., Schneider R., Seeger B.: „The R*-tree:

An Efficient and Robust Access Method for Points and Rectangles‟, Proc.

ACM SIGMOD Int. Conf. on Management of Data, Atlantic City, NJ, pp. 322-

331, 1990.

[CD 97] Chaudhuri S., Dayal U.: „Data Warehousing and OLAP for Decision

Support‟, Tutorial, Proc. ACM SIGMOD Int. Conf. on Management of Data,

Tucson, Arizona, 1997.

[Cle 79] Cleary J. G.: ‘Analysis of an Algorithm for Finding Nearest Neighbors

in Euclidean Space’, ACM Trans. on Mathematical Software, Vol. 5, No. 2,

pp.183-192, 1979.

99

Literature

[FBF 77] Friedman J. H., Bentley J. L., Finkel R. A.: „An Algorithm for Finding

Best Matches in Logarithmic Expected Time‟, ACM Transactions on

Mathematical Software, Vol. 3, No. 3, pp. 209-226, 1977.

[GG 96] Gaede V., Günther O.: ‘Multidimensional Access Methods’, Technical

Report, Humboldt-University of Berlin, http://www.wiwi.hu- berlin.de/

institute/iwi/info/research/iss/papers/survey.ps.Z.

[GIM] Gionis A., Indyk P., Motwani R.: ‘ Similarity Search in High Dimensions

via Hashing’, submitted for publication, 1998.

[Gut 84] Guttman A.: „R-trees: A Dynamic Index Structure for Spatial

Searching‟, Proc. ACM SIGMOD Int. Conf. on Management of Data, Boston,

MA, pp. 47-57, 1984.

[Hen 94] Henrich, A.: „A distance-scan algorithm for spatial access structures‟,

Proceedings of the 2nd ACM Workshop on Advances in Geographic

Information Systems, ACM Press, Gaithersburg, Maryland, pp. 136-143,

1994.

[Hen 98] Henrich, A.: „The LSDh-tree: An Access Structure for Feature Vectors‟,

Proc. 14th Int. Conf. on Data Engineering, Orlando, 1998.

100

Literature
[HS 95] Hjaltason G. R., Samet H.: „Ranking in Spatial Databases‟, Proc. 4th Int.

Symp. on Large Spatial Databases, Portland, ME, pp. 83-95, 1995.

[HSW 89] Henrich A., Six H.-W., Widmayer P.: ‘The LSD-Tree: Spatial Access

to Multidimensional Point and Non-Point Objects’, Proc. 15th Conf. on Very

Large Data Bases, Amsterdam, The Netherlands, pp. 45-53, 1989.

[Jag 91] Jagadish H. V.: „A Retrieval Technique for Similar Shapes‟, Proc. ACM

SIGMOD Int. Conf. on Management of Data, pp. 208-217, 1991.

[JW 96] Jain R, White D.A.: „Similarity Indexing: Algorithms and Performance‟,

Proc. SPIE Storage and Retrieval for Image and Video Databases IV, Vol.

2670, San Jose, CA, pp. 62-75, 1996.

[KS 97] Katayama N., Satoh S.: „The SR-tree: An Index Structure for High-

Dimensional Nearest Neighbor Queries‟, Proc. ACM SIGMOD Int. Conf. on

Management of Data, pp. 369-380, 1997.

[KSF+ 96] Korn F., Sidiropoulos N., Faloutsos C., Siegel E., Protopapas Z.:

‘Fast Nearest Neighbor Search in Medical Image Databases’, Proc. 22nd Int.

Conf. on Very Large Data Bases, Mumbai, India, pp. 215-226, 1996.

[LJF 94] Lin K., Jagadish H. V., Faloutsos C.: „The TV-tree: An Index Structure

for High-Dimensional Data‟, VLDB Journal, Vol. 3, pp. 517-542, 1995.

101

Literature

[MG 93] Mehrotra R., Gary J.: „Feature-Based Retrieval of Similar Shapes‟,

Proc. 9th Int. Conf. on Data Engineering, 1993.

[Ore 82] Orenstein J. A.: ‘Multidimensional tries used for associative searching’,

Inf. Proc. Letters, Vol. 14, No. 4, pp. 150-157, 1982.

[PM 97] Papadopoulos A., Manolopoulos Y.: ‘Performance of Nearest Neighbor

Queries in R-Trees’, Proc. 6th Int. Conf. on Database Theory, Delphi, Greece,

in: Lecture Notes in Computer Science, Vol. 1186, Springer, pp. 394-408,

1997.

[RKV 95] Roussopoulos N., Kelley S., Vincent F.: ‘Nearest Neighbor Queries’,

Proc. ACM SIGMOD Int. Conf. on Management of Data, San Jose, CA,

pp. 71-79, 1995.

[Rob 81] Robinson J. T.: „The K-D-B-tree: A Search Structure for Large

Multidimensional Dynamic Indexes‟, Proc. ACM SIGMOD Int. Conf. on

Management of Data, pp. 10-18, 1981.

[RP 92] Ramasubramanian V., Paliwal K. K.: „Fast k-Dimensional Tree

Algorithms for Nearest Neighbor Search with Application to Vector

Quantization Encoding‟, IEEE Transactions on Signal Processing, Vol. 40,

No. 3, pp. 518-531, 1992.

102

Literature

[See 91] Seeger B.: ‘Multidimensional Access Methods and their Applications’,

Tutorial, 1991.

[SK 97] Seidl T., Kriegel H.-P.: „Efficient User-Adaptable Similarity Search in

Large Multimedia Databases‟, Proc. 23rd Int. Conf. on Very Large Databases

(VLDB'97), Athens, Greece, 1997.

[Spr 91] Sproull R.F.: ‘Refinements to Nearest Neighbor Searching in k-

Dimensional Trees’, Algorithmica, pp. 579-589, 1991.

[SRF 87] Sellis T., Roussopoulos N., Faloutsos C.: ‘The R+-Tree: A Dynamic

Index for Multi-Dimensional Objects’, Proc. 13th Int. Conf. on Very Large

Databases, Brighton, England, pp 507-518, 1987.

[WSB 98] Weber R., Scheck H.-J., Blott S.:‘ A Quantitative Analysis and

Performance Study for Similarity-Search Methods in High-Dimensional

Spaces’, submitted for publication, 1998.

[WJ 96] White D.A., Jain R.: „Similarity indexing with the SS-tree‟, Proc. 12th

Int. Conf on Data Engineering, New Orleans, LA, 1996.

[YY 85] Yao A. C., Yao F. F.: ‘ A General Approach to D-Dimensional

Geometric Queries’, Proc. ACM Symp. on Theory of Computing, 1985.

103

Acknowledgement

We thank Stephen Blott and Hans-J. Scheck for the very interesting and

helpful discussions about the VA-file and for making the paper available

to us.

We thank Raghu Ramakrishnan and Jonathan Goldstein for their

explanations and the allowance to present their unpublished work on

“When Is Nearest-Neighbor Meaningful”.

We also thank Pjotr Indyk for providing the paper about Local Sensitive

Hashing.

Furthermore, we thank Andreas Henrich for introducing us into the

secrets of LSD and KDB trees.

Finally, we thank Marco Poetke for providing the nice figure explaining

telescope vectors.

Last but not least, we thank H.V. Jagadish for encouraging us to submit

this tutorial.

104

The End

