
Abstract
In this paper, we describe a database query system that

provides visual relevance feedback in querying large data-
bases. The goal of our system is to support the query specifi-
cation process by using each pixel of the display to represent
one data item of the database. By arranging and coloring the
pixels according to their relevance for the query, the user
gets a visual impression of the resulting data set. Using slid-
ers for each condition of the query, the user may change the
query dynamically and receives immediate feedback by the
visual representation of the resulting data set. By using mul-
tiple windows for different parts of a complex query, the user
gets visual feedback for each part of the query and, therefore,
will easier understand the overall result. The system may be
used to query any database that contains tens of thousands to
millions of data items, but it is especially helpful to explore
large data sets with an unknown distribution of values and to
find the interesting hot spots in huge amounts of data. The di-
rect feedback allows to visually display the influence of in-
cremental query refinements and, therefore, allows a better,
easier and faster query specification.

1. Introduction
In very large databases with tens of thousands or even mil-

lions of data items it is often a problem to find the data a person
is interested in. Scientific, engineering or environmental data-
bases, for example, contain large amounts of data that, in
many cases, are collected automatically via sensors and (sat-
ellite) monitoring systems. In querying such systems even a
user who is experienced in using the database and the query
system may have difficulties to find the interesting data spots.
If the user does not know exactly the data and its distribution,
many queries may be needed to find the interesting data sets.
The result for most queries will contain either less data than
expected, sometimes even no answers, so-called ‘NULL’ re-
sults, or more data than expected, at least more than the user is
willing to deal with. The core of the problem in searching
huge amounts of data is the process of query specification.
With today’s database systems and their query interfaces, a
person has to issue queries in a one-by-one fashion. Generally,
there are no possibilities to slightly change a query, to express
uncertain or vague queries. Most important, the user gets no
feedback on his query except the resulting data set containing
either no data items and thus no hint for continuing the search
or too many data items and thus too many to look at.

Many approaches have been made to improve the database
query interface by providing a better feedback in cases of un-
expected results. One approach are graphical database inter-
faces that allow the user to browse the data (e.g. BAROQUE
[Mot86], FLEX [Mot90] or GRADI [KL92]). In general,
these systems only support the user in browsing the resulting
data and in finding errors made because of not knowing the
database system, the data model and query language, and/or
the schema of the database. Another approach are cooperative
database interfaces [Kap82, ABN92] that try to give ‘approx-
imate answers’ in cases where the query does not provide a
satisfactory answer. Such systems use techniques like query
generalization [Cha90] that is dropping or relaxing a selection
predicate in cases where the original query fails, and statisti-
cal approximations or intensional responses instead of full
enumeration in the cases of large results (key ideas are pre-
sented in [JKL77] for the first time). Cooperative systems
mainly help the user to understand the result better and to re-
fine erroneous queries but do not help to visualize huge
amounts of data and to find interesting correlations between
attributes and their values in the context of a specific query.
Even if cooperative systems provide statistical distributions
for the values of a specific attribute, there is no possibility to
relate this distribution to distributions of other attributes. For
relating the results of two independent selection predicates, a
cooperative system may determine the correlation coeffi-
cient, but this may not be very helpful for a specific data item
from a huge data set. Additionally, cooperative interfaces can-
not give direct feedback for dynamically changing queries.

Our idea to improve the database query interface is to sup-
port the query specification process by visually representing
the result. Many approaches to visualize multivariate, multi-
dimensional data have been proposed for various purposes in
different application contexts [PG88, Bed90, FB90, ID90,
LWW90, MGTS90, MZ92]. In dealing with databases con-
sisting of tens of thousands to millions of data items, our goal
is to visualize as many as possible at the same time to give the
user some kind of feedback on the query. The obvious limit for
any kind of visualization is the resolution of current displays
which is in the order of one to three million pixels, e.g. in case
of our 19 inch displays with a resolution of 1024 x 1280 pixels
it is about 1.3 million pixels. Our concept is to use each pixel
of the screen to visualize the data set resulting from a query.
By the visual feedback a better, easier and faster query speci-
fication can be achieved. Important is the interactiveness of
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such a system. The user should have the possibility to modify
the query on-line and to see the changes of the visualized data
set immediately. By playing with such a system, the user may
learn more about the data than by issuing hundreds of queries.
As we will show later, it is especially useful in the case of com-
plex queries such as range queries on multiple attributes.

The rest of the paper is organized as follows: Section 2 elab-
orates on the new query paradigm which is the basis of our que-
ry system. Section 3 introduces our concepts for visualizing
large data sets of multivariate data and elaborates on some of
the possibilities in designing the system. Section 4 illustrates
the features provided by our query and visualization interface.
Section 5 summarizes our approach and points out some of the
open problems for future work.

2. A New Query Paradigm
In today’s database systems, queries are specified in a one-by-

one fashion. This is adequate if the user of the database exactly
specifies the desired data and accesses a clearly separated data
set. For many application areas where databases are used on a
regular basis, e.g. accounting, reservation systems, and so on,
queries are often based on keys accessing exactly the desired
data. If e.g. a person deposits money to a specific account or if all
transactions for a specific account are searched for, the resulting
data set is clearly separated and, therefore, in general, one query
is sufficient to get the desired data. In other application areas,
however, especially those with very large data volumes such as
scientific, engineering or environmental databases, it is often
difficult to find the desired data. Problems occur e.g. if the data-
base contains data different to what the user expected or if the
user does not know exactly what s/he is looking for. In the latter
case, querying the database is like an inexact search. If a query
does not provide the desired result, usually the database is que-
ried by an other similar query differing in just one detail. While
searching for the desired data, often many similar queries are is-
sued before the user is able to find the desired result.

Many problems in querying a database arise if the user does
not know the database system, the data model and query lan-
guage, and/or the schema of the database. But even if the user
has perfect knowledge in all these domains, i.e. all queries are
completely correct (syntactically as well as semantically),
queries may have results which do not correspond to the users
intention. The reason is that the user does not know the specific
data in the database. Therefore, in most cases, it is very difficult
for the user to estimate the amount of data that will be retrieved,
especially for complex queries with many selection predicates
and for range queries. With our query interface, we focus on
the problems arising from the vagueness of the answers for
complex queries and try to give the users more feedback on
their queries. If e.g. a researcher in environmental science is
searching in a huge database of test series for significant val-
ues, s/he might be looking for some correlation between mul-
tiple parameters for some specific period of time and some
geographic regions. Since none of the parameters for the query
is fixed, in general, it is very difficult to get the desired infor-

mation. The researcher would probably start to specify one
query that corresponds to some assumption and after issuing
many refined queries and applying statistical methods to the
results, s/he might find some interesting correlations.

With our query interface which will be described in the next
subsection, the query specification process would be much eas-
ier. In the beginning, the user still has to specify one query.
Then, s/he gets the visual feedback on the query and may inter-
actively change the query according to the impression from the
visualized results. In exploring unknown data sets, the principle
of incremental query refinement guided by visual feedback can
be very helpful for the user to find the desired data. The de-
scribed query specification strategy may be characterized as a
top down strategy since the user first specifies a query and then
applies sliders for all attributes used in the query to reduce or en-
large the data retrieved. Also abottom up strategy is imaginable
where the user first gets a visual representation of the whole da-
tabase and uses sliders for the different attributes to focus on the
desired data. In the following, we only describe the top down
strategy which is implemented in our ‘VisDB’-system.

3. Visualizing Large Data Sets
As already mentioned, the basic idea of our query and visu-

alization interface is to present as many data items as possible
at the same time with the number of data items being only
limited by the number of pixels of the display. Our goal is to
visualize the data in a way that the user gets a visual feedback
on the query and that s/he can easily focus on the desired
data, understand the influence of various query components
and find out why slightly different queries have completely
different results. In the following, we are going to discuss the
important aspects in designing our query and visualization
interface: the screen layouts, the heuristics used to reduce the
amount of data that is displayed, the query facilities for dif-
ferent data types including potential distance functions and
the weighting function used to combine the different query
parts of complex queries.

3.1 Screen Layouts
The principle idea for visually displaying the data on the

screen is to sort them according to their relevance with respect
to the query and to present different relevance factors in differ-
ent colors. The sorting is necessary to avoid completely sprin-
kled images that would not help the user in understanding the
data. One interesting question in designing the system was
how to arrange the relevance factors on the screen. We tried
several arrangements such as top-down, left-to-right, centered,
etc. and found that arrangements with the highest relevance
factors centered in the middle of the window seem to be the
most natural. The one hundred percent correct answers are col-
ored yellow in the middle and the rest are rectangular spiral-
shaped around this region. The colors range from yellow over
green, blue and red to almost black and denote the distance
from the correct answers (c.f. section 3.2). The resulting win-
dow for the overall result is always similar to the upper left part



of the visualization window presented in figures 2-4. Overall
result windows of different queries only differ in the size of the
areas with different colors and may even be completely yellow
in cases where all the data is a completely correct result or al-
most black in cases where all the data is a completely wrong re-
sult. In figure 2, we display the overall result window for a que-
ry with the relevance factors being almost equally distributed.

Up to this point, the visualization of the overall result only
contains information on the amount of data being retrieved and
on the distribution of approximate answers for a specific query.
This information may already be very helpful for the user; how-
ever, to really help the user in refining the query, it is necessary
to relate the visualization of the overall result to visualizations
of the different selection predicates. Therefore, we generate a
separate window for each selection predicate of the query (c.f.
figure 2-4). In these separate windows, we place the pixels for
each data item in the same place as the overall result for the data
item in the overall result window. Now, the user gets additional
information about data that fulfills some of the conditions but
fails to fulfill some other conditions. Only by the visual color
impression of the single screens, the user gets information on
how restrictive each of the conditions is, i.e. how many data
items fulfill a condition, how many fail to fulfill a condition and
how close the data items are to fulfill each of the conditions. Us-
ing the correspondence of data items between the separate win-
dows denoted by their position, the user may also study specific
data items. If in one of the windows there is a color spot in an
area of different color, the user might check for this specific
data item in the other windows or s/he might even retrieve the
real values for the corresponding data item out of the database.

In designing our system, we also experimented with other ar-
rangements of the data items on the screen. One straightforward
idea was to display the data in 2D or 3D with selected attributes
assigned to the axis. With such kind of arrangements, however,
we have the problem that on the one hand many data items may
be concentrated in some area of the screen while other areas are
virtually empty, and on the other hand many data items are su-
perposed and therefore not visible. Although 2D or 3D visual-
izations may be very helpful, e.g. in all cases where the data
have some inherent two- or three-dimensional semantics, we
did not pursue this idea for several reasons: One reason is that in
most cases the number of data items that can be represented on
the screen at the same time is quite limited. This was in contrast
to one of our goals, namely to present at many data items as pos-
sible on the screen. A second reason is that in most cases where
a 2D or 3D arrangement of the data really makes sense, systems
using such arrangements have already been built. For spatial
queries on two-dimensional data, for example, a 2D visualiza-
tion is obviously the best support for querying the database and
basically all Geographical Information Systems provide such
visual representations of the data. For all cases, however, where
no inherent two- or three-dimensional semantics of the data ex-
ists, our representation can be of great value to provide visual
feedback in querying the database. Stimulated by real 2D or 3D
representations of the data, we got the idea to improve our in-

terface by including some feedback on the direction of the dis-
tance. The basic idea is to assign two attributes to the axis and
to arrange the relevance factors according to the direction of the
distance; for one attribute negative distances are arranged to the
left, positive ones to the right and for the other attribute negative
distances are arranged to the bottom, positive ones to the top.

With this kind of representation which is currently being
implemented, we do not represent the distance of data items
directly by their location, but we denote the absolute value of
the distance by their color and the direction by their location
relative to the correct answers (colored yellow). The advan-
tage of this kind of representation is that each data item may
be assigned to one pixel and no overlay of data items with the
same distance does occur. A problem may occur in some spe-
cial cases if e.g. no data items exist that have a negative dis-
tance for both attributes but many data items that have a neg-
ative distance for one of them and a positive one for the other
one. In this case, the bottom left corner of the window would
be completely empty. In the worst case, two diagonally oppo-
site corners of the window may be completely empty and, as
a result, only half as many data items are presented to the user
as possible. Even in this case, the user gets a valuable infor-
mation on how s/he has to change the query to get more or less
results. In summary, it may be noted that maximizing the
number of data items conflicts with arrangements that have
multiple attributes assigned to the axis.

3.2 Calculating the Distance
An important question in building our system was to design

the distance functions used to calculate the distance of the data
in the database from the desired value as specified in the query.
The distance functions can be different for different data types
and even for a single data type multiple distance functions may
be useful. For number types such asinteger or real and other
metric types such asdate the distance of two values is easily
determined by their numerical difference. For non-metric
types such as enumerations with a non-interpretable distance
between different values (ordinal types e.g.grades) or even
with non-comparable values (nominal types e.g.professions)
there is no obvious way to determine the distance. For ordinal
types the distance may be defined by some domain-specific
distance function or by a distance matrix containing the dis-
tance for all pairs of values. A distance matrix may also be use-
ful for nominal types but, in some cases, even a constant value
may be an adequate distance. For the data typestring there are
many possibilities to calculate the distance. Depending on the
application and the context of the retrieval, the user may want
to choose between the lexicographical difference, character-
wise difference, substring difference or even some kind of
phonetic difference. In information retrieval applications that
are using keyword or natural language information for query-
ing the database, even a semantic distance may be used as, for
example, in [KKL92] where the overall distance is deduced
from the distances in the corresponding object-oriented verb
and noun hierarchies. If dealing with queries consisting of
multiple conditions, other specific distance functions may be



used to combine the values of multiple attributes. Examples
are the Manhattan distance or the Euclidean distance in n-di-
mensional space (see section 3.4).

3.3 Reducing the Amount of Data to be Displayed
Since the number of data items that can be displayed on the

screen is limited by the number of pixels, we had to find ade-
quate heuristics to reduce the amount of data and to deter-
mine the data items of which the distance shall be displayed.
The most exact way is to use a statistic parameter, namely the
α-quantile. Theα-quantile is defined as the lowest valueξα

with , where0 ≤ α ≤ 1, F(x) the dis-

tribution andf(x) the density function.
Let r be the number of distance values that can be displayed

on the screen and n be the number of data items in the data base,
then only data items with an absolute distance in the range [0,
(r/n)-quantile] are chosen to be presented to the user. If nega-
tive and positive distance values are used then the range of val-
ues presented to the user is given by [α0*(1-r/n)-quantile,
(α0*(1-r/n) + r/n)-quantile] whereα0 is determined byα0-
quantile = 0. In the special case of two attributes assigned to
the two axis (c.f. section 3.1), correspondingly the combined
α-quantiles for two dimensions may be used. For screen lay-
outs with separate windows for each selection predicate the
number of data items that are displayed may be chosen lower
to be able to display the windows for all selection predicates
non-overlapping on the screen. In this case, the parameter r has
to be chosen correspondingly lower. For the visualization to be
useful to study specific data items or small groups of data
items, several pixels can be used to represent the distance for
one data item. A zoom out of the image may be helpful even if
the amount of data that could be displayed is very large. In em-
pirical tests with real data we found that using 4, 6, 12 or 16 pix-
els for each data item can be very helpful. This causes the num-
ber of presentable data items to be divided by 4, 6, 12 or 16 and
again, the quantiles have to be adapted correspondingly.

Theα-quantiles are the best choice if we want to present as
many data items as possible. We found, however, that in many
cases it is better to present less data items if the density function
of the distance values has multiple peaks (see figure 1 for an ex-
ample for two density functions). If we have e.g. two groups of
distance values each being in different orders (see figure 1b), it
may be helpful to present only the values of the lower group to
the user since, in this case, the graduate differences within this
group are better enhanced by the different colors. To imple-
ment this heuristics, first we define the range [rmin, rmax] for the
number r of distance values that is intended to be displayed.

F ξα( ) f x( ) dx
∞–

ξα
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Figure 1: two density functions

(a) (b) Suppose, the data items xi are sorted according to their distance

di. Then, for each  we calculate

, with z being a heuristically determined

data dependent constant. Then, we choose the data item with
the highest si to be the last data item that is displayed.

3.4 Combining Distances into the Relevance Factor
In this section, we extend the calculation of the distance to

queries consisting of multiple selection predicates. To deter-
mine the combined distance for a complex query, first the dis-
tances are calculated for each selection predicate of the query
as described in subsection 3.2. The combination of distances
for the different selection predicates can be a problem because
the distances for the different selection predicates now have to
be considered with respect to the distances of the other selec-
tion predicates and the combined distance must be defined and
meaningful globally. One problem is that the values calculated
by the distance functions (c.f. section 3.2) may be in complete-
ly different orders of magnitude (e.g. in a medical application,
a distance of 1g/dl for Haemoglobin may be very large and a
distance of 1000 per dl for Erythrocyte may be very small). A
second problem is that the relative importance of the multiple
selection predicates is highly user and query dependent.

The second problem can only be solved by user interaction
since only the user is able to determine the priority of the selec-
tion predicates. Therefore, in general, it is necessary to obtain
weighting factors (wj , j ∈ 1, .., #selection_predicates (#sp))
representing the order of importance of the selection predi-
cates assigned by the user. This is somehow similar to tech-
niques used in information retrieval that have been proposed to
allow a ranking of the resulting data according to its relevance
for the query. As we will show in section 4.1, the weighting
factors may also be changed dynamically allowing to get a vi-
sual feedback on their impact on the result.

The first problem can be solved by a normalization of the
distances. A simple normalization may be defined as a linear
transformation of the range [0, dmax] (or [dmin, dmax] in case
of bi-directional distances) for each selection predicate to a
fixed range (e.g. [0, 255]). In experimenting with this normal-
ization, we found that in some cases it may cause misleading
results. A single data item, for example, with an exceptional-
ly high or low value may cause a completely different trans-
formation, even if the combined distance of this data item is
too high to be displayed. As a consequence of the normaliza-
tion, however, the corresponding selection predicate may
have little or no impact on the overall answer resulting in a set
of approximate answers with a completely misleading visual-
ization. Our idea to improve the normalization is to first re-
duce the number of data items that are considered for each se-

lection attribute to a number that is proportional to .

The inverse proportionality to wj (wj ∈ [0, 1]) is important

xi xrmin
… xrmax

, ,{ }∈

si di dj–
j i z–=

i z+

∑=

r
n wj×
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since the less a selection predicate is weighted, the higher is
the probability that data with a greater distance for this selec-
tion predicate is needed. Then, the data are normalized by
transforming the range [0, dmax] (or [dmin, dmax]) of the re-
maining data items to a fixed range as described above.

In order to combine the independently calculated and nor-
malized distances of multiple selection predicates into a sin-
gle distance value, we use the weighted arithmetic mean for
‘AND’-connected condition parts and the weighted geomet-
ric mean for ‘OR’-connected condition parts. More exactly,
for each data item xi the combined distance is calculated as

 in case of ‘AND’,

in case of ‘OR’.

After calculating the combined distance for the whole con-
dition, the relevance factor is determined as the inverse of
that distance value. Therelevance factor combines the infor-
mation on how good a data item approximates the query into
one value representing the relevance of the data item with re-
spect to the query.

3.5 Coloration of the Relevance Factors
Visualizing the relevance factors using color, corresponds

to the task of mapping a color scale to a single parameter dis-
tribution. The advantage of color over gray scales is that the
number of just noticeable differences (JNDs) is much higher.
The main task is to find a path through color space that maxi-
mizes the number JNDs but, at the same time, is intuitive for
the application domain [LRR92].

In designing the system, we experimented with different
colormaps varying in hue, saturation and value. We found that
the coloration has a high impact on the system to be intuitive.
The user, for example, may implicitly connect good answers
with light colors and bad answers with dark colors or the user
may be accustomed to green colors for good answers and red
colors for bad answers (like the colors used for traffic lights).
We tried many variations of the colormap to enhance the use-
fulness of our system and found experimentally that for our
application, a colormap with quite constant saturation, an in-
creasing value (intensity) and a hue (color) ranging from yel-
low over green, blue and red to almost black are a good choice
to denote the distance from the correct answers. Still, the user
may define different colormaps and use them instead of the
standard colormap which has been used for our examples.

4. The Query Interface
In using our query and visualization system, the possibility to

modify queries dynamically is important. Since modifications
have a direct impact on the visualization, the user will get an
immediate feedback on the effects of the changes. The visual-
ization provides feedback on the amount of data retrieved, on
the restrictiveness of the conditions, on the distribution of the

Combined Distancei wj di j×
j 1=

#sp

∑=

Combined Distancei di j
wj

j 1=

#sp

∏=

distances for each condition and on special areas the user might
be interested in. For example, if the yellow region in the middle
of each window is getting larger (shrinking), more (less) data
items fulfill the condition; if a window is getting darker (bright-
er), the corresponding selection predicate is getting more (less)
restrictive; if the overall structure of a window is changing, the
distribution of distances for the corresponding selection predi-
cate is changing and so on. These visual indicators are a valu-
able help to understand the effects of query modifications
quickly and to learn more about the data in the database, espe-
cially in the context of querying large databases with millions
of data items. In the following, we will give a description of the
querying process.

The first step is to specify a query. The user may use tradi-
tional query languages such as SQL or graphical user inter-
faces such as GRADI [KL92]. Since any existing query inter-
face may be used in this step and since it has basically no
impact on our system, we do not elaborate on this step but fo-
cus on the following steps: visualization of results and query
modification. In figure 2, we present the interactive query
interface of the ‘VisDB’ system that is currently being imple-
mented. The screen is divided in the left portion, the ‘Visual-
ization’ windows and the right portion, the ‘Query Modifica-
tion’ window. In the ‘Visualization’ windows, the user gets a
visual representation for the overall result and for each selec-
tion predicate (see figure 2). In the ‘Query Modification’
part, sliders for the selection predicates and weighting factors
as well as some other options are provided. The color spec-
trum of each slider corresponds to the distribution of distanc-
es for the corresponding attribute. The yellow region which
may be quite large like in the case of the third selection pred-
icate in figure 2 indicates the number of data items fulfilling
the selection predicate; the regions with other colors corre-
spond to the amount of data that have specific distances for
the selection predicate. Inside each slider, the lowest and
highest value of the approximate answer for the correspond-
ing selection predicate are displayed. Outside the color spec-
trums the minimum and maximum value of the attribute in
the database are displayed to give the user a feeling for useful
query values or query ranges.

Below the sliders, several parameters are listed for each at-
tribute, namely the ‘number of results’, the attribute values of
a ‘selected tuple’, the attribute values corresponding to some
‘selected color range’ and finally the ‘query range’ and
‘weighting factors’. In the following, we will describe how
these parameters may help the user to explore the data and to
modify the query.

Using the mouse, the user may choose a specific color or
color range in any of the sliders to get the corresponding val-
ues of the attribute in the ‘selected color’ fields. The possibil-
ity to get the values corresponding to some color or color
range for each selection predicate makes it easier for the user
to understand and interpret the visualization and to modify
the query. In figure 2, for example, the blue region in the mid-
dle of the upper right window may be easily identified by the



user. To understand the meaning of this region, however, the
user needs additional information to relate colors and at-
tribute values. In this special case, the user may easily ob-
serve that data items with values in the ranges of about
82,400 - 96,700 or 146,600 - 151,300 for attribute one are
quite good overall answers for the query although their val-
ues for attribute one are quite bad as indicated by the blue
color. Another help for the user to understand the visualiza-
tion and to find interesting data spots is to select a specific
data item in one of the visualization windows to get the data
item highlighted in all visualization windows and the values
for the attributes displayed in the ‘selected tuple’ field of the
‘Query Modification’ window. The user may use this option
to focus on an exceptional data item or to get an example for
a data item from an interesting region in one of the windows.
To focus on sets of data items with a specific color, it is pos-
sible to select some color range in one of the sliders to get
only those data items in the visualization window that have
the selected color for the considered attribute. In the other vi-
sualization windows the same data items are displayed al-
lowing the user to easily compare the values for the other
attributes of those data items.

The query is displayed with the query parameters represent-
ed graphically by the black lines in the sliders and by the value
of the upper and lower limit in the ‘query’ field. The user may
use the sliders to roughly modify lower and upper limit of the
query or s/he may directly change the values in the ‘query’ field
(see figure 2). For numbers, the user may also choose a differ-
ent kind of slider where the medium value and some allowed
deviation can be manipulated graphically (see attribute one in
figure 2). Different kinds of sliders are provided for different
datatypes and different distance functions. Sliders for discrete
types, for example, reflect the discrete nature of the data by al-
lowing only discrete movements of the slider. Sliders for non-
metric types (ordinal and nominal datatypes) may be, for ex-
ample, enumerations of the possible values with the possibility
to select each of the values or not. Special sliders may be de-
signed for special datatypes and special distance functions, e.g.
for strings with different distance functions (c.f section 3.2).
Below the query parameter field, the weighting factors are rep-
resented graphically. Like the query parameters, the weighting
factors may be directly changed using the mouse. The specifi-
cation of weighting factors may be different if other functions
to combine the distances are used.

On the left side of the query modification window, there is a
color spectrum for the overall result. Since the combined dis-
tance values have no inherent meaning, no values are assigned
to the different colors. Instead of fields for a selected tuple, se-
lected colors or the query, the number of data items in the data-
base, the number of data items being displayed in the visual-
ization window (absolute value and percentage) and the
number of resulting data items are presented to the user. Using
a slider, the user may change the percentage of data being dis-
played or the allowed range, in case the percentage is deter-
mined using the heuristics described in section 3.3 (c.f.

figure 2). Changing the percentage of data being displayed
may completely change the visualization since the distance
values are normalized according to the new range.

In the normal mode, the system re-calculates the visualiza-
tion after each modification of the query. The user may also
switch to an ‘auto re-calculate off’ mode where queries are
only re-calculated on demand. This option is useful for large
databases with many data items or if complex distance func-
tions are used, because the re-calculation for each modifica-
tion may need a considerable amount of time. Other menu op-
tions allow the user to add or delete selection predicates at any
time, to extend the query or to issue a completely different
query. Furthermore, to help the user in specifying queries, we
envision advanced facilities that allow the user to identify re-
gions in the visualization window with the system automati-
cally generating queries providing the data items of the iden-
tified regions as results.

In figures 2-4, three visualizations of query results are dis-
played. The query used to generate the visualization in
figure 3 only differs from the query in figure 2 in one selection
predicate which has been set to a different range. It is interest-
ing that the resulting visualizations for all selection predicates
are completely different. The visualization presented in figure
4 results from the same query as displayed in figure 2 except
that the weighting factors for selection predicates one and two
have been set to 20 which is one dimension lower than the
weighting factor of selection predicate three. Interesting are
the clear identifiable regions of different colors which denote
clusters of data items with a comparable distance, and the cor-
relations between the windows for the different selection
predicates. Also interesting, but not easily identifiable in the
printed version of our visualizations are hot spots, i.e. single
exceptional data items in regions which are otherwise homo-
geneous. Much of the information the user may get out of the
visualization is related to the semantics of the data. Due to
space limitations, in this paper we do not elaborate on these
aspects, since we would have to introduce the schema and the
instances of our data base in more detail.

5. Conclusions
A major problem in querying large databases is to find the

interesting data and their properties, e.g. hot spots, clusters of
similar data or correlations between different parameters.
The user must have some advance knowledge about the data
in the database to be able to find the interesting data in an ac-
ceptable amount of time. Even if the user has some knowl-
edge about the data, it can be quite tedious to focus on the de-
sired data. For complex queries, the user often obtains
unexpected results that are difficult to interpret and contain no
hints on how to modify the query. Our idea to improve the
query specification process is to visualize the query result in-
cluding a set of approximate answers. For all data items that
are not fulfilling the query, we calculate the distance with re-
spect to each of the selection predicates, combine the distanc-
es for all selection predicates into one value using the weight-



ing factors obtained from the user and visualize the single and
combined distances. With our interactive query modification
interface, the user may dynamically change the query and re-
ceives immediate feedback by the visual representation of the
resulting data set. Our query and visualization interface im-
proves the possibilities to explore large databases allowing
the user to find results which, otherwise, would remain hid-
den in the database. The system further helps to considerably
reduce the time needed for exploring the database.

The visualizations presented in figures 2-4 are generated by
a prototype of our ‘VisDB’ system. The prototype has been
implemented to evaluate the concepts and design of our query
and visualization interface. The implementation of some
parts of the interface, especially the interactive modification
of queries and the screen layouts with two attributes assigned
to the axis, is not yet completed. We believe that our ideas are
general enough to be readily applied to existing databases and
database systems. Currently, we are exploring a large envi-
ronmental database with about 180,000 data items. In inter-
facing to current commercial database systems, however,
performance problems arise since no access to partial results
of a query is available, no support for incrementally changing
queries is provided and no multidimensional data structures
such as R*-Trees [BKSS90] or Buddy-Trees [SK90] are used
for fast secondary storage access. We are currently trying to
improve the performance in directly interfacing with the da-
tabase system. In the future, we plan to realize our query and
visualization interface on a parallel machine to be able to sup-
port a really interactive query modification even for mid-size
to large amounts of data and complex distance functions.

Inspired by using our prototype, we already have several
ideas to extend our system. One extension is the automatic
generation of queries corresponding to some specific region
in one of the visualization windows. The region may be graph-
ically identified by the user. Then, the system should try to find
adequate selection predicates that provide the desired data
items as a result. Another idea is a special handling of com-
plex queries with tens to hundreds of parameters that are only
used on smaller data sets. For this case, special screen layouts
with one continuous area for each data item may be better suit-
ed to help the user to identify similarities. To further improve
our system, we intend to apply it to many different application
domains, each having its own parameters, distance functions,
query requirements and so on. We believe that query and vi-
sualization systems like ours can also be useful in other appli-
cation contexts. They may be the starting point for new ways
to visually solve problems that have proven to be very difficult
using conventional tools. Querying of very large databases is
just one example.
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