
GRADI: A Graphical Database Interface
for a Multimedia DBMS1

Daniel A. Keim
Institut für Informatik, Universität München

Leopoldstr. 11B, 8000 München 40
e-mail: daniel@dbs.informatik.uni-muenchen.de

Vincent Lum
Systems Engineering, Chinese University

Shatin,Hongkong
e-mail: vlum@cuse11.se.cuhk.hk

Abstract

In this paper we describe the GRAphical Database Interface (GRADI) of a Multi-
media Database Management System. As generally true, the user interface is an
important part of the system which strongly determines the effectiveness of using
it. In order to find an easy and natural way of interacting with the MDBMS system
we examined the query specification process used by humans. We found that incre-
mental query specification, predefined joins and an additional ‘all’-operator are im-
portant to improve the process of query specification making it considerably easier
to use compared to query languages like SQL. The Graphical Database Interface
described in this paper incorporates the mentioned capabilities as part of the MD-
BMS system. We think that the principles are of general use not only for multime-
dia systems but for any database query interface.

Keywords: Graphical User Interface, Multimedia Database System, Natural-
Language Interface, Information Retrieval

1. Introduction

The GRAphical Database Interface (GRADI) is designed as an integral part of the Mul-
timedia Database Management System (MDBMS). It is designed to support a natural re-
trieval process of conventional and media data. The MDBMS system controls the manage-
ment of multimedia data, which include image and sound among others, in addition to
supporting conventional databases. The manipulation of multimedia data is not as straight-
forward as in conventional databases. One main problem is the retrieval of multimedia
data from the database with the need to match the contents of multimedia data to a user
query. In order to achieve a content based retrieval in our approach, we usenatural lan-

1. This research was mainly done while the authors were at the Computer Science Department, Naval Postgraduate
School, Monterey, California, USA and was supported in part by NOSC, Direct Funding and the German Scholar-
ship Foundation.

guage captions allowing the user to describe the contents of multimedia data. In a similar
manner, users will specify their queries on multimedia data contents in natural language
form. One major problem with this approach is, that it is generally the case that the de-
scription of a multimedia data does not exactly match the description of a user query. The
reason is that it is difficult for different users, or even the same user at different times, to
describe the same thing identically because they can use synonyms or generalize/special-
ize categories belonging to the domain of interest and so on. Hence, in an earlier paper we
proposed an intelligent approach to approximate matching by integrating object-oriented
and natural language understanding techniques [KeKL91]. In the algorithms used for the
intelligent matching only the retrieval of multimedia data by queries on the media part are
considered. However, as is generally true, a query involves not only the media part but also
the related formatted data. Queries may be composed of arbitrary combinations of condi-
tions on the media and formatted data.

It is important to achieve an easy specification of complex queries composed of many
conditions. The procedure for the specification strongly determines the effectiveness of
using the system. Our goal in developing GRADI was to provide an easy and natural way
of interacting with the MDBMS system. We examined the query specification process
used by humans and found that in order to formulate complex queries a user partitions it
into smaller pieces and puts them together in a later stage. This behavior is reflected in the
principle of incremental query specification which is supported by GRADI. In addition,
we observed that, for a given database, the joins necessary to specify most of the queries
correspond directly to natural language expressions. This leads to the notion ofpredefined
joins, also supported by GRADI. Furthermore, we introduce an ‘all’-operator making the
query specification in many cases considerably easier.

Over the last two decades several research projects have been conducted in the area of
user interfaces for (multimedia) database systems. The first approach for a graphical data-
base interface is the well-known QBE interface [Zloo77]. Most recent research in the area
of user interfaces focuses on the entity-relationship [WoKu82, Fogg84, RoCa88] or the
more complex semantic and object-oriented data model [KiMe84, GGKZ85, BrHu86,
AgGS90], allowing queries to be directly specified within the schema. In contrast, we use
an extension of the relational model to handle and manipulate the media data. In order to
allow an easy query specification, we provide a graphical user interface which incorpo-
rates the capabilities as mentioned above, differing in many ways from QBE.

Another approach to achieve an easy query specification was chosen by researchers in
the artificial intelligence area. Much effort went in building natural language understand-
ing systems capable of understanding queries expressed in natural language. An overview
over the research in this area can be found in [Alle87] and a good example for the current
state of the art is the TEAM system [Gros87]. Because of the problems related to natural
language understanding hardly any of the systems are actually used for retrieval in data-
bases. In GRADI we are not trying to understand natural language. We argue that in order
to express a query on formatted data in most cases natural language understanding is not
necessary. The user can easily choose the necessary tables and attributes from lists, type
the desired values and combine simple conditions into more complex ones. To our knowl-

edge, none of the natural language interfaces to database systems can handle complex
combinations of conditions because of the semantic problems related to multiple sentenc-
es. Furthermore, a graphical user interface like GRADI is generally applicable and less
complicated and time-consuming than natural language understanding.

The paper is organized as follows: Section 2 gives a short overview of the Multimedia
Database Management System (MDBMS). Section 3 outlines important features of GRA-
DI and gives examples for query specifications. Section 4 describes the other database op-
erations (schema definition, insert, update and delete) and Section 5 gives concluding re-
marks and a summary.

2. Overview of the Multimedia DBMS Prototype

As mentioned before, multimedia data, in the broadest sense, consists of unformatted
data such as text, image, voice, signals, etc. in addition to alphanumeric data. A multime-
dia database management system is a system that manages all multimedia data and pro-
vides mechanisms to handle concurrency, consistency, and recovery in addition to provid-
ing a query language and query processing. In the following, we outline object model,
architecture and main components of our Multimedia Database Management System
(MDBMS).

2.1 Object Model
Despite differences in data model and implementation, all research projects on MDBMS

have decided to organize multimedia data using the abstract data type (ADT) concept. This
is generally accepted as an adequate approach. However, none of the projects have ad-
dressed the problem of content retrieval of multimedia data.

The fundamental difficulty in handling multimedia data is intrinsically tied to its very
rich semantics. To answer queries posed on media objects a person must draw from a very
rich experience encountered in life to derive a good answer. One must have a sophisticated
technique for analyzing the contents of the images to get the semantics of different things
in the images. Technology today is not advanced enough to expect systems to have this
kind of capability to answer multimedia queries. However, we can abstract the contents of
multimedia data into text and use the text description equivalent of the original multimedia
data to match the user request or query. This is the principle we used in designing a
MDBMS to handle multimedia data for different applications. Figure 1 shows the format
of multimedia data which consists of the registration, raw and description data.

IMAGE

Registration Data (Height, Width, Depth, Colormap, etc.)

Description Data (abstracted content of image using text)

Raw Data (Matrix of Pixels in Raster/Bitmap Format)

Figure 1: Example for the Multimedia Data Format

Raw data is the bit string representation of the image, sound, signal, etc. obtained from
scanning or digitizing the original multimedia data. Registration data generally enhances
the information about raw data and is not redundant. The contents of multimedia data are
described by description data. We assume that users will supply the description data for
multimedia data in natural language form. In future systems, however, the description
could be automatically derived by the computer.

2.2 Architecture

The overall architecture of the MDBMS system is shown in figure 2. The components
break down into GRAphical Database Interface (GRADI), query processor, data access
and intelligent retrieval subsystem. The query processor accepts queries from GRADI and
executes them by calling the other components. When a new description for a multimedia
data is entered for example, the query processor calls the parser. The parser uses the dic-
tionary to produce first-order predicates and returns them to the query processor. The que-
ry processor then hands the predicates over to the description manager which links the de-
scription to its multimedia data.

When the query processor receives a query the first task is to decompose the query into
subqueries each affecting only the conventional or the media part. The conventional sub-
query is passed directly to the conventional data manager without modifications. For the
text description, the query processor calls the natural language parser to obtain the equiv-
alent query predicates. The predicates are then handed to the matcher. The matcher tries to
match the query with the qualified multimedia data by comparing the predicates of the
query with that of the stored multimedia data. The matcher does this by calling the descrip-
tion manager and using domain knowledge. As the solution to the natural language part of
a query, the query processor receives links to the qualified multimedia data. After combin-
ing them with the results of the conventional subquery the final results are retrieved by the
Data Access Subsystem.

Description
Manager

Figure 2: Architecture of the MDBMS System

Parser
Media Object

Manager
Conventional
Data Manager Matcher

 Image
 Manager

 Sound
 Manager Dictionary

Domain
Knowledge

 Graphical Database
Interface

Query
Processor

Data Access Subsystem Intelligent Retrieval Subsystem

 Relational
 DBMS

• • •

2.3 Parser

In order to accomplish the goal of content retrieval of multimedia data, full understand-
ing of natural language is not necessary. However, a restricted interpretation is necessary
which is done by the parser component using the application dependent dictionary as a se-
mantic basis. The dictionary or lexicon is necessary for parsing and gives each possible
natural language word its part of speech, its grammatical form and the form of literals
needed to represent it.

The parser automatically partitions the text description into subject, verb and object
components and translates them into a set of predicates called themeaning list. The impre-
cision and ambiguity of the natural language descriptions are reduced considerably by
transforming them into a set of predicates in first-order predicate calculus. These predi-
cates state facts about the real world entities involved with multimedia data like their prop-
erties and relationships. Important features of the parser aresupercaptions, a generaliza-
tion of captions, andframes for stereotypical actions, allowing a set of predicates to be
derived from terms in the description.

Our current implementation of the parser uses augmented-transition network parsing
and interpretation routines. It is implemented in Quintus Prolog and running on a SUN
SPARC workstation. The details of the parser are beyond the scope of this paper and are
given in [Dull90, Gugl92].

2.4 Matcher

 The major problem with content retrieval by natural language descriptions is that gener-
ally the description of a multimedia data does not exactly match the description of a user
query because the same media object may be described differently. To solve the problem
the matcher provides an approximate matching algorithm using domain knowledge organ-
ized as object hierarchies. The matcher searches in the noun and verb generalization hier-
archies of the object classes and assigns weights depending on the distance in the object
hierarchy. Then the weights for single component groups (subject noun, verb and object
noun phrases) are combined using appropriate weighting factors as received from the user.
Finally, the multimedia data with combined weight exceeding a threshold value set by the
user will be retrieved. A prototype of MDBMS has been implemented at the Naval Post-
graduate School [HoLR90, Pei90, LuMe91, LuKK92]. In this paper, we focus on the user
interface called GRADI.

3. Query Specification in GRADI

The goal of a graphical database interface is to support the query specification process
allowing the user to efficiently use the database system. It should allow inexperienced us-
ers to retrieve data from the database without having to know a specific query language. In
today’s database management systems the user is forced to think in terms of data model
and query language which differs greatly from the user’s way of thinking. Often a user can
express a query easily in natural language, but has difficulties to express it in some given
query language.

Most queries involve both media and formatted data. For the media part of the query we
use our intelligent matching algorithm which is directly processing natural language cap-
tions. For conditions on formatted data, natural language expressions are mostly too im-
precise to be directly processed. We try to overcome this problem in GRADI by allowing
the user to directly select the desired tables and attributes.

The data model adopted in our system is an extended relational model. Despite some
drawbacks the relational model has great advantages: It is well known, widely used and
has a firm theoretical basis. For our purpose, we extend the relational model to capture me-
dia datatypes and, as shown below, we also extend the query language to allow the manip-
ulation of media data and facilitate the query specification process.

Before describing GRADI in more detail, we first outline ways to achieve a natural query
specification process. We are aware that what is natural to us may not be natural to others
but in our context natural means also easy, convenient, useful and so on.

3.1 Towards a Natural Query Specification

Usually every user can describe a query (or at least the desired result) easily in natural
language. Unfortunately, natural language expressions representing a query are imprecise
and difficult to translate automatically into a formal query language to be understood by a
database management system. We argue that the gap between the user’s way of expressing
a query in natural language and database manipulation languages like SQL can be im-
proved considerably.

When comparing the user’s natural language (NL) expression for a query with corre-
sponding SQL statements the first difficulty is that the table and attribute names do not ex-
actly match. In a graphical user interface this problem is easy to overcome. All table and
attribute names can be presented to the user who simply selects the desired ones using a
pointing device (e.g. mouse).

Another difficulty is related to joins between tables. In examining a large number of que-
ries expressed in natural language as well as SQL we found that in most cases the join con-
dition directly corresponds to some specific NL expressions. However, the tables connect-
ed by a join condition had to be deducted from the context because in most cases they were
implicit. Additionally, the number of joins used in most of the queries was small compared
to the number of possible joins. This can be explained by two facts. First, the number of
semantically meaningful joins is restricted and second, some of the most frequently used
joins are already intended at the design time of the database. In order to provide an easy
way of expressing and using joins, in our system we allow the database designer and user
to define and name joins prior to their actual use. A predefined join can involve more than
two tables (e.g. two tables joined by means of a third table) thereby providing a simple way
of expressing m:n relationships. Once defined and named, all predefined joins can be used
to specify a query. Predefined joins differ from views: First, the result of a predefined join
is not a table as in the case of a view, but a specific connection between tables. Second, pre-
defined joins allow connections between different levels in nested queries and even recur-
sive joins can be expressed. Examples are given in the next section.

Another thing we learned in examining the process of query specification is the handling
of complex queries. Given a complex data retrieval task the user partitions it into smaller
subtasks which are easier to handle. Starting with the clear parts of the query the user deals
with all parts and combines the results into the final solution. In our system we support this
way of handling complex queries by an incremental query specification which is described
in the next section.

Finally, we observed that a special category of queries is easy to express in NL but rather
complicated in a formal query language. Additional operators, closely related to corre-
sponding NL expressions, allow an easier and clearer query specification. Considering for
example a query like“Select the name of ships which carry all weapons of the category sur-
face-to-air!”, we found that a special‘all’ operator would greatly enhance the readability
and understandability of the SQL-like query making it similar to the user’s NL expression.
For the example we presume to have the tablesplane, weapon, ship_weapon and a prede-
fined join named carriesexpressing the m:n relationship between planes and weapons.

Example 1:
select s_name from ship
where ship carries weapon

and w_nr =all (select w_nr from weapon
where category = ‘surface-to-air’)

A SQL statement expressing the same query without the ‘all’-operator is rather compli-
cated. Two possibilities are:

1. select s_name from ship
where ((select w_nr from ship_weaponA

where ship.w_nr = A.w_nr)
contains
(select w_nr from weapon
where category = ‘surface-to-air’))

2. select s_name from ship
where not exists

(select * from ship_weaponB
where B.w_nr in (select w_nr from weapon

where category = ‘surface-to-air’)
and not exists

(select * from ship_weaponC
where C. s_nr = B.s_nr

and C.w_nr = B.w_nr))

3.2 Description of the Query Specification
In this section, we will describe GRADI in more detail by presenting several examples.

We will show the main features of GRADI, especially those which are different from other
graphical database interfaces. We start with a general description of the steps used in the
retrieval process.

When starting the MDBMS system the user will be automatically connected to GRADI
and the first step is to select the desired database. Then the user gets the system menu pro-
viding the main database manipulation functions: insert, delete, update or retrieve. When
selecting retrieval, the user gets the query specification window and the first step is to se-
lect the tables to be used in the query. For each selected table a list with all attributes will

be displayed in a separate window and all predefined connections involving at least one of
the selected tables will appear in theConnections window. To specify the result list (pro-
jection) the user has to move the desired attributes to theResult List. Now, only the condi-
tions need to be specified. Using connections, attributes of the selected tables and opera-
tors provided by theTool Box, the query can easily be built using the mouse. In theQuery
Representation window the query is displayed graphically. Each part of the query is repre-
sented by a small box, simple conditions by a single box, subqueries by a double box, and
the connection lines are labeled with the kind of connection used. An advantage is that
every part of the query can be addressed for edit or delete at any time during the query
specification process.

Predefined Joins

A special feature of GRADI are predefined joins. Predefined joins can be defined at de-
sign time of the database by the database designer. Having the necessary connections be-
tween tables in mind, the database designer tunes the database so that joins can be execut-
ed efficiently. All semantically meaningful joins can already be defined at design time.
However, if other joins are needed later, the user can define them at any time.

Let us consider a sample database with the following tables:

mission (m_id, m_name, direction, goal, task)
navy_base (base_id, location, size)
officer (o_id, o_name, address, salary, commander_id, ship_nr, o_image)
ship (s_nr, s_name, class, yr_built, cap_id, mission_id, base_id, s_image)
ship_weapon (s_nr, w_nr, quantity)
weapon (w_nr, w_name, category, type, range, w_image)

Only few of the possible joins between these tables are semantically meaningful; e.g. the
only meaningful equi-join between ship and officer is ship.cap_id= officer.o_id. Most
other equi-joins likeship.s_name= officer.addressor ship.s_nr= officer.o_id are sense-
less and will never be used.

Predefined joins allow an easier specification of complex queries. The user does not need
to think about the attributes and conditions necessary to join tables, one simply chooses the
desired predefined joins in the Connections window. Predefined joins can involvemore
than two tables, e.g. the following SQL statement expresses a three way join between ship
and weapon:

Example 2:
select s_name, w_namefrom ship, ship_weapon, weapon
where ship.s_nr= ship_weapon.s_nr

and ship_weapon.w_nr= weapon.w_nr

To express the join conditions of the same query in GRADI, only one step is necessary.
After selecting tables and attributes the predefined joinshipcarries weaponhas to be se-
lected. The result as displayed in the Query Representation window is shown in figure 3.

Predefined joins can even be used to express joins of relations with themselves, e.g. the
query“Select the name of each officer together with the name of his immediate command-
er!” can be easily specified usinga predefined join. The user could specify the query as
follows: First the officer table has to be selected. Since we deal with two instances of this

table it has to be selected twice resulting in the officer1 and officer2 window. The last step
is to select the predefined joinofficer is_commander_of officer.

Two more things about predefined joins need to be mentioned: First, any kind of join (not
only equijoins) may be predefined and second, it is allowed to predefine identical joins
with different names. This is useful to allow an easy identification of the required prede-
fined join since the same query can be expressed differently. A simple example is
shipcarries weapon and weaponis_carried_by ship.

‘All’-Operator

As mentioned before we introduced an additional ‘all’-operator to make the specification
of a special class of queries easier. The use of the ‘all’-operator in GRADI is similar to oth-
er relational operators, e.g‘exists’ or ‘in’ . The user specifies it by selecting an attribute, an
operator (=, >, <,≥, ≤) and a double box representing a (sub-)query or a table. The seman-
tics of the ‘all’-operator will be given in section 3.5.

Incremental Query Specification

To support incremental query specification we allow the user to start with any part of the
query; e.g. to specify the query example 1 (see above) the user can start with the subquery
weapons of category ‘surface-to-air’ and then continue with the main part of the query
without specifying the connection between these two parts. At a later stage, the user may
combine the separate parts.

As an additional feature, we provide an option to save and reload any part of a query for
later use. If the user needs part of the query later for other queries the desired part may be
saved by selecting the corresponding items in the Query Representation window and as-
signing a name to them. Later, when working on a different query, desired parts can be re-
loaded and integrated in the new query. Furthermore, to enhance the clarity of display,
parts of a query can be grouped together and displayed as one box (zoom in). If the user
wants to see the query in full detail at a later stage, the zoom out option can be used.

Tool Box

The Tool Box allows fast access to all functions supported by the system. The functions
are divided into five groups: logical operators and basic elements(AND, OR, Condition,
Subquery), comparison operators(=, >, <, ≥ , ≤), nesting operators(Exists, not Exists, IN,
not IN, ALL), set operators(∪, ∩, −, ⊆, ⊇) and aggregate operators(AVG, SUM, MAX,
MIN, COUNT). The semantics of most operators are the same as in SQL. The additional

Query Representation

Edit Zoom OutZoom InDelete Save Load

s_name, w_name
from ship, weapon

ship carries weapon

Figure 3: Example for a predefined join

‘all’ -operator has already been introduced (see above).Condition andSubquery options
are necessary for the incremental query specification process. Using these options, the
user is able to continue the query specification with a different part of the query. When se-
lectingCondition the user gets a new condition box and in the case of selecting theSub-
query option a new double box for a new subquery is created.

Media Description Editor

Another important part of our system is the way of specifying the natural language de-
scription part of a query necessary when media data are involved. If the user selects a me-
dia attribute in the specification of the condition, automatically a specialMedia Descrip-
tion Editor will be displayed in a separate window where the media description can be
specified. The description editor has special features to support the intelligent matching
process mentioned above. When selecting the‘Check’ button the entered description is in-
stantly sent to the parser. The parser tries to check and interpret it and, in case of an error,
gives back the error message. The‘Hierarchy’ button supports the user in finding the right
description. For a selected word or phrase (highlighted) it presents the corresponding part
of the object-oriented domain knowledge base thereby providing hints for a better descrip-
tion (see figure 5 for an example). With the ‘Weight’ button the user is able to assign
weighting factors to the different component groups of a query. As mentioned before, the

Media Description Editor

Done Check Hierarchy Weight Quit

An aircraft carrier is operating in the
Mediterranean. Planes are in operation
over the ship.

Figure 4: Media Description Editor

Planes

Figure 5: Example for a Noun Hierarchy

Hierarchy

Select Expand Quit

Plane

Transport Bomber Seaplane

C-47

F-15 F-16 Zero

B-52 Divebomber

Dauntless

Stuka

Fighter

Shrink

weighting factors are used to combine the weights of single groups. If the user does not
provide weighting factors, an equal factor is assigned to all component groups. When se-
lecting the‘Done’ button the description is automatically checked (like in case of the
‘Check’ button) and the Media Description Editor disappears. If the user wants to edit the
description at a later stage the corresponding box in the Query Representation window has
to be selected and the‘Edit’ button has to be pushed. An example for the description“An
aircraft carrier is operating in the Mediterranean. Planes are in operation over the ship.”
is shown in figure 4.

A Larger Example

To further explain the query specification process let us walk through a complex example:

“Select the name, base_id and image of ships which can carry all weapons of the cate-
gory surface-to-air and where the image shows ‘An aircraft carrier is operating in the
Mediterranean. Planes are in operation over the ship.’ ”.

When specifying the query the user might want to start with an easy part, e.g. “weapons
of the category surface-to-air”.To specify this part the user first selectsSubqueryin the
Tool Box providing a second double box for the subquery. Thenweapon in the Tables win-
dow must be selected. As a result all attributes of the weapon’s table are displayed in a sep-
arate window and by clicking tow_nr, the desired attribute is selected. The next step is to
specify the condition. By clicking toCond in the Tool Box the user gets an empty condi-
tion box in the Query Representation window and by clicking to the attributecategory in
the weapon’s window, ‘= ’ in the Tool Box and typing insurface-to-air the box is filled
with the actual condition.

As the next part the user might want to specify the image description condition“image
shows ‘An aircraft carrier is operating in the Mediterranean. Planes are in operation over
the ship.’ ”. The specification process for this part is similar to the specification of the first
part. The user selects theship table and after getting a new condition box the attribute
s_image from the ship window can be selected. Becauses_image is a media attribute, the
system automatically provides the specialMedia Description Editor window. In this win-
dow the user can type the natural language description for the image, in our example“An
aircraft carrier is operating in the Mediterranean. Planes are in operation over the ship.”.
When selecting the‘Done’ button the description will directly be interpreted by the parser
to get the equivalent predicates.

The last step is to specify the main part of the query and to compose the parts into the fi-
nal result. Starting with the beginning of the query (‘Select name, base_id and image’) the
user moves the attributess_name, base_idands_image to the Result List window. By se-
lectingCond from the Tool Box andshipcarries weapon from the connections window
the user specifies the join condition. Now, as the last part of the query, the user has to spec-
ify the ‘all’-condition. This can be accomplished by getting a new condition box, clicking
to w_nr in the weapons window, ‘=’ and‘all ’ in the Tool Box and the double box repre-
senting the subquery‘weapons of the category surface-to-air’ in the Query Representa-
tion window. The last step is to combine the conditions into the final result. This is done by
selecting the conditions and the logical operator AND from the Tool Box. In figure 6 the
final result of the query specification process is shown.

3.3 Presentation of Results

An important aspect of a graphical user interface for multimedia database systems is the
presentation of the results. The question is how to present a huge amount of multimedia
objects. The problem is that, unlike conventional attributes, multimedia objects may have
a time and space dimension.

To solve these problems we choose a combined form and list oriented approach. Gener-
ally, the results are presented as a list. In place of the media values only buttons are dis-
played which the user selects in order to see and/or hear the corresponding media object.
Another way to see an object in more detail is to point to the line containing the desired tu-
ple to get the tuple displayed in its form representation. Forms allow users to see more at-
tributes (including media attributes) than available in a list; however, in contrast to lists,
only one tuple at a time is displayed. By using the list representation the user can easily
scan a huge amount of data but at any step the user has also the possibility to get the more
detailed form version of a media object. When specifying a query automatically a new
form is created including spaces for the values of all attributes involved. With the help of
a graphical design tool the user can rearrange the form according to his needs and store it
under a different name. In future queries the user can choose an already defined form when
dealing with a similar query. In figure 7 the results of our sample query are shown using
the customized formwithDescription.

The combined list and form oriented approach only solves the space problem. It is highly
desirable to have an influence on the time dimension of multimedia objects, too. Nobody
wants to see a whole video in order to identify it as the desired one. Each time, a media ob-
ject with time dimension (e.g. video or sound) is played, the user should have the possibility
to stop, skip a part, go back, etc. In a special window all possible options should be present-
ed as buttons so that the user can choose one of them using the mouse. A precondition for
this kind of handling time dependant media objects is random access to their storage repre-
sentation. In our MDBMS prototype system random access to media objects with time di-
mension is not supported yet and therefore we do not provide the features for time depend-
ant objects. Other desirable options for time dependant media objects are the possibility to
see a text version of a sound object (e.g. possible for speech or songs), the possibility to de-
fine index points which are directly accessible without linearly scanning the media object
and the possibility to define synchronization points (for combined media objects).

3.4 Predefined Joins and Query Optimization

So far we have introduced predefined joins only from the user’s point of view. In this sec-
tion, however, we will explain the internal handling of predefined joins and related query
optimization issues.

 To process a predefined join the query is transformed substituting each occurrence of a
predefined join by its definition. Additionally, missing tables are added to the ‘from’ part
of the query. By this expansion some queries become more complex than necessary. The
reason is that sometimes a two way join is sufficient although a three or four way join is
substituted for predefined joins. In example 3 the predefined join‘ship carries weapon’ is
used. In the expanded version the predefined join is substituted by the three way join

‘ship.s_nr= ship_weapon.s_nr and ship_weapon.w_nr=weapon.w_nr’ . However, for
the evaluation of the query only a two way join is necessary (see optimized version).

Example 3:

select s_nr from ship
where ship carries weapon (original query)

and weapon.type = torpedo

select s_nr from ship, ship_weapon, weapon
where ship.s_nr= ship_weapon.s_nr (expandedversion)

and ship_weapon.w_nr= weapon.w_nr
and weapon.type = torpedo

select s_nr from ship_weapon, weapon
where ship_weapon.w_nr= weapon.w_nr (optimized version)

and weapon.type = torpedo

In order to automatically generate a simplified version we developed an optimization al-
gorithm to be applied recursively after substituting all predefined joins according to their
definition. The first step of the optimization algorithm is to check whether a simplification
is possible or not. A precondition for a simplification is that one of the join attributes must
be the only attribute of that table used in the query. In this case table and join condition are
omitted and each occurrence of the join attribute is substituted by the other attribute of the
join condition. Formally, the optimization algorithm for a two way join can be described
as follows:

if

thensubstitute

by .

In more complex queries the optimization algorithm may be applied several times to
achieve an even larger simplification. In example 4 a query is shown which can be simpli-
fied considerably (reduction from a four way to a two way join) using the optimization al-
gorithm recursively.

Example 4:

select s_name, o_id, m_idfrom ship, officer, mission
where officer is_captain_ofship (original query)

and ship is_on mission
and ship.class= aircraft_carrier

select s_name, o_id, m_idfrom ship, officer, mission
where officer.o_id = ship.cap_id (expanded version)

and ship.mission_id = mission.m_id
and ship.class= aircraft_carrier

select s_name, cap_id, m_idfrom ship, mission
where ship.mission_id = mission.m_id (first optimization)

and ship.class= aircraft_carrier

select s_name, cap_id, mission_idfrom ship
where ship.class= aircraft_carrier (final version)

aik
Attr A[]∈

 
  and k' k≠() : aik'

Attr A[]∉
 
 ∀

 
  and n: ajn

Attr A[]∉
 
 ∀

 
 

πai1
…ain

σ
aj1

Θ c1 
  … ajm

Θ cm 
  Aaik

al= B
 
 

πai1
…aik 1–

alaik 1+
…ain

σ aj1
Θ c1 

  … ajm
Θ cm 

  B()

3.5 Semantic of the ‘all’-operator
To make the query specification process easier we have introduced an ‘all’-operator. The

semantics of the ‘all’-operator corresponds to the division-operator in the relational alge-
bra. In this section we will explain formally how the ‘all’-operator can be translated into
the relational algebra.

Let us consider a simple one table query [] with the ‘all’-operator

being used once. To explain the semantic of the ‘all’-operator we use an extension of the
relational algebra and show how it is translated into pure relational algebra. For our exten-
sion we allow a condition ci to be an ‘all’-operator with B being either an-

other table or a query . We define the semantic of the ‘all’-op-

erator by a transformation rule to be applied to all occurrences of the ‘all’-operator:

In case of nesting of ‘all’-operators the semantic of a complex query is defined recursive-
ly. Starting innermost, each occurrence of the ‘all’-operator is substituted until all occur-
rences are transformed into the relational division-operator.

For a better understanding we apply the transformation rule to query example 1. The fol-
lowing query representing example query 1 in our extended relational algebra

may be transformed into a semantically equivalentquery using only operators of the well
defined relational algebra:

.

4. Other Database Operations:
Schema Definition, Insert, Update and Delete

In this section we will give an overview of the other database operations that are support-
ed by GRADI. The operations to be described are Schema Definition, Insert, Update and
Delete. For the schema definition we choose a rather simple table-oriented approach. The
system designer defines a new relation by identifying name, type, width and key of all the
attributes. The possible datatypes including media datatypes are presented in a menu.
More important at this stage, however, is the possibility to predefine joins allowing an eas-
ier query specification by the end user.

Insert, DeleteandUpdate are performed using a form-based approach. When creating a
new table automatically a new form is created. The spaces for the attribute values reflect
the possible length of values to be inserted or updated. As mentioned before, the user is
able to rearrange the form according to his needs.

Theinsert operation is performed by filling a form with data. After specifying the attribute
values for a tuple the user selects the ‘Insert’ button to trigger the actual insert. During the
insertion process also an‘Erase All’ button to erase all fields is available. After inserting a
tuple the user remains in the form to insert other tuples. To quit the insertion mode the user
has to use the‘Quit’ button. An example for the insertion window is given in figure8.

πa1…am
σc1…cn

A()

ci al l B()=

B πa1…am'
σc1…cn'

A'()≡

πa1…am
σc1…cn

A() πa1…am
σc1…ci 1– ci 1+ …cn

A B÷()→

πs_nameσw_nr al l πw_nrσcategory = ‘surface-to-air‘ weapon()()= ships_nr = s_nrship_weapon() weaponw_nr = w_nr()

πs_name ships_nr = s_nrship_weapon() weaponw_nr = w_nr() πw_nrσcategory = ‘surface-to-air‘ weapon()()÷()

The first step of theupdate operation is similar to the retrieval operation because it is
necessary to identify the tuples desired for update by specifying a selection condition. The
condition, a simple or complex one, is specified using the query specification window as
described in section 3.2. However, only attributes from one table may be in theResult List.
The result for the specified query is presented as a list and by clicking to one row of the list
a tuple is caused to be displayed in a form. To change the tuple the user simply edits the
values in the form and uses the‘Update’button. Other buttons available in the form are the
‘Next Tuple’, ‘Previous Tuple’, ‘Update All’ and, of course, the‘Quit’ button. By using the
‘Next Tuple’ or ‘Previous Tuple’ button the user gets the next or previous tuple found by
the user given selection condition letting the displayed tuple unchanged. When using the
‘Update All’ button an empty form is provided which the user fills to change all tuples
found using the user given selection condition. Figure 9 shows an example for the update
process.

Like update,delete is a two step operation. First, tuples must be retrieved according to a
specified selection condition. In contrast to update, noResult List is necessary because tu-
ples cannot be deleted partially. The second step, the actual deletion, is performed using
the resulting list or a form. Both list and form provide buttons for deleting the tuples one-
by-one or all tuples at once.

Another important issue is, how the media datatypes are integrated into forms because
e.g. a sound cannot be displayed in a form and other difficulties arise for images. For the
soundtype two fields are necessary, one for the path of the sound file and one for the de-
scription. Furthermore a‘Play Sound’ button is available for each attribute of type sound
to play the sound after inserting the path. For the attributes of type image a frame, two text
fields for the path and the description and a‘Display Image’ button to display the image
after inserting or updating the path are provided (see figure 8). The frame for the image can
be of an arbitrary size making it necessary to zoom the image in or out.

5. Concluding Remarks

A major problem faced in today’s database systems is the lack of an easy way to specify
complex queries. It is caused by the gap between the user’s way of thinking and the query
languages used in most systems. Basically these systems are still linear in syntax. Such
languages have not made use of the visual aspect of human senses nor the natural process
of the human minds to process information. Although a lot of work has been done in the
area of user interfaces for database systems no query language comes close to the natural
query specification process used by humans.

Our contribution exploited in this paper is a graphical database interface supporting a
natural query specification process. We combine an extended relational DBMS with an
easy-to-use graphical interface allowing direct access to standard as well as media data. It
narrows the gap between the user’s way of thinking and formal query languages by using
graphical user interaction. In our system, we support an incremental query specification,
predefined joins and the special ‘all’-operator to make the query specification process user
friendly. The user is guided as much as possible allowing a quick, convenient and useful

query specification. Further research is necessary to come even closer to the user’s way of
query specification e.g. by allowing the user to directly communicate with the system in
natural language when appropriate.

We believe that our system provides a simple and elegant approach to the retrieval of
multimedia data. The simplicity of our user interface lies in the easy way of query specifi-
cation being directly obtained from queries expressed in natural language. We also believe
that our approach is a general one that can be readily applied to most database query inter-
faces (e.g. relational systems and extensions hereof).

References

[AgGS90] Agrawal R., Gehani N. H., Srinivasan J.:OdeView: The Graphical Interface to Ode.
Proc. ACM-SIGMOD Int. Conf. on Management of Data, Atlantic City, 1990.

[Alle87] Allen J.:Natural Language Understanding. Benjamin/Cummings Publishing, 1987.
[BrHu86] Bryce D., Hull R.:SNAP: A Graphics Based Schema Manager. Proc. IEEE Int. Conf.

on Data Engineering, Los Angeles, 1986.
[Dull90] Dulle J.:The Scope of Descriptive Captions for Use in a Multimedia Database System.

M.S. Thesis, Computer Science Department, Naval Postgraduate School, Monterey,
CA, 1990.

[Fogg84] Fogg D.:Leesons from a ‘Living in a Database’ Graphical User Interface. Proc. ACM-
SIGMOD Int. Conf. on Management of Data, 1984.

[GGKZ85] Goldman K. J., Goldman S. A., Kanellakis P. C., Zdonik S.B.:ISIS: Interface for a Se-
mantic Information System. Proc. ACM-SIGMOD Int. Conf. on Management of Data,
Austin, TX., 1985.

[Gros87] Grosz B.J. et. al.:TEAM: An experiment in the Design of Transportable Natural Lan-
guage Interfaces. Artificial Intelligence, No.32, 1987.

[Gugl92] Guglielmo E.:Natural Language Processing of Captions for Retrieving Multimedia
Data. Proc. Conf. on Applied Natural Language Processing, Trento, Italy, 1992.

[HoLR90] Holtkamp B., Lum V. Y., Rowe N. C.:Demon - A media object model incorporating nat-
ural language descriptions for retrieval support. Tech. Report NPS52-90-019, Com-
puter Science Department, Naval Postgraduate School, Monterey, CA,1990.

[KeKL91] Keim D. A., Kim K.-C., Lum V.:A Friendly and Intelligent Approach to Data Retrieval
in a Multimedia DBMS. Proc. Int. Conf. on Database and Expert Systems (DEXA), Ber-
lin, Germany, 1991.

[KeLu92] Keim D. A., Lum V.: Visual Query Specification in a Multimedia Database System,
Proc. Conf. Visualization, CS Press, Los Alamitos, CA., 1992.

[KiMe84] King R., Melville S.:Ski: A Semantics-Knowledgeable Interface. Proc. Int. Conf. on
Very Large Data Bases, Singapore, 1984.

[LuMe91] Lum V., Meyer-Wegener K.:An Architecture for a Multimedia Database Management
System Supporting Content Search. Advances in Computing and Information - ICCI
‘90, Lecture Notes, Springer, 1991.

[LuKK92] Lum V., Keim D. A., Kim K.-C.:Intelligent Natural Language Processing for Media
Data Query. Proc. Int. Golden West Conf. on Intelligent Systems, Reno, Nev., 1992.

[Pei90] Pei S.-C.:Design and Implementation of a Multimedia DBMS: Catalog Management,
Table Creation and Data Insertion. M.S. Thesis, Computer Science Department, Naval
Postgraduate School, Monterey, CA, 1990.

[RoCa88] Rogers T. R., Cattell R. G. G.:Entity-Relationship Database User Interfaces in Read-
ings in Database Systems, ed. by M. Stonebraker, 1988.

[WoKu82] Wong H. K. T., Kuo I.:GUIDE: Graphic User Interface for Database Exploration.
Proc. Int. Conf. on Very Large Data Bases, Mexico City, 1982.

[Zloo77] Zloof M.:Query-By-Example: A Data Base Language. IBM Systems Journal, No.4, 1977.

